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Synopsis i

Synopsis

Determination of Quantum States and the

Quantum Measure using Interferometry

Introduction:

The wave nature of light manifests itself, giving rise to an interference pattern which has

found numerous applications in science and technology ranging from sensing rotations in

laser gyroscopes to the recent detection of gravitational waves. Even in the quantum do-

main, where the particle nature of light cannot be avoided while describing the detection of

individual photons, the interference pattern emerges as a collective statistical consequence

of the wavefunction description. Attempts to describe the kinematics of a quantum particle

as having classical-like histories would require a new description of a probability-like quan-

tity in order to explain the interference phenomena. From the perspective of a foundational

description of quantum mechanics suitable for accommodating a theory of space-time, the

notion of considering quantum mechanics as a theory involving a generalization of proba-

bility, called the “quantum measure” was proposed [1]. Mapping of theoretical elements to

the experimental scenario would aid towards a concrete description of non-classical behav-

ior along with presenting opportunities for future tests of fundamental aspects of quantum

theory. On the application side, interferometeric techniques can be useful in quantum in-

formation processing, where characterization of prepared quantum states is vital to gauge

the eventual fidelity of quantum computation or communication protocols.

In this thesis, interferometric techniques have been used (i) as a tool to present a method

to determine unknown quantum states using the information processed from interference
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patterns, and (ii) to exemplify the non-classical value of “quantum measure” associated

with a system. Although the experiments described in the thesis were performed with

classical laser light, the results are applicable in the analysis of the behavior of an ensem-

ble of single photons. This is because an interference pattern generated from a coherent

source (wave nature) of light is equivalent to the average pattern produced by an ensem-

ble of single photons (corpuscular nature). The first few chapters of the thesis discuss the

theoretical descriptions of the quantum state determination scheme and give an experimen-

tal demonstration of the technique for the characterization of two-dimensional quantum

states, called qubits. The scheme is extended in theory for pure qudit (d−dimensional

system with d > 2) and pure bipartite qubits as well. The last part of the thesis presents

a demonstration for determining the value of quantum measure for a particular event in

an experimental scenario, which according to the original proposal [2] could demonstrate

an experimental scenario that can give a non-classical measure.

Quantum State Estimation:

In quantum mechanics, the knowledge of the quantum state is essential while dealing

with quantum systems in quantum information and communication protocols, the tests

on quantum foundations, or even for predicting the probabilistic behavior of the system

subject to any measurement. The standard and widely used method for characterizing an

unknown quantum state is Quantum State Tomography (QST) which requires multiple

distinct projective measurements to be performed on many identical copies of the same

system and additional post-processing to ensure the physicality of the reconstructed den-

sity matrix [3]. One of the alternatives to standard QST is the direct state estimation

technique employing weak measurement [4] where an unknown quantum state is inferred

from the complex weak values of the projectors obtained for different post-selections. Di-

rect measurement of quantum states in a strong interaction regime can also be performed,

one such possible method is to obtain the quantum state by measuring the expectation

values of non-Hermitian column operators [5].

In this thesis, a new technique has been presented which utilizes the phenomena of inter-

ference in order to infer an unknown quantum state of an ensemble of identically prepared

particles. We name the technique Quantum State Interferography (QSI), using which any

unknown qubit state can be reconstructed by post-processing a single interference pattern
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[6]. The general density matrix of a mixed qubit state can be parameterized by three quan-

tities, say (θ, ϕ, µ). For a qubit state (say, represented in {|0⟩ , |1⟩} basis or for instance,

{|H⟩ , |V ⟩} basis in polarization d.o.f.) the three parameters can be uniquely determined

from the expectation values of two operators: Π̂0 = |0⟩⟨0|, the projection operator along

|0⟩ and σ̂− = σ̂x− iσ̂y, the spin ladder operator. Further, the complex expectation value of

the non-Hermitian σ̂− operator can be experimentally obtained by polar decomposing σ̂−

into a unitary σ̂x and a Hermitian Π̂0, i.e., σ̂− = σ̂xΠ̂0 and finding the expectation values

of the two [7, 8].

The three quantities (θ, ϕ, µ) specifying an unknown density matrix ρ(θ, ϕ, µ) form an one

to one map with the set of the following three quantities: average intensity (Ī), phase

shift (Φ) and visibility (V ) of an interference pattern obtained at the end of a two-path

interferometer with σ̂x operator in one path and Π̂0 in the other. Thus, QSI enables one

to experimentally determine an unknown qubit state from a single experimental setup by

observing (Ī ,Φ, V ) obtained from a single interference pattern without the need to change

any internal settings within the setup (single-shot) in between the incidence of the un-

known state and the extraction of the state information.
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Figure 1: The schematic for the polarization state interferography using a two-path Inter-

ferometer formed with two beam splitters BS1, BS2 and two mirrors M1, M2. We use the

non-unitary Hermitian operator Π̂H in one of the paths and unitary σ̂x Pauli operator in

the other path. The resultant interference pattern (intensity as a function of phase shift)

can be analyzed to obtain the unknown polarization state of the incident light.
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In this thesis, we have presented the experimental implementation of the QSI scheme in an

optical setup for characterizing the polarization state of light. The experimental attempt

to perform QSI with Mach-Zehnder Interferometer (MZI) is discussed. Several experimen-

tal challenges that affect the state determination in MZI are mentioned. Some of them

were overcome by using a Dispaced Sagnac Interferometer (DSI). A comparative study of

both the techniques along with the analysis of the data obtained from the two different

interferometers has also been presented in the thesis.

Theoretically, the protocol of QSI is extended for the reconstruction of pure state in

d−dimensional Hilbert space (qudits) |ψ⟩(d), where d > 2. A d−dimensional pure qu-

dit state reconstruction using QSI requires the processing of (d− 1) interference patterns,

each of which is obtained by performing single qubit QSI on the two-dimensional subspaces

of the pure qudit arranged in a particular sequence. Thus, with the dimensionality of the

Hilbert space the required number of measurements scales linearly in QSI.

QSI can also be employed to infer an unknown bipartite qubit |Ψ⟩AB, if known to be

pure, by post-processing interference patterns obtained from two measurement settings.

QSI provides an efficient way to quantify the entanglement of a pure bipartite qubit by

performing single qubit QSI on any one of the subsystems.

Determination of Non-classical Measure:

A history based framework of quantum mechanics, namely the Quantum Measure Theory

(QMT) is considered as a generalized probability theory inspired by the path-integral ap-

proach. Unlike classical measure theory, quantum measure theory allows for interference

and assigns a non-negative real number µ(E) to every set of histories E (called an event)

associated with the system. µ(E) is called the “quantum measure” for the event E, which

in general, can not be interpreted as an ordinary probability measure since µ(E) neither

follows the probability sum rule nor does it have an upper bound of one. Thus, any value

of measure obtained to be greater than one makes it non-classical.

We present an experimental setup allowing interference, the analysis of which gives us a

non-classical quantum measure. An experimental demonstration in an optical setup is pre-

sented where a particular event associated with a photonic system is filtered out and the
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value of the quantum measure corresponding to that event is analyzed. We experimentally

characterized the setup and measured the probability of occurrence of the event associ-

ated with a photonic system. If the probability of occurrence of each event were ideally

non-destructively measured using ancillas and analyzing the ancilla states, we could have

experimentally obtained the non-classical quantum measure. The comparison of the above

two approaches has been discussed.

Outlook:

In this thesis, we present the use of interferometric technique in two experimental sce-

narios; Quantum State Interferography (QSI) potentially is useful in any quantum infor-

mation processing applications while the determination of non-classical quantum measure

can direct foundational studies in quantum mechanics and has the potential to provide an

experimental footing to the largely theoretical construct so far. Quantum state interferog-

raphy, the state determination technique employing interferometry, provides a “black-box

approach” to quantum state determination. The slit version of it will be useful in minia-

turizing (only a few cm long) the state estimating device and making it robust against

external phase noise. Determination of quantum states is an important resource for all

quantum technology-based applications, for instance, quantum computation and quantum

communication, and also for experiments in quantum foundations where QSI can serve

as an efficient tool for state characterization. Interferometry is also used to determine

the value of quantum measure which forms one of the basis of theoretical studies towards

quantum gravity and generalized probability theories.
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Chapter 1

Introduction

Role of Interference and Interferometric Experi-
ments in Science and Technology: An Overview1.1

The phenomena of interference and interferometric experiments are fundamental to quan-

tum physics [1], providing critical insights into the wave-particle duality of quantum objects

[2]. Interference allows us to observe the superposition principle in action [3], according

to which a quantum system can exist in multiple states simultaneously until measured.

The interferometric experiments are pivotal in the observation and analysis of quantum

interference in different systems under various conditions [4]. These experiments employ-

ing interferometry have enabled precise measurements of physical quantities, provided a

platform for testing theories of quantum foundations and quantum gravity, and serve as

a tool for holographic imaging [5] and for the verification of quantum entanglement [6, 7]

− a key resource in quantum computing and quantum cryptography. Therefore, interfer-

ometric experiments are not only central to understanding the quantum world but also

instrumental in harnessing its potential for technological advancements.

The information obtained from an interference pattern and the interferometric exper-

iment under a specific condition can be incredibly insightful [8]. Hence, they have found

numerous applications in science and technology ranging from simply finding the optical

path length difference [9] and the refractive index of materials [10] to finding the gravity

gradients [11, 12, 13] and the fundamental constants such as the fine structure constant

1
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[14]; from analyzing the spectral properties of light [15, 16] to examining the surface qual-

ity of the optical components up to nanometer precision [17]; from sensing the rotation of

laser gyroscopes [18, 19] to the detection of gravitational waves [20, 21], etc.. The interfer-

ometric techniques have been of profound importance in classical physics as well, allowing

for measurements with sub-micrometer precision and thus paving the way for the devel-

opment of the field of precision metrology. In the field of astronomy and in experiments

based on weak measurement within the quantum theory, interference is employed for the

amplification of extremely small signals [22, 23, 24]. Furthermore, interferometric method-

ologies have been used for the verification of geometric phases [25, 26] and observation of

the scalar Aharonov-Bohm effect [27, 28].

Interferometry contributes to quantum computing by providing effective and efficient

algorithms in order to address intricate problems, as well as enables manipulation of the

probability amplitudes of the potential results. By implementing the quantum gates that

generate a superposition of the input states and adjusting their relative phases, interfer-

ence can be strategically employed in quantum circuits to produce specific outcomes while

suppressing the others. Interferometers are the devices that allow quantum systems to

exist in a state of superposition and thereby, producing interference patterns [29]. These

devices utilize the principle of interference to extract the valuable information in an exper-

iment. Interferometers come in a variety of forms, including slit-based interferometers like

double-slit or triple-slit interferometers, as well as Michelson, Fabry-Perot, Fizeau, Mach-

Zehnder, and Sagnac interferometers. Each of them possess its own unique configuration

and application, rendering them as adaptable tools for different experimental setups and

for designing various practical instruments.

Hence, interferometry based experiments and the use of interferometers have played a

pivotal role in enhancing our knowledge and understanding of the universe and in paving

the way for the development of innovative technologies that could potentially lead to new

scientific discoveries. In this thesis, we will explore two potential applications of interfero-

metric techniques: firstly, as a tool to introduce a method for characterizing the unknown

states of a quantum system utilizing the information processed from interference patterns,

and secondly, as a model to demonstrate the determination of the non-classical nature

of “generalized probabilities” described within the framework of path-integral approach to



Chapter 1. Introduction 3

quantum theory, in contrast to the standard Kolmogorov probabilities. The research doc-

umented in this thesis will showcase the practical implementation of Mach-Zehnder and

Sagnac interferometers while providing a comparative theoretical study of the techniques

with the double-slit interferometer.

Diving into the Thesis: Background, Motivation and
the Outline

1.2

Quantum interference, a fundamental and intriguing concept in quantum mechanics (QM),

continues to remain a subject of intense research and interpretational debate due to its

paradoxical nature that challenges our classical intuition about the physical world [30].

Despite of its success in explaining different natural phenomena related to the dynamics

of a quantum system and its widespread use in developing advanced quantum technologies

such as quantum computing and quantum information protocols etc., a full comprehension

of the underlying mechanics of quantum interference remains elusive [31]. The crux of the

conundrum is the wave-particle duality [32] − the observation that the quantum systems

evolving through an interferometer collectively exhibit the wave-like interference and form

an interference pattern after the interferometer, yet show a particle-like characteristics

upon detection. This counter-intuitive behavior of a quantum object can be demonstrated

in the most simple scenario using two path interferometers, such as a double-slit or a

Mach-Zehnder Interferometer. As we delve deeper into the quantum realm, the mystery of

quantum interference continues to inspire new questions, driving the quest for a profound

understanding of the universe.

The principle of superposition in quantum theory allows a quantum system to evolve

through all the indistinguishable paths within an interferometer at once, which when re-

combined forms an interference pattern at the end. This phenomenon does not invoke any

extraordinary feature other than the mere overlap of the waves when we describe this evo-

lution (of the quantum system) as the propagation of waves according to wave mechanics.

For instance, the formation of interference patterns can be observed through the overlap of

the water waves as well (in the classical domain). However, the surprising feature emerges
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when we attempt to detect the quantum system, where only one detector, among those

placed along various paths of an interferometer, is observed to be triggered at any given

moment. This leads to the question, how a quantum system that is presumed to evolve as

a wave through all the paths of an interferometer simultaneously, is found in only one of

the paths upon detection? In other words, how does a quantum system considered to have

an extended spatial distribution, collapse as a localized object in space at the individual

events of detection? When exactly does this transformation occur? When and how does

the quantum system even decide whether to exhibit the particle-like or the wave-like char-

acteristics? All these questions form the core of the quantum measurement problem [33],

which seeks to answer a broader question “What exactly happens during a measurement? ”

Despite years of extensive research and numerous proposed interpretations of quantum

theory [34] aimed at elucidating the physical process during a measurement and deep-

ening our understanding of whether quantum mechanics provides a complete theory, an

universally acceptable answer is still absent. No consensus has been reached concerning

which interpretation most accurately reflects the reality [35]. This essentially highlights

the difficulties arriving in our attempts to reconcile the deterministic perception of reality

with the inherently probabilistic nature of quantum mechanics, which pertains to the ran-

dom outcomes obtained in different instances of a quantum measurement. On the other

hand, the “shut up and calculate” approach [36, 37] encourages focusing on the results

of the measurements rather than making an explicit effort to unravel the fundamental

procedures leading to these results. In the conventional theory of quantum mechanics,

the experimental observations are explained with two dynamical laws: (i) the Schrödinger

wave equation [38] allowing the deterministic Unitary time evolution of the wave-function,

associated with a system, under a given Hamiltonian and (ii) the probabilistic non-Unitary

reduction of the wave-function upon measurement. Therefore, the knowledge of the wave-

function at an instant (t0), enables one to accurately compute the probabilities of different

possible outcomes of a measurement at a time t > t0. Here, the wave-function is consid-

ered as a mathematical construct that embodies our knowledge about the quantum system.

The description of the reality of a quantum system and its evolution, inherently de-

mands the physical interpretation of the wave-function of the system, which has always

been a subject of debate [39, 40]. To be able to assign an ontological meaning to the
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wave-function [41, 42], would be a significant stride towards addressing the question posed

by the quantum measurement problem. However, amidst all the foundational debates,

attempts are made to provide a different perspective on the observed probabilistic nature

of quantum mechanics, without going into the complexity of wave-function collapse or the

consistent macro- vs micro-world division [43, 44] to define the observer and the observed

in a measurement and avoiding many of the unresolved issues like finding the true meaning

of the wave-function etc.. This is achieved by introducing more realistic theories for the

description of quantum mechanics, in which the kinematics of the quantum systems are

considered to be similar to the classical systems. Quantum Measure Theory (QMT) [45]

is one such formulation that offers a realist space-time approach to quantum theory based

on the sum over histories [46] or the path integral [47] formalism. This approach charac-

terizes the reality of a micro-system in terms of the space-time histories and interprets its

dynamics through the lens of generalized stochastic theory [48].

Within the framework of Quantum Measure Theory (QMT), the efforts to describe the

ontology of a quantum system in a manner akin to classical realism, without involving

concepts like wave-function, superposition principle and the Born rule [49] as the integral

parts of the formalism, demands a new description of the probability-like measure in order

to explain the interference phenomena and to predict the evolution of the quantum system.

Quantum Measure Theory assigns a non-negative real number − termed as the quantum

measure to a set of histories, called an ‘event’, as the generalization of the concept of

probability. This, in essence, goes beyond the limitations of standard probability theory

while still maintaining consistency with the predictions made by the conventional quantum

formalism. The fact that the quantum measure, also known as the ‘generalized probability’,

differs from the standard Kolmogorov probabilities in the presence of interference, would

form the basis of a part of the work presented in the thesis.

Here, we aim to capture the non-classical nature of the quantum measure by devising

an experimental setup allowing interference. The thesis, in one part, presents an exper-

imental implementation of a model of the general scheme proposed for determining the

quantum measure of an event associated with a quantum system [50]. To be able to infer

the quantum measure from an experiment, not only provides an experimental grounding

to what has predominantly been a theoretical construct so far, but also enables us to make
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predictions about the behavior of the quantum system, much like how the computation

of the Born rule probability does with the knowledge of the quantum state of the system.

Another part of this thesis addresses the second, which is characterizing the quantum

system by determining the state it belongs to. This knowledge about the quantum state

would enable us to make predictions about the possible distribution of the outcomes of a

quantum measurement performed on the system. The thesis presents an introduction of

a new technique that utilizes the phenomena of interference to infer the unknown quan-

tum state of an ensemble of identically prepared quantum systems, with an experimental

demonstration of the protocol showing the reconstruction of the qubits. The technique

we name as ‘Quantum State Interferography’, processes a set of interferometric quantities

such as the phase shift, average intensity, and visibility derived from interference patterns,

which is shown to establish a unique one-to-one map with the set of parameters that com-

pletely characterize the density matrix [51], when the unknown state evolves through an

interferometric setup with certain operators in the individual paths of the interferometer.

In conclusion, interferometry has been one of the ubiquitous tools utilized in the major-

ity of experiments studying the fundamentals of quantum physics because of its versatility

and ability to provide information with high precision. The thesis presents the use of in-

terferometric techniques in two distinct scenarios − one involving the characterization of

the unknown states of a quantum system, useful for effective and efficient manipulations

of the quantum systems for quantum information processing applications; while the other

for inferring of the non-classical quantum measure of an event associated with a quantum

system, that offers future possibilities towards further studies on the fundamental aspects

of quantum theory. The practical implementation and demonstration of both these tech-

niques are presented in an experimental scenario for photonic systems within optical setups.

The experiments reported in this thesis use laser light as the source. According to the op-

tical equivalence theorem, the average statistical properties of light are equivalent whether

observed with an ensemble of discrete photons or with a coherent beam [52]. Therefore, the

interference and the formation of interference patterns with a coherent laser light (wave

nature) would be identical to the average pattern produced by an ensemble of identical

single photons (corpuscular nature). Since the experiments in this thesis employ interfer-

ometry as a tool for analyzing the results, the results obtained from the laser source would

apply consistently for the analysis of the behavior of a stream of single photons as well.
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The Interferometric State Determination Scheme:
Quantum State Interferography1.3

A thorough understanding and characterization of the states of quantum systems is es-

sential for harnessing the full potential of emerging quantum technologies. However, an

unknown quantum state of a single particle cannot be directly determined from any exper-

iment [53]. Nevertheless, if we have an ensemble of identically prepared particles, we can

reconstruct the quantum state by measuring the distribution of outcomes or simply the

expectation values of different observables. Quantum State Tomography (QST) has been

the traditional and one of the widely used methods for characterizing an unknown quantum

state, where the elements of the density matrix of a quantum state [54] are estimated by

analyzing the results of several distinct projective measurements performed on many iden-

tical copies of the same system [55, 56]. The state reconstruction using QST often requires

additional post-processing to ensure the physicality of the reconstructed density matrix

[57, 58]. To reconstruct an arbitrary state of a d-dimensional quantum system using QST,

typically one requires to perform (d2−1) number of distinct measurements. However, with

the prior knowledge about the system state being pure, measurement of (5d − 7) observ-

ables suffices to give the unique state information [59, 60]. Hence, owing to this quadratic

scaling (O(d2)) of the required number of measurements with the dimensionality (d) of the

Hilbert space and the increasing complexity of the state reconstruction algorithms from

the measurement results, the higher dimensional state reconstruction using QST becomes

a cumbersome process.

Over the last decade, several schemes towards improving the scaling of Quantum State

Tomography (QST) with the dimension of the Hilbert space have been suggested [61, 62,

63, 64]. Some other alternatives to the standard QST technique using projective measure-

ments have also been explored with the aim of reducing the required number of experimen-

tal settings [65, 66]. The alternate state characterization techniques, ranging from those

involving strong interactions [67] to those involving weak interaction [68, 69, 70] have been

investigated. Since weak measurements [71, 72] can give us the complex weak values of

observables, they have paved the way for the direct measurement of quantum states [73, 74,

75]. The term “direct” in this approach implies that the real and imaginary components of

a quantum state can be inferred (up to a proportionality constant) from the observations
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of the shift in the pointer variable and the shift in the momentum conjugate to the pointer

variable respectively 1 [73], without the need to have any complicated set of measurement

settings or post-processing algorithms.

Direct measurements have been employed for the state reconstruction of not only qubits

[77] but also extended for systems with higher dimensions [78, 79], even as high as a mil-

lion [80]. When compared with the standard QST protocol, reconstruction of the quantum

state involving weak measurements demands a simpler experimental implementation but

appears to be less efficient and less precise than QST [81] owing to the fundamental nature

of weak measurements. Weak measurement involves post-selection that discards a signif-

icant number of particles undergoing the experiment, leading to inefficiency and involves

an inherent error introduced due to the first-order approximation (which is accurate only

when the coupling strength tends to zero) made even in the presence of finite non-zero

interaction strengths, resulting in impreciseness in the outcomes [82]. However, the con-

cept of direct measurement has been generalized to arbitrary measurement strengths and

it has been shown that strong direct measurement can sometimes outperform weak direct

measurements in terms of precise and accurate state estimation [83, 84, 85].

Further, it has been demonstrated that complex weak values can be obtained without

performing a weak measurement [86, 87], which can lead to the efficient direct measure-

ment of quantum states [88]. Knowing the weak value of a Hermitian operator subject to a

particular pre-selection and a post-selection can give us the expectation value of a related

non-Hermitian operator [89]. The expectation value of non-Hermitian column operators

has been used for the direct measurement of the quantum state [90]. Recently, the focus

has been towards the single-shot state estimation, i.e., obtaining the state of a quantum

system from a single setup without any required change in the experimental settings [91,

92, 93]. Our work in this thesis focuses on the use of interferometric method as opposed to

direct measurement techniques to characterize an unknown quantum state. We present a

novel method, named Quantum State Interferography, that uses the phenomena of interfer-

ence to infer the state parameters from the quantities processed from interference patterns.

1These observations correspond to measuring the real and imaginary parts of the complex weak value

when the given system is weakly coupled to the pointer [76].



Chapter 1. Introduction 9

Quantum State Interferography is a single-shot technique for quantum state charac-

terization, where an unknown state of a quantum system is determined by measuring the

expectation value of non-Hermitian spin ladder operator σ̂± in an interferometric setup.

Once aligned, this setup does not require any changes in the measurement settings during

the course of data acquisition. This thesis will present how the interferometric scheme −

Quantum State Interferography (QSI) can be employed for the reconstruction of quantum

states of a qubit along with its experimental implementation in a two path interferometer

and how this scheme can be extended to infer the state of d-dimensional qudits and pure

bipartite qubits as well, which serve as the viable alternatives to QST. The parameters

that describe a quantum state are shown to have unique relationships with the quanti-

ties such as the phase shift, phase averaged intensity, and visibility of the interference

pattern generated when the state evolves through the QSI setup. These relations can be

used to reconstruct the state incident on the setup by analyzing the produced interfer-

ence patterns. Compared to the direct state estimation techniques, which aim to minimize

the post-processing at the expense of changing the experimental settings, quantum state

interferography (QSI) focuses on minimizing the number of data acquisitions as all param-

eters describing the state are obtained at once by post-processing the interference patterns.

In Chapter. 2 of the thesis, a comprehensive theoretical discussion on the principle of

operation of the Quantum State Interfrography (QSI) scheme for the single-shot charac-

terization of any arbitrary qubit, be it pure or mixed, is presented. The chapter effectively

shows how a single interference pattern generated in a single setting of an interferometric

setup can be analyzed to infer the elements of a 2× 2 density matrix, as compared to two

or three settings (for pure or mixed qubit state reconstruction) required in QST. An exper-

imental demonstration of the method for the reconstruction of polarization qubits using a

beam from 778 nm diode laser in a Mach-Zehnder interferometer setup and using a beam

from 632.8 nm Helium-Neon laser in a displaced Sagnac interferometer setup is presented

in Chapter. 3. The fidelity of the reconstructed states compared to the states prepared

in the lab is reported as the quantification of the efficiency of this interferometric state de-

termination technique. Chapter. 4 proposes an extension of the interferometric scheme

for the characterization of pure states in higher dimensional (d > 2) Hilbert space, utiliz-

ing the information processed from (d − 1) interference patterns in a single-shot method.

Additionally, the chapter discusses a protocol for pure bipartite qubit state reconstruction
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using a dual interferometer setup, requiring only three measurements in QSI as compared

to nine measurements needed in standard QST.

Inferring the Generalized Probability of an Event:
The non-Classical Measure

1.4

According to the standard formalism of quantum theory, a measurement performed on a

quantum system involves three distinct stages − preparation: the system is prepared to

be in a definite initial state at time t = ti; next interaction: the system interacts with an

apparatus and undergoes an unitary evolution through the interaction Hamiltonian Hint

that couples the system observable under investigation to a pointer variable within the

time tm −
∆t

2
< t < tm +

∆t

2
, where ∆t is the duration of interaction 2 about t = tm;

finally detection: the quantum system undergoes a non-unitary evolution upon observation

at time t = tf and is found to be in any one of the eigen states of the observable being mea-

sured [94]. In this mathematical model for quantum measurement, in general, we ignore

all the events occurring at instances t < ti and t > tf for the sake of simplicity and con-

sider that the ‘in-between events’ i.e., the events that have happened at times ti < t < tf

are inaccessible to observation. Therefore, at the end of an experiment, we are left only

with a particular outcome without having any information about the physical processes

or the reality of the micro-system between the preparation and detection. The knowledge

about such ‘in-between’ events, however, would provide exact physical interpretations of

abstract mathematical notions such as wavefunctions, complex transition amplitudes, and

state reduction in the microscopic realm. This understanding would subsequently aid in

addressing the core foundational puzzles posed by quantum theory.

In order to bridge the existing explanatory gaps i.e., to unravel the reality of a micro-

system as it evolves from an initial state (at ti) to a final state (at tf ), we need measurement

techniques that would focus on temporally extended events associated with the physical

world rather than just momentary states. A specific kind of measurement procedure,

known as weak measurements [71, 72], is designed to illuminate the intermediate physi-

2∆t in some cases determines the strength of interaction as well.
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cal processes (i.e., the ‘in-between’ events) through weak interactions between the system

and the pointer. This method probes the system information at an intermediate time

(say, tw) between pre-selection − the initial state and post-selection − the final state, in

terms of the weak values of the operators at tw ∈ [ti, tf ] [95]. The weak value, typically

a complex number, can be directly interpreted as the in-out transition amplitude 3 asso-

ciated with Feynman propagators in the path-integral formulation of quantum mechanics

[96]. This perspective incorporating path integrals offers an intuitive understanding of the

micro-world within a history-based framework that considers the entire physical processes

from the start to represent the histories in space-time, instead of merely providing system

information through wave functions evolving over time.

Inspired by the path integral approach [97] or the related sum over histories approach

[98], Quantum Measure Theory (QMT) is introduced as a reformulation of quantum me-

chanics, which regards the ‘histories’ of a physical system as the fundamental elements of

reality [45]. This history-based formalism to quantum mechanics, at its core, does not in-

clude concepts like wave functions, superposition, state reduction, operators as observables,

etc., and visualizes the behavior of a quantum system from the perspective of generalized

stochastic theory [48]. QMT describes the kinematics (or the “ontology”) of a physical

system in terms of its histories; such as the trajectories of a particle or the space-time

configurations of a field, and so on. It encodes the dynamics of a quantum system in terms

of quantum measure − a function that assigns a generalized probability, which is real and

non-negative, to every event. An ‘event’ in Quantum Measure Theory is defined as a set

of histories associated with a system 4.

This history-based framework provides meaning to the intermediate events that occur

between ti and tf , in the context of assigning the quantum measure for a set of histories,

subject to the knowledge of their ‘start’ and ‘end’. Consider a situation where a particle

traverses through an experimental setup consisting of a series of devices, each with mul-

tiple outputs. One might wonder if the particle has followed one of the paths belonging

to a specific set (realizing a specific ‘event’) while moving from the source to the detector.

However, due to the inherent uncertainty associated with the stochastic behavior of the

3Commonly known to quantum field theorists as the in-out expectation value.
4Similar to the definition in probability theory, according to which an ‘event’ is a subset of the sample

space to which a probability can be assigned.
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system, a definitive answer to this question is not possible, but a probabilistic response

could be provided. In this thesis, we will address this question with an aim of finding

whether a specific event has happened, in an experimental scenario, by determining the

‘generalized probability’ or the ‘quantum measure’ related to the event of interest.

The quantum measure µ(E) for an event E signifies the probabilistic behavior of a

micro-system, but in general, it can not be treated as the standard probability in the

Kolmogorov sense. This is because Quantum Measure Theory (QMT) allows for interfer-

ence, which sets the quantum measure apart from the conventional probability measure as

it does not follow the probability sum rule and can accommodate the non-classical values

exceeding the classical upper limit of one. Therefore, in addition to the theoretical devel-

opments in the fields of quantum gravity and quantum cosmology based on QMT, being

able to attribute an experimental significance to the quantum measure would be a step

forward toward providing a comprehensive depiction of the reality of a quantum system.

Moreover, aligning abstract theoretical concepts with practical (or experimental) situa-

tions or physical processes would enhance our understanding of the non-classical behavior

of a micro-system along with opening avenues for future investigations on the fundamental

aspects of quantum theory.

The thesis presents a study of the two-site hopper model [99] within the framework of

Quantum Measure Theory (QMT) and reports an experiment that determines the ‘quan-

tum measure’ of a hopper event using an ancilla-based event-filtering scheme. It shows

the implementation of an ‘event filter’ in an optical setup involving interference, inspired

by the proposal in [50], that selects a desired set of trajectories for a photonic system

and enables one to analyze the non-classical ‘quantum measure’. In Chapter. 5, the

introductory ideas to QMT are provided emphasizing the importance of measuring the

‘quantum measure’, along with a description of the generalized protocol to infer its value

from the probability of a specific outcome of a projective measurement. Chapter. 6 pro-

vides a table-top experimental demonstration of this scheme for determining the value of

‘quantum measure’ of a particular photonic event, by devising a toy model of the proposed

event filter setup. The chapter also presents the statistical significance analysis, establish-

ing the non-classical nature of the experimentally derived quantity, with respect to the

classical-quantum boundary, i.e., the maximum limit for classical probability measure.
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The inherent probabilistic features of quantum measurement play a central role in

quantum mechanics. The probability distribution of different outcomes of any measure-

ment performed on a quantum system can be predicted if its state is known. The state

of a quantum system is a complex mathematical construct that encapsulates the complete

information about the system at a given point of time. Hence, characterization of the state

of a quantum system is essential in understanding the behavior of the system subject to

evolution and for effective and efficient manipulations of the quantum systems in practical

applications of quantum mechanics such as quantum information processing, or quantum

metrology based experiments etc. [1, 2]. Here, we introduce a unique approach for iden-

tifying an unknown quantum state, using interferometry as the tool, which we refer to as

“Quantum State Interferography”.

Quantum State Interferography (QSI) is a novel state characterization technique, where

an unknown quantum state can be determined by analyzing the information processed from

one or more interference patterns, also known as interferograms. The visibility, phase shift,

average intensity, the centroid position, fringe widths, average fringe shift etc. are, in gen-

eral, the information that can be extracted from an interference pattern, generated when

an ensemble of identical particles is evolved through an interferometric setup. This chapter

delves into the theory behind how the interferometry based scheme QSI, can be utilized

to infer any arbitrary qubit, whether pure or mixed, from an interference pattern obtained

in a single setup without the need to change any experimental settings − a process re-

ferred to as single shot state estimation. In this chapter, the representation of the qubits

using different sets of parameters would be presented with the discussion on the physical

significance of each of them. Next, the functional relationships to evaluate the state pa-

rameters in order to reconstruct an unknown qubit from the interferometric information

would be established. Both the non-unitary and unitary approaches of characterizing the

two-dimensional quantum states in a two path interferometer setup with the physical im-

plementation of the necessary operators will be discussed. Whether, this interferometric

method can, in principle, be generalized to higher dimensional systems or multi-particle

systems will be explored in Chapter. 4.
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Qubits and Its Different Representations2.1

The state of any two-dimensional quantum system is called a qubit, an abbreviated form of

quantum bit, which is considered as the fundamental unit of quantum information. Unlike

the classical bit1 that is characterized to be in any one of the two distinct states 0 or 1, a

quantum bit can be in a linear superposition of the two orthonormal states that spans the

two dimensional Hilbert space [3]. In Fock state basis {|0⟩ , |1⟩}, a qubit is given as

|ψ⟩ = α |0⟩+ β |1⟩ (2.1)

where α and β respectively represent the complex probability amplitudes associated with

the states |0⟩ and |1⟩2, provided the normalization condition |α|2 + |β|2 = 1. The qubits,

in general, can be represented in any choice of basis in any given degree of freedom of a

two-level system; for example, |ψ⟩p = α |H⟩ + β |V ⟩ represents a polarization qubit of a

photon in {|H⟩ , |V ⟩} basis, |ψ⟩s = α |↑⟩+β |↓⟩ represents a spin qubit of a spin-
1

2
particle

in σ̂z eigen basis etc.

A state vector |ψ⟩ expressed as the coherent superposition of the two basis states

in Eqn. 2.1, represents a pure qubit. However, a mixed qubit, which is an incoherent

statistical mixture of different pure qubits {|ψi⟩} with the associated statistical weights

{pi}, is expressed as a density operator ρ̂mixed =
∑

i pi |ψi⟩⟨ψi|, where 0 ≤ pi ≤ 1 and∑
i pi = 1. Therefore, the most general description of a two-dimensional quantum state is

given using the density matrix formalism [4] and is represented by a 2× 2 density matrix

ρ̂, with Tr
(
ρ̂2
)
= 1 representing pure qubits and Tr

(
ρ̂2
)
< 1 representing mixed qubits.

ρ̂ =
1∑

i,j=0

pij |i⟩⟨j| (2.2)

1A classical bit can assume either of the two values 0 or 1, representing the physical conditions like

“on”, “off” states of a device, or “up”, “down” positions of a mechanical lever or “high”, “low” levels of DC

voltage etc..

2The states |0⟩ =

1

0

 and |1⟩ =

0

1

, are also known as the computational basis states.
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provided (i) the diagonal elements of the density matrix p00, p11 are real, and the off-

diagonal elements p01, p10 are complex with p01 = p∗10, corresponding to the Hermiticity

condition ρ̂† = ρ̂ and (ii) p00 + p11 = 1, corresponding to the Normalization condition

Tr(ρ̂) = 1 and (iii) p00p11 − p01p10 ≥ 0, corresponding to the Positive semi-definiteness

condition ρ̂ ≽ 0 of the density matrix. Hence, only three parameters3, say (a, b, c), can

completely describe a general qubit as the following,

ρ̂ =

 a b+ ic

b− ic 1− a

 provided, a(1− a)− b2 − c2 ≥ 0 (2.3)

The condition a(1 − a) − b2 − c2 ≥ 0 represents the Sylvester’s criteria [5] for the Hermi-

tian matrix ρ̂ to be positive semi-definite. The purity of the state ρ̂ is determined from

the value of Tr
(
ρ̂2
)
. Here, the purity is obtained to be Tr

(
ρ̂2
)
= 1+2(a(a−1)+b2+c2) ≤ 1.

2.1.1 Parameterization of Qubits: (µ, θ, ϕ) Representation

A pure state in a two-dimensional Hilbert space, is a complex-valued vector with unit

norm. In the computational basis {|0⟩ , |1⟩} a pure state is given as,

|ψ⟩ = α |0⟩+ β |1⟩ =

α
β

 =

|α|eiϕα
|β|eiϕβ

 = eiϕα

 |α|

|β|ei(ϕβ−ϕα)

 (2.4)

Normalization Condition: |α|2 + |β|2 = 1 (2.5)

In the above, representing each complex number (z) in terms of its magnitude (|z|) and

argument (arg(z) = ϕz), we get the pure state |ψ⟩ expressed using four parameters

(|α|, |β|, ϕα, ϕβ). However, given the normalization constraint in Eqn. 2.5 the number

of parameters required to specify |ψ⟩ reduces to three (as |β| =
√
1− |α|2). Again, the

global phase ϕα in the description of a single qubit |ψ⟩ in Eqn. 2.4 can be ignored as it does

not have any physically observable consequences upon measurement4. Hence, for a pure
3Considering p00 = a and p01 = b+ ic
4It is only the relative phase between the basis vectors that has observable effects on the experimental

outcomes.
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qubit α appears to be a real positive number. Therefore, only two parameters (|α|, ϕβα)

suffices to give a complete description of a pure qubit, where ϕβα = ϕβ −ϕα represents the

relative phase between |0⟩ and |1⟩.

|ψ⟩ =

 |α|√
1− |α|2 eiϕβα

 (2.6)

where, |α| ∈ [0, 1] and ϕβα ∈ [−π, π)

Now, the normalization condition in Eqn. 2.5 constraints the value of α to be |α| ≤ 1.

Hence, it can be parameterized as |α| = cos

(
θ

2

)
, where θ varies from 0 to π giving

0 ≤ cos

(
θ

2

)
≤ 1. Therefore, assuming ϕβα = ϕ, the pure state |ψ⟩ can be parameterized

using the two (θ, ϕ), where θ ∈ [0, π] and ϕ ∈ [−π, π).

|ψ⟩ =


cos

(
θ

2

)

eiϕ sin

(
θ

2

)
 = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ (2.7)

The density matrix representation of the pure qubit |ψ⟩ is given as,

ρ̂pure = |ψ⟩⟨ψ| =


cos2

(
θ

2

)
1

2
e−iϕ sin(θ)

1

2
eiϕ sin(θ) sin2

(
θ

2

)
 (2.8)

Here, Tr
(
ρ̂2pure

)
= cos4

(
θ

2

)
+

1

2
sin2(θ)+ sin4

(
θ

2

)
=

(
cos2

(
θ

2

)
+ sin2

(
θ

2

))2

= 1, rep-

resents the purity of the state.

A mixed state can be obtained from decoherence-imposed decay of the off-diagonal

terms in the pure state density matrix [6] given in Eqn. 2.8. Therefore, we introduce a

factor µ that varies from 0 to 1, which when multiplied with the off-diagonal terms of the

above density matrix gives the generic mixed state ρ̂, as the following:
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ρ̂ = |ψ⟩⟨ψ| =


cos2

(
θ

2

)
µ

2
e−iϕ sin(θ)

µ

2
eiϕ sin(θ) sin2

(
θ

2

)
 (2.9)

So, the density matrix associated with a generic mixed state can be uniquely described

with three parameters, i.e., ρ̂ ≡ ρ̂(µ, θ, ϕ). The purity of the state ρ̂ is given as,

Purity: Tr
(
ρ̂2
)
= 1−

(
1− µ2

2

)
sin2(θ) =

1

4
[3 + µ2 + (1− µ2) cos(2θ)] (2.10)

Hence, purity of the density matrix ρ̂ appears to be a function of µ and θ. When µ = 1,

we get the purity Tr
(
ρ̂2
)
= 1. Therefore µ = 1 corresponds to pure qubits, for all θ ∈ [0, π]

and ϕ ∈ [−π, π). Next, when θ = 0 or θ = π, we get Tr
(
ρ̂2
)
= 1 representing the pure

states. From Eqn. 2.9, we can see θ = 0 corresponds to ρ̂(µ, θ = 0, ϕ) = |0⟩⟨0| and

θ = π corresponds to ρ̂(µ, θ = π, ϕ) = |1⟩⟨1|. Hence, θ = 0 and θ = π represent the

basis states |0⟩ and |1⟩ of the two-dimensional Hilbert space. Now, when µ = 0 we have

Tr
(
ρ̂2
)
=

1

4
[3 + cos(2θ)] and the corresponding state is given by,

ρ̂(µ = 0, θ, ϕ) = cos2
(
θ

2

)
|0⟩⟨0|+ sin2

(
θ

2

)
|1⟩⟨1| (2.11)

which in general is a mixed state. Therefore, µ = 0 with θ =
π

2
gives ρ̂(µ = 0, θ =

π

2
, ϕ) =

1

2
(|0⟩⟨0|+ |1⟩⟨1|) = 1̂

2
, which is the maximally mixed state.

Therefore, a general qubit can be uniquely represented using three parameters (µ, θ, ϕ)

as shown in Eqn. 2.9, with µ ∈ [0, 1], θ ∈ [0, π], and ϕ ∈ [−π, π). The parameter µ

introduces the mixedness in the state through decoherence of the off-diagonal terms in a

pure state density matrix and hence, is related to the purity of the state. ρ̂(µ = 1, θ, ϕ)

represents the pure states and ρ̂(µ = 0, θ =
π

2
, ϕ) represents the maximally mixed state

in the two dimensional Hilbert space. What this representation implies physically and

geometrically for a two-level quantum system, will be discussed in Appendix. 2.A.
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2.1.2 Bloch Sphere Representation of Qubits

In quantum mechanics, the standard geometric representation of a two-dimensional state

space is provided using the Bloch sphere − a sphere of unit radius in R3. In the Bloch

sphere representation, any state of a single two-level quantum system, i.e., any single qubit

can be visualized as a point in the sphere, parameterized using spherical polar co-ordinates.

The pure qubits (|ψ⟩) are represented by the points on the surface of the Bloch sphere,

with the two diametrically opposite points on the surface denoting the pair of orthogonal

states (|ψ⟩ and |ψ⟩T ). Therefore, θb ∈ [0, π] and ϕb ∈ [−π, π) can completely and uniquely

describe a pure state in the two dimensions5. A pure qubit represented in terms of Bloch

parameters (θb, ϕb) is given as,

|ψ⟩ = cos

(
θb
2

)
|0⟩+ eiϕb sin

(
θb
2

)
|1⟩ (2.12)

However, the mixed qubits are represented by the points within the Bloch sphere, with the

center of the sphere denoting the maximally mixed state ρ̂ =
1̂

2
. Therefore, apart from the

angles θb and ϕb, the description of a mixed qubit requires an additional parameter (say,

rb) that would control the mixedness.

In Bloch sphere representation, any arbitrary density matrix associated with a qubit

can be written as a linear combination of the identity operator 1̂ and the Pauli matrices

(σ̂x, σ̂y, σ̂z) [7], as the following

ρ̂ =
1

2

(
1̂+ r⃗ · σ⃗

)
(2.13)

where, σ⃗ = (σ̂x, σ̂y, σ̂z) and r⃗ = (rx, ry, rz) with ∥r⃗∥ ≤ 1

Here, r⃗ is the three-dimensional vector, known as the Bloch vector, corresponding to the

state ρ̂. The vector r⃗ associated with a mixed state spans the entire volume of the Bloch

sphere, with |r⃗| scaling uniformly with the mixedness of the state. |r⃗| = 1 for pure states

5Here, the subscript ‘b’ is used to distinguish the Bloch parameters, θb and ϕb from θ and ϕ of (µ, θ, ϕ)

representation, introduced earlier.



30 Chapter 2. QSI for Qubits

and 0 ≤ |r⃗| < 1 for mixed states, with |r⃗| = 0 representing the maximally mixed state.

Therefore, visualizing in terms of spherical polar co-ordinates, any arbitrary qubit can

be geometrically represented by a point located at the tip of a vector r⃗ ∈ R3 − the Bloch

vector, which can be uniquely characterized with three parameters (rb, θb, ϕb) − known as

the Bloch parameters. The polar angle θb ∈ [0, π] and the azimuthal angle ϕb ∈ [−π, π)

together give the direction of the vector r⃗ and rb = |r⃗| ∈ [0, 1] gives its length which governs

the purity of the state. Therefore,

r⃗ = (rx, ry, rz) = ( |r⃗| sin(θb) cos(ϕb), |r⃗| sin(θb) sin(ϕb), |r⃗| cos(θb) ) (2.14)

Hence, using the components of Bloch vector r⃗ as shown above and the operators

1̂ =

1 0

0 1

 , σ̂x =

0 1

1 0

 , σ̂y =

0 −i

i 0

 , σ̂z =

1 0

0 −1

 (2.15)

we get the generic density matrix in Eqn. 2.13 corresponding to any arbitrary qubit,

represented in terms of the Bloch parameters as the following:

ρ̂ =
1

2

 1 + rz rx − iry

rx + iry 1− rz

 =
1

2

1 + |r⃗| cos(θb) |r⃗| sin(θb) e−iϕb

|r⃗| sin(θb) eiϕb 1− |r⃗| cos(θb)

 (2.16)

The purity of the state is represented by the length of the Bloch vector |r⃗| and is given as,

Purity: Tr
(
ρ̂2
)
=

1

2
(1 + |r⃗|2) (2.17)

In quantum theory, one of the popularly used representations of a qubit is the Bloch

sphere representation, in which a state in the two-dimensional complex vector space can be

visualized using a unit 2-sphere (S(2)). The pure states given by ρ̂(rb = 1, θb, ϕb) lie on the

surface of the sphere and the mixed states given by ρ̂(rb < 1, θb, ϕb) lie within the volume

of the sphere, where rb = |r⃗| is the magnitude of the Bloch vector r⃗ corresponding to a
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given state. Bloch sphere representation of a general density matrix of a qubit is shown

in Eqn. 2.16, where |r⃗| = rb ∈ [0, 1], θb ∈ [0, π], ϕ ∈ [−π, π). This representation of the

two-dimensional state space is useful in characterizing and manipulating a qubit in the

applications of quantum computing and quantum information processing, as it provides a

simple and intuitive way to visualize any one qubit operation (unitary or non-unitary) as

the rotation of the Bloch sphere [3].

In summary, any arbitrary state in a two-dimensional Hilbert space can be character-

ized with three real parameters. This section presents two of the many representations of a

general qubit − one with the (µ, θ, ϕ) parameters, where µ ∈ [0, 1], θ ∈ [0, π], ϕ ∈ [−π, π),

in the Decoherence Representation and another with the (rb, θb, ϕb) parameters, where

rb ∈ [0, 1], θb ∈ [0, π], ϕb ∈ [−π, π) in the Bloch Sphere Representation, each having their

individual significance. A connection between the two representations from the perspective

of visualizing the geometry of the Hilbert space can be seen in the Appendix. 2.A. The

Bloch sphere representation is more useful in quantum computing and quantum informa-

tion as visualization of any (unitary or non-unitary) operations in the two-dimensional

Hilbert space is simple in terms of rotations of the Bloch sphere, while the decoherence

representation is useful in quantum dynamics, where a system evolves through environment

interactions. One representation of qubit over the other appears to be more appropriate,

depending on the applications and the type of experiments they are involved in.

In the interferometric technique of state characterization − Quantum State Interferog-

raphy (QSI), where an unknown qubit can be identified from a single interference pattern,

we prefer the (µ, θ, ϕ) representation as shown in Sec. 2.5. However, QSI as a technique

is consistent in characterizing any arbitrary qubit given in the standard Bloch sphere rep-

resentation as well. The only difference would be in the post-processing of the collected

data from the experiment, as the interferometric quantities (such as the phase shift, av-

erage intensity, and visibility) obtained from an interference pattern would have different

functional relationships with the state parameters in the two different representations.

The details for identifying the Bloch parameters (rb, θb, ϕb) of an unknown qubit using the

quantum state interferography technique will be discussed in Sec. 2.9.
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Quantum State Interferography for Pure Qubits2.2

The pure states of a two-dimensional quantum system are in general reconstructed using the

standard quantum state determination technique, i.e., Quantum State Tomography (QST)

which requires two distinct projective measurements to be performed on the system. In

this section, we will present an interferometric scheme − Quantum State Interferography,

where a pure qubit can be inferred from the phase shift and the average intensity of a

single interference pattern.

Any pure state for a 2-dimensional quantum system i.e., a pure qubit can be written

in terms of Bloch sphere co-ordinates6 as,

|ψ⟩ =


cos

(
θ

2

)

exp(iϕ) sin

(
θ

2

)
 (2.18)

where θ ∈ [0, π] and ϕ ∈ [−π, π). The co-ordinates (θ, ϕ) represent the direction of the

state vector in the Bloch sphere. By knowing these two parameters from an experiment,

we can infer any unknown pure state in two dimensions. Here in this section, we will de-

scribe how the two unknown parameters (θ, ϕ) can be obtained at once from an experiment

employing interferometry.

2.2.1 Theory

The spin-ladder operators σ̂± for the two-dimensional Hilbert space (say, spanned by the

basis {|0⟩ , |1⟩}) are given by,

σ̂± =
1

2
(σ̂x ± iσ̂y) (2.19)

6Here, we have dropped the subscript ‘b’ while addressing Bloch parameters as both the representations

give the same descriptions for pure states.
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where, σ̂x and σ̂y are the respective Pauli matrices7. The operations of the lowering (σ̂−)

and raising operators (σ̂+) are given as, σ̂− |0⟩ = |1⟩ , σ̂− |1⟩ = 0 and σ̂+ |0⟩ = 0, σ̂+ |1⟩ =

|0⟩. The expectation value of σ̂± in the state |ψ⟩ can be computed to be,

⟨σ̂±⟩ =
⟨ψ|σ̂±|ψ⟩
⟨ψ|ψ⟩

=
1

2
exp(±iϕ) sin(θ) (2.20)

Hence, when computing the expectation value of any one of the spin ladder operators

σ̂± =
1

2
(σ̂x ± iσ̂y) in the state |ψ⟩, we have the polar co-ordinate θ appearing only in

the magnitude of ⟨σ̂±⟩ and the azimuthal co-ordinate ϕ appearing only as a phase in the

Argand plane, i.e.,

|⟨σ̂±⟩| =
1

2
sin(θ) (2.21)

arg (⟨σ̂±⟩) = ± ϕ (2.22)

So, for a pure qubit |ψ⟩, the state parameters θ and ϕ can be obtained directly from

the complex expectation value ⟨σ̂±⟩ as the following,

θ = sin−1 (2|⟨σ̂±⟩|) (2.23)

ϕ = ± arg (⟨σ̂±⟩) (2.24)

However, the solution to θ is not unique in [0, π] and (π − θ) is a solution as well, since

sin(π − θ) = sin(θ). Thus, in order to uniquely determine the polar angle θ, we need

to measure the expectation value of another column operator, which in this case is the

projector to the state |0⟩, i.e., Π̂0 = |0⟩⟨0|. The expectation value of Π̂0 in the state |ψ⟩ is

given by,

〈
Π̂0

〉
=
⟨ψ|Π̂0|ψ⟩
⟨ψ|ψ⟩

= cos2
(
θ

2

)
(2.25)

7Here, σ̂x =

0 1

1 0

 , σ̂y =

0 −i

i 0

, which makes σ̂+ =

0 1

0 0

 and σ̂− =

0 0

1 0

.
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Once
〈
Π̂0

〉
is known, θ is uniquely determined in [0, π] as,

θ = 2 cos−1

(√〈
Π̂0

〉)
(2.26)

Hence, the unknown qubit |ψ⟩ can be characterized by measuring the expectation

values of the two operators − any one of the ladder operators i.e., σ̂+ or σ̂− and the

projector Π̂0. For further discussion we will choose the spin ladder operator σ̂− and show

the detail derivation of how we achieve the state parameters from the expectation value of

σ̂− obtained experimentally employing interferometry. So we get,

ϕ = − arg (⟨σ̂−⟩) (2.27)

where, σ̂− =
1

2
(σ̂x − iσ̂y) =

0 0

1 0

 (2.28)

Now, the operator σ̂− is non-Hermitian, the expectation value of which, is in general

complex. Experimentally, the complex expectation value of the non-Hermitian spin ladder

operator σ̂− cannot be obtained from the statistical distribution of the measurement out-

comes. However, polar decomposition can be used to determine the expectation value of

the non-Hermitian operator (σ̂−) in the form of the complex weak value [8] of a Hermitian

operator R̂ in the pre-selected state |ψ⟩ and the post-selected state |ϕ⟩ = Û † |ψ⟩, where Û

is a Unitary operator and R̂ =
√
σ̂†−σ̂− satisfying σ̂− = Û R̂ [9], the details of which has

been shown in SubSec. 2.2.2.

2.2.2 Polar Decomposition and Determination of Complex Expectation

Value of a non-Hermitian Operator

Let, Â be a non-Hermitian operator whose expectation value in the state |ψ⟩ needs to be

determined experimentally. In quantum mechanics, the observables are often represented

by the Hermitian operators [10] since they have real eigen spectrum and the non-degenerate
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eigen values are associated with the eigen states that form a complete set. The eigen

spectrum of the non-Hermitian operators is, in general complex, and therefore we can not

obtain the complex expectation value of the non-Hermitian operator by evaluating the

average of the distribution of the measurement outcomes of the operator. However, the

non-Hermitian operator Â can be polar decomposed as Â = Û R̂, where Û is an Unitary

operator and R̂ is a positive semi-definite Hermitian operator given by R̂ =
√
Â†Â [11].

So, the expectation value of the operator Â in the state |ψ⟩ can be expressed as,

〈
Â
〉
=
⟨ψ|Â|ψ⟩
⟨ψ|ψ⟩

=
⟨ψ|Û R̂|ψ⟩
⟨ψ|ψ⟩

(2.29)

=⇒
〈
Â
〉
=
⟨ψ|Û |ψ⟩
⟨ψ|ψ⟩

⟨ψ|Û R̂|ψ⟩
⟨ψ|Û |ψ⟩

=
⟨ϕ|ψ⟩
⟨ψ|ψ⟩

⟨ϕ|R̂|ψ⟩
⟨ϕ|ψ⟩

=
⟨ϕ|ψ⟩
⟨ψ|ψ⟩

〈
R̂
〉(w)

(2.30)

where,
〈
R̂
〉(w)

=
⟨ϕ|R̂|ψ⟩
⟨ϕ|ψ⟩

(2.31)

and |ϕ⟩ = Û † |ψ⟩ (2.32)

Hence from Eqn. 2.30 it can be seen that the expectation value of the non-Hermitian

operator Â can be expressed in terms of the weak value
〈
R̂
〉(w)

of the Hermitian part

of the polar decomposed operator in the pre-selected state |ψ⟩ and post-selected state

|ϕ⟩ = Û † |ψ⟩. The quantity
⟨ϕ|ψ⟩
⟨ψ|ψ⟩

=
⟨ψ|Û |ψ⟩
⟨ψ|ψ⟩

is the expectation value of the operator

Û in the state |ψ⟩ and can, in general, be complex. Thus, the complex expectation value〈
Â
〉

can be inferred experimentally by directly measuring the weak value of the Hermitian

component R̂ and knowing the expectation value of the Unitary component Û correspond-

ing to the operator Â, where Â = Û R̂. Experimentally, the complex weak value of R̂ can

be determined by measuring the shift in the pointer variable which gives the real part of

the weak value and the shift in the momentum conjugate to the pointer variable which

gives the imaginary part of the weak value [12].

Now, as discussed in 2.2.1, to infer an unknown pure qubit from an experiment, the

expectation value of the non-Hermitian spin ladder operator σ̂− in that state needs to be

determined. According to Dirac, in quantum theory “observables” are the only quantities
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that can be measured, where an observable would be defined as a real dynamical variable

whose eigen states form a complete set [13]. For the two-dimensional state space spanned

by the basis {|0⟩ , |1⟩}, the operator σ̂− =
1

2
(σ̂x− iσ̂y) transforms |0⟩ to |1⟩ and annihilates

|1⟩. The operator σ̂− has real eigenvalues8 but does not have sufficient eigen states that can

form a complete set. Hence, σ̂− can not be considered as an observable and the operator

can not be realized physically in an experiment. Therefore, the expectation value of σ̂−

can not be measured experimentally.

However, the complex expectation value of the non-Hermitian σ̂− operator can be

determined experimentally employing polar decomposition and obtaining weak value of

the Hermitian component, as discussed earlier. Consider σ̂− is polar decomposed into the

Unitary Û and positive semi-definite Hermitian R̂ as σ̂− = Û R̂. Here, the operator R̂ can

determined as the following,

R̂ =

√
σ̂†−σ̂− (2.33)

R̂ =

√√√√√
0 1

0 0

0 0

1 0

 =

√√√√√
1 0

0 0

 =

1 0

0 0

 (2.34)

Knowing the Hermitian operator R̂, the Unitary operator Û related to the non-Hermitian

operator σ̂− can be computed to be,

Û =

0 1

1 0

 (2.35)

From the matrix representation of the operators R̂ and Û given in Eqn. 2.34 and Eqn.

2.35, we can conclude that Û is the Pauli-X operator, i.e., σ̂x = |0⟩⟨1|+ |1⟩⟨0| (or the NOT

operator) and R̂ is the projection operator associated with the state |0⟩ i.e., Π̂0 = |0⟩⟨0| in

the two dimensional Hilbert space spanned by the basis {|0⟩ , |1⟩}. Therefore,

8Eigen values fo σ̂− are (0, 0) which are real, as determined by solving the characteristic equation

det
(
σ̂− − λ1̂

)
= 0 for the eigen value λ.
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σ̂− =

0 0

1 0

 =

0 1

1 0

1 0

0 0

 = Û R̂ (2.36)

where, Û = σ̂x = |0⟩⟨1|+ |1⟩⟨0| and R̂ = Π̂0 = |0⟩⟨0| (2.37)

Thus, as shown in Eqn. 2.30, the expectation value of the non-Hermitian ladder oper-

ator σ̂− can be inferred experimentally from the weak value of the Hermitian component

R̂, where R̂ =
√
σ̂†−σ̂− = Π̂0, in the pre-selected state |ψ⟩ and the post-selected state

|ϕ⟩ = Û † |ψ⟩ = σ̂†x |ψ⟩, where σ̂x = Û is a Unitary matrix satisfying σ̂− = σ̂xΠ̂0 = Û R̂.

It has been experimentally shown that the weak value of a Hermitian operator can be

obtained directly from the visibility and phase shift of an interference pattern without

requiring any post-selection and without performing the conventional weak measurement

[14]. Thus, using an interferometric technique we can determine the expectation value of

the non-Hermitian operator σ̂− from which the state parameters can be inferred, as dis-

cussed in the following.

2.2.3 Experimental Protocol for Inferring an Unknown Pure Qubit

As discussed in SubSec. 2.2.1, the unique determination of any pure qubit |ψ(θ, ϕ)⟩, would

require one to measure the expectation values of the projector Π̂0 and the spin ladder op-

erator σ̂− in the state |ψ⟩. Experimentally the expectation values can be determined using

the quantities obtained from an interference pattern formed in a two path interferometer.

Here, we discuss the experimental protocol in an optical setup using a Mach-Zehnder In-

terferometer (MZI) [15, 16], with the aim to reconstruct the polarization qubits associated

with an ensemble of identically prepared photons.

Let, a stream of identically prepared photons in the polarization state |ψ⟩ be incident

on a Mach-Zehnder Interferometer (MZI) as shown in Fig. 2.1. The MZI consists of two

50 : 50 beam splitters BS1 and BS2 and two mirrors MA and MB in the two respective

paths of the interferometer labeled as A and B. The two output ends of the MZI are

labeled as C and D respectively and a photo detector is placed at the output port D.
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Figure 2.1: Schematic of the Quantum State Interferography setup consisting of a Mach-

Zehnder Interferometer having Unitary Û in path-A and Hermitian R̂ in path-B, with the

phase shifter (PS) controlling the relative phase (ϵ) between the two paths.

In polarization degree of freedom, an unknown quantum state (known to be pure) in

the two-dimensional Hilbert space is denoted by,

|ψ⟩ = α |H⟩+ β |V ⟩ =

α
β

 =


cos

(
θ

2

)

exp(iϕ) sin

(
θ

2

)
 (2.38)

with α and β being the complex coefficients associated with the basis states |H⟩ and |V ⟩

corresponding to the horizontal polarization and vertical polarization respectively, con-

strained by the normalization condition |α|2 + |β|2 = 1. Here, we need not worry about

the global phase as it does not have any direct physical consequence upon measurement,

hence, we can ignore it. We are only interested in the relative phase ϕ between the |H⟩

and |V ⟩ components. Thus, to infer the polarization qubit |ψ⟩ we need to find the state

parameters θ and ϕ from the experiment.
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A 50 : 50 beam splitter BS splits the incident beam into two spatial modes with equal

intensities, i.e., a part of the beam is transmitted through the BS with amplitude AT and

another part is reflected from the BS with amplitude AR, given |AT |2 + |AR|2 = 1 for an

ideal lossless beam splitter [17]. Now, |AT | = |AR| for 50 : 50 beam splitter. In general,

it is considered that the beam reflected from the BS undergoes a phase shift φ relative to

the transmitted beam, making AR = eiφAT . Now, φ =
π

2
for a symmetric beam splitter

(BSsym) [18, 19] for which the beams acquires the same phase shift
π

2
upon reflection,

irrespective of the input port of the BS (i.e., irrespective of the port from which the beam

is incident on the BS) and φ = 0 or π for an asymmetric beam splitter (BSasym) [20]

for which the beams acquire different phase shifts upon reflection, depending on the input

port from which the beam is incident onto the BS 9. Thus, the unitary transformation

matrices associated with the 50 : 50 beam splitters are given by,

BSsym =
1√
2

1 i

i 1

 , BSasym =
1√
2

 1 1

−1 1

 (2.39)

For establishing the idea of Quantum State Interferography for qubits we will consider

BS1 and BS2 to be lossless symmetric beam splitters that do not affect the polarization

degree of freedom of the stream of particles or the beam. The beam splitter BS1 splits

the incident beam with the polarization state |ψ⟩ into two spatial modes |A⟩ and |B⟩

corresponding to the two paths, A and B of the interferometer respectively. So, after BS1

the state would be,

|Ψ1⟩ =
1√
2
|ψ⟩ (|A⟩+ i |B⟩) (2.40)

where |Ψ1⟩ represents the joint state of the photons in polarization and path degrees of

freedom after BS1. |A⟩ and |B⟩ are the states in spatial d.o.f.10 associated with the beams

transmitted and reflected from BS1 respectively.

9In practice, the relative phase between AT and AR is arbitrary which depends on the boundary

conditions i.e., the uncertainty in the size of the beam splitter cube, quality of the surface at the locations

where the beam is hitting while entering into and emerging out of the beam splitter etc..
10Throughout the thesis the terms “spatial d.o.f.” and “path d.o.f.” have been used alternatively.
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Now, to find the state parameters we need to find the expectation value of the non-

Hermitian spin ladder operator σ̂− in the state |ψ⟩ 11. For this, we apply the operator

Û in arm A and the operator R̂ in arm B of the interferometer, where Û and R̂ acts on

the polarization d.o.f. only and is related to the non-Hermitian operator of interest σ̂−

as σ̂− = Û R̂. Therefore, after evolving through the two operators the joint state of the

photons just before BS2 is given by,

|Ψ2⟩ =
1√
2

(
Û |ψ⟩ |A⟩+ iR̂ |ψ⟩ |B⟩

)
(2.41)

Now, the two beams from the two paths of the interferometer are recombined at the

second beam splitter BS2 and the combined beam propagates towards the two output

ports C and D corresponding to the spatial modes |C⟩ and |D⟩ respectively. For BS2,

the output mode |C⟩ consists of the beams transmitted from path-A and reflected from

path-B. Similarly, the output mode |D⟩ consists of the beams reflected from path-A and

transmitted from path-B. Thus, the transformations are given by,

|A⟩ BS2−−→ 1√
2
(|C⟩+ i |D⟩) (2.42)

|B⟩ BS2−−→ 1√
2
(i |C⟩+ |D⟩) (2.43)

After the recombination of the two beams coming from path-A and path-B at the final

beam splitter BS2, we get the final state as the superposition of states in port C and port

D respectively. The final state is given by,

|Ψ3⟩ =
1√
2

(
Û |ψ⟩ |C⟩+ i |D⟩√

2
+ ieiϵR̂ |ψ⟩ i |C⟩+ |D⟩√

2

)
(2.44)

|Ψ3⟩ =
1

2

(
Û |ψ⟩+ i2eiϵR̂ |ψ⟩

)
|C⟩+ 1

2

(
iÛ |ψ⟩+ ieiϵR̂ |ψ⟩

)
|D⟩

|Ψ3⟩ =
1

2

(
Û |ψ⟩ − eiϵR̂ |ψ⟩

)
|C⟩+ i

2

(
Û |ψ⟩+ eiϵR̂ |ψ⟩

)
|D⟩ (2.45)

11The operator σ̂− when acts on polarization d.o.f. converts |H⟩ to |V ⟩ and annihilates |V ⟩.
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where ϵ is the relative phase between the two paths A and B of the interferometer. ϵ is

associated with the path length difference (∆l = lA − lB) between the two paths of the

interferometer. The quantity ϵ also captures the phase differences introduced due to the

reflection of the beams from different optical components, propagation through optical el-

ements of different thicknesses and refractive indices, and the phase difference introduced

due to any alignment inconsistency. This phase difference ϵ can be controlled using a phase

shifter (PS) in the setup as shown in Fig 2.1. The phase shifter adds a phase to the beam

in the path-B which in turn changes the overall relative phase ϵ of the interferometer. In

general, a phase shifter can be a glass plate with variable thickness across the transverse

plane of the beam or a glass plate with adjustable tilt, so that the optical path length of

the beam propagating through the glass plate can be adjusted.

A detector is placed at the output port D and the port C remains undetected. The de-

tector records the intensity Id of the beam that emerged in the port D as a function of the

phase difference ϵ. This detector can be a photo detector (PD) which records the intensity

associated with a particular phase at a time and generates the intensity profile when the

phase is scanned from −π to π (mostly useful for collinear geometry of the interferometer)

using the phase shifter (PS). Alternatively, it can be a CCD camera that records a 2D

image of the intensity distribution Id(ϵ) as a function of phase ϵ at once (for non-collinear

geometry of the interferometer). This intensity profile (i.e., Id vs ϵ) recorded by the photo

detector or camera is the interference pattern formed at the end of the Mach-Zehnder in-

terferometer with operator Û in arm A and operator R̂ in arm B.

The component of the final state after evolving through the interferometer in the output

port D (where the detector is placed) is obtained by projecting the state after BS2 i.e.,

the state |Ψ3⟩ given by Eqn. 2.45 onto the spatial mode |D⟩ as shown below,

|ΨD⟩ = Π̂D |Ψ3⟩ where, Π̂D = |D⟩⟨D| (2.46)

|ΨD⟩ =
i

2

(
Û |ψ⟩+ eiϵR̂ |ψ⟩

)
|D⟩ = i

2

(
Û + eiϵR̂

)
|ψ⟩ |D⟩ (2.47)

Thus, the intensity distribution as recorded by the detector in port D is obtained to be,
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Id(ϵ) = ∥|ΨD⟩∥2 =
∥∥∥Π̂D |Ψ3⟩

∥∥∥2 = ∣∣∣∣ i2 (Û |ψ⟩+ eiϵR̂ |ψ⟩
)
|D⟩
∣∣∣∣2 (2.48)

Id(ϵ) =
1

4

(
⟨ψ| Û † + e−iϵ ⟨ψ| R̂†

)(
Û |ψ⟩+ eiϵR̂ |ψ⟩

)
⟨D|D⟩

Id(ϵ) =
1

4

[
⟨ψ|Û †Û |ψ⟩+ ⟨ψ|R̂†R̂|ψ⟩+ eiϵ ⟨ψ|Û †R̂|ψ⟩+ e−iϵ ⟨ψ|R̂†Û |ψ⟩

]
(2.49)

Since the operators Û and R̂ are the polar decomposed components of σ̂−, we know

that Û is Unitary and R̂ is Hermitian. So, we get Û †Û = 1̂ and R̂† = R̂ i.e., R̂†R̂ = R̂2.

Thus, the expectation values of the first two terms of the expression in Eqn. 2.49 become,

⟨ψ|Û †Û |ψ⟩ = ⟨ψ|1̂|ψ⟩ = ⟨ψ|ψ⟩ = 1 (2.50)

⟨ψ|R̂†R̂|ψ⟩ = ⟨ψ|R̂2|ψ⟩ =
〈
R̂2
〉

(2.51)

Both the above quantities have real values. The last two terms of expression shown in

Eqn. 2.49 are in general complex and they are complex conjugate to each other. These

two terms give rise to the interference. We can denote ⟨ψ|Û †R̂|ψ⟩ = z, thus we have

⟨ψ|R̂†Û |ψ⟩ = ⟨ψ|Û †R̂|ψ⟩∗ = z∗, where z is a complex quantity given by z = |z|eiχ with

χ = arg(z). Hence, the last two terms of the expression in Eqn. 2.49 that gives rise to the

interference can be written in terms of z as the following,

tint = eiϵ ⟨ψ|Û †R̂|ψ⟩+ e−iϵ ⟨ψ|R̂†Û |ψ⟩

= zeiϵ + z∗e−iϵ (2.52)

= |z|eiχeiϵ + |z|e−iχe−iϵ

=⇒ tint = 2|z| cos(χ+ ϵ) = 2|z| cos(ϵ+ χ) (2.53)
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Therefore, the intensity pattern recorded by the detector in port D as a function of

relative phase ϵ is then given by,

Id(ϵ) =
1

4

[
1 +

〈
R̂2
〉
+ 2|z| cos(ϵ+ χ)

]
(2.54)

where, |z|eiχ = z =
〈
Û †R̂

〉
(2.55)

The polar decomposed components Û and R̂ of the non-Hermitian operator σ̂− are given as

Û = σ̂x and R̂ = Π̂0 = |0⟩⟨0| as shown in SubSec. 2.2.2. In polarization degree of freedom

with the basis {|H⟩ , |V ⟩} the projector Π̂0 is the projector to the horizontal state |H⟩ i.e.,

Π̂0 ≡ Π̂H = |H⟩⟨H|. Thus, we have R̂2 = R̂R̂ = Π̂HΠ̂H = |H⟩ ⟨H|H⟩ ⟨H| = |H⟩⟨H| = R̂.

Û = σ̂x = |V ⟩⟨H|+ |H⟩⟨V | =

0 1

1 0

 (2.56)

and R̂ = Π̂H = |H⟩⟨H| =

1 0

0 0

 (2.57)

Evaluating the quantities in the expression of intensity Id(ϵ) given in Eqn. 2.54 for

the state |ψ⟩ represented in polar form as shown in Eqn. 2.38, we can write the intensity

Id(ϵ) in terms of the state parameters θ and ϕ. The expectation value of R̂2 in the state

|ψ⟩ is obtained to be,

〈
R̂2
〉
=
〈
R̂
〉
= ⟨ψ|R̂|ψ⟩ = ⟨ψ|Π̂H |ψ⟩ = cos2

(
θ

2

)
(2.58)

The complex quantity z can be evaluated as the following,

z = ⟨ψ|Û †R̂|ψ⟩ = ⟨ψ|

0 1

1 0

1 0

0 0

 |ψ⟩ = ⟨ψ|
0 0

1 0

 |ψ⟩ = ⟨ψ|σ̂−|ψ⟩ (2.59)
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Threfore, using the expression of |ψ⟩ in terms of θ and ϕ as given in Eqn. 2.38, we get

z = ⟨σ̂−⟩ =
1

2
exp(−iϕ) sin(θ) (2.60)

Hence, |z| = 1

2
sin(θ) and arg(z) = χ = −ϕ (2.61)

Putting the values of different quantities from Eqn. 2.58 and Eqn. 2.61 in the expression

in Eqn. 2.54, we get the intensity Id(ϵ) in port D expressed in terms of θ and ϕ as,

Id(ϵ) =
1

4

[
1 + cos2

(
θ

2

)
+ sin(θ) cos(ϵ− ϕ)

]
(2.62)

Id(ϵ) =
1

8
[3 + cos(θ) + 2 sin(θ) cos(ϵ− ϕ)] (2.63)

Id(ϵ) is the interference pattern (also known as “interferogram”) formed at the end of the

QSI setup consisting of a Mach-Zehnder Interferometer with operators Û and R̂ in the two

respective paths, when a pure polarization qubit is made incident onto it.

2.2.4 Inferring State Parameters (θ, ϕ) from the Interferogram

In the Quantum State Interferography technique for reconstructing a qubit, the generated

interference pattern, the mathematical form of which is given in the Eqn. 2.63, is post-

processed to infer the quantum state being evolved through the interferometer. From the

experimentally obtained interference pattern, we can find different quantities like the phase

shift, average intensity, visibility etc. which can be used to determine the state parame-

ters. For the characterization of the pure polarization qubit |ψ⟩, we need to infer the two

parameters θ and ϕ, from the interferometric quantities extracted from the interferogram.

The phase shift (Φ) of the interference pattern is obtained at the value of phase ϵ at

which the intensity Id(ϵ) is maximum. This value can be obtained by solving the equation
∂Id(ϵ)

∂ϵ
= 0 for the ϵ that maximizes Id(ϵ) (as shown in Eqn. 2.64) and ensuring that the

criteria mentioned in Eqn. 2.65 is satisfied. Therefore, for ϵ = Φ we have the following:
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∂Id(ϵ)

∂ϵ

∣∣∣∣
ϵ=Φ

= 0 (2.64)

∂2Id(ϵ)

∂ϵ2

∣∣∣∣
ϵ=Φ

< 0 (2.65)

For the pure state |ψ(θ, ϕ)⟩ incident on the QSI setup, we have

∂Id(ϵ)

∂ϵ

∣∣∣∣
ϵ=Φ

= −1

4
sin(θ) sin(Φ− ϕ) = 0 (2.66)

∂2Id(ϵ)

∂ϵ2

∣∣∣∣
ϵ=Φ

= −1

4
sin(θ) cos(Φ− ϕ) (2.67)

Since 0 ≤ θ ≤ π, we have sin(θ) > 0, giving (Φ − ϕ) to be 0 or π. However, satisfying

the condition in Eqn. 2.65, we get Φ = ϕ. Thus, the state parameter ϕ can be directly

obtained from the phase shift of the experimentally obtained interference pattern.

The phase averaged intensity (Ī) of the interference pattern is obtained by inte-

grating Id(ϵ) over all possible phases ϵ ∈ [−π, π].

Ī =

∫
ϵ
Id(ϵ)dϵ =

1

8

∫ π

−π
[3 + cos(θ) + 2 sin(θ) cos(ϵ− ϕ)] dϵ (2.68)

Ī =
3 + cos(θ)

8
(2.69)

So, the average intensity Ī is obtained to be a unique function of the state parameter θ.

Therefore, θ can be determined from the phase averaged intensity of the interferogram.

Hence, the interferometric state determination technique QSI enables us to infer the state

parameters (θ, ϕ) corresponding to the pure qubit |ψ⟩ from the experimentally obtained

phase shift (Φ) and the phase averaged intensity (Ī) as the following,

ϕ = Φ, θ = cos−1(8Ī − 3) (2.70)
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Additionally, from the interference pattern Id(ϵ) formed at the end of the QSI setup,

the visibility (V ) of the interferogram can be computed as the following,

V =
Imax − Imin
Imax + Imin

(2.71)

where Imax and Imin respectively represent the maximum and minimum values of the in-

tensities associated with the interference pattern. Both the values can be obtained by,

solving the equation
∂Id(ϵ)

∂ϵ
= 0 for ϵ and finding the values ϵ(max), ϵ(min) which satisfy

the criteria
∂2Id(ϵ)

∂ϵ2

∣∣∣∣
ϵ=ϵ(max)

< 0 and
∂2Id(ϵ)

∂ϵ2

∣∣∣∣
ϵ=ϵ(min)

> 0 respectively.

Here, for the pure state |ψ(θ, ϕ)⟩ evolved through the QSI setup, we have

Imax = Id(ϵ
(max)) =

1

8
[3 + cos(θ) + 2 sin(θ)] (2.72)

Imin = Id(ϵ
(min)) =

1

8
[3 + cos(θ)− 2 sin(θ)] (2.73)

giving the visibility (V ) of the interference pattern to be,

V =
2 sin(θ)

3 + cos(θ)
(2.74)

Thus, the visibility of the interference pattern formed for a pure state is also a function of θ.

Therefore, the parameter θ can be determined from the visibility of the interference

pattern as well. From the Eqn: 2.74 we have,

2 sin(θ) = 3V + cos(θ)V (2.75)

=⇒ 2 sin(θ)− 3V = cos(θ)V =

(√
1− sin2(θ)

)
V

=⇒ 4 sin2(θ)− 12V sin(θ) + 9V 2 = (1− sin2(θ))V 2

=⇒ (4 + V 2) sin2(θ)− 12V sin(θ) + 8V 2 = 0 (2.76)
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Since we have θ ∈ [0, π] we can convert everything in terms of sin(θ) and while solving the

above equation we can use the fact that within the range of θ, 0 ≤ sin(θ) ≤ 1. From the

expression given in Eqn. 2.76 we get,

sin(θ) =
12V ±

√
144V 2 − 32V 2(4 + V 2)

2(4 + V 2)
=

6V ± 2V
√
1− 2V 2

4 + V 2
(2.77)

Thus, a particular value of Visibility may correspond to two different values of θ repre-

senting two individual states. For example, the state |H⟩ corresponding to θ = 0 and the

state |V ⟩ corresponding to θ = π both give visibility to be 0. Hence, θ can not be uniquely

determined from the visibility.
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Figure 2.2: Average intensity (Ī) and Visibility (V ) obtained from an interference pattern

formed when a pure qubit |ψ(θ, ϕ)⟩ evolves through the QSI setup. Visibility is found to

be a bi-valued function of θ, therefore it can not uniquely identify the state parameter θ.

On the other hand, average intensity is found to be a unique function of θ and therefore,

is sufficient to uniquely determine the state parameter (θ). However, it has less sensitivity

in the region where θ approaches 0 or π.

In summary, the characterization of an unknown pure qubit |ψ⟩ requires two param-

eters θ ∈ [0, π] and ϕ ∈ [−π, π) to be determined from an experiment. In the Quantum

State Interferography (QSI) technique, obtaining the phase averaged intensity (Ī) and the

phase shift (Φ) from the interference pattern formed at the end of the experimental setup,
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enables one to uniquely reconstruct the polarization state (given in Eqn. 2.38) being in-

cident on the setup. This is because the map between the interferometric quantities (Ī ,Φ)

and the state parameters (θ, ϕ) is bijective, as can be seen in Eqn. 2.70. Therefore, for

pure qubit state reconstruction, QSI provides a single-shot state estimation scheme based

on interferometry, which does not require any change in the experimental setting during

the course of data acquisition.

2.2.5 Inferring the State Parameters (θ, ϕ): An Alternate Derivation

Any pure state in the two-dimensional Hilbert space in polarization d.o.f. (say) can be

represented as |ψ⟩ = α |H⟩+β |V ⟩, where α and β are the probability amplitudes associated

the basis states |H⟩ and |V ⟩ respectively, with the constraint that |α|2 + |β|2 = 1. In the

polar form, i.e., in terms of the state parameters, θ ∈ [0, π] and ϕ ∈ [−π, π) the complex

amplitudes can be written as,

α = cos

(
θ

2

)
, β = eiϕ sin

(
θ

2

)
(2.78)

The mathematical expression for the intensity distribution as a function of the relative

phase ϵ, formed when the state |ψ⟩ is incident on a Mach-Zehnder Interferometer (MZI)

having a Unitary operator Û = σ̂x in one arm and a Hermitian operator R̂ = Π̂H in the

other arm, is given in Eqn. 2.54.

Id(ϵ) =
1

4

[
1 +

〈
R̂2
〉
+ 2|z| cos(ϵ+ χ)

]
where, |z|eiχ = z =

〈
Û †R̂

〉

From the above intensity distribution, the phase shift (Φ), i.e., the phase corresponding to

the maximum intensity Id and the phase averaged intensity (Ī) can be computed as,

Φ = −χ = − arg(z) = − arg
(〈
Û †R̂

〉)
(2.79)

Ī =
1

4

(
1 +

〈
R̂2
〉)

(2.80)
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where the expectation values in the state |ψ⟩ are obtained to be,

z = ⟨ψ|Û †R̂|ψ⟩ =
(
α∗ β∗

)0 1

1 0

1 0

0 0

α
β

 = αβ∗ (2.81)

〈
R̂2
〉
= ⟨ψ|R̂2|ψ⟩ =

(
α∗ β∗

)1 0

0 0

1 0

0 0

α
β

 = |α|2 (2.82)

Thus, we have

Φ = − arg(z) = − arg(αβ∗) = −(arg(α)− arg(β)) = ϕβα = ϕ (2.83)

Ī =
1

4

(
1 +

〈
R̂2
〉)

=
1

4

(
1 + |α|2

)
=

1

4

(
1 + cos2

(
θ

2

))
=

1

8
(3 + cos(θ)) (2.84)

Therefore, the state parameters θ and ϕ characterizing a pure qubit can be directly ob-

tained from the average intensity Ī and the phase shift Φ of the interferogram, respectively.

Experimental Implementation of Polar Decomposed
Components of Non-Hermitian Ladder Operator σ̂−

2.3

In the last section, we have seen that employing Quantum State Interferography (QSI),

an unknown polarization qubit |ψ(θ, ϕ)⟩ can be reconstructed by measuring the complex

expectation value of the non-Hermitian ladder operator σ̂− and the expectation value of

the projection operator Π̂H from an experiment, which is designed with a Mach-Zehnder

Interferometer having the operators Û and R̂ in the individual arms of the interferometer.

These two operators Û and R̂ are respectively the polar decomposed Unitary and pos-

itive semi-definite Hermitian components of the non-Hermitian ladder operator σ̂−, i.e.,

σ̂− = Û R̂, where R̂ =
√
σ̂†−σ̂− = Π̂H giving Û = σ̂x as shown in Eqn. 2.56. and Eqn.

2.57. These two operators (Û and R̂) need to be physically realized using optical com-

ponents in order to use them in the experiment for inferring the qubit represented in the



50 Chapter 2. QSI for Qubits

polarization degree of freedom of light.

2.3.1 Physical Implementation of R̂

The operator R̂ = Π̂H is the projector to the Horizontal polarization state |H⟩, i.e.,

Π̂H = |H⟩⟨H|. A projector to a polarization state (say, Π̂ζ = |ζ⟩⟨ζ|) can be realized using a

polarizer, that transmits only the component of the incident polarization which is parallel

to its transmission axis (also called the pass axis) and absorbs the component orthogonal

to it. Therefore, the projector Π̂ζ = |ζ⟩⟨ζ| would be realized using a polarizer whose

transmission axis is oriented such that |ζ⟩ component of the incident polarization passes

through it while the orthogonal component |ζ⟩T gets absorbed 12. So, when a polarization

state |ψ⟩ is incident on a linear polarizer with the transmission axis oriented at an angle

ϑ from the Horizontal, the state after transmission would be linearly polarized with the

polarization angle being at ϑ w. r. to Horizontal. Malus law gives the transmission

probability of any state |ψ⟩ incident on the polarizer oriented to pass component |ζ⟩ as,

T = |⟨ζ|ψ⟩|2. The Jones matrix representation of a linear polarizer with the transmission

axis along ϑ with respect to horizontal is given by,

L̂P (ϑ) =

 cos2(ϑ) sin(ϑ) cos(ϑ)

sin(ϑ) cos(ϑ) sin2(ϑ)

 (2.85)

Thus, the projector to Horizontal polarization state |H⟩ can be realized with a linear

polarizer (LP ) with the transmission axis oriented at angle ϑ = 0, i.e.,

L̂P (ϑ = 0) =

1 0

0 0

 =

1

0

(1 0
)
= |H⟩⟨H| = Π̂H = R̂ (2.86)

Alternatively, the operator R̂ = Π̂H can also be effectively realized using a polarizing

beam splitter (PBS) when we only consider its transmitting port. An ideal Polarizing

Beam Splitter transmits only the horizontal component and reflects the vertical component
12Some polarizers like Glan-Thompson Polarizer, Glan-Taylor polarizer transmits the polarization state

|ζ⟩ and directs the orthogonal component |ζ⟩T along a different path.
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of the polarization state incident on it 13. Let, the state |ψ⟩ = α |H⟩ + β |V ⟩ is incident

on a PBS from one of the input ports (say, port i) of the PBS. The action of PBS

(considering the PBS to be ideal and lossless) on the state can be written as,

|i⟩ |ψ⟩ = |i⟩ (α |H⟩+ β |V ⟩)
PBSi→(t,r)−−−−−−−−→ α |t⟩ |H⟩+ β |r⟩ |V ⟩ (2.87)

where, |t⟩ and |r⟩ represent the spatial modes associated with the transmitting and reflect-

ing ports of the PBS, when the incident beam is in the spatial mode |i⟩. Therefore, a

PBS creates an entanglement between spatial and polarization degrees of freedom of light,

known as intra-particle entanglement [21, 22]. Only considering the transformation of the

photon state from the spatial mode |i⟩ to |t⟩ through an ideal PBS we get,

α
β


|i⟩

PBSi→t−−−−−−→

α
0


|t⟩

=⇒ PBSi→t =

1 0

0 0

 = Π̂H = R̂ (2.88)

Hence, the transmission through PBS can be considered as projection to |H⟩ with the

effective operator associated with transmission being Π̂H .

2.3.2 Physical Implementation of Û

Any 2×2 Unitary operator in polarization degree of freedom of light can be realized using

a combination of half-wave plate (HWP ) and quater-wave plates (QWP ) [23, 24, 25], both

of which are birefringent crystals 14 of appropriate thickness that introduces a phase shift

of δ between the ordinary and extraordinary components of the beam propagating through

it 15, where δh = π for HWP and δq =
π

2
for QWP . The Unitary polar component Û = σ̂x

13In practice, few vertical [horizontal] photons can be found in the transmitting [reflecting] port of the

PBS depending on the extinction ratio of that port. Generally, the extinction ratio in the reflecting port

is relatively poor compared to that in the transmitting port.
14Birefringent materials are optically anisotropic materials, in which the refractive index varies depending

on the direction of oscillation of the electric field of light propagating through it, i.e., depending on the

polarization of light.
15Light at wavelength λ when propagates through a birefringent crystal of thickness d, the relative phase

introduced between the o-ray and e-ray (corresponding to the refractive indices no and ne) is given by,

δ =
2π

λ
(no − ne)d.
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can be realized using a half-wave plate (HWP ) that transforms a linear polarization to

another, depending on the orientation of its fast (or slow) axis in the plane normal to the

propagation vector of the beam. Jones matrix representation of a half-wave plate (HWP )

whose fast axis is aligned at an angle ϑ with respect to the horizontal is given by,

Ŝh(ϑ) =

cos(2ϑ) sin(2ϑ)

sin(2ϑ) − cos(2ϑ)

 (2.89)

Thus, we can physically realize σ̂x by orienting the fast axis of a half-wave plate (HWP )

at an angle ϑ =
π

4
, as shown below

Ŝh

(π
4

)
=

0 1

1 0

 = σ̂x (2.90)

In summary, the Unitary component Û = σ̂x can be realized using a half-wave plate

(HWP ) with its fast axis oriented at
π

4
with respect to the Horizontal and the Hermitian

component R̂ = Π̂H = |H⟩⟨H| can be realized using a linear polarizer with its transmission

axis aligned along the Horizontal or using a polarizing beam splitter (PBS) considering

only its transmitting port while ignoring the reflecting port. The operator R̂ = Π̂H reduces

any polarization state to |H⟩, making the evolution through the corresponding optical com-

ponent inside the QSI setup to be non-Unitary.

Quantum State Interferography for Qubits: The
Operator Description2.4

An unknown quantum state |ψ⟩ in two-dimensions corresponding to a stream of identi-

cal particles when evolves through the Quantum State Interferography (QSI) setup i.e.,

through a MZI with Û in one arm and R̂ in the other arm (where, Û = σ̂x and R̂ = Π̂H),

we get the final state at the end of the setup as |Ψ3⟩ shown in Eqn. 2.45. The state |Ψ3⟩ is
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a joint state of the particles in path and polarization d.o.f. and is represented as a super-

position of the two states in the output ports C and D of the interferometer respectively,

as shown in Fig. 2.1. Let, Ê be the effective operator that evolves the particles in the

polarization state |ψ⟩ incident on the QSI setup (i.e., on BS1) towards the output port D.

Therefore, the evolution of the polarization qubit through QSI setup can be expressed as,

Ê |ψ⟩ = i

2

(
Û + eiϵR̂

)
|ψ⟩ (2.91)

Here, the factor
1

2
arises due to the fact that the particles propagate through two 50 : 50

beam splitters, BS1 and BS2, towards the ports C and D, whereas we are only selecting

one of the output ports (D) of BS2 for the detection. Û and R̂ are the polar decomposed

components of σ̂− as discussed in SubSec. 2.2.2 and ϵ is the relative phase between the

two paths (path-A and path-B) of MZI which can be controlled using the phase shifter

(PS) in one of the paths in collinear configuration or directly through the non-collinear

configuration of the interferometer. Since, a path length difference of the order of a fraction

of the wavelength (≈ few hundreds of nm) affects the relative phase, the factors like the

surface flatness, scratch-digs, different refractive indices of the optical components present

in the two paths of the setup would affect the optical path lengths and thus, will change

intensity distribution across the detector plane.

The factor i = ei(π/2) only adds a global phase to the final state at the detector port

D. The global phase can be ignored since it has no effect on the measurement outcome as

we are only interested in recording the intensity distribution as a function of relative phase

ϵ. Thus, the overall evolution operator through the QSI setup can be expressed as,

Ê =
1

2

(
Û + eiϵR̂

)
(2.92)

Ê =
1

2

0 1

1 0

+ eiϵ

1 0

0 0

 =
1

2

eiϵ 1

1 0

 (2.93)

The description of Ê involves the operator R̂, which is the polar decomposed Hermitian

component of σ̂− and is obtained as R̂ =
√
σ̂†−σ̂− = Π̂H = |H⟩⟨H|. Therefore, R̂ being
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the projector to polarization |H⟩, introduces losses in the setup, since its action to the

polarization state orthogonal to |H⟩ gives Π̂H |V ⟩ = 0. This makes the overall evolution

operator Ê non-Unitary, i.e., Ê†Ê ̸= 1̂ ̸= Ê Ê†. Using the matrix form of Ê given in Eqn.

2.93 we get,

Ê†Ê =
1

4

 2 e−iϵ

eiϵ 1

 and Ê Ê† = 1

4

 2 eiϵ

e−iϵ 1

 (2.94)

Since, the evolution operator Ê associated with the quantum state interferography (QSI)

setup is obtained to be non-Unitary, any state that undergoes evolution through this setup,

does not preserve its norm, or in other words, the probability is not conserved.

Using the operator Ê , the intensity at the detector in the port D of the experimental

setup when an unknown qubit |ψ⟩ is incident on it can be directly obtained as,

Id(ϵ) =
∥∥∥Ê |ψ⟩∥∥∥2 = ∣∣∣ ⟨ψ|Ê†Ê |ψ⟩∣∣∣2 (2.95)

where, Ê |ψ⟩ = |ψ⟩d =
1

2


eiϵ cos

(
θ

2

)
+ eiϕ sin

(
θ

2

)

cos

(
θ

2

)
 (2.96)

where |ψ⟩d is the polarization state at the output port D, obtained when the input state

|ψ⟩ evolves to the output D through the operator Ê . Thus, using the operator description

of QSI, the intensity profile at the detector plane can be obtained as,

Id(ϵ) =
1

8
[3 + cos(θ) + 2 sin(θ) cos(ϵ− ϕ)] (2.97)

Next, state parameters (θ, ϕ) associated with a pure qubit can be computed by determin-

ing the phase averaged intensity (Ī) and phase shift (Φ) of the interference pattern Id(ϵ),

in the same manner discussed in Sec. 2.2. Once (θ, ϕ) are uniquely determined from the

interferogram, we know the polarization state |ψ⟩ incident on the setup.
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Quantum State Interferography for Mixed Qubits2.5

Quantum State Tomography (QST) is the traditional method to characterize an arbitrary

state in two-dimensional Hilbert space. In general, the process of Tomography for single

qubit reconstruction requires three projective measurements. Two measurement suffices

with the prior knowledge about the system state being pure. However, in the Sec. 2.2 we

have seen how a pure state of a two dimensional quantum system can be characterized us-

ing the interferometric state determination scheme Quantum State Interferography (QSI).

With QSI, the direction of the unit state vector |ψ(θ, ϕ)⟩ in the Bloch sphere (S(2)) can

be uniquely inferred from the phase shift and the average intensity of a single interference

pattern. For any generic state ρ̂ (not necessarily pure) in the two dimensions, another

parameter needs to be added in the description of the state in order to comment on the

degree of mixedness (given by the purity Tr
(
ρ̂2
)
).

As shown in Sec. 2.1, the mixedness in the system can be introduced by the parameter

µ that represents the decay of the off-diagonal terms of a pure state density matrix in

the presence of decoherence, where µ would be related to the length of the Bloch vector

(|r⃗|) corresponding to a state described in a Bloch sphere. Thus, the complete description

of a mixed state for a two-dimensional quantum system (say, a spin
1

2
particle) requires

the knowledge of three parameters θ, ϕ and µ (when given in decoherence representation).

Here, we aim to infer any arbitrary qubit ρ̂(µ, θ, ϕ) from the quantities obtained from an

interference pattern, without the need to change any internal settings during the process

of measurement − in other words, we aim to establish a ‘single shot’ measurement of any

arbitrary state in two dimensions.

The density matrix ρ̂ associated with a mixed qubit can be represented in terms of the

parameters (µ, θ, ϕ) as,

ρ̂ =


cos2

(
θ

2

)
1

2
µe−iϕ sin(θ)

1

2
µeiϕ sin(θ) sin2

(
θ

2

)
 (2.98)



56 Chapter 2. QSI for Qubits

where the coordinates θ ∈ [0, π] and ϕ ∈ [−π, π) describe the direction of the vector in the

Bloch sphere representation and µ ∈ [0, 1] is related to the length of the Bloch vector and

governs the purity of the density matrix ρ̂. The purity of the state ρ̂ is given as,

Tr(ρ̂2) = 1− 1− µ2

2
sin2(θ) =

1

4

[
3 + µ2 +

(
1− µ2

)
cos(2θ)

]
(2.99)

Therefore, µ = 1 gives Tr(ρ̂2) = 1, i.e., represents the pure states.

Any unknown mixed qubit or more precisely saying, any unknown qubit, whether mixed

or pure, can be reconstructed by knowing the three parameters (θ, ϕ, µ) from an experi-

ment. In this section, we will describe how the interferometric scheme − Quantum State

Interferography enables us to infer a mixed qubit from a single interference pattern as

opposed to three distinct projective measurements required in standard Quantum State

Tomography (QST) technique.

2.5.1 Theory

The expectation values of the two-dimensional spin-ladder operators σ̂± =
1

2
(σ̂x ± iσ̂y) in

the state ρ̂ given in Eqn. 2.98 are obtained to be,

⟨σ̂±⟩ = Tr(ρ̂σ̂±) =
1

2
exp(±iϕ) µ sin(θ) (2.100)

So, the argument of the complex expectation value ⟨σ̂±⟩ directly gives the azimuthal co-

ordinate ϕ and the magnitude |⟨σ̂±⟩| is a function θ and µ. For a general qubit ρ̂ the

magnitude and the argument of the expectation values of the non-Hermitian spin ladder

operators can be obtained to be,

|⟨σ̂±⟩| =
1

2
µ sin(θ) (2.101)

arg (⟨σ̂±⟩) = ± ϕ (2.102)
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For a pure qubit, µ = 1 and hence, the polar coordinate θ can be obtained from the

magnitude of the expectation value ⟨σ̂±⟩ as sin−1(2|⟨σ±⟩|). However, as we have discussed

in Sec. 2.2, this solution to θ is not unique for θ ∈ [0, π], since sin(π − θ) = sin(θ). Hence,

(π − θ) is a solution as well. For the unique determination of θ, the expectation value

of another column operator Π̂0 = |0⟩⟨0| 16 needs to be computed. For the mixed state

ρ̂(θ, ϕ, µ), we get the expectation value of Π̂0 as the following,

〈
Π̂0

〉
= Tr

(
ρ̂Π̂0

)
= cos2

(
θ

2

)
(2.103)

So, from
〈
Π̂0

〉
the value of θ can be uniquely determined in [0, π] as,

θ = 2 cos−1

(√〈
Π̂0

〉)
(2.104)

Therefore, once θ is known, µ can be determined as

µ =
2|⟨σ̂±⟩|
sin(θ)

(2.105)

Hence, all the three state parameters (θ, ϕ, µ) corresponding to an arbitrary qubit ρ̂ can

be determined from the expectation values of the two operators − projector to |0⟩ i.e., Π̂0

and any one of the spin ladder operators σ̂+ or σ̂−. Here, we will choose σ̂− =
1

2
(σ̂x− iσ̂y)

for further discussion. Therefore, evaluating the expectation values
〈
Π̂0

〉
and ⟨σ̂−⟩, the

state parameters (θ, ϕ, µ) can be determined as the following,

θ = 2 cos−1

(√〈
Π̂0

〉)
, ϕ = − arg (⟨σ̂−⟩) , µ =

2|⟨σ̂−⟩|
sin(θ)

(2.106)

Once all the state parameters are known, ρ̂ can be inferred from the Eqn. 2.98. In the

next section, we will show how the expectation values
〈
Π̂0

〉
and ⟨σ̂−⟩ are obtained in an

experiment in order to infer an unknown one-qubit mixed state.

16which is the projector to the state |0⟩ when the two-dimensional Hilbert space is spanned in the Fock

basis, i.e., {|0⟩ , |1⟩}.
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2.5.2 Experimental Protocol for Inferring an Unknown Mixed Qubit

As shown in SubSec. 2.5.1, an unknown state (ρ̂) of a two-dimensional quantum system

can be inferred experimentally by determining the state parameters (θ, ϕ, µ) from the

measured expectation values of the operators Π̂0 and σ̂−. Now, expectation value of σ̂−

can not be determined from the statistical distribution of the measurement outcomes in an

experiment as σ̂− is a non-Hermitian operator and is not in general physically realizable.

However, as discussed in SubSec. 2.2.2, σ̂− can be polar decomposed into a Unitary

operator Û and a positive semi-definite Hermitian operator R̂ that satisfies σ̂− = Û R̂,

where R̂ =
√
σ̂†−σ̂− = Π̂0, giving Û = σ̂x. Then evolving the qubit state ρ̂ through the

operators Û and R̂ in the individual arms of a two-path interferometer in an interferometric

setup, the expectation value of the non-Hermitian operator (σ̂−) can be obtained.

σ̂− = Û R̂ = σ̂xΠ̂0 (2.107)

Here, the experimental protocol for determining
〈
Π̂0

〉
and ⟨σ̂−⟩ using the Quantum State

Interferography (QSI) technique will be presented with the aim to characterize an unknown

qubit in the polarization degree of freedom of light utilizing those values.

A generic mixed state in two-dimensional Hilbert space spanned by the polarization

basis {|H⟩ , |V ⟩} can be expressed as,

ρ̂ = cos2
(
θ

2

)
|H⟩⟨H|+ µ

2
e−iϕ sin(θ) |H⟩⟨V |+ µ

2
eiϕ sin(θ) |V ⟩⟨H|+ sin2

(
θ

2

)
|V ⟩⟨V |

(2.108)

the matrix form of which is given in Eqn. 2.98, provided the parameters θ ∈ [0, π],

ϕ ∈ [−π, π) and µ = [0, 1]. These three quantities that uniquely specify the polarization

state of light (ρ̂) can be determined experimentally from a single interference pattern ob-

tained in a single setting of a two path interferometer setup as shown in Fig. 2.3.
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Mirror
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Figure 2.3: Experimentally the polarization state is prepared by using a half-wave plate

(HWP ) and a quarter-wave plate (QWP ) which can be at arbitrary orientations. The

setup for the polarization state characterization is formed using a Mach-Zehnder interfer-

ometer MZI, with one arm having a HWP , whose fast axis is oriented at
π

4
w.r.to the

horizontal, that effectively realizes the Û = σ̂x operator and the other arm, having a polar-

izer with the transmission axis oriented along horizontal, or alternatively, considering the

transmitting port of a polarizing beam splitter (PBS) to effectively realize the operator

R̂ = Π̂H . The phase shifter (PS) introduces a relative phase ϵ between the two arms of

the interferometer and the intensity as a function of ϵ is measured at the photo detector

(PD), which results in an interference signal. Experimentally, the phase shifter can be

avoided by making the interferometer non-collinear.

The optical setup for polarization state characterization of light using Quantum State

Interferography is shown in Fig. 2.3. The QSI setup consists of a Mach Zehnder Interfer-

ometer (MZI), formed with the 50 : 50 beam splitters (BS1, BS2) and mirrors (MA, MB),

consisting of the optical components corresponding to operators Û and R̂ in arm-A and

arm-B respectively, with a photo detector (PD) or a CCD camera placed at one of the out-

put ports of BS2. The operator Û and R̂ are the polar decomposed components of the non-

Hermitian spin ladder operator σ̂−, which when acts on the polarization basis {|H⟩ , |V ⟩},

transforms |H⟩ to |V ⟩ and annihilates |V ⟩. Therefore, σ̂− |H⟩ = |V ⟩ , σ̂− |V ⟩ = 0. Opera-

tors Û and R̂ only affect the polarization d.o.f. of light leaving the path d.o.f. unaffected.
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The operators Û and R̂ are given as,

Û = σ̂x = |V ⟩⟨H|+ |H⟩⟨V | and R̂ = Π̂H = |H⟩⟨H| (2.109)

Experimentally, the operator Û can be realized using a half-wave plate (HWP ) with its fast

axis oriented at an angle
π

4
from the horizontal and the operator R̂ can be realized using

a linear polarizer with its transmission axis oriented along the horizontal. Alternatively,

the operator R̂ = Π̂H can be effectively realized considering only the transmission through

a polarizing beam splitter (PBS), as discussed in Sec. 2.3. At the detector position, the

overall evolution operator Ê corresponding to the MZI along with the optical components

present in the two paths in the QSI setup, can be expressed as

Ê =
1

2

(
Û + eiϵR̂

)
=

1

2

(
σ̂x + eiϵΠ̂H

)
=

1

2

eiϵ 1

1 0

 (2.110)

Here, ϵ is the relative phase between the two paths of the interferometer that effectively

manifests any path length difference between path-A and path-B of the interferometer

which includes the misalignment, the effect due to surface quality of the optical compo-

nents, different refractive indices of the components, etc.

Consider a stream of photons in the unknown polarization state ρ̂ is incident on the

setup shown in Fig. 2.3. The intensity distribution as a function of the relative phase at

the detector position would be,

Id(ϵ) = Tr
(
Ê ρ̂ Ê†

)
(2.111)

=
1

4
Tr
(
(Û + eiϵR̂) ρ̂ (Û † + e−iϵR̂†)

)

=
1

4

[
Tr
(
Û ρ̂Û †

)
+Tr

(
R̂ρ̂R̂†

)
+ eiϵTr

(
R̂ρ̂Û †

)
+ e−iϵTr

(
Û ρ̂R̂†

)]

=
1

4

[〈
Û †Û

〉
+
〈
R̂†R̂

〉
+ eiϵ

〈
Û †R̂

〉
+ e−iϵ

〈
R̂†Û

〉]
(2.112)
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The above expression for the intensity Id(ϵ) is obtained using the characterization prop-

erties of trace [26], which are (i) Tr(A+B) = Tr(A) + Tr(B), (ii) Tr(cA) = cTr(A), (iii)

Tr(ABC) = Tr(BCA) = Tr(CAB), where A,B,C are the square matrices and c is a scalar

constant. Also, the formula Tr
(
ρ̂Ô
)
=
〈
Ô
〉
, that represents the expectation value of the

operator Ô in the state ρ̂, has been used in the above.

Since, the operators Û and R̂ are respectively the polar decomposed Unitary and Her-

mitian components of the non-Hermitian operator σ̂−, we get Û †Û = 1̂ and R̂† = R̂.

Therefore,
〈
Û †Û

〉
=
〈
1̂
〉
= 1 and

〈
R̂†R̂

〉
=
〈
R̂2
〉
. Also, Eqn. 2.109 shows that Û = σ̂x

and R̂ = Π̂H , satisfying σ̂− = σ̂xΠ̂H . Thus, here Û † = σ̂†x = σ̂x and R̂2 = Π̂2
H =

|H⟩ ⟨H|H⟩ ⟨H| = |H⟩ ⟨H| = Π̂H = R̂. Now, consider a complex quantity z with magni-

tude |z| and argument χ, as the following

z = |z|eiχ =
〈
Û †R̂

〉
=
〈
σ̂†x Π̂H

〉
=
〈
σ̂x Π̂H

〉
= ⟨σ̂−⟩ (2.113)

giving, z∗ = |z|e−iχ =
〈
Û †R̂

〉∗
=
〈
R̂†Û

〉
= ⟨σ̂−⟩∗ (2.114)

where, |z| = |⟨σ̂−⟩| and χ = arg (⟨σ̂−⟩) (2.115)

Hence, the expression for intensity at the detector position given in Eqn. 2.112 can be

written as,

Id(ϵ) =
1

4

[〈
1̂
〉
+
〈
R̂2
〉
+ ⟨σ̂−⟩ eiϵ + ⟨σ̂−⟩∗ e−iϵ

]
(2.116)

Id(ϵ) =
1

4

[
1 +

〈
R̂
〉
+ |z|eiχeiϵ + |z|e−iχe−iϵ

]

Id(ϵ) =
1

4

[
1 +

〈
R̂
〉
+ 2|z| cos(ϵ+ χ)

]

Id(ϵ) =
1

4

[
1 +

〈
Π̂H

〉
+ 2|⟨σ̂−⟩| cos (ϵ+ arg (⟨σ̂−⟩))

]
(2.117)

Therefore, an unknown quantum state ρ̂ incident on the QSI setup, when evolves through
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the effective evolution operator Ê , we get the intensity distribution Id(ϵ) at one of the out-

put ports of the setup. Hence, using the QSI technique from a single interference pattern

(intensity distribution Id as a function of relative phase ϵ) we can experimentally deter-

mine the expectation values of the desired operators (Π̂H and σ̂−) in the state ρ̂. The state

parameters (θ, ϕ, µ) corresponding to the unknown state ρ̂ can then be obtained using the

expressions presented in Eqn. 2.106.

Now, the expression for the intensity at the detector, when we put the values of
〈
Π̂H

〉
,

|⟨σ̂−⟩|, arg (⟨σ̂−⟩) computed for the state ρ̂ as shown in Eqn. 2.103, Eqn. 2.101 and Eqn.

2.102, can be seen in the following,

Id(ϵ) =
1

4

[
1 + cos2

(
θ

2

)
+ 2

µ

2
sin(θ) cos (ϵ− ϕ)

]
(2.118)

Id(ϵ) =
1

8
[3 + cos(θ) + 2µ sin(θ) cos(ϵ− ϕ)] (2.119)

This expression for intensity, obtained when a mixed state ρ̂ evolves through the QSI

setup, is similar to the expression of intensity for pure state given in Eqn. 2.63, except

that the factor µ that controls the purity of the state appears in the interference term.

Note that, the operator Ê given in Eqn. 2.92 is not Unitary. Hence, while computing

Id = Tr
(
Ê ρ̂ Ê†

)
, the evolution Ê ρ̂ Ê† does not preserve the properties of the density ma-

trices. This interference pattern obtained from the experiment is post-processed to infer

the state parameters for the characterization of the unknown polarization qubit ρ̂.

2.5.3 Inferring the State Parameters (µ, θ, ϕ) from the Interferogram

Here we will show how the state parameters (µ, θ, ϕ) associated with the unknown polar-

ization qubit ρ̂ can be obtained from the phase shift (Φ), average intensity (Ī) and visibility

(V ) of the interference pattern Id(ϵ).

❑ Phase Shift: The phase shift (Φ) of the interference pattern is obtained at the

value of phase ϵ that maximizes the experimentally obtained intensity Id(ϵ). Therefore at

ϵ = Φ, the conditions
∂Id(ϵ)

∂ϵ

∣∣∣∣
ϵ=Φ

= 0 and
∂2Id(ϵ)

∂ϵ2

∣∣∣∣
ϵ=Φ

< 0 satisfy simultaneously. From
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the interference pattern Id(ϵ) obtained when a mixed state ρ̂(µ, θ, ϕ) is evolved through

the setup, we get

∂Id(ϵ)

∂ϵ

∣∣∣∣
ϵ=Φ

= −1

4
µ sin(θ) sin(Φ− ϕ) = 0 (2.120)

∂2Id(ϵ)

∂ϵ2

∣∣∣∣
ϵ=Φ

= −1

4
µ sin(θ) cos(Φ− ϕ) (2.121)

Expression in Eqn. 2.120 gives two solutions as Φ = ϕ or Φ = π + ϕ. In the expression

in Eqn. 2.121 we have 0 ≤ µ ≤ 1 and sin(θ) > 0 since 0 ≤ θ ≤ π. Thus, satisfying

the criteria
∂2Id(ϵ)

∂ϵ2

∣∣∣∣
ϵ=Φ

< 0 implies Φ = ϕ. Thus, the phase shift (Φ) of the interference

pattern directly gives the state parameter ϕ.

❑ Average Intensity: The phase averaged intensity of the interference pattern is

obtained by integrating Id(ϵ) over all possible phases ϵ, i.e.,

Ī =

∫
ϵ
Id(ϵ)dϵ =

1

8
(3 + cos(θ)) (2.122)

Thus, the average intensity of the interference pattern for mixed state is the same as the

average intensity obtained for a pure state shown in Eqn. 2.69. Average intensity Ī is a

unique function of state parameter θ. Hence, θ ∈ [0, π] can be uniquely determined from

Ī, which is experimentally always normalized with the incident intensity.

❑ Visibility: Next, the visibility (V ) of the interference pattern is obtained by varying

the optical path length difference between the two paths of the interferometer and finding

the maximum (Imax) and minimum (Imin) values of the intensity distribution Id(ϵ) at the

detector position and the putting them in the following expression,

V =
Imax − Imin
Imax + Imin

(2.123)
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For a mixed state ρ̂ incident on the QSI setup, we get

Imax =
1

8
[3 + cos(θ) + 2µ sin(θ)] (2.124)

Imin =
1

8
[3 + cos(θ)− 2µ sin(θ)] (2.125)

giving, V =
2µ sin(θ)

3 + cos(θ)
(2.126)

So, visibility V for the mixed state is a function of two state parameters θ and µ. Once

θ is uniquely known from Ī, the parameter µ can be computed from the experimentally

obtained value of visibility (V ) using the known value of θ.
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Figure 2.4: Visibility (V ) and Average intensity (Ī) obtained from an interferogram formed

when an arbitrary qubit evolves through the QSI setup. Visibility for different µ values,

where µ ∈ [0, 1] is found to be a bi-valued function of θ. However, the average intensity is

found to be a unique function of θ and is independent of µ.

Hence, we can conclude that by employing the QSI technique, all the three state pa-

rameters θ, ϕ and µ specifying an unknown polarization qubit ρ̂(µ, θ, ϕ) given in Eqn.

2.98 can be reconstructed from the experimentally determined interferometric quantities

(Ī ,Φ, V ), as given in the following,
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θ = cos−1(8Ī − 3), ϕ = Φ, µ =
3 + cos(θ)

2 sin(θ)
V (2.127)

In summary, this section presents how a one qubit mixed state ρ̂(µ, θ, ϕ) in the polar-

ization degree of freedom of light can be reconstructed from a single interference pattern

formed at the end of a MZI with the operators σ̂x and Π̂H in the respective arms, as shown

in Fig. 2.3. The parameters θ and ϕ can be directly inferred from the phase averaged

intensity Ī and the phase shift Φ obtained from the interferogram. The expressions for

the quantities Ī(θ) and Φ(ϕ) remain the same irrespective of the incident state being pure

or mixed. The parameter µ, controlling the purity of the two-dimensional state ρ̂, can be

computed from the visibility V of the interference pattern, from the already known value

of θ. Thus, knowing the quantities Ī, Φ and V experimentally from a single interference

pattern, any one-qubit mixed state can be characterized.

Inferring Expectation Value of the non-Hermitian
Operator σ̂− from Interferometric Information2.6

In quantum mechanics, the observables are often considered to be Hermitian for which

the eigen values are real and the associated non-degenerate eigenstates are orthogonal to

each other that forms a complete set [13]. Now, according to the measurement postulate

in quantum theory, the act of measuring an observable which is a real dynamical variable

of the system, would always result in one of the eigenvalues of the operator associated

with the observable. The eigenvalues of the observables are considered to be real num-

bers as the measuring apparatus, from which the measurement outcomes are inferred, can

only produce real numbers [10]. The eigen values of the non-Hermitian operators are in

general complex and therefore, can not be obtained directly from the measurement out-

comes. However, Eqn. 2.30 shows that the complex expectation value of a non-Hermitian

operator Â in the state |ψ⟩ can be inferred from the complex weak value of a Hermitian

operator R̂, in the pre-selected state |ψ⟩ and post-selected state |ϕ⟩ = Û † |ψ⟩ [9]. Here,

R̂ =
√
Â†Â is the polar decomposed positive semi-definite Hermitian component of Â,
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with the associated Unitary component Û giving Â = Û R̂ [11], discussed in SubSec, 2.2.2.

It has been shown that the weak value
〈
R̂
〉(w)

of the Hermitian operator can be obtained

directly even without performing a proper weak measurement i.e., without weak coupling

and post-selection, using an interferometric technique [14]. Here, we will show how the

setup used for determining an unknown quantum state in the Quantum State Interferogra-

phy (QSI) technique, can be employed to find the expectation value of the non-Hermitian

spin ladder operator σ̂− 17. Note that, the QSI scheme for identifying the state parameters

(µ, θ, ϕ) of an unknown qubit relies on calculating the complex expectation value of σ̂−

operator described for two-dimensions.

In SubSec. 2.5.2, we have presented that ⟨σ̂−⟩ can be obtained by post-processing the

interferogram obtained from the setup shown in Fig. 2.3. The intensity distribution as a

function of relative phase ϵ, expressed in terms of ⟨σ̂−⟩ and
〈
Π̂H

〉
is shown in Eqn. 2.117,

Id(ϵ) =
1

4

[
1 +

〈
Π̂H

〉
+ 2|⟨σ̂−⟩| cos (ϵ+ arg (⟨σ̂−⟩))

]

From the above expression, we can compute the phase shift (Φ) and the visibility of the

interference pattern as,

Φ = − arg(⟨σ̂−⟩) (2.128)

V =
2|⟨σ̂−⟩|

1 +
〈
Π̂H

〉 (2.129)

So, the argument of the complex expectation value of σ̂− can be obtained from the phase

shift (Φ) of the interference pattern. Phase shift is experimentally determined by finding

that value of relative phase ϵ which corresponds to the maximum intensity in the detector,

i.e., Id(ϵ = Φ) = I
(max)
d . The magnitude of the expectation value of σ̂− can be determined

from the visibility of the interference pattern that is computed using Eqn. 2.123, provided〈
Π̂H

〉
is known. Now, experimentally finding the average intensity Ī of the interference

pattern, the expectation value of the projector Π̂H = |H⟩⟨H| can be computed as,
17Though σ̂− has real eigen values, it does not qualify as an observable since it fails to provide a complete

set of eigen vectors.
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Ī =
1

4

(
1 +

〈
Π̂H

〉)
=⇒

〈
Π̂H

〉
= 4Ī − 1 (2.130)

Hence, we get the complex expectation value of the non-Hermitian spin ladder operator

σ̂− =
1

2
(σ̂x − iσ̂y) in two dimensions as,

⟨σ̂−⟩ = |⟨σ̂−⟩| exp (i arg (⟨σ̂−⟩)) (2.131)

where,

arg (⟨σ̂−⟩) = −Φ (2.132)

|⟨σ̂−⟩| =
1

2

(
1 +

〈
Π̂H

〉)
V =

1

2

(
1 + 4Ī − 1

)
V = 2ĪV (2.133)

giving,

⟨σ̂−⟩ = 2ĪV e−iΦ (2.134)
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Figure 2.5: Real and Imaginary parts of the complex expectation value of non-Hermitian

operator σ̂− in different states |ψ(θ, ϕ)⟩, obtained from the visibility (V ), average intensity

(Ī) and phase shift (Φ) of an interferogram generated using the QSI setup.
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Thus, the setup designed for Quantum State Interferography (QSI) technique can be

employed to infer the expectation values of 2× 2 non-Hermitian operators Â from a single

interference pattern generated in a Mach-Zehnder Interferometer (MZI) with the oper-

ators Û and R̂ in the respective arms, where R̂ =
√
Â†Â, satisfying Â = Û R̂. The

interferometric quantities obtained from the interference pattern generated at the end of

the interferometric setup would vary depending on the parameters of the state incident on

the setup, processing which the expectation value
〈
Â
〉

could be determined.

Quantum State Interferography for Qubits: The
Unitary Description2.7

In standard quantum mechanics, the dynamics of a quantum system is described according

to the Schrödinger Wave equation, in which the state associated with the quantum system

undergoes a Unitary evolution under a given Hamiltonian. All the evolution operators,

in general, manifest Unitary transformations of the system state until a measurement is

performed, which is considered to be the non-unitary state reduction [27]. Therefore, in

quantum mechanics, we deal with two kinds of evolutions − reversible norm-preserving

Unitary evolution and irreversible non-norm preserving non-Unitary evolution. The op-

erator Ê =
1

2

(
Û + eiϵR̂

)
as described in Sec. 2.4, which evolves an incident unknown

qubit (ρ̂ or |ψ⟩) through the Quantum State Interferography (QSI) setup to the output

where the interference pattern is recorded, appears to be non-Unitary. As shown in Eqn.

2.94, Ê Ê† ̸= 1̂ and Ê†Ê ̸= 1̂. An evolution operator being non-Unitary is considered to be

impractical as it fails to conserve the probability, unlike a Unitary operator. In order to

ensure that the quantum state is physical after evolving through the QSI setup, the overall

evolution operator needs to be Unitary.

The apparent non-unitarity of the evolution operator E for the setup shown in Fig. 2.1

and Fig. 2.3 arises due to the losses in the setup which corresponds to the light that does

not make its way to the detector. In the Quantum State Interferography (QSI) setup for

inferring an unknown polarization qubit, one of the paths in the two path interferometer

includes a Polarizing Beam Splitter (PBS) or alternatively, a linear polarizer that effec-
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tively realizes the operator R̂ = Π̂H i.e., the projector to the polarization state |H⟩, which

introduces loss in the setup and makes the operator non-Unitary.

Π̂†HΠ̂H = Π̂HΠ̂
†
H = Π̂H ̸= 1̂ (2.135)

In the polarization subspace, the Jones representation for a linear polarizer with trans-

mission axis oriented along the horizontal (Eqn. 2.86) or the matrix representation for a

Polarizing Beam Splitter (PBS) considering only its transmitting port (Eqn. 2.88) be-

comes a non-Unitary matrix. The two are almost identical in their usage when we are only

interested in the transmission, as both of them transmit only the horizontal component of

polarization of the incident beam; with the difference being that the linear polarizer (as

Π̂H) absorbs the light with the polarization component orthogonal to |H⟩, i.e., with the

polarization component |V ⟩ and the PBS reflects the light with the polarization compo-

nent |V ⟩ to a path that does not reach the detector. Hence, either of them introduces a loss

in the QSI setup owing to a part of the beam either being absorbed or being in a spatial

mode that is ignored. This makes the overall evolution operator Ê , which describes the

Mach-Zehnder interferometer along with the optical components realizing the operators R̂

and Û shown in Fig. 2.3, non-trace preserving.

The schematic of the Quantum State Interferography setup for inferring an unknown

polarization state of a two-dimensional quantum system, is shown in Fig 2.6. The setup

consists of a Mach-Zehnder Interferometer (MZI) formed with two beam splitters BS1,

BS2 and two mirrors MA, MB having operators Û = σ̂x and R̂ = Π̂H in the respective

arms of the interferometer. The beam splitter BS1 has two input ports a and b and two

output ports c and d respectively. The beam in port c corresponds to path-A of the inter-

ferometer and is redirected by the mirror MA towards BS2. Similarly, the beam in port d

corresponds to path-B of the interferometer and is redirected towards BS2 by the mirror

MB. Here, for the Unitary description of the evolution of the beam through the QSI setup,

the mirrors MA and MB are considered to be lossless with reflectivity for both the polar-

ization components being one, i.e., Rp = Rs = 1. Further, all other optical components

are considered to be ideal as well.
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Figure 2.6: Mach Zehnder Interferometer set-up with the optical components realizing the

operators Û and R̂ for Polarization State Interferography.

The operator Û = σ̂x can be realized using a half-wave plate (HWP ) with its fast

axis oriented at
π

4
w.r.to horizontal. σ̂x is Unitary, thus it is trace preserving. The op-

erator R̂ = Π̂H , which is the projector to |H⟩, can be realized using a linear polarizer

with the transmission axis oriented along Horizontal. This configuration of the polarizer

allows only the horizontal component of polarization of the beam incident on it to pass

through and absorbs the vertical component of polarization of the beam. Thus, there are

losses associated with the polarizer operation when the incident beam has the polarization

something other than horizontal (|H⟩). Equivalently, a polarizing beam splitter (PBS)

can be used to realize Π̂H , where we only consider the beam in the transmitting port

of it. A PBS transmits the Horizontal polarization component and reflects the Vertical

polarization component of the beam incident on it.

When the operator Π̂H in the QSI setup is physically implemented using a PBS, which

is placed in path-B of the interferometer, the two input ports can be labeled as f and g

and the two output ports as h and i as shown in the figure Fig 2.6. The ports f and h
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lie on path-B of the interferometer. Thus, the light emerging in the output port i is going

away from the interferometer and is not detected by the detector placed at the end of the

interferometer, introducing loss in the setup. The part of the beam that is getting lost and

is not able to reach the detector, either due to absorption in the polarizer or due to the

reflection away from the setup, is one of the reasons for the apparent non-Unitarity of the

overall evolution operator Ê . The operator σ̂x placed in path-A, can be considered to have

c and e as the input and output, respectively.

Next, the beam splitter BS2 has two input ports e and h and two output ports j and

k respectively. The beam in port k is detected using a detector placed in this port and

the beam in port j remains undetected which again is associated with the loss in the setup

and is responsible for the non-unitary nature of the evolution operator Ê . Therefore, there

are three input paths (a, b, g) and three output paths (i, j, k) to the entire QSI setup or

we can say, to the Mach-Zehnder interferometer. Only the beam in one, (say k) out of the

three output paths is detected while the beams in the other paths (i.e., in ports i, j) are

ignored. To have a Unitary description of the evolution of a qubit through the QSI setup,

the states in the path d.o.f. associated with all the ports in the setup need to be included

and therefore, the description of the operators in a higher dimensional Hilbert space, i.e.,

a joint Hilbert space of path and polarization degrees of freedom, would be required.

❑ Input State Density Matrix in the Joint Hilbert Space:

Consider, {|a⟩ , |b⟩ , |g⟩} are the spatial modes corresponding to the input paths a, b and

g respectively, as can be seen from Fig 2.6. The stream of particles or the beam with

the unknown polarization state ρ̂p 18 is made incident only in port a, where ρ̂p is any

arbitrary density matrix in the two-dimensional polarization subspace spanned by the basis

{|H⟩ , |V ⟩}. In terms of the parameters (µ, θ, ϕ) the state is represented as the following,

ρ̂p =


cos2

(
θ

2

)
1

2
µe−iϕ sin(θ)

1

2
µeiϕ sin(θ) sin2

(
θ

2

)

{|H⟩,|V ⟩}

(2.136)

18The subscript ‘p’ in ρ̂p represents that the corresponding density matrix is in polarization d.o.f..
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where µ ∈ [0, 1], θ ∈ [0, π] and ϕ ∈ [−π, π). These state parameters need to be determined

in order to infer the unknown state. The combined Hilbert space of path and polarization

degrees of freedom is 3× 2 = 6 dimensional, i.e., H(6) = H(3)
s ⊗H(2)

p , where the subscripts

‘s’ and ‘p’ respectively represent the spatial (path) degree of freedom and polarization (or

spin) degree of freedom of the system.

Since the beam is incident on input port a only, the density matrix associated with the

incident beam, represented in the path d.o.f. in the basis {|a⟩ , |b⟩ , |g⟩} is given as follows:

ρ̂s =


1 0 0

0 0 0

0 0 0


{|a⟩,|b⟩,|g⟩}

(2.137)

The subscript ‘s’ in ρ̂s represents that the corresponding density matrix ρ̂ is defined in the

spatial (path) d.o.f.. The combined state of the incident beam may then be represented as

an outer product of the path (spatial) and polarization (spin) density matrices, i.e., ρ̂s⊗ ρ̂p.

ρ̂i = ρ̂s ⊗ ρ̂p =


1 0 0

0 0 0

0 0 0

⊗


cos2
(
θ

2

)
1

2
µe−iϕ sin(θ)

1

2
µeiϕ sin(θ) sin2

(
θ

2

)
 (2.138)

ρ̂i =



cos2
(
θ

2

)
1

2
µe−iϕ sin(θ) 0 0 0 0

1

2
µeiϕ sin(θ) sin2

(
θ

2

)
0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


{|a⟩,|b⟩,|g⟩}⊗{|H⟩,|V ⟩}

(2.139)

Note that the above representation of the density matrix associated with the incident beam

is in the basis {|a⟩ , |b⟩ , |g⟩} ⊗ {|H⟩ , |V ⟩} as indicated in the subscript of Eqn. 2.139.
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❑ The Unitary Evolution Operators of the Beam Splitters:

The beam splitters BS1 and BS2 are considered to be symmetric, lossless, and ideal that

only affect the spatial degree of freedom of the beam and leave the polarization degree of

freedom unaffected. The first beam-splitter BS1 transforms the input modes {|a⟩ , |b⟩} to

the modes {|c⟩ , |d⟩} and leaves the mode |g⟩ in the input port g unaffected. Therefore, the

matrix representation of the beam splitter action in the path subspace is given as,

B̂1s =
1√
2


1 i 0

i 1 0

0 0
√
2


{|a⟩,|b⟩,|g⟩}→{|c⟩,|d⟩,|g⟩}

(2.140)

The complete beam splitter operator for BS1 considering the action on the combined path

and polarization degrees of freedom is given as B̂1 = B̂1s ⊗ 1̂(2)p . Here 1̂(2)p is the 2 × 2

identity operator in the polarization degree of freedom which indicates that the polarization

of the beam does not get affected as it propagates through the beam splitter. Thus, the

Unitary operator associated with evolution through the beam splitter in the joint Hilbert

space of path and polarization degrees of freedom can be expressed as,

B̂1 = B̂1s ⊗ 1̂(2)p =
1√
2



1 0 i 0 0 0

0 1 0 i 0 0

i 0 1 0 0 0

0 i 0 1 0 0

0 0 0 0
√
2 0

0 0 0 0 0
√
2


{|a⟩,|b⟩,|g⟩}⊗{|H⟩,|V ⟩}→{|c⟩,|d⟩,|g⟩}⊗{|H⟩,|V ⟩}

(2.141)

Therefore, BS1 transforms the spacial modes, {|a⟩ , |b⟩ , |g⟩} to {|c⟩ , |d⟩ , |g⟩}, without af-

fecting the polarization of the beam.

Similarly, the second beam-splitter BS2 transforms {|e⟩ , |h⟩} to the modes {|j⟩ , |k⟩}

which are the spatial modes associated with the output ports j and k of the interferometer

and leaves the output mode |i⟩ in the port i unaffected. Hence, the matrix representation

of BS2 in the path subspace is as follows:
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B̂2s =
1√
2


1 i 0

i 1 0

0 0
√
2


{|e⟩,|h⟩,|i⟩}→{|j⟩,|k⟩,|i⟩}

(2.142)

The complete unitary operator for the beam splitter BS2 in the combined path and polar-

ization degrees of freedom is given by B̂2 = B̂2s ⊗ 1̂(2)p , i.e.,

B̂2 = B̂2s ⊗ 1̂(2)p =
1√
2



1 0 i 0 0 0

0 1 0 i 0 0

i 0 1 0 0 0

0 i 0 1 0 0

0 0 0 0
√
2 0

0 0 0 0 0
√
2


{|e⟩,|h⟩,|i⟩}⊗{|H⟩,|V ⟩}→{|j⟩,|k⟩,|i⟩}⊗{|H⟩,|V ⟩}

(2.143)

❑ Evolution Through Operators in Path-A of the Interferometer:

The state after the action of the first beam splitter can be computed by transforming ρ̂i

with B̂1, as the following

ρ̂(B̂1→) = B̂1 · ρ̂i · B̂†1 (2.144)

The superscript (B̂1 →) in the above expression indicates the state after the evolution

through BS1. The beam transmitted from the beam-splitter BS1 i.e., the beam in the

path-A encounters theHWP whose fast axis is oriented at
π

4
with respect to the horizontal.

The action of this half-wave plate (HWP ) present in arm A of the interferometer can be

viewed as the Û = σ̂x operation on input mode |c⟩ and identity on the modes {|d⟩ , |g⟩}.

The operator Û only acts on the polarization degree of freedom and does not in general

effect the spatial degree of freedom 19. Thus, the spatial mode in the output of the HWP

19The beam can have slight deviation from its original path due to refraction through the material of

the HWP when the normal to the surface of the HWP is not aligned along the incident beam.
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remains the same as the spatial mode in the input of the HWP , i.e., |e⟩ = |c⟩, where e is

shown as the output port of the HWP in Fig 2.6. The Unitary transformation associated

with this operator Û is given by,

Ĥ = Π̂c ⊗ σ̂x + (1̂(3)s − Π̂c)⊗ 1̂(2)p (2.145)

Here, 1̂(3)s is the 3× 3 identity operator in the path subspace spanned by the basis states

{|c⟩ , |d⟩ , |g⟩}, i.e., 1̂(3)s = |c⟩⟨c| + |d⟩⟨d| + |g⟩⟨g| = Π̂c + Π̂d + Π̂g and 1̂(2)p is the 2 × 2

identity operator in the polarization subspace spanned by the basis states {|H⟩ , |V ⟩}, i.e.,

1̂
(2)
p = Π̂H + Π̂V . Overall operator Ĥ is given by,

Ĥ =



1 0 0

0 0 0

0 0 0

⊗
0 1

1 0

+


0 0 0

0 1 0

0 0 1

⊗
1 0

0 1



{|c⟩,|d⟩,|g⟩}⊗{|H⟩,|V ⟩}

(2.146)

=⇒ Ĥ =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


{|e⟩=|c⟩,|d⟩,|g⟩}⊗{|H⟩,|V ⟩}

(2.147)

❑ Evolution Through Operators in Path-B of the Interferometer:

The phase-shifter (PS) acts only on path-B which controls the relative phase between the

two paths of the interferometer. The phase shifter adds a phase φ to the beam in the

spatial mode |d⟩ only and leaves the modes |c⟩ and |g⟩ unaffected. The operation of the

phase shifter can be expressed as, |f⟩ = eiφ |d⟩, where |f⟩ is the spatial mode at the output

port of the phase shifter. Hence the operator for the phase shifter can be written as,

Φ̂(φ) =
(
Π̂c + exp(iφ)Π̂d + Π̂g

)
⊗ 1̂(2)p (2.148)
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1̂
(2)
p in the above expression implies that the phase shifter does not affect the polarization

of the beam, at all. The complete description of the phase shifter is given by,

Φ̂(φ) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 eiφ 0 0 0

0 0 0 eiφ 0 0

0 0 0 0 1 0

0 0 0 0 0 1


{|c⟩,|d⟩,|g⟩}⊗{|H⟩,|V ⟩}→{|c⟩,|f⟩,|g⟩}⊗{|H⟩,|V ⟩}

(2.149)

After passing through the phase shifter, the beam in path-B of the interferometer

encounters the operator R̂ = Π̂H which is the projector to the horizontal polarization. This

operator can be realized either by a linear polarizer with the transmission axis along the

horizontal or by using a polarizing beam splitter (PBS) and selecting only the transmitting

port of it. Jones matrix representation of a linear polarizer [28] with its axis of transmission

aligned at an angle ϑ is given by,

L̂P (ϑ) =

 cos2(ϑ) sin(ϑ) cos(ϑ)

sin(ϑ) cos(ϑ) sin2(ϑ)


{|H⟩,|V ⟩}

(2.150)

The matrix L̂P is non-Unitary, thus the projection operation violates the conservation of

probability. When the transmission axis remained aligned along the Horizontal, we get the

projector to |H⟩ in the polarization subspace,

L̂P (ϑ = 0◦) =

1 0

0 0


{|H⟩,|V ⟩}

= |H⟩⟨H| = Π̂H (2.151)

Alternatively, a polarizing beam splitter can be used to physically realize the operator

R̂ = Π̂H . A polarizing beam splitter (PBS) transmits only the horizontally polarized

component and reflects the vertically polarized component of the beam incident on it. A
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polarizer and PBS are equivalent in their operation as long as we are only interested in

the beam transmitted from the PBS. The transformation of the input modes {|f⟩ , |g⟩}

to the output modes {|h⟩ , |i⟩} through the PBS are given as follows,

(α1 |H⟩+ β1 |V ⟩) |f⟩
PBS−−−−→ α1 |H⟩ |h⟩+ β1 |V ⟩ |i⟩ (2.152)

(α2 |H⟩+ β2 |V ⟩) |g⟩
PBS−−−−→ β2 |V ⟩ |h⟩+ α2 |H⟩ |i⟩ (2.153)

Here, (αm |H⟩+ βm |V ⟩) with m = 1, 2 are the polarization states incident onto the PBS

from the input ports f and g respectively. Therefore, the transformation matrix of a PBS

in 2× 2 dimensional Hilbert space can be given by,

ˆPBS =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


{|f⟩,|g⟩}⊗{|H⟩,|V ⟩}→{|h⟩,|i⟩}⊗{|H⟩,|V ⟩}

(2.154)

So far the operator ˆPBS is Unitary. Since we are only concerned with the transmission

of the beam for effectively realizing the operator R̂ = Π̂H , we have to consider the beam in

the output port h when the beam is incident from the input port f of the PBS. It implies

a projection operation Π̂h = 1̂
(2)
p ⊗ |h⟩⟨h| on the state after the transformation from PBS.

From Eqn. 2.152 we get,

(α1 |H⟩+ β1 |V ⟩) |f⟩
PBS−−−−−−−−−→

Transmission
Π̂h · (α1 |H⟩ |h⟩+ β1 |V ⟩ |i⟩) = α1 |H⟩ |h⟩ (2.155)

This transformation, where we select only the transmitted beam in the h port, is non-

Unitary though the overall transformation of the PBS is Unitary. So, the matrix rep-

resentation corresponding to the Unitary transformation of the PBS from {|f⟩ , |g⟩} to

{|h⟩ , |i⟩} with the mode |c⟩ remaining unaffected can be expressed as,
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P̂ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0


{|c⟩,|f⟩,|g⟩}⊗{|H⟩,|V ⟩}→{|c⟩,|h⟩,|i⟩}⊗{|H⟩,|V ⟩}

(2.156)

❑ Final State after the Unitary Evolution Through the QSI Setup:

The state just before the second beam splitter i.e., the state after the beam propagates

through the operator Û in path-A and the operators Φ̂ and R̂ in path-B is given by,

ρ̂(B̂1→Ĥ→Φ̂→P̂→) = ρ̂(←B̂2) = P̂ · (Φ̂ · (Ĥ · (B̂1 · ρ̂i · B̂†1) · Ĥ
†) · Φ̂†) · P̂ † (2.157)

The superscript (← B̂2) represents the state before BS2. The density matrix associated

with the system after the action of half-wave plate (HWP ) in path-A and polarizing beam

splitter (PBS) in path-B are represented in the basis {|c⟩ , |h⟩ , |i⟩} ⊗ {|H⟩ , |V ⟩}. The

spatial mode |e⟩ which is one of the input modes to the BS2 is identical to mode |c⟩

since the HWP does not act on the path d.o.f., i.e., |e⟩ = |c⟩. Thus, the subscript in

BS2 transformation matrix, shown in Eqn. 2.143, can be expressed by {|c⟩ , |h⟩ , |i⟩} ⊗

{|H⟩ , |V ⟩} → {|j⟩ , |k⟩ , |i⟩} ⊗ {|H⟩ , |V ⟩}. The overall evolution of the quantum system

through the QSI setup with different operators, in terms of spatial modes, can be seen as:

ρ̂i = ρ̂s ⊗ ρ̂p

⇓

{|a⟩ , |b⟩ , |g⟩} B̂1−−−−→ {|c⟩ , |d⟩ , |g⟩} Ĥ−−−→ {|e⟩ = |c⟩ , |d⟩ , |g⟩} Φ̂−−−→ ...

...
Φ̂−−−→ {|e⟩ = |c⟩ , |f⟩ , |g⟩} P̂−−−→{|e⟩ = |c⟩ , |h⟩ , |i⟩} B̂2−−−−→ {|j⟩ , |k⟩ , |i⟩}

⇓

ρ̂f
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The three output ports of the QSI setup are i, j, k with the corresponding spatial

modes {|i⟩ , |j⟩ , |k⟩}. The final density matrix after the Mach-Zehnder interferometer is

represented in the basis {|j⟩ , |k⟩ , |i⟩} ⊗ {|H⟩ , |V ⟩}. The final state of the system after

evolving through the entire setup can be computed as follows,

ρ̂
(B̂1→Ĥ→Φ̂→P̂→B̂2→)
f = B̂2 · (P̂ · (Φ̂ · (Ĥ · (B̂1 · ρ̂i · B̂†1) · Ĥ

†) · Φ̂†) · P̂ †) · B̂†2 (2.158)

Till now, all the evolution has been Unitary and the above density matrix has a unit trace.

Now, the non-unitarity would be introduced when we select the beam only in one of the

output ports of the setup.

❑ The Non-Unitary Evolution of the Final State Through Projection in

One of the Output Ports of the QSI Setup:

We now place the detector (PD) or the beam profiler (CCD) only in port k of the setup.

It can be considered as a projective measurement of the state ρ̂f on the spatial mode |k⟩.

In the 3× 2 dimensional Hilbert space H = Hs ⊗Hp the projector Π̂k is represented as,

Π̂k = |k⟩⟨k| ⊗ 1̂(2)p =


0 0 0

0 1 0

0 0 0


{|j⟩,|k⟩,|i⟩}

⊗

1 0

0 1


{|H⟩,|V ⟩}

(2.159)

Π̂k =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


{|j⟩,|k⟩,|i⟩}⊗{|H⟩,|V ⟩}

(2.160)

The resultant state in the combined Hilbert space of path and polarization subspaces, in

the port k of the QSI setup is obtained to be ρ̂k = Π̂k · ρ̂f · Π̂†k.
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ρ̂k = Π̂k · ρ̂f · Π̂†k (2.161)

ρ̂k =
1

4



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 + µ sin(θ) cos(φ− ϕ) cos2
(
θ

2

)
eiφ +

µ

2
eiϕ sin(θ) 0 0

0 0 cos2
(
θ

2

)
e−iφ +

µ

2
e−iϕ sin θ cos2

(
θ

2

)
0 0

0 0 0 0 0 0

0 0 0 0 0 0


(2.162)

Here, we can see that the density matrix (ρ̂k) obtained after evolving through Π̂k does not

preserve the norm, i.e., Tr(ρ̂k) ̸= 1.

The component of the final density matrix ρ̂f in the spatial mode |k⟩ that is going

to be detected is obtained as the reduced density matrix in the basis |k⟩ ⊗ {|H⟩ , |V ⟩} ≡

{|k⟩ |H⟩ , |k⟩ |V ⟩}. The reduced density matrix (say, ρ̂d) in port k is given as follows,

ρ̂d =
1

8

 2 (1 + µ sin(θ) cos(φ− ϕ)) eiφ(1 + cos(θ)) + µeiϕ sin(θ)

e−iφ(1 + cos(θ)) + µe−iϕ sin(θ) 1 + cos(θ)


{|H⟩,|V ⟩}

(2.163)

The trace of the density matrix Tr(ρ̂d) =
1

8
(3 + cos(θ) + 2µ sin(θ) cos(φ− ϕ)) ̸= 1, which

is a result of the non-Unitary evolution through the projection Π̂k. This expression of

Tr(ρ̂d) gives the intensity distribution in the port k as a function of relative phase φ.

❑ Inferring the State Parameters from the Interferogram:

Total intensity recorded at the detector or the beam profiler, placed in the port k, can be

obtained by computing the trace of the density matrix ρ̂d, i.e.,
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Id(φ) = Tr(ρ̂d) =
1

8
(3 + cos(θ) + 2µ sin(θ) cos(φ− ϕ)) (2.164)

The phase shift (Φ) of the above interference pattern is obtained at the value of φ that

maximizes the intensity Id. Since, 0 ≤ θ ≤ π, sin(θ) in the last term (i.e., the interference

term) is always positive and µ > 0, hence the phase shift is given by Φ = ϕ. The phase

averaged intensity Ī is obtained by integrating the intensity Id(φ) over all possible phases

φ ∈ [−π, π) and is given by Ī =
1

8
(3 + cos(θ)), which is a unique function of θ. Thus, the

state parameters θ and ϕ can be uniquely determined from the average intensity (Ī) and

the phase shift (Φ) of the interference pattern obtained in an interferometer port. Now, the

visibility of the interference pattern is computed as, V =
I
(max)
d − I(min)d

I
(max)
d + I

(min)
d

=
2µ sin(θ)

3 + cos(θ)
.

Therefore, once θ is known, µ can be obtained from the visibility V .

Therefore, the phase shift, average intensity and visibility obtained from an interfer-

ence pattern generated at one of the output ports of the QSI setup can be processed to

get the state parameters from which the unknown polarization state, given in Eqn. 2.136,

that is incident on the setup can be reconstructed. So once the setup is aligned, data

collection in QSI does not demand any change in the experimental settings − making it a

true ‘single-shot’ technique for state estimation.

Uniqueness of State Parameters with Phase Shift,
Average Intensity and Visibility of an Interferogram2.8

Quantum State Interferography is an interferometric state characterization scheme, using

which any arbitrary qubit can be uniquely determined from the phase shift, average in-

tensity and visibility obtained from a single interference pattern that is generated in a two

path interferometer with the individual paths respectively having the Unitary (Û = σ̂x)

and Hermitian (R̂ = Π̂0 ≡ Π̂H) operators. Below, we have presented the density plots

to show the uniqueness of the state parameters with the interferometric quantities. The

functional relationship between (Φ, Ī, V ) obtained from an interferogram and the state

parameters (µ, θ, ϕ) is established in Sec. 2.5, which are given as the following:
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Φ = ϕ, Ī =
1

8
(3 + cos(θ)), V =

2µ sin(θ)

3 + cos(θ)
(2.165)
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Figure 2.7: Phase Shift (Φ), Average Intensity (Ī) and Visibility (V ) as function of Bloch

Sphere parameters θ and ϕ. The quantities (Φ, Ī, V ) are obtained from an interferogram

when a qubit (with µ = 1) evolves through the QSI setup.

From the above plots, it can be seen that the phase shift (Φ) of the interferogram is

independent of θ and is a unique function of ϕ. The phase averaged intensity (Ī) of the

interference pattern is independent of ϕ and is a unique function of θ. Visibility (V ), how-

ever, although independent of ϕ, is many (two) to one function of θ. Therefore, we choose

the average intensity, which forms a one-to-one map with θ, for uniquely identifying the

state parameter θ. Visibility, nevertheless, helps in distinguishing µ, the parameter that

governs the purity of a two-dimensional state.

Quantum State Interferography for Qubits: Infer-
ring the Bloch Parameters2.9

In this Chapter, we have shown, how any arbitrary qubit, whether mixed or pure, can be

characterized using an interferometric state determination scheme − Quantum State Inter-

ferography. So far we have presented the procedure and the post-processing algorithms to

identify the state parameters (µ, θ, ϕ) representing the qubits (Eqn. 2.9), from the inter-
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ferometric quantities such as visibility (V ), average intensity (Ī) and phase shift (Φ) of a

single interference pattern. Note that, the parameters (µ, θ, ϕ) correspond to the decoher-

ence representation of qubits, which is chosen for the state characterization in QSI as the

set (µ, θ, ϕ) bears a simple functional relationship with the set of interferometric quantities

(V, Ī,Φ). However, the intuitive and most commonly used representation for qubits (Eqn.

2.16) is the Bloch sphere representation, where any arbitrary qubit is considered to be in

a Bloch sphere which is a unit 2-sphere (S(2)). A state in this representation is parame-

terized in terms of the Bloch co-ordinates (rb, θb, ϕb), where rb = |r⃗| ∈ [0, 1] is the length

of the Bloch vector, θb ∈ [0, π] is the polar angle and ϕb ∈ [−π, π) is the azimuthal angle

corresponding to the qubit in the Bloch sphere. Here, in this section, we will show that

Quantum State Interferography consistently provides a ‘single-shot’ qubit determination

scheme even when the qubits are represented in terms of Bloch parameters.

Any arbitrary state in the two-dimensional Hilbert space visualized in the Bloch sphere

representation is given as,

ρ̂(|r⃗|, θb, ϕb) =
1

2

1 + |r⃗| cos(θb) |r⃗| sin(θb) e−iϕb

|r⃗| sin(θb) eiϕb 1− |r⃗| cos(θb)

 (2.166)

Consider, a stream of particles in the state ρ̂(|r⃗|, θb, ϕb) is incident on the QSI setup, which

consists of a two path interferometer, say, a Mach-Zehnder Interferometer (MZI) with

Û = σ̂x in one path and R̂ = Π̂0 in the other path (as shown in the Fig. 2.3). The state

ρ̂(|r⃗|, θb, ϕb) evolves through the operator Ê =
1

2

(
Û + eiϵR̂

)
=

1

2

(
σ̂x + eiϵΠ̂0

)
(matrix

representation of which is shown in Eqn. 2.93), where ϵ is the relative phase between the

two paths of the interferometer. The intensity distribution as a function of relative phase

(ϵ), obtained in one of the output ports of the setup, is given as

Id(ϵ) = Tr
(
Ê ρ̂ Ê†

)
=

1

8
[3 + |r⃗| cos(θb) + 2|r⃗| sin(θb) cos(ϵ− ϕb)] (2.167)

The generated interferogram (Id(ϵ)), needs to be processed to determine the interferomet-

ric quantities Φ, Ī and V from which the Bloch parameters |r⃗|, θb and ϕb would be inferred.
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❑ Phase Shift: The phase shift (Φ) of the interference pattern Id(ϵ) is obtained at that

value of ϵ which gives maximum value of Id and is obtained from the following conditions.

∂Id(ϵ)

∂ϵ

∣∣∣∣
ϵ=Φ

= −1

4
|r⃗| sin(θb) sin(Φ− ϕb) = 0 (2.168)

∂2Id(ϵ)

∂ϵ2

∣∣∣∣
ϵ=Φ

= −1

4
|r⃗| sin(θb) cos(Φ− ϕb) < 0 (2.169)

Since θb ∈ [0, π], we get 0 ≤ sin(θb) ≤ 1 and |r⃗| > 0. Therefore, Eqn. 2.168 gives

Φ − ϕb = 0 or Φ − ϕb = π. However, the condition in Eqn. 2.169 would satisfy when

Φ− ϕb = 0. Hence, we get the phase shift of the interferogram as Φ = ϕb.

❑ Average Intensity: The Average intensity of the interference pattern is obtained

as follows,

Ī =

∫
ϵ
Id(ϵ)dϵ =

1

8
(3 + |r⃗| cos(θb)) (2.170)

Hence the average intensity in Bloch sphere representation is not a unique function of θb

or |r⃗|. Therefore, to uniquely determine the state parameters |r⃗| and θb, one would require

another quantity obtained from the interferogram.

❑ Visibility: The visibility of the interference pattern is computed using the maximum

(I(max)d ) and minimum (I(min)d ) values of intensity as the following,

V =
I
(max)
d − I(min)d

I
(max)
d + I

(min)
d

=
2|r⃗| sin(θb)

3 + |r⃗| cos(θb)
(2.171)

Therefore, the visibility is again a function of |r⃗| and θb.

❑ Determining the State Parameters: Therefore, the state parameter ϕb can be

directly obtained from the phase shift Φ of the interferogram, similar to determining ϕ in

(µ, θ, ϕ) representation. However, the other two Bloch parameters i.e., |r⃗| and θb can be
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obtained by simultaneously solving the expressions Ī(|r⃗|, θb) and V (|r⃗|, θb) given in Eqn.

2.170 and Eqn. 2.171. Now, from Eqn. 2.170 we can write,

|r⃗| = 8Ī − 3

cos(θb)
(2.172)

Using this value of |r⃗| in Eqn. 2.171, we get the state parameter θb in terms of interfero-

metric quantities Ī and V .

V =
2(8Ī − 3) tan(θb)

3 + (8Ī − 3)
=

8Ī − 3

4Ī
tan(θb) (2.173)

=⇒ θb = arctan

(
4ĪV

8Ī − 3

)
(2.174)

Once, θb is obtained from Ī and V , the length of the Bloch vector |r⃗| can be determined

from Eqn. 2.172. Therefore, Quantum State Interferography (QSI) can interpret the set

of Bloch parameters from a single interference pattern, as well.
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Figure 2.8: Visibility (V ) and Average intensity (Ī) obtained from an interferogram formed

when an arbitrary qubit ρ̂(|r⃗|, θb, ϕb) evolves through the QSI setup. As |r⃗| varies from 0

to 1, visibility for different |r⃗| values is found to be a bi-valued function of θb, whereas,

average intensity for different |r⃗| values is obtained to be a unique function of θb.
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In summary, we can conclude that the interferometric state determination technique,

Quantum state interferography (QSI), enables one to infer the Bloch parameters corre-

sponding to an arbitrary qubit using the information processed from an interference pat-

tern produced at the end of a two-path interferometer, in the same manner how the (µ, θ, ϕ)

parameters of the qubit are inferred. Therefore, QSI can be used to reconstruct any arbi-

trary qubit independent of its representation in a single-shot state estimation procedure.

When the determination of (|r⃗|, θb, ϕb) parameters is compared with the determination of

(µ, θ, ϕ) parameters, QSI as the technique i.e., the experimental setup, the evolution of the

unknown state through the operator Ê , recording the interference pattern at the end and

processing it to get the quantities (Φ, Ī, V ), appears to be the same. The only difference

arises in the algorithm to get the state parameters from the interferometric quantities.

However, the determination of θb involves an arctan function, which is not bounded, unlike

arccos function that is used to determine θ. Therefore, in the regions where θb approaches
π

2
, any small experimental error would get amplified while determining θb from Ī and V .

Conclusion2.10

This chapter introduces a novel method for state characterization − Quantum State Inter-

ferography − that uses interferometry as a tool to infer the unknown states of a quantum

system. Quantum State Interferography (QSI) provides a true ‘single-shot’ state determi-

nation scheme for qubits, using which any unknown qubit, whether mixed or pure, can

be inferred from the phase shift (Φ), phase-averaged intensity (Ī), and visibility (V ) of a

single interference pattern generated in a Mach-Zehnder Interferometer (MZI), with the

operator σ̂x present in one arm and the operator Π̂0 (when the Hilbert space is spanned

by the Fock basis {|0⟩ , |1⟩}) or equivalently the operator Π̂H (for the polarization basis

{|H⟩ , |V ⟩}) in the other arm. The three quantities processed from the interferogram i.e.,

(Ī ,Φ, V ) forms a unique map with the set of parameters (θ, ϕ, µ) or (θb, ϕb, rb) that de-

scribes any arbitrary state ρ̂ in the two-dimensional Hilbert space. If the state is known

to be pure, the determination of the phase shift and the phase averaged intensity from the

interference pattern are enough to reconstruct the unknown state. Since the procedure of
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state characterization using QSI does not demand any modifications in the experimental

settings during data acquisition, it shows the potential to develop an enclosed state esti-

mating device, which when fed with an input beam in an unknown state would generate

the corresponding state information in the output.

Here, we have discussed the QSI scheme by describing the experimental setup tak-

ing an example of a MZI. However, it can be realized with any two-path interferometer

including double-slit interferometer which can be factory designed and can serve as a ro-

bust miniaturization in the state estimating device. The scheme can also be realized using

a displaced Sagnac Interferometer (DSI), details of which will be discussed in Chapter. 3.

Appendix

Geometric Interpretation of Qubits in the (µ, θ, ϕ)

and Bloch Representation: A comparative Analysis2.A

In Sec. 2.1, we have shown the representation of a general qubit with two sets of parameters,

(µ, θ, ϕ) and (rb, θb, ϕb). Though both the sets represent a unique state, they are not the

same and have different physical meanings. The density matrix in 2.16 is one of the most

commonly used forms of representing an arbitrary single qubit, visualized using a vector

r⃗ within a sphere of unit radius in R3. Here, the length of the vector |r⃗| scales uniformly

with the mixedness of the state. On the other hand, the density matrix in Eqn. 2.9 gives

another standard form of a general qubit, representing the emergence of mixed states from

the pure states under decoherence. Here, µ is the parameter that controls the mixedness.

µ is not the same as the length of the Bloch vector, but is related to it. Since, the density

matrices in two different representations correspond to the same state (say, ρ̂) in a given

two-dimensional Hilbert space, we can write the purity of the state as the following:
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Tr
(
ρ̂2
)
=

1

2
(1 + |r⃗|2) = 1−

(
1− µ2

2

)
sin2(θ) (2.175)

Therefore, using the fact that Tr
(
ρ̂2
)

would represent the purity of the given state ρ̂

irrespective of the parametric representations, we get the functional relationship between

the length of the Bloch vector |r⃗| and mixedness parameter µ.

|r⃗| =
√

cos2(θ) + µ2 sin2(θ) (2.176)

From the above expression, it can be seen that the length of the Bloch vector |r⃗| is a

function of µ and θ. µ = 1 corresponds to |r⃗| =
√
cos2(θ) + sin2(θ) = 1. Therefore, µ = 1

represents the states on the surface of the Bloch sphere, i.e., the pure qubits. Further,

µ = 0 corresponds to |r⃗| =
√

cos2(θ). Therefore, µ = 0 simply does not represent the

maximally mixed state; µ = 0 with θ =
π

2
represents

1̂

2
.

❑ Functional Relationship Between the Two Sets of Parameters:

Now, let us consider a point P within a sphere of unit radius in R3 as shown in Fig. 2.9,

that represents an arbitrary mixed state given by the density matrix ρ̂. This point P lies

on the tip of the vector O⃗P = r⃗ = rxx̂+ ryŷ + rz ẑ, known as the Bloch vector associated

with the given state. Relating the Bloch parameters (rb, θb, ϕb) for the given state to the

Cartesian co-ordinates we can see rb = |r⃗| =
∣∣∣O⃗P ∣∣∣ =√r2x + r2y + r2z ∈ [0, 1] is the length

of the Bloch vector, θb ∈ [0, π] is the angle between r⃗ and ẑ and ϕb ∈ [−π, π) is the angle

between the projection of r⃗ on the x − y plane (i.e., O⃗M) and x̂. Therefore, from the

expression of the density matrix ρ̂ =
1

2

(
1̂+ rxσ̂x + ryσ̂y + rzσ̂z

)
, we get

⟨σ̂x⟩ = Tr(ρ̂σ̂x) = rx = |r⃗| sin(θb) cos(ϕb) (2.177)

⟨σ̂y⟩ = Tr(ρ̂σ̂y) = ry = |r⃗| sin(θb) sin(ϕb) (2.178)

⟨σ̂z⟩ = Tr(ρ̂σ̂z) = rz = |r⃗| cos(θb) (2.179)
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Here, (rx, ry, rz) are the co-ordinates of the point P representing the mixed state ρ̂.
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Figure 2.9: Geometric representation of an arbitrary qubit, given by the point P at the

tip of the ‘green’ vector O⃗P within a sphere of unit radius centered at O, in different

parametric representations − (x, y, z), (rb, θb, ϕb) and (µ, θ, ϕ).

Now, when we attempt to visualize the same state ρ̂ parameterized by (µ, θ, ϕ) with µ ∈

[0, 1], θ ∈ [0, π] and ϕ ∈ (−π, π] in the Cartesian co-ordinates, the functional relationship

between the two sets of parameters can be established. The expectation value of the Pauli

matrices computed for the density matrix ρ̂ in (µ, θ, ϕ) representation given in Eqn. 2.9,

are expressed as:

⟨σ̂x⟩ = Tr(ρ̂σ̂x) = µ sin(θ) cos(ϕ) (2.180)

⟨σ̂y⟩ = Tr(ρ̂σ̂y) = µ sin(θ) sin(ϕ) (2.181)

⟨σ̂z⟩ = Tr(ρ̂σ̂z) = cos(θ) (2.182)
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Therefore, comparing ⟨σ̂i⟩ (where i = x, y, z) for the two representations of the same state

ρ̂, we see that the parameters (µ, θ, ϕ) relate to the Cartesian parameters (rx, ry, rz) in a

manner which is different from how the Bloch parameters (|r⃗|, θb, ϕb) would relate. The

physical significance of the parameters µ, θ, and ϕ will be clear when we form a one-to-one

map between the two sets of parameters.

Now, comparing the quantities ⟨σ̂z⟩ and (⟨σ̂x⟩2 − ⟨σ̂y⟩2) obtained from the two repre-

sentations, we get

⟨σ̂z⟩ = |r⃗| cos(θb) = cos(θ) (2.183)

⟨σ̂x⟩2 − ⟨σ̂y⟩2 = |r⃗|2 sin2(θb) cos(2ϕb) = µ2 sin2(θ) cos(2ϕ) (2.184)

From the above two expressions and using Eqn. 2.176, we can write the parameters θb

and ϕb as the following:

θb = cos−1
(
cos(θ)

|r⃗|

)
(2.185)

ϕb = ϕ (2.186)

Therefore, ϕ is the same as that of the azimuthal angle ϕb associated with the Bloch vector

r⃗, but θ is not the same as the polar angle θb.

❑ Interpreting the Physical Meanings of θ and ϕ in the (µ, θ, ϕ) Repre-

sentation: From Fig. 2.9, we see that the projection of the Bloch vector O⃗P = r⃗ on

the z-axis is OS. Now, keeping the projection the same if we extend the line SP , which is

normal to the z-axis, till it touches the surface of the sphere, then the point of intersection

Q can be associated with a vector O⃗Q of unit length. Therefore, O⃗Q is the unit vector

that has the same z-projection (OS) as the Bloch-vector r⃗ = O⃗P corresponding to the

mixed state ρ̂ and it has a projection O⃗N on the x− y plane, making the same angle with

x̂ as O⃗M . So, we can write
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OS = O⃗Q · ẑ = O⃗P · ẑ = r⃗ · ẑ (2.187)

=⇒ O⃗Q · ẑ = |r⃗| cos(θb) = cos(θ) (2.188)

=⇒ O⃗Q · ẑ =
∣∣∣O⃗Q∣∣∣ cos(θ) (2.189)

The above expression is obtained using Eqn. 2.183 and the value
∣∣∣O⃗Q∣∣∣ = 1. Hence, Eqn.

2.189 shows that θ is the angle that the unit vector O⃗Q makes with ẑ. Therefore, ϕ is

the angle that the projection of O⃗Q in the x − y plane makes with x̂, which is the same

as ϕb. Visualizing the state ρ̂ in Cartesian co-ordinates, we can say that θ is the polar

angle associated with a given mixed state ρ̂ represented by a Bloch vector whose length

has been normalized to one and ϕ is the azimuthal angle corresponding to the normalized

unit Bloch vector. Therefore, any arbitrary state ρ̂(|r⃗|, θb, ϕb) in the Bloch sphere can be

related to a point on the surface of the sphere.

In Fig. 2.9, P represents any arbitrary mixed state within the Bloch sphere, associated

with a Bloch vector r⃗ = O⃗P that has a z-projection rz same as the vector O⃗Q of unit length,

where Q lies on the surface of the sphere. From Eqn. 2.183, for any general state in two

dimensions we can write,

cos(θ)

cos(θb)
= |r⃗| ≤ 1 (2.190)

=⇒ cos(θ) ≤ cos(θb)

=⇒ θ ≥ θb (2.191)

The equality holds for |r⃗| = 1, i.e., for the pure states. Therefore, for any mixed state

the Bloch parameter θb would always be less than the parameter θ in the decoherence

representation. This relation can be visualized using the Fig. 2.9 where any point, inside

the Bloch sphere along the line SQ on the plane z = rz, that represents a mixed state (say,

ρ̂′) is associated with a Bloch vector (say, r⃗′) having the length
∣∣∣r⃗′∣∣∣ such that rz ≤

∣∣∣r⃗′∣∣∣ < 1
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with the polar angle θb varying as 0 ≤ θb < θ.

Further, since the Bloch parameter θb ∈ [0, π], for any general qubit we get

0 ≤ θb ≤ π =⇒ −1 ≤ cos(θb) ≤ 1

=⇒ −|r⃗| ≤ |r⃗| cos(θb) ≤ |r⃗| =⇒ −|r⃗| ≤ cos(θ) ≤ |r⃗| (2.192)

giving, cos−1 (|r⃗|) ≤ θ ≤ π − cos−1 (|r⃗|) (2.193)

Since, for mixed states |r⃗| < 1, the above expression gives 0 < θ < π. So, θ can

never have the value 0 or π for any mixed qubit state. Using the expression |r| =√
cos2(θ) + µ2 sin2(θ), for θ = 0 or π, we get |r| = 1, i.e., pure states. θ = 0 corresponds to

pole P0 giving the pure state |0⟩ and θ = π corresponds to pole P1 giving the pure state |1⟩.

❑ Physical Significance of µ in the (µ, θ, ϕ) Representation:

So far, we have established how the parameters in the density matrix ρ̂ in the (µ, θ, ϕ)

representation are related to the co-ordinates in the Cartesian representation, as well as to

the parameters in the Bloch representation. The expression of ρ̂ ≡ ρ̂(µ, θ, ϕ) in Eqn. 2.9

represents a general qubit density matrix that can be constructed by writing a pure state

density matrix (given in Eqn. 2.8) in spherical polar co-ordinates 20 and then introducing

the effect of decoherence through the parameter µ in the off-diagonal terms. Decoherence

does not affect the probabilities |α|2 = cos2
(
θ

2

)
and |β|2 = sin2

(
θ

2

)
associated with the

basis vectors, but causes loss in the system information, especially the phase information.

Therefore, it attenuates the off-diagonal terms that represent quantum coherence and in-

troduces mixedness in the system [29]. So, visualizing in R3 we can say, in presence of

decoherence, the pure states that lie on the surface of the Bloch sphere (with |r⃗| = 1),

evolve towards the z-axis along a plane given by z = constant [30].

20Pure state density matrix is the same in both (µ, θ, ϕ) and (|r⃗|, θb, ϕb) representations, as |r⃗| = 1, µ =

1, θ = θb and ϕ = ϕb for pure states.
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Consider a plane at S normal to the z-axis, as depicted in Fig. 2.9. Every point across

this plane within the Bloch sphere would represent the qubit mixed states that emerges

as a result of the non-unitary evolution (associated with decoherence) of the pure states

lying along the points on the circumference of a circle formed at the intersection of z = OS

plane and the unit sphere. Decoherence does not change the azimuthal angle, i.e., ϕb = ϕ

and the z-projection i.e., |r⃗| cos(θb) = cos(θ) associated with the pure state lying on the

surface of the Bloch sphere, it only moves the points representing the system state from

the surface of the sphere to the surface of an ellipsoid within the sphere, depending on the

value of µ (known as correlation-damping factor) [6, 30]. The states with µ = 1 lie on the

surface of the sphere and the states with µ = 0 lie along the z-axis.

Since, the shape of the ellipsoid changes from a sphere to a line along the z-axis as µ

varies from 1 to 0, we can say that µ controls the purity of a qubit in (µ, θ, ϕ) representation.

However, µ is not the same as the length of the Bloch vector |r⃗|, but is related to it as the

following,

µ =

√
|r⃗|2 − cos2(θ)

sin2(θ)
=

√
|r⃗|2(1− cos2(θb))

1− |r⃗|2 cos2(θb)
(2.194)

From the above expression, it may appear that at θ = 0 or π, the parameter µ blows up.

But, this is not the case, since when θ tends to 0 or π, cos(θ) tends to |r⃗|, giving a finite

value of µ. Unlike |r⃗| in the Bloch representation, µ does not scale uniformly with the

purity of the state because of its θ dependence. For the states of constant purity, say P,

we can write

|r⃗| =
√
2P − 1 and µ =

√
1 +

2P − 2

sin2(θ)
(2.195)

Therefore, if we consider a plane ϕb = ϕ = constant, the locus of the states with same

purity is circular about θ in |r⃗|, whereas the locus of the states with same purity about θ

is the deformed elliptic toroidal or “baloon” shaped, as shown in Fig. 2.10b.
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(a) Deformation of the Bloch sphere (with radius

|r⃗| = 1) into an ellipsoid (shown for µ = 0.6)

within the sphere, in the presence of decoherence

in an open quantum system, indicating the emer-

gence of mixedness to the system.
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Figure 2.10: Visualization of two-dimensional state space in two different representations,

the Bloch sphere representation, and the decoherence representation.

In summary, representation of any arbitrary qubit using two sets of parameters

(|r⃗|, θb, ϕb) and (µ, θ, ϕ) are shown in Eqn. 2.16 and Eqn. 2.9 respectively and a dis-

cussion on their geometrical interpretation in terms of Cartesian co-ordinates is presented

in this section. The Bloch sphere representation using (|r⃗|, θb, ϕb), where any arbitrary

density matrix is written as a linear combination of identity operator (1̂) and the Pauli

operators (σ̂i with i = x, y, z), is the most commonly used form for state characterization

and study of coherent evolution of the system. On the other hand, (µ, θ, ϕ) provides the

preferred form of representing a qubit for the characterization of the system when dynamics

is concerned. Here, mixedness is introduced with the decay of the off-diagonal terms (of a

pure state density matrix) using the factor µ, associated with the loss of system informa-

tion through interaction with an environment for an open system. Therefore, the two sets

of parameters simply denotes alternate notations for the same state, which fundamentally

differ in terms of the visualization the two-dimensional Hilbert space in R3.
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In (|r⃗|, θb, ϕb) parameterization, a qubit is represented as a point in a unit 2-sphere S(2)

− Bloch sphere, embedded in R3. However, with (µ, θ, ϕ) parameters, a qubit is repre-

sented as a point on the surface an ellipsoid contained inside the Bloch sphere, formed due

to the deformation of the unit sphere under decoherence, as shown in Fig. 2.10a. The pure

state space for both the representations is the same, given by the points (θb = θ, ϕb = θ) on

the surface of the unit sphere with the associated parameters |r⃗| = 1, µ = 1. Its the mixed

state space that visually differs in the two notations as can be seen in Fig. 2.10a. In Bloch

representation, as |r⃗| tends to zero, the state becomes maximally mixed. However, in the

decoherence representation, when µ tends to zero, the state is Non-maximally mixed, as

the purity of the state has a dependence on θ. In the Bloch representation, as can be seen

from Eqn. 2.17, the states of same purity lies on the surface of the sphere of radius |r⃗|,

independent of θb and ϕb. However, in decoherence representation, the states of the same

purity lie on the surface of a deformed elliptical torus having a balloon-like cross-section

at ϕ = constant, with the shape of the balloon changing with the Purity.
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In the previous chapter, we have presented an interferometric scheme for quantum state

reconstruction, in which, an unknown quantum state can be inferred employing the phe-

nomena of quantum interference. We have discussed the theory for characterization of an

unknown qubit, whether pure or mixed, from the phase shift, average intensity and visi-

bility of an interference pattern obtained in a single setup without the need to change any

experimental setting. The technique named as “Quantum State Interferography” (QSI)

determines all the three state parameters − (|r|, θb, ϕb) in Bloch Sphere representation

or (µ, θ, ϕ) in Decoherence representation − that describes any arbitrary qubit, at once

by processing a single interference pattern (also known as “interferogram”). When com-

pared to the standard Quantum State Tomography (QST) technique, where a pure and a

mixed qubit state reconstruction requires two and three projective measurements respec-

tively, QSI reduces the number of measurements and hence the amount of data acquisition,

needed for an unknown state reconstruction, which makes this technique useful for various

applications in quantum information processing.

In this chapter, we will explore the practical application of Quantum State Interferog-

raphy (QSI) technique and will experimentally demonstrate how a two-path interferometer

can be used to reconstruct not only pure states but also mixed states of a two-dimensional

quantum system. This chapter will present an implementation of this interferometric state

determination scheme in polarization degree of freedom of light for characterizing different

polarization qubits. A comparative analysis of the performance of QSI executed using

two different interferometers: Mach-Zehnder interferometer and Sagnac interferometer (in

displaced configuration) would be discussed. Here, we will establish one of the significant

features of QSI − its ability to offer a “true single-shot” state estimation technique for

qubits, by practically showing that once the setup is aligned, no internal setting needs to

be modified in between the incidence of photons in an unknown polarization state and the

extraction of the state information.

This chapter will also present the physical realization of the operators Û and R̂, to be

placed inside the interferometer in the QSI setup, with the components readily available in

an optics lab. Lastly, we will report the fidelity of the experimentally reconstructed density

matrices of the polarization qubits, demonstrating that QSI can be effectively implemented

for unknown state characterization with high degree of accuracy.
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Comparison of Quantum State Interferography
Technique in Various Interferometric Setups3.1

The state determination scheme − Quantum State Interferography (QSI) − characterizes

any unknown quantum state using an interferometric setup and analyzing the information

obtained from the interference patterns, generated when an ensemble of identical parti-

cles in the unknown quantum state evolves through the setup. The experiment, where

we implement the QSI technique for inferring an unknown qubit in polarization degree of

freedom of light, requires setting up a two path interferometer with operator Û = σ̂x in

one path and operator R̂ = Π̂H in the other path. From the interference pattern formed

at the end of the interferometer, the quantities such as the phase shift (Φ), visibility (V )

and the average intensity (Ī) have to be determined in order to reconstruct a density ma-

trix (ρ̂) associated with the polarization state incident on the interferometer. Depending

on the state parameters of the incident polarization qubit, the intensity distribution as a

function of phase, i.e., Id(ϵ) changes across the transverse plane of the beam. Here, ϵ is the

relative phase between the two paths of the interferometer, which can be controlled using

a phase shifter in one of the paths of the interferometer. Alternatively, by introducing a

path length difference between the two interfering beams across the detector plane through

the alignment of the interferometer itself (in non-collinear geometry), the relative phase

ϵ can be varied. Any change in the relative phase (i.e., ϵ ±∆ϵ) inside the interferometer

causes a redistribution of the intensity Id in the detector plane. Since the phase shift of

the interferogram (Φ) is determined as that value of phase which corresponds to maximum

intensity (i.e., Id(Φ) = I
(max)
d ) in the interference pattern, it is necessary to ensure that

during the experiment, any phase shift occurs is solely dependent on the state parameters

and not due to any change in the relative phase in the interferometer caused by the exter-

nal influences or noises. Thus, to obtain the correct phase information, the interferometer

needs to remain stable against any potential sources of phase fluctuation.

Hence, the qubit state reconstruction using QSI requires a two path interferometer of

any kind, with a stable relative phase. In the previous chapter, we have discussed the

theory for polarization state interferography using a Mach Zehnder Interferometer (MZI)

setup [1, 2]. One of the disadvantages of using this interferometer is that any external

vibration affects the two individual paths of the MZI differently, causing the path differ-
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ence to change over time. The relative phase between the two interfering beams changes

as a result of the path difference changing, which causes the redistribution of the interfer-

ence pattern (a shift in the interference fringes for the non-collinear configuration of the

interferometer) on the detector plane. Thus, when the state parameter (ϕ) is determined

using the phase shift Φ obtained from the interferogram formed in a MZI, it gives an

inaccurate value since it carries the effect due to the variation in the relative phase (i.e.,

±∆ϵ) of the interferometer. Hence, obtaining any consistent phase information from the

experiment performed using MZI requires stabilization of the path difference against ex-

ternal vibrations. Therefore, to accurately infer the phase shift (Φ) of the interferogram for

reconstructing the state, we prefer those interferometers that are not prone to get affected

by external vibrations, e.g., the double slit interferometer and the Sagnac interferometer.

 𝑈  𝑅

Slit A Slit B

Screen along the transverse plane

Incident beam

Interference Pattern

|𝜓⟩

 𝑈|𝜓⟩  𝑅|𝜓⟩

(a) Double Slit Version of QSI:

Beam in an unknown quantum

state |ψ⟩ is incident on the Double

Slit interferometer with slit A and

slit B being filled with the opera-

tors Û and R̂, respectively.
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(b) Sagnac Version of QSI: Beam in an unknown quantum

state |ψ⟩ is incident on the Displaced Sagnac interferometer

with operators Û and R̂ in respective arms. Double slit like

interference pattern is obtained by aligning the interferome-

ter in non-collinear geometry, with the overlap between the

interfering beams being adjusted by tilting a glass plate GP .

Figure 3.1: Double Slit interferometer and Sagnac interferometer as alternatives to Mach

Zehnder interferometer for unknown state characterization using QSI.
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Characterization of a polarization qubit using quantum state interferography (QSI)

technique can simply be performed using an equivalent double slit set up, with one slit

attached with a polarizer having the transmission axis oriented along Horizontal to realize

Π̂H (i.e., R̂) and the other slit filled with a half-wave plate (HWP ) with its fast axis

oriented at an angle
π

4
with respect to Horizontal to realize σ̂x (i.e., Û) as shown in Fig:

3.1a. The interference pattern formed here would be insensitive to external noise because

the inter-slit distance is robust against any noise 1. A double-slit interferometer appears

to be the ideal device to give an interference pattern with stable fringes from which both

visibility and phase shift can be accurately obtained. Average intensity, anyway, does get

affected by the change in relative phase. Therefore, the QSI setup designed using a double-

slit interferometer can give us consistent information about the state parameters.

Figure 3.2: Miniaturization of Quantum State Estimating device using double slit inter-

ferometer with one slit filled with Û and the other slit filled with R̂. The entire device can

be made a few cm long by designing the slits of sizes of the order of a few microns. Stream

of identical particles in the unknown state (say, ρ̂) enters the device through the Input,

passes through the double slit with the respective operators, forms an interference pattern

on a screen within the device. The interference pattern is post-processed using an inbuilt

algorithm to produce the state information that is available at the Output of the device.

1Fringe width (ω) of the interference pattern generated at a distance D from a double slit interferometer

with inter slit distance d, when the light at wavelength λ is incident on the interferometer, is given as

ω =
λD

d
[3].
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The slit version of QSI can also miniaturize the state estimating device by having the

slit width and the optics (i.e., the polarizer or the wave plate to realize the operators

R̂ and Û) with sizes of the order of few microns and making the entire module few cm

long as shown in Fig 3.2. To go for a miniaturized setup, it is best to custom design 2

the slits in the slit version of the experiment. But, in that case, the polarizer and the

half-wave plate for the double-slit need to be carefully and specifically manufactured and

placed appropriately on the slits. Any difference in the shape of the slits and that of the

polarizer or the wave plate would lead to additional diffraction effects. Since QSI does not

require any change in the experimental setting during the measurement procedure, it has

the potential for future development of pocket sized devices with built-in slit interferometer

setup along with a post-processing algorithm, using which one can extract the state infor-

mation from the output when the beam in an unknown state is made incident at the input.

With a Sagnac interferometer, however, we can achieve phase stability against external

low frequency vibrations due to its geometry [5]. The displaced configuration of the Sagnac

Interferometer is used for setting up the QSI experiment, in order to place the components

to realize the operators Û = σ̂x and R̂ = Π̂H in the two different paths of the interferometer.

Since the same optical components are used to align both the paths in a displaced Sagnac

interferometer (DSI), as shown in Fig: 3.1b, the path difference here appears to be robust

against any external influence [6]. The two interfering beams propagating through the

same optics get affected in the similar manner in the presence of any external vibrations

and thus, the effect of vibration on the relative phase gets nullified. However, the non-

idealness of the optical components being used in the experiment still causes the relative

phase to vary slightly. In the displaced Sagnac configuration though the two beams pass

through the same optics, they do not hit the optics exactly at the same point due to the

displacement between them. Therefore, the effects due to the surface roughness, scratch-

dig, presence of dust on the optics, etc. comes into play and modifies the path lengths

of the two beams in an uncorrelated manner 3 − causing the relative phase between the

interfering beams to vary. However, a two path interferometer in the displaced Sagnac

configuration is comparatively more stable than the Mach-Zehnder configuration and is

more useful in getting consistent phase information for state determination using QSI.

2Such custom designed slits have been in use in experiments such as [4].
3This can cause a path length difference up to 100µm.
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Quantum State Interferography for Characterizing
Polarization Qubits3.2

As discussed in the last Chapter, inferring any state in a two-dimensional Hilbert space

using the Quantum State Interferography technique requires the processing of an interfer-

ence pattern generated in a two path interferometer setup with operator Û in one path

and operator R̂ in the other path. Here, this interferometric state determination scheme

is experimentally implemented in the polarization degree of freedom of light, which yields

a single-shot method for the characterization of polarization qubits − the technique being

named as polarization state interferography. The density matrix representation of a general

qubit using the parameters (µ, θ, ϕ), where µ ∈ [0, 1], θ ∈ [0, π] and ϕ ∈ [−π, π), is given

as follows:

ρ̂ =


cos2

(
θ

2

)
1

2
µe−iϕ sin(θ)

1

2
µeiϕ sin(θ) sin2

(
θ

2

)
 (3.1)

Here, µ governs the purity of the state, with µ = 1 representing the pure states. The purity

of the state ρ̂ is given as,

Tr(ρ̂2) = 1− 1− µ2

2
sin2(θ) =

1

4

[
3 + µ2 +

(
1− µ2

)
cos(2θ)

]
(3.2)

Therefore, if the state parameters (µ, θ, ϕ) are inferred from an experiment, the unknown

qubit density matrix (ρ̂) can be reconstructed.

We will present the experimental realization of the QSI scheme in an optical setup

using two different interferometers to infer the polarization state of the light beam incident

on the setup. We first demonstrate the protocol in a setup designed with a Mach-Zehnder

Interferometer (MZI) using a light beam at wavelength 778 nm emitting from a Diode

laser. We then implement the scheme using 632.8 nm Helium-Neon laser light in a setup

with displaced Sagnac interferometer (DSI). The input state would be prepared by plac-

ing a half-wave plate at an angle α followed by a quarter-wave plate at an angle β in the
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path of a horizontally (or vertically) polarized beam before it enters the interferometer and

the effectiveness of this interferometeric state determination scheme would be examined by

computing the fidelity of the reconstructed state from QSI compared to the prepared state.

3.2.1 Effect of Linear Retarders in Polarization State Interferography:

Any pure state in polarization degree of freedom can be considered as a superposition

of two orthogonal linearly polarized components {|H⟩ , |V ⟩} with certain amplitudes and

a relative phase between them, respectively governed by the parameters θ ∈ [0, π] and

ϕ ∈ [−π, π) [7].

|ψ⟩ = cos

(
θ

2

)
|H⟩+ eiϕ sin

(
θ

2

)
|V ⟩ (3.3)

The entire pure state space of polarization qubits can be scanned using a combination of

linear retarders [8, 9] − a half-wave plate (HWP ) that changes θ and a quarter-wave plate

(QWP ) that changes θ and ϕ both. HWP and QWP are made up of optically anisotropic

materials that uses the phenomena of birefringence to introduce a phase difference δ (also

known as retardance) between the ordinary and extra-ordinary components of light prop-

agating through them, where δ = δh = π for HWP and δ = δq =
π

2
for QWP [10].

The 2 × 2 Unitary operators associated with the evolution through a linear retarder

whose fast axis is oriented at an angle ϑ with respect to the horizontal is represented using

Jones matrix [11], as the following:

Ŝδ(ϑ) = e
−
iδ

2

 cos2(ϑ) + eiδ sin2(ϑ)
(
1− eiδ

)
sin(ϑ) cos(ϑ)

(
1− eiδ

)
sin(ϑ) cos(ϑ) sin2(ϑ) + eiδ cos2(ϑ)

 (3.4)

where, δ is the relative phase introduced between the fast and slow axis associated with

the retarder. Therefore, the Jones matrix of a HWP and a QWP can be obtained as,

Ŝh = Ŝδ=δh=π and Ŝq = Ŝδ=δq=π/2 respectively.
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In the experiment designed to demonstrate the performance of the QSI technique, an

arbitrary pure state |ψ(θ, ϕ)⟩ is prepared by rotating a HWP and a QWP (at angles

α and β respectively) in the path of a horizontally or vertically polarized beam, which,

when passed through the QSI setup, generates a unique interference pattern characterized

by distinct set of values for the phase shift (Φ), average intensity (Ī) and visibility (V ),

that enables the unique identification of the corresponding state parameters. The unitary

operator associated with the combined action of a HWP followed by a QWP is given as,

Û(α, β) = Ŝq(β) Ŝh(α) (3.5)

Û(α, β) = e
−i
3π

4

 cos2(β) + i sin2(β) (1− i) sin(β) cos(β)

(1− i) sin(β) cos(β) sin2(β) + i cos2(β)


cos(2α) sin(2α)

sin(2α) − cos(2α)


(3.6)

Fig. 3.3 and Fig. 3.4 show, how the interferometric quantities, i.e., the phase shift,

average intensity and visibility of the interference pattern formed in a QSI setup, vary as

a function of the parameters (α, β) corresponding to the orientations of HWP and QWP

acting on the initial state |H⟩ and |V ⟩ respectively.

❑ For |H⟩ → HWP (α)→ QWP (β), The Input State: |ψ(θ, ϕ)⟩ = Û(α, β) |H⟩
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Figure 3.3: Phase Shift (Φ), Average Intensity (Ī) and Visibility (V ) for the states prepared

by rotating a HWP (α) followed by a QWP (β) in the path of Horizontally polarized beam.
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❑ For |V ⟩ → HWP (α)→ QWP (β), The Input State: |ψ(θ, ϕ)⟩ = Û(α, β) |V ⟩
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Figure 3.4: Phase Shift (Φ), Average Intensity (Ī) and Visibility (V ) for the states prepared

by rotating a HWP (α) followed by a QWP (β) in the path of a Vertically polarized beam.

Experimental Implementation of Polarization State
Interferography With Mach-Zehnder Interferometer3.3

The interferometric state determination scheme, Quantum State Interferography (QSI), is

experimentally implemented using a Mach-Zehnder Interferometer (MZI) with the aim to

provide a proof of principle demonstration of this technique for the characterization of the

polarization state of light. An optical setup is designed with the components (i) to pre-

pare an arbitrary polarization state to be inferred using QSI, (ii) to physically realize the

operators Û and R̂ to be placed inside the interferometer and (iii) to record the generated

interference pattern that is to be analyzed to infer the input state. Experimental realization

of such a state determination scheme requires consistent recording of the interferometric

information obtained at the output, when an ensemble of identical particles in an unknown

state evolves through the setup, so that the state parameters inferred from the recorded

data can be accurately applied to reconstruct the state of individual particles. There-

fore, the experimental setup includes some additional components to ensure the stability

of different parameters 4 that can impact the interference and hence, the experimental data.

4such as the wavelength of the light source, the relative interferometric phase, temperature and stress

that slightly changes the polarization of the beam coming out of a polarization maintaining fiber etc.
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As already discussed in Section. 3.2, the input state here is prepared by placing a

half-wave plate (HWP ) at an angle α followed by a quarter-wave plate (QWP ) at an

angle β in the path of a Horizontally polarized beam, i.e., the input state to the QSI setup

can be expressed as Ŝq(β)Ŝh(α) |H⟩ = Û(α, β) |H⟩. To reconstruct the states of various

input polarization, one of the quantities that we need to obtain experimentally is the phase

shift (Φ) of the interference pattern as (α, β) varies. Therefore, maintaining a constant

phase relationship between the two paths of the interferometer throughout the experiment

is necessary, so that the obtained phase shift Φ can be considered to be a function of state

parameters only. So, the MZI needs to be phase stabilized against the external vibra-

tions that change the path difference and hence, the relative phase between the interfering

beams affecting the interference. The detailed experimental setup with the method of data

acquisition and data analysis will be presented in the following.

3.3.1 The Experimental Setup

The beam from a diode laser of wavelength 778 nm ± 1 nm is coupled to a polarization

maintaining single mode fiber [12] (PMSMF ) [P5−780PM −FC−2, Thorlabs], so that

we have a Gaussian transverse profile of the beam 5 coming out of the collimator COL

[F240−FC − 780, Thorlabs]. The PMSMF also reduces the pointing fluctuation across

the transverse plane of the beam. The APC (Angle Physical Contact) end 6 of the fiber

is used to couple the laser beam, for preventing any back-reflection from the fiber-tip from

entering the laser cavity [14] and the PC end is used for the collimation. To ensure polariza-

tion stability at the collimation side, a polarizing beam splitter (PBS) [PBS122, Thorlabs]

followed by a half-wave plate (HWP ) [WPA03H − 810, Newlight Photonics] is placed

just before the coupler and the HWP is rotated in small steps to align the input linear

polarization (to the coupler) almost parallel to the fast or the slow axis of the polarization

maintaining fiber 7. The output from the collimator is made to be horizontally polarized

(|H⟩) by rotating the output end (i.e., the PC end) of the fiber attached to the collimating

lens using a kinematic rotation mount [K6XS, Thorlabs] to which the lens is mounted.

5The field distribution of the fundamental mode for single mode fiber can be approximated to be a

Gaussian [13].
6This APC connector has an 8◦ angle-polished fiber end face, used for minimizing the back reflection.
7When the polarization of the input beam is not along the fast or slow axis of a polarization maintaining

fiber, the polarization of the output is likely to fluctuate with time.
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In order to ensure purity of the polarization which may slightly fluctuate due to the effect

of temperature and stress on the polarization maintaining fiber [15, 16], a polarizing beam

splitter PBS1 [PBS122, Thorlabs] is placed in the beam path after the COL. PBS1

reflects the vertical polarization component (if any) of the beam incident on it, allowing

only the Horizontal component to pass through. The variation in polarization after the

COL can be monitored by recording the power fluctuation in the reflecting port of PBS1

using a power meter sensor PM1 [sensor: S121C, Thorlabs, meter: PM100D, Thorlabs].
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Figure 3.5: Experimental setup for the characterization of the polarization qubit of light

using a stabilized Mach-Zehnder Interferometer aligned in non-collinear geometry.

Next, using a non-polarizing 50 : 50 beam splitter BS1 [BS014, Thorlabs] a part of

the beam (here, the reflected beam) is sent towards a Michelson interferometer that con-

sists of a 50 : 50 beam splitter (BS2) [BS014, Thorlabs] and two mirrors (M1 and M2)

[BB1 − E03, Thorlabs], as shown in Fig. 3.5. The Michelson interferometer is aligned

in the non-collinear configuration so that we obtain the interference fringes on the beam
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profiler CCD1 [WinCamD−UCD12]. The visibility of the interference pattern 8 obtained

from the Michelson interferometer is used as a diagnostic tool to notice drifts or jumps in

the frequency modes of the Diode laser. Since the polarization is Horizontal 9, any drop

in visibility in this reference interference pattern, apart from rapid vibrations of the table,

should indicate a multi-mode diode laser output. The two mirrors M1 and M2 are placed

at different distances from the beam splitter BS2 to achieve a longer path length difference

between the interferometric arms, so that even a slight change in the mode is noticeable.

❑ Setting up the Mach-Zehnder Interferometer: The Mach-Zehnder Inter-

ferometer (MZI) is formed using two beam splittters − first one being a 2 inch polarizing

beam splitter (PBS2) [PBS512, Thorlabs] and the second one being a non-polarizing

50 : 50 beam splitter BS3 [BS014, Thorlabs]. The beam in the transmitting port of BS1

serves as the input to the MZI. A quarter-wave plate Q1 [WPQ05M − 808, Thorlabs] is

placed after BS1 in the transmitting port, with the fast axis aligned in a way that makes the

polarization of the beam in this path circular 10, so that the intensity gets equally divided

in the two paths of the MZI after PBS2. Alternately, a half-wave plate that is aligned to

make the horizontal (|H⟩) polarization of the beam diagonal (|D⟩) or anti-diagonal (|A⟩),

could have been used instead of the quarter-wave plate Q1. Then a lens combination L1

and L2 (of focal lengths f1 = 75 mm and f2 = 50 mm respectively) is placed in the

beam path before the MZI to expand the beam to an appropriate size, retaining the col-

limation so that the beam does not hit the edges of any optical component in the setup.

While ensuring minimum divergence of the beam, a beam size of about 2.5mm is achieved.

8The visibility is maintained to be at > 99% for 778 nm.
9Visibility might crawl not only due to changes in the laser mode, but also when the input polarization

changes. Hence, the polarization purity of the input beam to the Michelson Interferometer needs to be

ensured.
10A QWP (at λ) is a birefringent crystal that introduces a phase shift of δq =

π

2
= 0.50π between

the e-ray and the o-ray of a beam of wavelength λ propagating through it. In general, QWP with the

fast axis aligned at an angle
3π

4
with respect to the horizontal, when acts on |H⟩ gives a right circularly

polarized light, |R⟩ = 1√
2

1

i

. However, since the QWP used here, i.e., Q1 is meant for the wavelength

λ = 808 nm and we are using it for a beam at wavelength λs = 778 nm, the retardance at λs would be

different (δq = 0.5204π at λs = 778 nm) and hence, the angle at which the QWP needs to be rotated to

obtain the left circular polarization would be different from
3π

4
.
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Now, the beam with circular polarization when incident on the MZI, the power of

the circularly polarized light is equally divided between the transmitting and reflecting

ports of the polarizing beam splitter PBS2. The two paths of the interferometer with the

beams having horizontal and vertical polarization, corresponding to the transmission and

reflection from PBS2, are labelled as path − A and path − B respectively. The beams

after PBS2 are redirected towards the final beam splitter BS3 using a combination of a

mirror (MA or MB) [BB2 − E03, Thorlabs] and a corner cube retro-reflector (CCR1 or

CCR2) [PS976M − B, Thorlabs] which is attached to a 3D translation stage, as shown

in Fig. 3.5. The corner cube retro-reflector (CCR) uses the phenomena of total inter-

nal reflection (TIR) to reflect the beam that propagates parallel (within 3 arcsec) to the

incident beam with a lateral displacement between them (in general), depending on the

point where the incident beam hits the CCR [17]. Therefore, CCRs are used instead

of mirrors to avoid any angular beam deviation upon translation which might be needed

to adjust the path length difference 11. To be able to control the interferometric path

difference, which is very sensitive to environmental noise, we have attached a piezo PIZ

[osi−Stack, P iezomechanik] to the corner cube retro-reflector (CCR1) in path−A. The

piezo expands and contracts depending on the voltage provided to it and hence, makes the

CCR1 move forward and backward in path − A resulting in microscopic (about few nm)

variations in the path length difference between the two paths of the MZI. The piezo

PIZ and the retro-reflector CCR1 assembly in path−A is used for the active stabilization

of the Mach-Zehnder Interferometer (details in SubSec. 3.3.2). The corner cube CCR2

in path − B compensates for the macroscopic (up to mm) path difference caused by the

introduction of the corner cube CCR1 in path−A.

The reflection from a corner cube retro-reflector (CCR), however, introduces an

ellipticity in the polarization of the beam. Therefore, the polarizing beam splitters PBSA

and PBSB [PBS122, Thorlabs] are placed after the CCRs in path − A and path − B

respectively, to ensure the polarization thereafter is Horizontal 12. The use of polarizing

beam splitters after CCR prevents the propagation of any elliptic component that emerges

11Use of the CCRs are useful for maintaining a constant path length difference between the two arms

of the interferometer, details of which will be presented in SubSec. 3.3.2.
12Alternately, the ellipticity in polarization after a CCR can be corrected using a half-wave plate followed

by a quarter-wave plate placed in the path of the reflected beam to achieve any linear polarization [18];

Horizontal for this experiment.
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due to multiple reflections within the corner cubes CCR1 or CCR2. A half-wave plate H1

[WPO02 − H − 810 − UM, Newlight Photonics] is placed in path − B before PBSB

and is oriented such that the transmitted power after PBSB becomes almost equal to

the transmitted power after PBSA. Therefore, the evolution of the beam from the input

of PBS2 to the outputs of PBSA and PBSB (considering only the transmission) in the

respective paths of the interferometer, can be expressed as

|Is⟩ ⊗ |R⟩ −→
1√
2
(|A⟩ ⊗ |H⟩+ i |B⟩ ⊗ |H⟩) (3.7)

This evolution is effectively similar to the evolution of a horizontally polarized beam

through a non-polarizing 50 : 50 beam splitter. Here, |Is⟩ represents the spatial mode

associated with the input to PBS2 from which the signal beam at 778 nm enters the MZI.

❑ The State Preparation: The unknown polarization states which are to be recon-

structed experimentally using the QSI scheme, would be prepared by acting a half-wave

plate (HWP ) followed by a quarter-wave plate (QWP ) on the horizontal polarization,

ideally before the beam enters the MZI. However, if we do so, the presence of the CCRs

in the two paths could change the polarization of the beam within the interferometer,

resulting in an interferogram different from the intended one that would have been gen-

erated with the original prepared state entering the interferometer. Therefore, in this

demonstration experiment, we have moved the stage of preparing the polarization states,

to the individual paths within the interferometer at a position after the CCRs, ensuring

the purity in polarization post transmission through PBSA in path − A and PBSB in

path−B respectively. A combination of HWP [WPO02-H-810-UM, Newlight Photonics]

and QWP [WPO02-Q-810-UM, Newlight Photonics] after the PBS in each path (HA

followed by QA in path−A and HB followed by QB in path−B), prepares the state to be

characterized. The half-wave plates HA and HB, when rotated together in synchronization,

create a situation equivalent to an effective HWP rotation before an ideal Mach-Zehnder

interferometer. Similarly, the quarter-wave plates QA and QB are rotated together in a

correlated manner to change the ellipticity of the polarization.



114 Chapter 3. Experiment: QSI for Polarization Qubits

❑ Realization of the Operators (Û and R̂): The half-wave plateH2 [WPO02-H-

810-UM, Newlight Photonics] in the path−A with its fast axis oriented at
π

4
with respect

to the horizontal, effectively realizes the operator Û = σ̂x and the transmission through a

polarizing beam splitter PBS3 [PBS122, Thorlabs] in the path−B serves as the operator

R̂ = Π̂H . However, note that all the half-wave plates and quarter-wave plates used within

the interferometer are meant for 810 nm, but are being used for the beam at wavelength

778 nm. Therefore, exact Jones matrices for the HWP and QWP operations need to be

incorporated here, in order to estimate the effect of these wave plates on the polarization of

a beam of λs = 778 nm. According to the specification sheet of the wave plates used (i.e.,

for H1, H2, HA, HB, QA, QB), the phase shifts introduced by the HWP and the QWP

are respectively δh = 179.7◦ and δq = 90.1◦ at λ = 810 nm and δ′h = 187.6◦ and δ′q = 94◦

at λs = 778 nm. Therefore, from the Eqn. 3.4, we get the actual Jones matrix for these

HWP s and QWP s acting on the 778 nm beam as Ŝ(a)
h = Ŝ

δ=δ
′
h

and Ŝ(a)
q = Ŝδ=δ′q

13. The

effect of the use of these wave plates (Ŝ(a)
h and Ŝ

(a)
q ) on the interferometric information,

would be discussed in SubSec. 3.3.3.

❑ Recording the Interferogram: Now, the two beams from path−A and path−B

are recombined at the beam splitter BS3 that forms an interference pattern in both the

output ports of BS3. To be able to detect the intensity distribution Id of the interference

pattern as a function of the relative phase ϵ, the Mach-Zehnder Interferometer (MZI) is

aligned in the non-collinear configuration that introduces a natural variation of the path

difference between the two interfering beams. This produces a non-collinear interference

pattern, i.e., alternate bright and dark fringes across the transverse plane of the beam

within the beam width, as can be seen from Fig. 3.7. The non-collinearity in the inter-

ferometer can be introduced by rotating the mirror MB at a small angle resulting in an

angular deviation of the beam in path − B, which would then be merged with the beam

coming from path − A applying a slight tilt to the beam splitter BS3. The interference

pattern is recorded using a beam profiler CCD2 [WinCamD − UCD15]. A power meter

sensor PM2 [sensor: S121C, Thorlabs, meter: PM100D, Thorlabs] records the average

power of the interference pattern, in the other output port of BS3, the data for which is

compared with the average intensity recorded using CCD2.

13The superscript ‘(a)’ represents the actual Jones matrix of the wave plates to be used in this experiment.
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❑ The Collinear and Non-Collinear Interference Patterns: The intensity

distribution Id(ϵ) can be recorded by varying the phase (ϵ) either in the time-domain for

collinear configuration or in the space-domain for non-collinear configuration of the MZI.
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Figure 3.6: Interference in Collinear geometry of Interferometer: Collinear In-

terference pattern formed on the (local) x − y plane when two Gaussian beams, with

propagation vectors (along z) being parallel and on top of each other, interfere. As the

phase changes from φ = 0 to φ = π, the intensity after the interference varies from 1 to 0.
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Figure 3.7: Interference in Non-Collinear geometry of Interferometer: Non-

Collinear Interference pattern formed on the (local) x−y plane when two Gaussian beams,

with propagation vectors having an angle between them, overlap and interfere. The number

of fringes and the fringe widths vary depending on the angle between the two propagation

vectors. As the phase changes from φ = 0 to φ = π, the average intensity after interference

remain the same, only the fringes are redistributed within the Gaussian Envelope.
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3.3.2 Phase Stabilization of Mach-Zehnder Interferometer

As mentioned earlier, the relative phase between the two paths of the Mach Zehnder

interferometer (MZI) varies over time due to the presence of mechanical and acoustic

vibrations that affect the optical components in the two individual paths of the interfer-

ometer differently, thereby changing the path length difference with time. To maintain

a constant phase relationship between the two paths of the interferometer as a function

of time, the MZI is phase-stabilized [19, 20] using a Helium Neon Laser (He − Ne)

[LHX1 − 25 − LHP991 − 230, Melles Griot] at wavelength λ = 632.8 nm. The ver-

tically polarized beam emitting from the He − Ne laser source is made incident on the

MZI through the other input port of PBS2, which is distinct from the one receiving the

λs = 778 nm beam, also referred to as the signal beam. The He − Ne beam propagates

through path − A and path − B of the interferometer, without encountering any optics

meant for the signal beam (at λs). This is achieved by using half-inch wave plates (H1,

H2, HA, HB, QA, QB) and half-inch polarizing beam splitters (PBSA, PBSB, PBS3)

with the mirrors (MA, MB) and the corner cube retro-reflectors (CCR1, CCR2) being of

size two-inch. The choice of different-sized components within the setup ensures a gap of

almost 1.2 cm between the beams of the two wavelengths (i.e., 778 nm and 632.8 nm).

Now, the He − Ne beams from the two paths are recombined at the final beam splitter

BS3 where they interfere and form non-collinear fringes in both the output ports. The

interference pattern (formed with the He−Ne beams) in one of the output ports is used

to lock the interferometer at a particular reference value of the relative phase.

The stabilization of the MZI remains unaffected if, in case, the He−Ne beam passes

through the optical components (meant for λs) that remain in a fixed configuration dur-

ing the experiment, such as the wave plates H1 and H2 and the polarizing beam splitters

PBSA, PBSB, PBS3. However, if the He − Ne beam in path − A or path − B travels

through the components which need to be rotated during the experiment, like the wave

plates HA, HB, QA, QB, it results in a change in the reference interference signal (gener-

ated with He−Ne beams) to be used to lock the interferometric phase and consequently

disturbs the stabilization. This happens because (i) the rotation of the polarization optics

in the beam path changes the polarization of the interfering beams, which would result

in a fringe shift as well as a change in the average intensity of the interference pattern,
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(ii) the rotation of the wave plates, sometimes, cause an angular deviation of the beam

propagating through them, affecting the spatial overlap of the two interfering beams and

thus, changes the interference. Hence, while stabilizing the MZI it is ensured that the

He−Ne beam does not pass through any of the optics, here the wave plates, that change

its configuration during the course of data acquisition.

In order to stabilize the interferometer, the intensity of light (He − Ne) after the in-

terference is detected with a fast photo-detector (PD) in one of the output ports of BS3.

Since the interferometer is aligned in non-collinear geometry, any change in the relative

phase would only cause a fringe shift across the beam width, without affecting the average

intensity of the interference pattern 14, as can be seen from Fig. 3.7. Hence, the intensity

from a small region of a particular fringe, recorded by the photo-detector PD, is used as

the set point for the stabilization. This is achieved by placing a lens L3 (focal length,

f3 = 25 mm) in the beam path after BS3 that magnifies the non-collinear interference

pattern, from which a small portion of a specific fringe is selected using a narrow slit (of

slit width 60 µm) from a Mask, followed by an aperture (A). The slit (in the Mask) is

aligned along the fringes, so that the intensity recorded at the photo-detector PD after

the aperture, becomes sensitive to any change in the phase (which causes a fringe shift)

of the interference pattern formed with the He −Ne beam. As a reference to the overall

phase shift during the experiment, the He − Ne beam from the other port of the beam

splitter BS3 is directed towards another beam profiling device (Monochrome Line Camera)

CCD3 [LC100/M, Thorlabs], which records the interference fringes for He−Ne (after a

magnification through the lens L4) at specific intervals of time.

The interference intensity (say, I0) for 632.8 nm beam recorded by the photo-detector

PD after the Mask and the aperture (A), for a particular alignment of the interferome-

ter (say, at time t = t0) with decent visibility, is chosen as the set point for stabilizing

the Mach-Zehnder Interferometer (MZI). The phase shift of the interferometer at an

instant t is inferred by comparing the detector signal I(t) collected using a DAQ card

[NI USB− 6003] (at that instant) with the set point I0. A software [NI LabV iew] based

PID algorithm is employed using a computer to correct for the phase difference in real

14For the collinear configuration of the interferometer, as the phase changes the intensities at each output

port varies.
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time [21]. Depending on the error signal E(t) = I(t)− I0, the PID 15 algorithm finds the

appropriate voltage to be provided to the piezo (PIZ) to maintain the relative phase of

the interferometer at the value associated with the set point. Upon receiving the voltage

generated from the DAQ card, the piezo expands or contracts linearly causing the CCR1

to move forward and backward in path−A and hence, adjusting the path-length difference

or the consequent relative phase within the MZI. The entire arrangement involving PIZ,

PD, and the PID algorithm along with the DAQ card that receives the voltage from the

photo-detector PD and provides the required voltage to the piezo PIZ, forms a closed

loop feed-back system for the stabilization of the MZI.

A triangular ramp voltage signal generated from the DAQ card is fed into the piezo

PIZ, which scans the path length of Path−A as the piezo expands and contracts depend-

ing on the voltage received and therefore, scans the relative phase between the two paths

of the interferometer. As the relative phase between the interfering beams is periodically

varied, the photo-detector records a sinusoidal voltage signal, of the form shown in Fig.

3.8, associated with the variation of interference intensity with the path difference. This

step helps in understanding the possible range for the voltage within which the detected

signal (corresponding to I(t)) could vary due to a change in phase from 0 to π, i.e., a

change in path length by
λ

2
. Adjusting the gain and the offset settings of the photo-

detector PD, the sinusoidal signal is aligned symmetrically between ±9.5 V (almost) 16, in

order to increase the sensitivity of detection of the photo-detector PD which would help in

identifying even small phase changes within the interferometer. Using the optimal values

for the co-efficients in the PID algorithm, the phase is locked at a point corresponding to

either the rising or falling slope of the sinusoidal signal. Using the stabilization procedure,

we can correct for the low frequency vibrations or the noises as the response of the control

algorithm is limited by the sampling rate of the DAQ card (which is 100 KHz) being used

in this experiment.

15The PID, which stands for proportional-integral-derivative, is a control algorithm that uses three

coefficients associated with each of these operations to generate an optimal response with the aim to

minimize the error signal E(t). The error signal is calculated as the difference E(t) = PV −SP , where PV

denotes the process variable that changes over time and SP refers to the set point, the value at which we

want to maintain our system.
16This specific range is chosen, as the DAQ card that receives the voltage signal from the photo-detector,

can operate for the voltage range of ± 10 V .
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(a) Sinusoidal Voltage Signal recorded by

the photo detector (PD) as the path dif-

ference ofMZI changes monotonically in

one particular direction.
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(b) Sinusoidal Voltage Signal (in ‘magenta’) recorded by

the photo detector (PD) as the path difference of MZI

changes periodically with a Triangular Ramp Voltage

Signal (in ‘blue’) of frequency 25 Hz.

Figure 3.8: Theoretically generated plots representing the Input signal (in ‘magenta’)

and the Output signal (in ‘blue’) to the DAQ card as the interferometric phase varies.

Subfigure (a) shows that when the piezo receives a voltage which is either increasing or

decreasing, the DAQ card records a sinusoidally varying voltage signal with a constant

amplitude. Next, Subfigure (b) shows the Input signal (in ‘magenta’) to the DAQ card,

received from the photo-detector PD in the absence of any noise, as the relative phase

(φ) of the interferometer is varied with a triangular ramp Output signal of the DAQ card

which is fed to the piezo to scan the path length difference of the MZI. In the the-

oretical analysis, the detected signal at the photo-detector (PD) after a slit (of width

∆x, say) for a particular phase (φ) of the interferometer is replicated by generating

a non-collinear interference pattern from a Gaussian enveloped cosine function given as

Fnc(x) = A exp

(
−(x−m)2

2σ2

)
(1 + cos(kx+ φ)), with an array of x variables X = {xi}

where i ∈ [1, N ] and then taking the sum of the elements xi ∈ [m − ∆x

2
, m +

∆x

2
] ⊂ X

about the mean (m) of the Gaussian17.

17Here, we have chosen N = 4000 with x1 = −2 and xN = +2, giving xi+1 − xi = 0.001. Therefore,

the collection of intensity data through the 60µm slit width can be mimicked by selecting a slice ∆x of

the array X, where ∆x = 60 about the mean m = 0 of the Gaussian having amplitude A = 1 and width

σ = 0.5.
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3.3.3 Effect of the Use of Wave Plates meant for Different Wavelength

In the experimental implementation of the interferometric state determination scheme −

polarization state interferography, the polarization states that are to be reconstructed using

the QSI technique, are prepared by acting a half-wave plate (HWP ) HA or HB followed

by a quarter-wave plate (QWP ) QA or QB in the path of a Horizontally polarized beam18.

The prepared state |ψ(α, β)⟩ with the fast axis of the HWP s aligned at α and the fast

axis of the QWP s aligned at β with respect to horizontal, is given as

|ψ(α, β)⟩ = Ŝq(β) Ŝh(α) |H⟩ (3.8)

= e
−
iπ

4

 cos2(β) + i sin2(β) (1− i) sin(β) cos(β)

(1− i) sin(β) cos(β) sin2(β) + i cos2(β)

 e
−
iπ

2

cos(2α) sin(2α)

sin(2α) − cos(2α)


1

0



where Ŝh(α) and Ŝq(β) are respectively the Jones matrices of the HWP and the QWP

obtained from Eqn. 3.4, with δh = π and δq =
π

2
. Therefore, we get the input polarization

state as

|ψ(α, β)⟩ = −i√
2

cos(2α)− i cos(2α− 2β)

sin(2α) + i sin(2α− 2β)

 (3.9)

As this state evolves through the operators Û = σ̂x realized using another half-wave plate

(H2) with the fast axis at angle
π

4
and R̂ = Π̂H realized using a polarizing beam splitter

(PBS3) in the two paths A and B of the interferometer respectively, the polarization state

at one of the output ports of the final beam splitter (BS3) is obtained as,

|ψ(α, β)⟩d =
1

2

(
Û + eiϵR̂

)
|ψ(α, β)⟩ (3.10)

|ψ(α, β)⟩d =
1

2

(
Ŝh

(π
4

)
+ eiϵ Π̂H

)
Ŝq(β) Ŝh(α) |H⟩ (3.11)

18For the state preparation, the wave plates in path−A and path−B of the interferometer are rotated

in synchronization to achieve an effective wave plate rotation on the horizontally polarized beam incident

on the setup.
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Here, ϵ represents the relative phase between the two paths of the interferometer.

Now, as discussed in SubSec. 3.3.1, the wave plates that are used in the experiment

are meant to behave ideally for the wavelength λ = 810 nm. However, we have setup the

experiment with a light source at λs = 778 nm (± 1 nm). The corresponding phase shifts

introduced (between the e-ray and o-ray of the beams) by the wave plates at λs are given

by δ′h = 187.6◦ ≡ 1.04222π and δ′q = 94◦ ≡ 0.52222π 19. These variations in the retardance

values (i.e., δ′h, δ
′
q) would cause the wave plates to deviate from their ideal behavior. As a

result, the states prepared in this experiment i.e.,
∣∣ψ(a)(α, β)

〉
= Ŝ

(a)
q (β) Ŝ

(a)
h (α) |H⟩ would

differ from the one shown in Eqn. 3.9, where Ŝ(a)
h and Ŝ

(a)
q are the Jones matrices of the

wave plates representing their actual behavior at wavelength λs, obtained from Eqn. 3.4

with δ′h and δ′q respectively.
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Figure 3.9: Fidelity of the states produced by the action of the wave plates (meant for

λ = 810 nm) on Horizontal polarization of the beam at wavelength λs = 778 nm, as

compared to the states that would have been produced with the ideal wave plates acting

on Horizontal polarization. The plot [in left] shows the fidelity of the prepared states by

the action of the HWP or the QWP only, with the other one being absent. The fidelity

F (α) or F (β) for HWP or QWP alone appears to be symmetric about their fast and

slow axis. However, if a QWP is placed after the HWP on the path of the Horizontally

polarized beam at λs, the fidelity varies arbitrarily as shown in the plot [in right].

19The numbers are noted from the specification sheet of the wave plates, i.e., the HWP [WPO02-H-

810-UM, Newlight Photonics] and QWP [WPO02-Q-810-UM, Newlight Photonics].
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To quantify the effect of these wave plates on the 778 nm beam, we find the overlap of

the prepared states
∣∣ψ(a)(α, β)

〉
on the states expected with the ideal wave plate behaviors,

i.e., on |ψ(α, β)⟩. The plot for the fidelity of the prepared states as functions of wave plate

angles α and β can be seen in Fig. 3.9, where the fidelity is computed as the following

F (α, β) =
∣∣∣〈ψ(α, β)∣∣∣ψ(a)(α, β)

〉∣∣∣2 (3.12)

F (α, β) =
∣∣∣⟨H| Ŝ†h(α) Ŝ†q(β) Ŝ(a)

q (β) Ŝ
(a)
h (α) |H⟩

∣∣∣2 (3.13)

❑ Effect of the Use of Arbitrary Wave Plates on Experimental Results:

In the quantum state interferography (QSI) scheme, an unknown qubit is characterized

using the phase shift, average intensity and visibility obtained from an interference pattern

generated when the state evolves through a two path interferometer with operators Û in

one arm and R̂ in the other arm. The experimental demonstration of the scheme in an

optical setup, involves the preparation of polarization qubits for different combinations of

the angles α and β, respectively associated with the orientations of a HWP and a QWP

acting on Horizontally polarized beam. The intensity distribution, produced at the end

of the interferometric setup, as a function of wave plate angles can be expressed as the

following,

Id(ϵ, α, β) =

∥∥∥∥12 (Û + eiϵR̂
)
|ψ(α, β)⟩

∥∥∥∥2 (3.14)

Id(ϵ, α, β) =
1

16
[ 6 + cos(4α) + cos(4α− 4β)

+ 2(sin(4α)− sin(4α− 4β)) cos(ϵ)

+ 4 sin(4α− 2β) sin(ϵ) ]

(3.15)

where |ψ(α, β)⟩ = Ŝq(β) Ŝh(α) |H⟩ is the state prepared with ideal wave plates in the

experiment. The state parameters of this polarization state needs to be inferred by pro-

cessing the interference pattern given above.
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For a particular combination of wave plate angles (say, α, β), the phase shift (Φ) is

obtained at that value of ϵ which maximizes Id(ϵ, α, β). This value of Φ is computed by

solving for the ϵ, which satisfies the following conditions.

∂Id(ϵ, α, β)

∂ϵ

∣∣∣∣
ϵ=Φ

= 0 and
∂2Id(ϵ, α, β)

∂ϵ2

∣∣∣∣
ϵ=Φ

< 0 (3.16)

The average intensity (Ī) is obtained by integrating Id(ϵ, α, β) over all possible phases ϵ,

Ī(α, β) =

∫
ϵ
Id(ϵ, α, β) dϵ =

1

16
[6 + cos(4α) + cos(4α− 4β)] (3.17)

Visibility (V ) is obtained by computing the maximum and minimum intensities I(max)d (α, β)

and I(min)d (α, β) respectively, from Id(ϵ, α, β) and then applying the values to the following

expression,

V (α, β) =
I
(max)
d (α, β)− I(min)d (α, β)

I
(max)
d (α, β) + I

(min)
d (α, β)

(3.18)

However, in the experiment all these quantities (Φ, Ī, V ) are inferred from the best fit pa-

rameters of the non-collinear interference pattern recorded using the beam profiler (CCD2)

after the interferometer.

Now, since here the wave plates behave differently from the ideal ones for the beam at

wavelength λs, the same angles α, β of the HWP and QWP respectively would prepare

a state different from |ψ(α, β)⟩ given in Eqn. 3.9. The use of a HWP , with the fast axis

oriented at
π

4
with respect to horizontal, to physically realize the operator Û = σ̂x would

also affect the overall evolution operator associated with the QSI setup. Therefore, due to

the arbitrary behavior of the wave plates at λs, the polarization state at one of the output

ports of BS3 is obtained as,

∣∣∣ψ(a)(α, β)
〉
d
=

1

2

(
Ŝ
(a)
h

(π
4

)
+ eiϵ Π̂H

)
Ŝ(a)
q (β) Ŝ

(a)
h (α) |H⟩ (3.19)
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This would result in an interference pattern I
(a)
d (ϵ, α, β), which is different from the one

obtained using the ideal wave plates for the same (α, β) combination (i.e., Id(ϵ, α, β)) as

expressed in Eqn. 3.15. Consequently, the interferometric quantities that are derived from

the interference pattern to infer the state parameters, would deviate from the ideal results.

A comparison of the phase shift (Φ), average intensity (Ī) and visibility (V ) obtained from

I
(a)
d (ϵ, α, β) with the ideal values for various wave plate angles, is illustrated in Fig. 3.10

and Fig. 3.11.

0.0 22.5 45.0 67.5 90.0
HWP angle in deg

-

-23

-3

0

3

2
3

Phase Shift
Ideal (at )
Expected (at s)

0.0 22.5 45.0 67.5 90.0
HWP angle in deg

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
Average Intensity

Ideal (at )
Expected (at s)

0.0 22.5 45.0 67.5 90.0
HWP angle in deg

0.0

0.2

0.4

0.6

0.8

1.0
Visibility

Ideal (at )
Expected (at s)

Figure 3.10: The expected values of the interferometric quantities with the use of HWP

meant for λ = 810 nm (while the QWP is absent) on beam of wavelength λs = 778 nm,

along with the associated ideal results. Due to the non-ideal behavior of the wave plate

for the beam of wavelength 778 nm, the phase shift of the interferogram appears to be

affected the most, while the average intensity remains unaffected when compared with the

ideal results. The visibility obtained with 778 nm beam does not go to zero.
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Figure 3.11: The expected values of the interferometric quantities obtained for the non-

ideal behavior of the wave plates, that are meant for λ = 810 nm, acting on the beam of

wavelength λs = 778 nm along with the associated ideal results, for a condition when the

HWP is aligned at α = 22.5◦ with respect to horizontal and the QWP angle (β) is varied.
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3.3.4 Experimental Method

After aligning the setup, the Mach Zehnder Interferometer (MZI) is stabilized at a spe-

cific intensity recorded by the photo detector (PD) corresponding to a particular path

length difference of the interferometer. It is ensured that during the entire process of data

acquisition the stabilization is not reset or disturbed. At first, in absence of the quarter-

wave plates QA and QB, the two half-wave plates HA and HB are synchronously rotated

in steps of 5◦ starting from 0◦ to 90◦. For each orientation of the HWP , the images of

three different interference patterns are simultaneously captured (within 100 micro sec)

using the devices CCD1, CCD2 and CCD3. These three images include the interference

patterns − (i) produced by the 778 nm beam after BS2 in the Michelson interferome-

ter, (ii) produced by 778 nm beam at one of the output ports of BS3 in the MZI, (iii)

produced by 632.8 nm He−Ne beam at the other output port of BS3 in the MZI, respec-

tively referred to as, (i) Mode Reference, (ii) Signal, and (iii) Phase Reference. Here, the

mode reference and the signal images are captured with a resolution of 16− bit [DataRay,

WinCamD − UCD15], while the phase reference image is captured with a resolution of

8− bit [ThorCam, LC100/M, Thorlabs]. All the images consists of 30 rows corresponding

to the respective intensity profile along the horizontal. For each HWP angle α, 30 images

of each interference pattern are captured at an interval of 0.5 sec. The whole procedure is

repeated for different HWP angles.
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Figure 3.12: The 15-th image of all the three interference patterns captured for the condi-

tion when the fast axis of the half-wave plates (HA, HB) are oriented at 25◦ with respect

to horizontal, in absence of the quarter-wave plates. Few diffraction patterns generated

due to dusts on the optics or the sensor in the beam path, can be seen in the signal image.
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Even though the Mode Reference images are captured simultaneously while recording

the signal data (in MZI) for various HWP orientations, it is important to note that these

interference patterns generated in the Michelson interferometer, are not influenced by the

HWP angles. The mode reference data is acquired concurrently with the signal data to

verify if there has been any changes in the frequency mode of the source. From each of

the mode reference images, we find the visibility of the interference pattern by fitting the

image data to a non-linear model Fnc(x) as expressed in Eqn. 3.20. During the entire

data collection process for various HWP angles (30 images per angle), the visibility of

the interference patterns produced in the Michelson interferometer is observed to vary as

presented in the plot in Fig. 3.13. The visibility is mostly maintained above 0.97, except

for few images in between (the 360-th to 540-th images), as can be seen from the plot. For

these images, the visibility slowly drops in the beginning and then fluctuates within 0.98

to 0.85 (approx), respectively corresponding to the mode crawl and mode hop of the laser.

This shift in the laser mode, for that particular time, would impact the corresponding

signal interference in the MZI as well, which in turn would alter the values of the phase

shift, average intensity and visibility to be extracted from the interferogram to infer the

polarization state.
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Figure 3.13: Visibility of the interferograms produced in the Michelson interferometer for

monitoring the mode stability of the laser source, while acquiring the interferometric data

from the MZI for the states prepared by rotating the HWP s (in absence of the QWP s)

from 0◦ to 90◦ in steps of 5◦. Each set of consecutive 30 visibility values are obtained from

the reference images, that are captured almost at the same time (within 100 micro sec)

while capturing the signal interference pattern in MZI, for a particular HWP angle.
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Next, in presence of the quarter-wave plates QA and QB, the combination of the wave

plates i.e., (HA, QA) and (HB, QB) in the two different paths of the interferometer, are

rotated in sync to prepare different polarization states. The quarter-wave plate angle (β) is

varied in steps of 10◦ from 0◦ to 180◦ for various orientations (α) of the half-wave plates HA

and HB. For each combination of (α, β), the entire procedure of capturing three different

images 20 using three beam profiling devices is repeated.
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Figure 3.14: The 15-th image of all the three interference patterns captured for the condi-

tion when the half-wave plates (HA, HB) are oriented at 25◦ and the quarter-wave plates

(QA, QB) are oriented at 50◦, with respect to horizontal. Few diffraction patterns due to

dusts along the side fringes of the Signal Image can be seen. The phase reference image is

captured with 8-bit CCD, hence the resolution is comparatively low. 21

The intensity profiles of the interference patterns captured for different orientations of

the HWP s and QWP s (also, for different angles of HWP s in absence of QWP s) are fit

to a non-linear profile expressed with the formulae,

Fnc(x) = B +A exp

(
−(x− xm)2

2σ2

)
(1 + v cos(k x+ φ)) (3.20)

20Here, the phase reference images consist of 100 row profiles, compare to 30 row profiles for the signal

and mode reference images.
21Along with the vertical fringes, few horizontal lines are formed in the phase reference image, which

could be due to the diffraction of the beam hitting the edge of any of the optical components meant for

778 nm beam or from the edge of the CCRs.
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Here, Fnc(x) is a Gaussian weighted cosine function with the parameters [B,A, xm, σ, v, k, φ].

The parameter A represents the amplitude of the 1D Gaussian envelope (along x) centered

at xm having the standard deviation σ and B represents the background noise 22. The

visibility of the fringes within the Gaussian envelope are represented by v and the fringe

constant k is related to the fringe width (ω) as ω =
2π

k
. The parameter φ represents the

phase shift, i.e., the position of the maximum intensity within the envelope 23.
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Figure 3.15: Profile fit of the 15-th row of Signal Image and Mode Reference Image

captured when the half-wave plates are oriented at 25◦ in absence of quarter-wave plates.
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Figure 3.16: Profile fit of the 15-th row of the Signal Image and the Mode Reference Image

captured when the half-wave plates are oriented at 25◦ and the quarter-wave plates are

oriented at 50◦.

22Background noise could be due to the ambient lights or the read-out noises of CCDs.
23The visibility and the phase shift can also be obtained by identifying the peaks and dips of the

interference profile where ever peaks are prominent.
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Note that, the model Fnc(x) given in Eqn. 3.20 assumes the interference of two Gaus-

sian beams having the same intensities and hence, produces an interference profile sym-

metric about the mean of the Gaussian (xm) apart from the asymmetry arising due to the

fringe shift with the phase (φ). However, in the experiment, the two interfering beams

coming from path − A and path − B of the MZI have different intensities because of

the presence of the projector to H (Π̂H) in path − B of the interferometer, which intro-

duces a loss in the beam coming from that path. As a result, the intensity profile that

we obtain experimentally, appears to be asymmetric. This can be seen from the plots in

Fig. 3.15 and Fig. 3.16, presenting the non-linear model fitting to the intensity profile of

a specific row of the signal and mode reference images taken for a particular α and β value.

The phase shift (Φ), visibility (V ) and average intensity (Ī) of the Signal Interference

patterns for a particular prepared state with a combination of (α, β), are obtained from

the best fit parameters φ, v and A respectively. The presence of dusts in the beam path on

the sensor or on the optical components, changes the wavefront of the beam and creates

diffraction patterns that affect the corresponding intensity profile. This effect can be

observed in the signal images of both Fig. 3.12 and Fig. 3.14. Therefore, to minimize

the effect of dusts on the final results, we individually fit the intensity profiles for each of

the 30 rows in the image instead of fitting the data from entire image. We then calculate

the mean and standard deviation corresponding to a parameter over 30 values. So, for a

particular (α, β) combination we get 30 mean values and 30 standard deviations for each

of the parameters obtained from 30 images. The final result is reported as the mean (over

30 images) of the means (over 30 horizontal rows of an image) and the error in the final

result is calculated as the rms value (over 30 images) of the standard deviations (over 30

rows of an image) after taking into account the error (if any) due to the change in the

laser mode. Here, any change in the mode is inferred by examining the visibility of the

Mode Reference interference patterns, obtained from the best best fit parameter v after

the reference profile fitting. For finding the mean and the standard deviation of the phase

shift Φ, for a particular state, we have used the circular statistics, discussed in Appendix.

3.A. The change in the relative phase of the Mach-Zehnder Interferometer while acquiring

the Signal data for a prepared state is inferred from the corresponding Phase Reference

images. With the active stabilization of the Mach-Zehnder Interferometer discussed in

SubSec. 3.3.2, here we aim to achieve a phase uncertainty within
π

16
.
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3.3.5 Experimental Results and Discussions

The experiment for the demonstration of quantum state interferography (QSI) scheme

is performed with the aim to reconstruct different polarization qubits prepared in the

lab, using the experimentally obtained values of phase shift (Φ), average intensity (Ī)

and visibility (V ) of an interference pattern generated in a Mach-Zehnder interferometer

(MZI) when the state evolves through the operators σ̂x and Π̂H in the respective paths of

the interferometer. The interferometric data are collected for the two following situations:

(i) When the polarization states are prepared by rotating only the half-wave plates (HA

and HB) in the paths of horizontally polarized beam, in absence of the quarter-wave

plates (QA and QB), i.e., for the prepared states |ψ(α)⟩.

(ii) When the polarization states are prepared by rotating the quarter-wave plates (QA

and QB) for a specific orientation of the half-wave plates (HA and HB) on the paths

of horizontally polarized beam, i.e., for the states |ψ(α, β)⟩.

In the following, the quantities Φ, Ī and V are plotted as functions of HWP angle α

and QWP angle β, for different polarization states evolving through the QSI setup. The

dots and bars in the plots respectively represent the experimentally obtained values (the

mean) and the corresponding uncertainty in determining the value (the statistical error).

Theoretical expectations obtained by incorporating the actual behavior of the wave plates

for 778 nm beam (SubSec: 3.3.3) are presented with the solid lines, whereas the dashed

lines represent the ideal values computed considering the ideal behavior of the wave plates.

❑ The Interferometric Quantities (Φ, Ī, V ) as Functions of Half-Wave

Plate Angles (α) : The resultant polarization state, when the HWP with the fast

axis oriented at an angle α acts on the horizontal polarization, is given as

Ideal WP Behavior: |ψ(α)⟩ = Ŝh |H⟩ =

cos(2α)

sin(2α)

 (3.21)

Actual WP behavior:
∣∣∣ψ(a)(α)

〉
= Ŝ

(a)
h |H⟩ (3.22)
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Figure 3.17: Visibility (V ), Average Intensity (Ī) and Phase Shift (Φ) of the states prepared

for various orientations (α) of the HWP (in absence of QWP ).

From Fig. 3.17, it can be seen that the experimentally obtained phase shift (Φ) for dif-

ferent polarization states corresponding to the variation of HWP angles α, is obtained to

be a straight line about 0. This agrees with the expectation, since rotation of a HWP does

not introduce any relative phase (ϕ) between the orthogonal components of polarization.

At HWP angle 0◦ and 45◦ the phase is not well defined, since these values correspond

to the states near the poles of the Bloch sphere. The state parameter θ can be inferred

from the experimentally obtained visibility (V ) and average intensity (Ī). However, the

visibility appears to have same values for two HWP angles. Since, the average intensity is

monotonic, it can distinguish between the values of θ for which the visibility is the same.

❑ The Interferometric Quantities (Φ, Ī, V ) as Functions of Quarter-Wave

Plate Angles (β) for a Specific Half-Wave Plate Angle (α):

The resultant polarization state, when a HWP oriented at an angle α followed by a QWP

oriented at an angle β acts on the horizontal polarization, is given as

Ideal WP Behavior: |ψ(α, β)⟩ = ŜqŜh |H⟩ =
−i√
2

cos(2α)− i cos(2α− 2β)

sin(2α) + i sin(2α− 2β)


(3.23)

Actual WP behavior:
∣∣∣ψ(a)(α, β)

〉
= Ŝ(a)

q Ŝ
(a)
h |H⟩ (3.24)

The experimental results determined by processing the interference patterns generated

with the rotation of QWP for various HWP angles, are shown below.
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In the above, the plots of the interferometric quantities (Ī , V,Φ) − both experimen-

tally obtained (dots and bars) and the theoretical expectations (solid lines) − are shown

for various polarization states prepared for different combinations of HWP angle α and

QWP angle β. Though we have collected the data by varying the QWP from 0◦ to

180◦ for a fixed HWP angle, here we have only reported the interferometeric quantities

(Ī , V,Φ) for the QWP angles in the range 0◦ to 90◦, to maintain the uniqueness of the plots.

From the experimental results it can be seen that the average intensity and visibility

obtained for various (α, β) combinations almost agrees with the theoretical expectations,

but the phase shifts show a deviation from the expected values, for most of the cases.

The disagreement in the results is majorly due to the instability in the frequency mode of

the laser being used in the experiment, that keeps on varying during the course of data

acquisition in an uncorrelated manner, affecting the interference. Apart from that there

are some phase noises arising from the residual fluctuation of phase even after stabiliza-

tion. The mismatch in the visibility with the QWP angle is due to the deviation of the

behaviors of the wave plate for λs = 778 nm beam from the ideal ones (at λ). Again,

any fluctuation in polarization from the collimation end, changes the overall power of the

beam incident on theMZI and hence affects the experimentally obtained average intensity.

However, note that the half inch wave plates in the state preparation stage, in the two

paths of the interferometer, are rotated manually in sync using a kinematic rotation mount

with the least count of 2◦. A slight misalignment 24 of the fast axis of the wave plates

from the desired angle or any relative error in the orientations of the wave plates in the
24which is possible because the orientation of a wave plate is subject to the visual acuity and judgment

of the observer.
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two paths, would produce a different interference pattern than the intended one. This in

turn would affect the quantities Ī, V and Φ processed from the interference patterns. Also,

additional care needs to be taken while attempting to manually rotate the wave plates so

that the He − Ne beam does not get blocked accidentally, because this could reset the

stabilization and therefore, the phase reference would be lost.

Since here, the obtained values of Ī and V matches well with the theoretical expec-

tations (apart from few exceptions), this setup designed using a MZI could be used to

correctly infer the state parameter θ, or even the mixedness parameter µ when an unknown

mixed state is incident on the setup. However, since we could not control the interfero-

metric phase in a consistent manner, this design can not be considered as a precise tool to

infer the phase shift (Φ) and hence, the state parameter ϕ of the unknown quantum state.

Therefore, based on the experimental results obtained from the QSI setup depicted in Fig.

3.5, we can not provide an accurate complete description of the unknown qubit within

the Bloch sphere. Nonetheless, the projection of the unknown qubit on the z-axis can be

accurately determined. Hence, for inferring the parameter (ϕ) in a meaningful manner to

accurately demonstrate the interferometric state determination scheme, we choose a dif-

ferent setup designed with a more stable source and interferometer, as discussed in Sec. 3.4.

In summary, polarization states prepared by acting a half-wave plate followed by a

quarter-wave plate on the path of a horizontally polarized beam, when evolves through the

operators Û and R̂ in the two paths of a MZI, gives the phase shift, average intensity and

visibility of the interference patterns as function of the wave plate angles. To consistently

determine the phase shift, the path difference of the MZI is stabilized and maintained

throughout the experiment. However, the factors such as the mode instability of laser and

the use of the wave plates designed for a different wavelength than that of the source, make

the experimental results dependent on various parameters other than the HWP and QWP

angles used for state preparation. This necessitates correction of the collected data against

the possible sources of errors which makes the data analysis process for this experiment a

cumbersome one. Due to the non-ideal nature of the components used, the phase shift and

visibility may not be accurately applied to estimate the polarization. Nevertheless, this

experiment demonstrates that a Mach-Zehnder Interferometer can, in principle, be used

to determine an unknown polarization state employing the QSI technique.
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Experimental Implementation of Polarization State
Interferography With Sagnac Interferometer3.4

In the last section, we have shown how a Mach Zehnder Interferometer (MZI) setup can be

used to characterize the qubits in polarization degree of freedom of light. The interference

pattern, generated at the end of the MZI when a beam in an arbitrary polarization state

evolves through the setup, is analyzed to get the quantities such as phase shift (Φ), aver-

age intensity (Ī) and visibility (V ), which are further processed to infer the polarization

state. Consistent determination of the state parameters for different polarization states,

however, requires phase-stabilization of the MZI against vibrations that change the path

difference and hence, the relative phase between the two paths of interferometer. To avoid

the stabilization process and to remove the effects of some of the non-ideal parameters

that influence experimental results as discussed in SubSec. 3.3.5, we choose to perform

the experiment in a different setup with a stable source, here, Helium-Neon laser source

(He−Ne) at 632.8 nm using the wave plates meant for that particular wavelength.

In order maintain a constant phase relationship between the two arms of the interferom-

eter, i.e., to get stable interference fringes, we prefer the equivalent two path interferometers

that are not prone to vibrations such as the Double Slit Interferometer, the Sagnac Inter-

ferometer etc.. In principle, for a double-slit interferometer, we can place a half-wave plate

(as σ̂x operation) in one slit and a polarizer with transmission axis along horizontal (as Π̂H

operation) in the other slit and record the interference pattern. However, designing such

a setup appears to be challenging due to the manufacturing difficulties of slit-sized (of the

order of few tens of µm) wave plates. Therefore, for the experiment in lab, we choose to

use a Sagnac interferometer as described in Fig. 3.18.

3.4.1 The Experimental Setup

Beam from a Helium Neon Laser source [LHX1 − 25 − LHP991 − 230, Melles Griot]

at wavelength λ = 632.8 nm is incident on a 50 : 50 non-polarizing beam splitter (BS)

[BS013, Thorlabs] that forms a Sagnac Interferometer with the three mirrors M1, M2, M3

[5101, Newport]. The output ofHe−Ne laser used in this experiment is linearly polarized,
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which is oriented in a way that the emergent beam from the source is vertically polarized.

The Sagnac interferometer is aligned in displaced configuration instead of common path

configuration in order to place the optical components corresponding the operators Û = σ̂x

and R̂ = Π̂H in the two different paths. The beam from the laser source when incident on

the interferometer i.e., on the beam splitter BS, gets transmitted and reflected with equal

intensities into the two paths of the interferometer. The paths are labelled as path−A and

path − B that respectively correspond to the propagation of the beams in the clock-wise

and counter clock-wise directions. A half-wave plate HWP [WPH05M − 633, Thorlabs]

with the fast axis oriented at an angle
π

4
is placed in the clock-wise arm (i.e., path−A) to

realize the operator σ̂x. A polarizing beam splitter PBS [PBS122, Thorlabs] is placed in

the counter clock-wise arm (i.e., path−B) to effectively realize Π̂H , when only transmission

through PBS is considered. Alternatively, a polarizer with the transmission axis along the

horizontal could have been used as the Π̂H operator.

𝑀0

𝑀1
𝑀2

𝑀3

𝐺𝑃

𝐵𝑒𝑎𝑚
𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑟𝐵𝑆

Figure 3.18: Experimental setup for Polarization State Interferography using a Non-

Collinear Displaced Sagnac Interferometer.

In the displaced Sagnac configuration, the beams from the clock-wise and anti clock-

wise paths recombine at the same beam splitter BS and interferes in both the sides of

the BS − one in which the beam profiler is shown in Fig. 3.18 and the other being the
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one from which the He − Ne beam enters the interferometer. The beam profiler (CCD)

[WinCamD − UCD15] is placed in that output port to which the beam emerging from

R̂ (in |H⟩) is reflected and the beam emerging from Û is transmitted to avoid any change

in the polarization due to reflection from the beam splitter 25. The Displaced Sagnac

Interferometer (DSI) is aligned in the non-collinear geometry [22] to directly obtain the

intensity distribution as a function of the relative phase on the detector plane. This non-

collinearity is achieved by tilting the beam splitter BS slightly, which results in a double-slit

like interference pattern on the beam profiler. However, in the displaced Sagnac geometry,

it is typically not possible obtain the non-collinear fringes while ensuring a good overlap

between the two beams at the same time. Therefore, a glass plate GP , also known as

parallel window [WG40530−B, Thorlabs] is placed in one of the paths (here, in path−A)

and is tilted to achieve a displacement of the beam in that path to ensure maximum overlap

of the two non-collinear beams at the beam profiler. A glass plate of thickness t (here,

t = 3 mm), when tilted at angle when θi with respect to the incident beam, causes a lateral

displacement a in the beam propagating through it.

a =
t sin(θi − θr)

cos(θr)
(3.25)

where, θr is the angle of refraction, that satisfies the Snell’s law ni sin(θi) = nr sin(θr),

with ni and nr being the refractive indices of the incident and refracted medium. Here,

ni = 1 for air and nr = n for the glass window.

The input polarization state is prepared by placing a half-wave plate (HWP (α))

[WPH05M − 633, Thorlabs] at an angle α followed by a quarter-wave plate (QWP (β))

[WPQ05M − 633, Thorlabs] at angle β in the path of a vertically polarized beam coming

from the Helium-Neon Laser source, before it enters the interferometer. In contrast to

MZI, here we place the state preparation optics before the interferometer 26. Both these
25Although, ideally we expect the non-polarizing beam splitters to have no effect on the polarization

d.o.f. of light, the real beam splitters usually have a polarization dependent reflection and transmission

coefficients, i.e., tp ̸= ts and rp ̸= rs. Also, reflection from the beam splitter, in general, adds a relative

phase between Horizontal (p-polarized) and Vertical (s-polarized) components of polarization, introducing

an ellipticity in the polarization of the reflected beam.
26This could not be done in MZI because of the presence of the CCRs within the interferometeric arms

that adds an elliptic component to the beams reflecting from it.
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HWP and QWP are mounted on motorized rotation stages [PRM1/MZ8, Thorlabs, op-

erated with KDC101, Thorlabs] which allows for precise control over the angle of rotation

of the wave plates for the state preparation. The use of motorized mounts also enables

us to perform the entire experiment, i.e., preparation of various polarization states and

collection of interferometric data from the beam profiler for each state, through a simple

software code (LabV iew) on a computer eliminating the need to adjust anything manually.

Hence, the implementation of the displaced Sagnac Interferometer (DSI) greatly simplifies

the experimental setup as well as the data collection process for reconstructing an unknown

state using the QSI technique.

3.4.2 Experimental Method

Different polarization states that are to be reconstructed using the quantum state interfer-

ography (QSI) technique, are prepared by rotating the HWP and the QWP in the path

of the vertically polarized beam emitting from the He − Ne source (at λ = 632.8 nm).

Here, we aim to obtain the phase shift (Φ), visibility (V ) and average intensity (Ī) of the

generated interference patterns, as a function of the HWP angle α and the QWP angle

β. The polarization state, after the action of the wave plates on vertical polarization, that

serves as the input to the displaced Sagnac Interferometer (DSI) is given by,

|ψ(α, β)⟩ = Ŝq(β) Ŝh(α) |V ⟩ =
eiπ√
2

sin(2α− 2β) + i sin(2α)

cos(2α− 2β)− i cos(2α)

 (3.26)

For a fixed angle α of the HWP , the QWP is rotated in steps of 2◦ and for each (α, β)

combination, 5 images are recorded using the beam profiler at an interval of 500 ms. All

the images are recorded using a 16-bit ADC for a cross-section of 600×600 pixels, with the

pixel size being 4.4 µm. Before processing each image, the ADC values of all the pixels are

normalized with respect to the maximum for 16-bit ADC, which is 216. Considering the

interference patterns are generated along x− y plane, we find that the recorded fringes are

slightly tilted, almost at an angle 13.7 deg as can be seen in Fig. 3.19a. Hence, at first the

images are rotated about their centroid (Cx, Cy) to orient the fringes along the horizontal

i.e., along x. The horizontal and vertical centroids of an image are computed as,
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Cx =

N∑
x=1

N∑
y=1

x Ixy

N∑
x=1

N∑
y=1

Ixy

and Cy =

N∑
x=1

N∑
y=1

y Ixy

N∑
x=1

N∑
y=1

Ixy

(3.27)

Here, Ixy is the value of the pixel in the y-th row and the x-th column of the recorded

image, with N = 600. In other words, Iij represents the (i, j)-th element of the image

matrix, where i, j ∈ [1, 600].
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Figure 3.19: Interferometric data collected for the polarization state prepared by acting

the HWP at 22.5◦ followed by the QWP at 45◦ on the state |V ⟩. (a) The image of

the interference pattern formed after the QSI setup as captured by the Beam Profiler.

The interference fringes are slightly tilted. (b) Intensity distribution across one of the

horizontal slices of the image generated after rotating the raw image by 13.7 deg about its

centroid and the non-linear model fit to the intensity distribution from which phase shift,

average intensity and visibility would be inferred.

For each image, we select 101 horizontal slices about the vertical centroid of the rotated

image (i.e., about C(r)
y ) and fit the data for each of the slices with a model which is a

Gaussian weighted cosine function, as given below.

Fnc = Bf +Af exp
(
−cf (xf −mf )

2
)
(1 + vf cos(kfxf + ϕf )) (3.28)
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Here, xf is the array of pixel along x direction, chosen symmetrically about the horizontal

centroid (i.e., C(r)
x ) of the rotated image, for which the fitting function is applied. In the

fitting model, Bf represents the background noise, Af represents the amplitude of the

Gaussian envelope centered at mf having standard deviation of σf =

√
1

2cf
. The fringe

width is given by ωf =
2π

kf
. The quantities vf and ϕf respectively represents the visibility

and the phase shift of the interference pattern. From a single image we get 101 such pa-

rameters i.e., [Bf , Af ,mf , cf , kf , vf , ϕf ] which are obtained by fitting the experimentally

recorded intensity distribution across each row of the image (one of them is shown in Fig.

3.19b) to the above model.

We weigh the data, obtained from an image, with the vertical Gaussian profile (Wy) and

then take the mean and standard deviation of each of the parameters over the 101 slices.

For the determination of the vertical Gaussian profile, at first we evaluate the intensity

distribution Iy = {Iya} across the y direction of the rotated image, where Iya is the mean

intensity of a given row ya
27. We then fit the data Iy = {Iya} to the Gaussian model,

Fg = Ba +Aae
−ca(ya−ma)2 (3.29)

where Ba represents the background noise associated with the Gaussian of amplitude Aa,

centered at ma having the standard deviation σa =

√
1

2ca
. Next, using the fit parameter

ca associated with the width of the Gaussian, obtained after fitting as shown in Fig. 3.20a,

the vertical Gaussian profile Wy = {wya} is determined as the following,

wya = exp
(
−ca (ya − C(r)

y )2
)

(3.30)

where, ya is the row number in the rotated image. For the 101 Horizontal slices about

the vertical centroid C
(r)
y , we choose 101 values about the mean of the Gaussian weight

function Wy, as shown in Fig. 3.20b.

27For a particular row ya, the mean intensity is given by Iya =

Na∑
x=1

Ixya

Na
, where Na is number of pixels

in each row of the rotated image.
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Figure 3.20: Determining the Vertical Gaussian Profile for weighing the parameters ob-

tained by fitting the intensity distributions along different rows across the rotated image.

Now, while fitting the 101 rows about the vertical centroid of the rotated image, if the

model Fnc does not fit any of the slices, i.e., if the adjusted R2 of the fit is less than 0.99,

we give it a zero weight. For a single image, we find the weighted mean and weighted

standard deviation (over 101 slices) of each of the parameters (Af , vf , ϕf ). For the phase

shift ϕf , we use circular mean and circular standard deviation [23], discussed in Appendix.

3.A. The amplitude Af is corrected against the vertical Gaussian weight.

Analyzing the five images captured for a particular HWP and QWP angle, i.e., for a

particular polarization state, we evaluate the mean and standard deviation of phase shift

(Φ), average intensity (Ī) and visibility (V ). The average (over 5 images) of the averages

(over 101 slices) is used to represent the mean experimental value and the error bars are

represented by the maximum between standard deviation (over 5 images) of the means

(over 101 slices) or the RMS (over 5 images) of the standard deviations (over 101 slices)
28. This entire process is repeated for different QWP angles at a given HWP angle.

28For a particular parameter (say, p), we derive a weighted (weights = Wy) mean µI and weighted

standard deviation σI over 101 values obtained by fitting 101 horizontal slices of a single image (I). So, for a

given state from 5 images, we have means M = {µIk} and stds S = {σIk}, where k ranges from 1 to 5. The

experimental result is reported as p = mean(M), with the error bar given as perr = max[std(M), rms(S)].
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We then repeat the same process for various HWP angles α. The HWP is rotated in

steps of 5◦ and for each of the HWP angles the QWP is rotated in steps of 2◦. Finally, we

take a dataset with the QWP absent in the setup in order to find the the zero reference of

the phase shift. The experimentally obtained quantities i.e., the phase shift (Φ), average

intensity (Ī) and visibility (V ) for each (α, β) combination are then used to compute the

state parameters θ, ϕ, µ of the polarization state being incident on the setup. Though the

state prepared in the experiment is almost pure, we can use the visibility to show that the

obtained µ value is close to 1.

3.4.3 Choice of Statistics for Data Acquisition and Data Analysis

The interference pattern in a Sagnac interferometer is not affected by the low frequency

vibrations and hence, repetitions of image acquisition over time are reproducible. In the

experiment, for each run, we set the specific angles α and β of the HWP and the QWP

by rotating the motorized mounts. We then acquire five images with a fixed exposure of

13 ms at intervals of about 500 ms, for the given prepared state. Because of the stability

of the interferometer over time, these recorded images give us consistent results ensuring

the reproducibility. However, the envelope of the transverse profile of the beam is not

perfectly Gaussian because of some dust on the optical components and on the imaging

sensor. The presence of dusts changes the wavefront of the beam due to additional diffrac-

tion effects and hence, affects the intensity distribution recorded by the beam profiler.

Therefore, instead of taking just one profile from an image, we take 101 horizontal slices

about the vertical centroid of the image and find the best fit parameters for each of the

slices by fitting the intensity distribution across a horizontal slice with the model given in

Eqn. 3.28. Then, the averages of the fit parameters over all these 101 slices are computed.

The slices which are far off the vertical centroid are affected the most due to lack of per-

fect overlap between the two beams coming from two different paths of the interferometer.

Therefore, we optimally select the 101 slices, which fall within the full width half maximum

(FWHM) of the vertical Gaussian envelope to have enough sampling of the beam in order

to eliminate the irregularities. The experimental results are determined by weighing the

fit parameters obtained from different slices with the vertical Gaussian profile to address

the varying significance of these parameters across the beam width.
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The standard deviation of the fit parameters over 101 slices quantifies how spread out

the obtained values are from the average, for a particular image captured for a given state.

From the values of the means and the standard deviations computed for all the five im-

ages, it is obtained that the variation of the fit parameters across the 101 slices for a given

image is larger than the changes in mean of the fit parameters across the 5 images. This

implies that there is more variability in the fit parameters within a single image (across

different slices) than there is between different images. Because of this, capturing more

images would not significantly improve the statistics or provide more information about the

interferometric quantities. Therefore, 5 images give us the sufficient statistics for reliably

inferring the experimental results.

3.4.4 Experimental Results

The experiment aims to demonstrate the polarization state interferography scheme by

showing the reconstruction of different polarization qubits incident on the Quantum State

Interferography (QSI) setup designed with a displaced Sagnac interferometer (DSI) de-

picted in Fig. 3.18. As described in SubSec. 3.4.2, from the interference patterns formed

in the DSI aligned in non-collinear geometry, we determine the phase shift (Φ), average in-

tensity (Ī) and visibility (V ) for different polarization states prepared by rotating a HWP

and a QWP at different angles (α and β) in the path of a vertically polarized beam. The

obtained values of (Φ, Ī, V ) are used to infer the state parameters of the polarization qubits

to reconstruct the input state. We then compute the fidelity of the reconstructed states

comparing to the prepared ones. Here, we use 632.8 nm Helium Neon Laser as the source

along with the wave plates meant for the wavelength 633 nm. Therefore, the results (i.e.,

Φ, Ī, V ) obtained from the experiment are expected to be close to the values evaluated

from theory, unlike the QSI experiment with the Mach-Zehnder Interferometer (MZI).

We have presented the variations of the phase shift, averaged intensity and visibility

of the interference patterns with respect to the HWP angle α and the QWP angle β −

obtained from both, the experimentally recorded data and the theoretical computation as

the state |ψ(α, β)⟩ = Ŝq(β) Ŝh(α) |V ⟩ evolves through the QSI setup, where Ŝh and Ŝq are

the Unitary operators associated with the wave plates, given in Eqn. 3.4. The plots for Φ,

Ī and V as functions of the wave plate angles α and β are shown in Fig. 3.21, Fig: 3.22
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and Fig: 3.23 respectively. The solid lines in the plots represent the theoretical prediction

while the dots and bars respectively represent the experimentally obtained mean and sta-

tistical error. The means and error bars of each of the quantities in the plots are derived

from a statistical analysis of 101 horizontal slices from each of the five images captured

for a specific combination of (α, β). The black curves (at β = 0) in each plot represent

the respective quantities as a function of the HWP angle α, obtained for the experiment

where the QWP is absent from the state preparation stage and the polarization states,

that are incident on the QSI setup, are prepared by action of the HWP only on the state

|V ⟩. The individual plots for different states prepared by (i) rotating HWP only and (ii)

rotating QWP with the HWP fixed at different angles, can be seen in Appendix. 3.B.

❑ Phase Shift (Φ) : The phase shift of the interference pattern represents the

value of the relative phase that corresponds to the maximum intensity of the intensity

distribution obtained from the interferometric setup.
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Figure 3.21: Phase shift of the interference pattern obtained from non-collinear displaced

Sagnac interferometer as a function of α and β. The black curve corresponds to the phase

shift obtained for the experiment where only HWP is rotated in absence of the QWP .
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In the experimental condition where the QWP is not present, the phase shift as a

function of HWP angle α is obtained to be a straight line (shown in ‘black’). This result

agrees well with the theory, according to which, in absence of QWP the value of phase

shift is expected to remain constant with respect to α. This is because, a half-wave plate

does not introduce any relative phase (ϕ) between the horizontal and vertical components

of an incident linear polarization, it only transforms one linear polarization to another.

However, in the displaced Sagnac geometry, the two interfering beams have an arbitrary

but constant path difference, resulting in a phase shift which is not exactly zero but some

constant. This value is considered as the zero reference for determining the phase shift

under all other experimental conditions, i.e., for different (α, β) combinations.

As the state parameter θ approaches the values 0 or π, the phase shifts obtained from

the interference patterns have more errors, since θ = 0 and θ = π correspond to the states

at the poles of the Bloch sphere, where the parameter ϕ is undefined. This is manifested

in noticeable deviations of the experimental graphs from the theory for the HWP angles

α = 0◦ and α = 45◦.

❑ Average Intensity (Ī) : Average intensity of the interference pattern represents

the phase averaged value of the intensity distribution obtained from the interferometric

setup. Average intensity is obtained to be a function of the state parameter θ and indepen-

dent of ϕ. The black dots in β = 0 plane, represents the experimentally obtained average

intensities for the states prepared with different orientations of the HWP while the QWP

is absent. All the experimentally obtained averaged intensities for different combinations of

(α, β) are normalized (with norm = 0.5) with respect to the corresponding maximum of the

average intensity obtained as a function of the HWP in the absence of QWP . This step

for normalization can be avoided if the detector is calibrated against known input intensity.

The average intensity (Ī) of an interference pattern, generated in the QSI setup for a

given polarization state, does not depend on the interference and hence, it is not prone

to errors that could potentially affect the visibility and phase shift. Average intensity is

solely determined by the intensities of the two interfering beams, which are dependent on

the polarization state being incident on the QSI setup. The factors such as the spatial
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overlap of the beams, stability of the interferometer, wavefront or the beam shape that

can influence the interference, have no effect on Ī. Therefore, the experimentally obtained

values for Ī shows a better match with the theoretical predictions, as shown in the plots.
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Figure 3.22: Average Intensity (average over phase) of the interference pattern obtained

from non-collinear displaced Sagnac interferometer as a function of α and β. The black

curve corresponds to the phase averaged intensity obtained for the experiment where only

HWP is rotated in absence of the QWP .

❑ Visibility (V ) : Visibility of the interference pattern represents the degree of co-

herence between the two interfering beams in an interferometric setup. It depends on how

well the two beams overlap in different degrees of freedom including the spatial overlap,

the polarization, the transverse coherence, which is related to the shape of the wavefront

of the two interfering beams etc.. From the plot of visibility as a function of wave plate

angles α, β, it can be seen that the experimentally obtained visibility is systematically

lower than the theoretical prediction because of various experimental imperfections and

the factors that change the interference.
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Figure 3.23: Visibility of the interference pattern obtained from non-collinear displaced

Sagnac interferometer as a function of α and β. The black curve corresponds to the

visibility obtained for the experiment where only HWP is rotated in absence of the QWP .

The particular HWP and QWP used in this experiment for the state preparation,

cause a slight angular deviation (almost about 10 arcsec) of the beam as they are rotated.

As a result, the spatial overlap of the two beams at the detector plane changes for different

orientations of the wave plates, that leads to the experimentally obtained visibility to be

systematically lower than the theoretical predictions at certain angles of the wave plate.

Also, the beam splitter BS has the transmission and reflection probabilities dependent

on polarization by about 2.7%, which introduces an ellipticity in the polarization of the

beams. These effects, along with other minor effects such as the averaging of the intensity

over the area of the pixels are the reasons why the experimentally obtained visibility is

systematically lower.
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3.4.5 Inferring the State Parameters from Interferometric Information

In this experiment, we prepare different polarization states using a half-wave plate (HWP )

followed by a quarter-wave plate (QWP ), for different combinations of their angles α and

β respectively, acting on the polarization state |V ⟩. The resulting states, denoted as

|ψ(α, β)⟩, are made incident on the optical setup, as shown in Fig. 3.18 and the state

parameters are inferred by analyzing the interference patterns recorded at the end of the

setup using a CCD. Applying the Jones matrices of the respective wave plates, given in

Eqn. 3.4, the prepared state |ψ(α, β)⟩ can be expressed as follows,

|ψ(α, β)⟩ = Ŝq(β) Ŝh(α) |V ⟩ (3.31)

= e
−
iπ

4

 cos2(β) + i sin2(β) (1− i) sin(β) cos(β)

(1− i) sin(β) cos(β) sin2(β) + i cos2(β)

 e
−
iπ

2

cos(2α) sin(2α)

sin(2α) − cos(2α)


0

1



= e
−i
3π

4

 cos2(β) + i sin2(β) (1− i) sin(β) cos(β)

(1− i) sin(β) cos(β) sin2(β) + i cos2(β)


 sin(2α)

− cos(2α)



=⇒ |ψ(α, β)⟩ = eiπ√
2

sin(2α− 2β) + i sin(2α)

cos(2α− 2β)− i cos(2α)

 =

ψH
ψV

 (3.32)

Here, ψH and ψV respectively represent the horizontal and vertical components of the

polarization state which would be reconstructed using the interferometric setup employing

Quantum State Interferography (QSI) technique. Therefore, in terms of the wave plate

angles α and β, the respective polarization components are expressed as,

ψH = |ψH |ei arg(ψH) =
eiπ√
2
(sin(2α− 2β) + i sin(2α)) (3.33)

ψV = |ψV |ei arg(ψV ) =
eiπ√
2
(cos(2α− 2β)− i cos(2α)) (3.34)
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So, we have |ψH |2+|ψV |2 =
1

2

(
sin2(2α− 2β) + sin2(2α) + cos2(2α− 2β) + cos2(2α)

)
= 1.

Now, ignoring the global phase 29 from the expression in Eqn. 3.32, we get

|ψ(α, β)⟩ =

 |ψH |

|ψV | exp (i(arg(ψV )− arg(ψH)))

 (3.35)

In terms of the state parameters θ ∈ [0, π] and ϕ ∈ [−π, π), a general pure state in two

dimensions is represented as,

|ψ(θ, ϕ)⟩ =


cos

(
θ

2

)

eiϕ sin

(
θ

2

)
 (3.36)

Therefore, from element wise comparison between the expressions for the pure qubit in

Eqn. 3.36 and Eqn. 3.35, we get the relation between the state parameters θ, ϕ with the

wave plate angles α, β as shown below,

θ = 2 cos−1 (|ψH |) and ϕ = arg(ψV )− arg(ψH) (3.37)

where, |ψH | =
√

sin2(2α− 2β) + sin2(2α)

2
(3.38)

arg(ψH) = tan−1
(

sin(2α)

sin(2α− 2β)

)
(3.39)

arg(ψV ) =− tan−1
(

cos(2α)

cos(2α− 2β)

)
(3.40)

The state parameters, however, would be determined from the information extracted from

an interference pattern formed in the QSI setup.

29As global phase does not have any physically observable significance upon measurement.



150 Chapter 3. Experiment: QSI for Polarization Qubits

As the state evolves through the QSI setup which consists of a displaced Sagnac in-

terferometer (DSI) having the operators σ̂x and Π̂H in the respective arms, we get the

intensity distribution as a function of relative phase ϵ as, Id(ϵ) = ⟨ψ(α, β)|Ê†Ê |ψ(α, β)⟩.

Here, Ê is the effective evolution operator of the QSI setup, given as Ê =
1

2

(
σ̂x + eiϵ Π̂H

)
.

Therefore, as a function of the wave plate angles (α, β), the intensity distribution obtained

at the end of the setup can be expressed as the following,

Id(α, β, ϵ) =
∥∥∥Ê |ψ(α, β)⟩∥∥∥2 =

∥∥∥∥∥∥12
eiϵ 1

1 0

ψH
ψV

∥∥∥∥∥∥
2

(3.41)

Id(α, β, ϵ) =
1

4

[
1 + |ψH |2 + 2|ψH ||ψV | cos (ϵ− (arg(ψV )− arg(ψH)))

]
(3.42)

Processing the above intensity distribution, recorded by the beam profiler, we determine

the phase shift (Φ), phase averaged intensity (Ī) and visibility (V ) of the interferogram,

Φ = arg(ψV )− arg(ψH) (3.43)

Ī =
1

4
(1 + |ψH |2) (3.44)

V =
2|ψH ||ψV |
1 + |ψH |2

=
2|ψH |√
1 + |ψH |2

(3.45)

Therefore, from Eqn. 3.37 and using the above interferometric information the state

parameters θ and ϕ can be determined as the following,

θ = 2 cos−1 (|ψH |) = 2 cos−1
(√

4Ī − 1
)

(3.46)

ϕ = arg(ψV )− arg(ψH) = Φ (3.47)

So, the parameters θ and ϕ associated with the pure polarization state |ψ(α, β)⟩ can be

directly inferred from experimentally obtained average intensity (Ī) and phase shift (Φ) of
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the interference pattern. Though the determination of Ī and Φ are sufficient for a pure

polarization state reconstruction using the QSI scheme, determination of visibility (V ) is

useful for the complete characterization of a mixed polarization qubit. The parameter µ

which describes the mixedness of a state ρ̂(θ, ϕ, µ) in two dimensions, can be inferred from

the experimentally obtained visibility.

3.4.6 Purity and Fidelity of the States Reconstructed Using QSI

The Quantum State Interferography (QSI), an interferometric state determination scheme,

has been experimentally demonstrated through the reconstruction of various polarization

states using the interferometric information obtained from a non-collinear displaced Sagnac

interferometer. To evaluate the effectiveness of this technique, in terms of the accuracy

of the reconstructed states, we compute the fidelity of the experimentally determined

states by comparing them with the states incident on the QSI setup. Fidelity provides a

quantitative measure of the closeness between two the states, (i) |ψi⟩: the state prepared

in the lab and made incident on the QSI setup, and (ii) |ψr⟩: the state reconstructed using

the QSI technique. For pure quantum state reconstruction, the fidelity is computed as

Fp = |⟨ψi|ψr⟩|2, which is the same as the transition probability of the state |ψr⟩ to |ψi⟩.

The fidelity ranges between 0 and 1 30, with a higher fidelity indicating a more accurate

reconstruction (of the incident state). Therefore, the higher the fidelity is, better is the

performance of the state determination scheme. In the density matrix representation of

the quantum states, the fidelity [24] is computed as,

F(ρ̂i, ρ̂r) =
(
Tr

(√√
ρ̂i ρ̂r

√
ρ̂i

))2

(3.48)

Here, ρ̂i is the density matrix associated with the prepared state and ρ̂r is the density matrix

associated with the state reconstructed using QSI. The analysis of fidelity in this experiment

is significant, as it not only validates our experimental results but also provides an insight

into the potential utility of this interferometric scheme for quantum state characterizations.

30The fidelity value 1 implies the two quantum states, that are being compared, are identical and a

fidelity value 0 denotes the two states are orthogonal.
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Presuming that the polarization state of the incident beam is pure, we compute the

fidelity of the state reconstructed from θ and ϕ, respectively determined using the ex-

perimentally obtained average intensity Ī and phase shift Φ of the interference pattern

generated in the QSI setup. Therefore, the fidelity for pure states (Fp) appears to be a

function of Ī and Φ, which are necessary for inferring the pure state in two dimensions,

as discussed in SubSec. 3.4.5. The mean fidelity (Fp) calculated from experimentally ob-

tained mean phase shift (Φ) and mean average intensity (Ī) are plotted on the surface of a

Bloch sphere at the corresponding θ and ϕ values of the prepared states, where θ ∈ [0, π]

and ϕ ∈ [−π, π) respectively represent the polar angle and the azimuthal angle associated

with the Bloch vector of the state. The errors obtained in the determination of Ī and Φ are

propagated to the calculation of fidelity for a single state. The plot of the mean fidelity Fp,

for different reconstructed states (|ψ(θ, ϕ)⟩) related to the states prepared experimentally

(|ψ(α, β)⟩) for various orientations of the wave plates acting on the vertically polarized

beam, can be seen in Fig. 3.24 [Left] with the values indicated by the colorbar. The

average fidelity over all the prepared states is obtained to be greater than 98%.

Figure 3.24: [Left] Fidelity with assumption that the various prepared states at different θ

and ϕ over the Bloch Sphere are pure. [Right] Fidelity of reconstructed density matrices

of various prepared states at different θ and ϕ over the Bloch Sphere.

Although, in this experiment, the polarization of the incident beam is almost pure

(since the initial vertical polarization of the beam before the wave plates has a purity

better than 99%), this interferometric method for state determination can be used in ex-
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periments involving mixed states as well. To illustrate, we reconstruct the density matrix

ρ̂(θ, ϕ, µ) using the experimentally obtained values of average intensity (Ī), phase shift

(Φ) and visibility (V ) of the interference pattern. The parameter µ, which is related to

the purity of the state, is determined from the visibility (V ), with the restriction that it

makes the reconstructed density matrix physical, i.e., ensuring the condition Tr
(
ρ̂2
)
≤ 1

is satisfied. This is achieved by substituting µ with min[µ, 1] during the construction of

the density matrix ρ̂ 31 from the experimentally inferred parameters. It is because, for any

physical state in two dimensions the parameter µ lies between 0 and 1, i.e., 0 ≤ µ ≤ 1,

with µ = 1 corresponding to the pure states.

However, since the experimentally obtained visibility is systematically lower than the

theory due to several experimental imperfections, the reconstructed density matrix ρ̂r =

ρ̂(θ, ϕ, µ) has a lower purity. Consequently, the fidelity of the reconstructed density matrix

slightly drops but still remains greater than 90% for all the prepared states, even in the

worst case as can be seen from the Table. 3.1. The plots for the fidelity Fm, computed

using Eqn. 3.48, of the reconstructed density matrices (ρ̂r) on a Bloch sphere, at the θ

and ϕ values of the corresponding prepared states (ρ̂i), is shown in Fig. 3.24 [Right] with

the values indicated by the colorbar. From the plot, it can be seen that the fidelity Fm for

the reconstructed density matrices using the experimentally obtained phase shift, average

intensity and visibility is lower than the case with pure state assumption. However, for

ideal conditions how the fidelity of an arbitrary state ˆρ(µ, θ, ϕ) compared to the pure states
ˆρ(µ = 1, θ, ϕ), varies with the mixedness parameter µ is discussed in Appendix. 3.C.

Here, we report median analysis as the errors introduced during the computation of

fidelity are dependent on the state that is being evolved through the QSI setup. For in-

stance, there is more uncertainty in determining the phase shift whenever the visibility is

low. In the Table 3.1 we present the best case and worst case scenarios for the reconstruc-

tion of the states using QSI technique. The optimal scenario indicates that by reducing

both systematic and random errors − for example, with the use of cage mount assembly

for achieving better stability of the optics and by miniaturizing the setup to avoid effects

due to pointing fluctuations of the beam and the angular deviations caused due to wave

31The details of how µ affects the fidelity of the reconstructed state and other methods to infer µ from

experiment that makes the density matrix ρ̂ physical, is discussed in Sec. 3.5.
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plate rotations, having a sensor with smaller pixel sizes etc. − this state reconstruction

method could potentially provide state estimations with the fidelity exceeding 98%. The

median of the average mixed state fidelity (Fm) over all the states reconstructed in the

experiment, is obtained to be lower than the corresponding median of the average fidelity

for the reconstructed pure states (Fp). This is because of the introduction of the errors

in determining µ from the visibility of the recorded interference pattern, which is affected

by the pixel averaging, the spatial overlap of the two interfering beams and change in

ellipticity of polarization at each reflection. Since the reconstruction of pure states does

not require the determination of visibility, these errors only impact the reconstruction of

the mixed states, resulting in a reduction of their purity as well as the fidelity 32.

Average Best Case Worst Case

Purity:

Tr
(
ρ̂2
)

0.92(5)+0.03(7)
−0.03(7) 0.98(0)+0.01(9)

−0.02(7) 0.85(7)+0.06(5)
−0.03(1)

Mixed state

Fidelity: Fm 0.94(1)+0.02(5)
−0.01(3) 0.98(1)+0.00(9)

−0.01(2) 0.90(2)+0.03(2)
−0.01(4)

Pure state

Fidelity: Fp 0.98(3)+0.00(4)
−0.00(6) 0.99(5)+0.00(2)

−0.00(5) 0.97(0)+0.00(6)
−0.00(6)

Table 3.1: Purity and Fidelity: This table presents the median of the average fidelity

and the purity computed over all the prepared states, along with the upper and lower

quartile deviations. It also includes the best case and worst case, which are determined

from the highest and lowest values of purity and fidelity obtained after error (derived from

the statistics of the average intensity, phase shift and visibility of the interference patterns)

propagation of half standard deviation about the mean quantities.

32However, errors such as change in polarization due to reflection can be avoided in the miniaturized slit

based QSI setup, discussed in Sec. 3.1.
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Ensuring Physicality of the Reconstructed Density
Matrix in Quantum State Interferography3.5

A general density matrix in two-dimensions can be represented using the parameters

(µ, θ, ϕ) as the following,

ρ̂(µ, θ, ϕ) =


cos2

(
θ

2

)
1

2
µe−iϕ sin(θ)

1

2
µeiϕ sin(θ) sin2

(
θ

2

)
 (3.49)

where the coordinates θ ∈ [0, π] and ϕ ∈ [−π, π) describe the direction of the Bloch vector

associated with the state (in Bloch sphere representation) and µ ∈ [0, 1] is related to the

length of the Bloch vector and governs the purity of the density matrix ρ̂. The purity of

the state ρ̂ is given as,

Tr
(
ρ̂2
)
= 1−

(
1− µ2

2

)
sin2(θ) =

1

4

[
3 + µ2 +

(
1− µ2

)
cos(2θ)

]
(3.50)

Therefore, µ = 1 corresponds to purity 1, which represent the pure states. Since, θ ∈ [0, π]

and µ ∈ [0, 1], we get the Purity, Tr
(
ρ̂2
)
∈ [0.5, 1], with Tr

(
ρ̂2
)
= 1 representing pure states

ρ̂ = |ψ⟩⟨ψ| and Tr
(
ρ̂2
)
= 0.5 representing the maximally mixed state ρ̂ =

|H⟩⟨H|+ |V ⟩⟨V |
2

.

For all values of θ and ϕ, the density matrix ρ̂ is inherently physical for the range

0 ≤ µ ≤ 1, by virtue of its construction. Experimentally, we determine θ and ϕ directly

from the average intensity Ī and the phase shift Φ of the recorded interference pattern as,

θ = cos−1
(
8Ī − 3

)
and ϕ = Φ (3.51)

Once θ is determined, we can compute the parameter µ from the experimentally obtained

visibility V as the following,

µ =

(
3 + cos(θ)

2 sin(θ)

)
V (3.52)
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Therefore, using experimentally obtained values of average intensity Ī and visibility V , we

can infer µ for a given incident state. When θ approaches close to 0 or π, the denominator

tends to 0. In this situation, the experimentally obtained visibility must be sufficiently low

to ensure that the condition µ ≤ 1 holds. However, due to several experimental imperfec-

tions and noises, the visibility derived experimentally can sometimes be slightly higher or

lower than what one would expect with ideal experimental components and ideal labora-

tory conditions. This slight discrepancy in visibility between the experimentally observed

value and the expected value, can result in the obtained µ values to be more than 1 (i.e.,

µ > 1) when computed simply using the formula given in Eqn. 3.52.

These situations, where we obtain µ values larger than 1, mostly occurs when the

state is close to the poles of the Bloch sphere, i.e., when θ nears 0 or π. At the values

θ = 0 and θ = π (the states are |H⟩ and |V ⟩ respectively), the off-diagonal terms in ρ̂

(magnitude of which is given by
1

2
µ sin(θ)) tend to zero. Hence, for the reconstruction of

these states, if the value of µ is clipped between 0 and 1, the error in ρ̂ seems to be minimal.

We have seen that in the experiment performed using a displaced Sagnac Interferom-

eter, the values of µ computed from average intensity Ī and visibility V , is almost always

found to be within 1, with only a few exceptions. Fig. 3.25a and Fig. 3.25b present the

variation of µ as a function of the states prepared by changing the QWP angle β for the

HWP angle fixed at α = 0◦ and α = 22.5◦ respectively. For the few instances, where µ > 1

as computed using Eqn. 3.52, we have constrained the value to 1 by taking µ ≡ min[µ, 1].

This adjustment does not significantly affect the reconstruction of ρ̂, as the off-diagonal

terms are anyways small because of θ being closer to 0 or π. Further, a generic procedure

is outlined, using which µ can be obtained systematically without the need of clipping the

value between 0 and 1.

In the experiment, the non-collinear interference pattern generated at the end the

interferometric setup for a given incident state, is analyzed by fitting the recorded intensity

distribution to a non-linear function Fnc given in Eqn. 3.28, which is

Fnc = Bf +Afe
−cf (xf−mf )

2
(1 + vf cos(kfxf + ϕf )) (3.53)
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We find the average intensity, visibility and phase shift of an interference pattern from

mean of the respective best fit parameters Af , vf and ϕf obtained from 101 horizontal

slices about the vertical centroid of the recorded (and rotated) image. Now, instead of find-

ing the best fit for the parameters Af and vf along with other parameters for each of the

slices, we can directly substitute Af =
N
8
(3+cos(θ)) and vf =

2µ sin(θ)

3 + cos(θ)
. Here, N is the

normalization or scaling factor associated with intensity measurement and is determined

from the experimental setup. In this way, now we can directly find the best fit values for

θ and µ instead of Af and vf . The fitting algorithm is essentially a constrained optimiza-

tion with the bounds for θ being [0, π] and that for µ being [0, 1]. Thus, the requirement

that 0 ≤ µ ≤ 1 can be directly imposed in the fitting algorithm rather than imposing the

constraints on the computed value of µ from vf and Af .
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Figure 3.25: The mixedness parameter µ obtained as a function of prepared states param-

eterized by the QWP angle β for different HWP angles α. (a) For HWP set at α = 0◦,

the angle θ varies between 85.55◦ to 172.81◦ as β changes. Except for few points in the re-

gion where β approaches 90◦, we obtain µ < 1, i.e., the reconstructed density matrices are

physical. Here, the value of µ mostly lies within 0.8 to 1 (for 11◦ < β < 73◦). As β nears

0◦ or 90◦ the smaller and the higher values of µ does not affect the state reconstruction,

as for these values of β the state is close to |V ⟩, for which the off-diagonal elements of the

corresponding density matrix are 0. (b) For the HWP set at α = 22.5◦, the angle θ

varies between 55.24◦ to 120.43◦ as β changes. Since here θ lies well away from 0◦ or 180◦

(i.e., 0 or π rad), the parameter µ does not show any abrupt rise or fall in its value. The

µ values obtained for different states for α = 22.5◦ lies within 0.8 to 1.04.
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This additional post-processing for ensuring the physicality of the reconstructed state, is

not some thing special for Quantum State Interferography (QSI) technique. It is also worth

noting that the reconstructed density matrix from Quantum State Tomography (QST) also

requires additional post-processing so that the inferred density matrix becomes physical,

i.e., Tr
(
ρ̂2
)
≤ 1 [25, 26].

Conclusion3.6

In this chapter, we have presented the experimental realization of the interferometric

state determination scheme, Quantum State Interferography (QSI), for inferring the two-

dimensional quantum states in the polarization degree of freedom of light. We have shown

how a single interference pattern, generated when an unknown state evolves through the

QSI setup, can be processed to get the interferometric quantities from which the state can

be reconstructed. The experimental demonstration of polarization state interferography is

presented for two different interferometric setups, one with a Mach-Zehnder Interferometer

(MZI) and the other one with a Displaced Sagnac Interferometer (DSI). High fidelity of

the reconstructed states (compared to the prepared states) obtained from the DSI setup

validates the efficacy of this scheme with a stable interferometric arrangement. From both

these experiments, we can conclude that QSI provides a “true single shot” state estimation

technique for qubits, where in between the incidence of the photon in the unknown state

and extraction of the state information, no internal setting needs to be modified.

In various applications like quantum communication or information protocols, it is es-

sential to have the knowledge of the state of the quantum particle we are dealing with.

However, while determining the state using the QSI technique, it is important to note that

a single particle can not produce an interference pattern and it is described only with a

statistical ensemble of particles. Since the average statistical properties of light are equiv-

alent for an ensemble of identical photons and for a coherent beam [27], the interference

pattern obtained from a stream of single photons would be identical to the one formed with

the coherent laser light [28]. Therefore, the interferometric method of state reconstruction
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described in this chapter using a laser light source would be applicable for determining the

state of an identically prepared ensemble of single photons as well.

Appendix

Circular Mean and Circular Standard Deviation3.A

Circular statistics is used while dealing with the data of periodic nature, like angles or

time or phase etc. [23]. The traditional statistical measures of central tendency and dis-

persion such as the mean and standard deviation, in general, can not provide an accurate

description of such periodic data since they do not account for the cyclical variation of the

data. For example, here in this experiment, we aim to determine the phase shift Φ of the

interference pattern which is periodic in nature with the periodicity being 2π. Here, Φ

values of 0 and 2π are effectively the same, but the simple arithmetic mean of these two

values would yield
0 + 2π

2
= π, which is incorrect. Therefore, to accurately determine the

mean and standard deviation of the phase shift of the interference pattern obtained from

the 101 horizontal slices of an image, we employ circular statistics.

Consider an array Aϕ containing the list of circular variable φ. Then the circular mean

for a list of N values is given by

µϕc = arctan


N∑
i=1

cos
(
Aiϕ

)
N

,

N∑
i=1

sin
(
Aiϕ

)
N

 . (3.54)
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Here, arctan (x, y) gives tan−1
(y
x

)
after taking into account the quadrant to which the

pair belongs to. The circular standard deviation provides a measure how spread out the

cyclical data is around the circular mean. The circular standard deviation σϕc is obtained

as the square root of the circular variance and is computed as follows:

σϕc =

√√√√√√
1−

√(
N∑
i=1

cos
(
Aiϕ

))2

+

(
N∑
i=1

sin
(
Aiϕ

))2

N
(3.55)

Individual Plots for Phase Shift, Average Intensity
and Visibility obtained from Sagnac Interferometer3.B

The plots in Fig. 3.21, Fig. 3.22 and Fig. 3.23 respectively present the experimen-

tally obtained phase shift (Φ), average intensity (Ī) and visibility (V ) of the interference

patterns generated for various polarization states in the non-collinear displaced Sagnac

Interferometer with σ̂x operator in one arm and Π̂H operator in the other arm. These

3D plots for Φ, Ī and V offers a comprehensive comparison, all together, of the respective

parameters determined by analyzing the recorded interference patterns for all the states

prepared in the experiment.

However, although the 3D plots aid in visualizing the variations of the interferometric

parameters for different polarization states, they are susceptible to parallax errors. As

a result, for some states, the parameters may appear slightly shifted from their actual

values. To address this, here we present the individual 2D plots corresponding to different

polarization states obtained for the conditions (i) when QWP angle β varies in steps of

2◦ at a specific HWP angle α and the same repeated for α varying in steps of 5◦, (ii)

when only HWP angle α is varied in absence of QWP . These plots, similar to their

3D representations, feature solid lines representing the theoretical predictions and dots

and bars representing the experimentally obtained mean and statistical error respectively.

The curve in ‘black’ showcase the variation of the experimentally obtained quantities as a

function of HWP angle α only.
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Figure 3.26: Phase Shift (Φ) of the interference patterns generated in the QSI setup for

different polarization qubits prepared by rotating the HWP (at α) followed by the QWP

(at β) in the path of a vertically polarized beam. In absence of QWP , the experimentally

obtained value of phase is expected to be a constant with respect to α, which is considered

as the zero reference for all the measurements. The mean and standard deviations associ-

ated with phase are obtained from the experimental datasets using circular statistics.
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Figure 3.27: Average Intensity (Ī) of the interference patterns generated in the QSI setup

for different polarization qubits prepared by rotating the HWP (at α) followed by the

QWP (β) in the path of a vertically polarized beam. All the experimentally average

intensities are normalized with respect to the norm = 0.5 corresponding to the maximum

value when only HWP is rotated in absence of the QWP .
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Figure 3.28: Visibility of the interference patterns generated in the QSI setup for different

polarization qubits prepared by rotating the HWP (at α) followed by the QWP (β) in the

path of a vertically polarized beam. The experimentally obtained visibility is systematically

lower than the theoretical predictions due to different non-idealness in the experiment, such

as angular deviation of the beam with wave plate rotation changing the spatial overlap,

polarization dependent splitting ratio of the beam splitter, intensity averaging over the

sensor area, distortion of the wavefront due to dusts on the optics and the sensor etc.
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Variation of Fidelity of Qubits with the Mixedness3.C

In the experiment for polarization state interferography, we have prepared the states by

acting a half-wave plate (HWP ) and a quarter-wave plate (QWP ) on the path of a beam

with horizontal polarization |H⟩ for the setup with MZI or vertical polarization |V ⟩ for

the setup with DSI, which prepares a pure state |ψ(α, β)⟩. However, in general, the states

that we deal with in an experiment are not always pure. For a qubit, the mixedness is

parameterized with the factor µ. Here we will show how the fidelity of ρ̂pure − the density

matrix for a pure state ( i.e., ρ̂pure = ρ̂(µ = 1, θ, ϕ)) with ρ̂ = ρ̂(µ, θ, ϕ) − the density

matrix for an arbitrary state (can be mixed or pure), changes as a function of µ. The

fidelity of the state ρ̂pure with the state ρ̂ is computed as,

F(ρ̂pure, ρ̂) = Tr

(√√
ρ̂pure ρ̂

√
ρ̂pure

)2

(3.56)

=⇒ F(ρ̂pure, ρ̂) = 1− 1− µ
2

sin2(θ) =
1

4
(3 + µ+ (1− µ) cos(2θ)) (3.57)

Therefore, the fidelity is a function of the parameters θ and µ and is independent of ϕ.

Thus, the mixedness of a two-dimensional state does not affect the determination of the

phase ϕ. At θ = 0 or θ = π, we get the fidelity as F = 1, which is expected as θ values 0

and π respectively represent the pure states |H⟩ and |V ⟩. When θ =
π

2
, we get F =

1 + µ

2
.

Now, when µ tends to zero with θ =
π

2
, i.e., when the state in the two dimensions ap-

proaches the maximally mixed state, the fidelity F tends to
1

2
.

The density plot for the fidelity as a function of µ and θ is shown in Fig. 3.29. From

the plot, it can be observed that the fidelity F is close to 1 as µ approaches 1 corresponding

to the pure states. Further, the value of F is close to 1 irrespective of the value of µ, when

θ is close to 0 or π. The fidelity drops significantly, only when θ is close to
π

2
and µ << 1,

i.e., when the mixedness of the state increases. For a small amount of mixedness intro-

duced during the state preparation, we have the experimentally obtained fidelity F > 0.9

for µ > 0.8.
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Figure 3.29: Density plot of Fidelity between a pure state ρ̂pure and any arbitrary state ρ̂

parameterized by µ. Note that the colors scale from 0.5 (blue) to 1 (red) corresponding to

the values obtained for maximally mixed state and the pure state respectively.
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Quantum State Interferography (QSI), discussed in the previous chapters, is an interfero-

metric state determination scheme that utilizes the information processed from interference

patterns to characterize an unknown quantum state. For two-dimensional quantum sys-

tems, QSI appears to be a single shot state determination technique − that characterizes

any unknown qubit by measuring the expectation values of the operators Π̂0 and σ̂− in

an interferometric setup. The last chapter presents the experimental implementation of

this scheme for the reconstruction of the states in the polarization degree of freedom of

light, which demonstrates QSI to be an effective technique for characterizing any arbitrary

qubit with high fidelity, from a single interference pattern. In this chapter, we will intro-

duce an extension of the scheme for characterizing the unknown states of d-dimensional

quantum systems, referred to as qudits, as well as, for characterizing the unknown states

of two qubit systems, also known as the bipartite qubits. The chapter will include the

experimental proposals for inferring the d-dimensional pure spin qudit |ψ⟩(d) from (d− 1)

measurements, and for determining the pure bipartite qubit |Ψ⟩AB of a photonic system

with three measurements in two experimental settings.

The process of characterizing an unknown quantum state, be it a qudit or a bipartite

qubit, using quantum state interferography (QSI) involves extracting the state parameters

from the phase shift, average intensity, and visibility of a number of interference patterns

generated in an interferometric setup with several necessary operators. In this chapter

we will first present, the parametric representations of qudit states within a d-dimensional

Hilbert space and bipartite qubit states within a 2×2 dimensional Hilbert space. Then, we

will explore the interferometric scheme for inferring the state parameters of an arbitrary

d-dimensional pure qudit |ψ⟩(d) from (d − 1) interferograms that can be produced using

merely two interferometers, without the need to change any experimental settings, i.e., in

a single shot method. Next, we will present an experimental scheme for the reconstruction

of pure bipartite qubits (labeled as |Ψ⟩AB) employing interferometry, where the unknown

bipartite state can be inferred by performing single qubit QSI on the respective subsystems

A and B and a heralded QSI with the heralding subject to a constraint. We then go on to

show that QSI is more resource efficient than standard quantum state tomography (QST)

for the quantification of entanglement in pure bipartite qubits.
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Parametric Representation of Higher Dimensional
Quantum States − The Qudits4.1

In the Bloch sphere representation, a pure state for a qubit can be represented as a point

on the surface of a unit 2-sphere S(2) - the Bloch sphere [1]. The polar angle θb ∈ [0, π] and

the azimuthal angle ϕb ∈ [−π,+π) in the spherical polar co-ordinate completely describes

|ψ⟩(2), the state for a pure qubit. However, a state for mixed qubit is represented by a

point inside the Bloch sphere. So, the Bloch vector associated with a mixed qubit should

span the entire volume of the Bloch sphere and hence, requires one additional parameter

for its representation, which corresponds to the length of the Bloch vector (|r⃗| = rb). Thus

in general, an arbitrary qubit state can be represented by 3 real parameters (θb, ϕb, rb),

where rb = 1 for pure qubits and 0 ≤ rb < 1 for mixed qubits. Hence, S(2) needs to be

embedded in three dimensions.

Now, if we aim to extend the idea intuitively to d-dimensional qudit, we may attempt

to represent a pure state in d-dimension as a point on the surface of a unit d-sphere (S(d))

and a mixed state as a point within the volume of the unit d-sphere, with the corresponding

ray spanning the entire volume of S(d). By analogy, S(d) is considered to be embedded in

(d+ 1)-dimensional Euclidean space. However, such generalizations do not hold. Employ-

ing a geometric representation similar to the Bloch-sphere for the visualization of higher

dimensional quantum states would be beneficial in the filed of quantum information and

computation, but implementing such a generalization for the qudits is not that simple and

seems to be challenging [2, 3, 4].

A pure qubit state is described by a two-dimensional complex-valued vector with unit

norm i.e., the state being

α1

α2

 with the constraint that |α1|2 + |α2|2 = 1. The informa-

tion in two complex numbers, given one constraint (the normalization), can be represented

by (2 × 2 − 1) = 3 real numbers. However, the global phase can also be ignored since

only the relative phase between the two basis vectors in the Hilbert space has any physical

consequence 1. Thus, the number of real quantities to be specified for a pure qubit can be

reduced to 2. Hence, the co-ordinates of a point i.e., (θb, ϕb) on the surface of S(2) suffices

1in terms of the outcomes of projective measurements.
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to represent the pure state of a qubit.

Now, if we consider a pure qutrit, i.e., a state of a three level quantum system, 3 com-

plex numbers (α1, α2, α3) are required to represent a vector in the 3-dimensional Hilbert

space. Provided, we have one constraint of normalization i.e.,
∑3

j=1 |αj |
2 = 1 and we

can ignore the global phase here as well, makes the number of real parameters needed

for a complete description of a pure state of a three-dimensional quantum system to be

(3 × 2 − 2) = 4. So, a pure qutrit can be specified as a point on the surface of a unit

4-sphere (S(4)) [5] embedded in 4 + 1 = 5 dimensions in Euclidean geometry [6]. Usually,

one can parameterize a point on the 4-sphere with four Euler angles (the angles that the

ray makes with the basis vectors). But they do not help much in visualizing the state.

Similarly, for a d-dimensional pure qudit we will have one normalization constraint i.e.,∑d
j=1 |αj |

2 = 1 where αj ∈ C2 and can ignore the global phase; making the number of

real parameters needed to describe a pure qudit to be (2 × d − 2) = 2(d − 1). So, a pure

state in d-dimensional Hilbert space can be represented as a point on the surface of a unit

2(d − 1)-sphere i.e., S(2(d−1)) embedded in 2d − 1 dimensional Euclidean space [7]. Even

though there are various existing representations for the qudits, the attempts to visualize

the higher dimensional states within the Bloch-sphere in R3 is still a subject of ongoing

research [8, 9]. Here, in this section we will focus on the widely recognized representation

− the Majorana representation of qudits and will explore the possibilities of inferring the

state parameters in this representation through the use of interferometric techniques.

4.1.1 Majorana Representation

Since the number of real parameters needed for the description of a d-dimensional pure

qudit is 2(d − 1), instead of representing a single point on the surface of 2(d − 1)-sphere,

i.e., on S(2(d−1)), we can represent a set of (d − 1) points on unit 2-sphere i.e., on S(2)

[10, 11]. The S(2) is embedded in the three-dimensional space R3 with the two antipodal

points representing the eigenstates associated with the extreme eigenvalues for a given

eigen basis, when all the (d− 1) points lie on the surface. So, the point on the +ve z-axis

(the north pole) of the unit sphere represents the eigenvector corresponding to the largest

eigenvalue and the point on the −ve z-axis (the south pole) of the unit sphere represents
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the eigenvector corresponding to the smallest eigenvalue for the given eigen basis. The

protocol is to place an Argand plane at the z = 0 plane in Cartesian three-dimensional

space R3. In general, the (d − 1) points on the 2-sphere are obtained by stereographic

projections (with respect to the south pole) of the (d− 1) complex roots of the Majorana

polynomial represented on the extended Argand plane [12].

The roots of the Majorana polynomial for a system with spin 2 s =
d− 1

2
are given by

the solutions of the following expression [10],

2s∑
r=0

ar ξ
2s−r = 0 (4.1)

=⇒ a0ξ
2s + a1ξ

2s−1 + . . .+ a2s−1ξ + a2s = 0 (4.2)

where, ar = (−1)r Cs−r√
(2s− r)! r!

(4.3)

Eqn. 4.2 represents the relationship between the (2s+1) coefficients ar and the 2s = d−1

roots of the Majorana polynomial. Ck’s are the complex coefficients of the qudit state

|ψ⟩(d) represented in a given eigenbasis {|−s⟩ , |−s+ 1⟩ , . . . , |0⟩ , . . . , |s− 1⟩ , |s⟩}, i.e.,

|ψ⟩(d) =
s∑

k=−s
Ck |k⟩ . (4.4)

The state |ψ⟩(d) can be represented by the points P1, P2, . . . , Pd−1 on the surface of

the unit 2-sphere [13], with {θm, ϕm} being the spherical polar co-ordinates of a point Pm.

The roots ξm (with m = 1, 2, . . . , 2s) of the Majorana polynomial satisfies the following

relation with θm, ϕm.

ξm = tan

(
θm
2

)
eiϕm (4.5)

2Usually, a system with spin s is described in a (2s + 1)-dimensional Hilbert space, thus we get the

dimensionality to be d = 2s+ 1.
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Thus the pure state |ψ⟩(d) of a d-dimensional quantum system has a bijective correspon-

dence with the complex roots ξm of the Majorana polynomial and these roots belonging

to the Argand plane at z = 0 of R3 have bijective correspondence to the points given by

(θm, ϕm) on the surface of S(2) through stereographic projections.

For example, the set of two points {P1 ≡ (θ1, ϕ1), P2 ≡ (θ2, ϕ2)} on the Bloch sphere,

represents the pure state of a qutrit |ψ⟩(3) [14]. A three-dimensional system (d = 3) can

be considered as a system with s = 1; thus the 2s = 2 roots of the Majorana polynomial

associated with this three level system i.e., ξ1 and ξ2 can be obtained by solving the

following expression,

a0ξ
2 + a1ξ + a2 = 0 (4.6)

C1ξ
2 −
√
2C0ξ + C−1 = 0 (4.7)

Here, C1, C0, C−1 are respectively the probability amplitudes associated with basis vectors

{|1⟩ , |0⟩ , |−1⟩} that spans the three-dimensional Hilbert space. Therefore the qutrit is

represented as, |ψ⟩(3) = C1 |1⟩ + C0 |0⟩ + C−1 |−1⟩. Both ξ1 and ξ2 satisfies the relation

shown in Eqn. 4.5 with (θ1, ϕ1) and (θ2, ϕ2) respectively 3, giving the pure state of a qutrit

in the Majorana representation as the following,

|ψ⟩(3) = Γ



√
2 cos

(
θ1
2

)
cos

(
θ2
2

)

eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)
+ eiϕ2 cos

(
θ1
2

)
sin

(
θ2
2

)
√
2 ei(ϕ1+ϕ2) sin

(
θ1
2

)
sin

(
θ2
2

)


(4.8)

where, Γ =

√
2

3 + cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2)
(4.9)

The factor Γ in front of the vector is the normalization factor and the ray in the 3-

dimensional Hilbert space is completely determined by the vector itself.

3The roots ξ1 and ξ2 are given as, ξ1 = tan

(
θ1
2

)
eiϕ1 and ξ2 = tan

(
θ2
2

)
eiϕ2 .
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❑ Expectation Values of the Spin Ladder Operators:

As presented in Chapter. 2, the state of an unknown qubit |ψ⟩(2) could be determined

from the expectation value of the spin ladder operators σ̂± =
1

2
(σ̂x ± iσ̂y). The argument

of the complex expectation value ⟨σ̂±⟩ in the Argand plane appears to be the same as the

relative phase of the qubit state in the Bloch sphere, i.e., arg (⟨σ̂±⟩) = ±ϕ. The magnitude

of ⟨σ̂±⟩ gives the polar angle θ of the two-dimensional state. Here, for the qudits, we aim

to achieve something similar i.e., we will first check if we can obtain the azimuthal angles

i.e., ϕm (for m = 1, 2, . . . (d− 1)) from the expectation values of the spin ladder operators.

The spin ladder operators σ̂[3]± =
1

2

(
σ̂
[3]
x ± iσ̂[3]y

)
that acts on the 3-dimensional Hilbert

space 4 and their polar decomposition into Unitary and Hermitian are given as below.

σ̂
[3]
+ =

√
2


0 1 0

0 0 1

0 0 0

 = Û
[3]
+ R̂

[3]
+ (4.10)

with Û
[3]
+ =


0 1 0

0 0 1

1 0 0

 and R̂
[3]
+ =

√
2


0 0 0

0 1 0

0 0 1

 (4.11)

σ̂
[3]
− =

√
2


0 0 0

1 0 0

0 1 0

 = Û
[3]
− R̂

[3]
− (4.12)

with Û
[3]
− =


0 0 1

1 0 0

0 1 0

 and R̂
[3]
− =

√
2


1 0 0

0 1 0

0 0 0

 (4.13)

4The pauli matrices in SU(3) are obtained using Kramer’s method and are as follows:

σ̂[3]
x =

√
2


0 1 0

1 0 1

0 1 0

 , σ̂[3]
y = i

√
2


0 −1 0

1 0 −1

0 1 0

 , σ̂[3]
z = 2


1 0 0

0 0 0

0 0 −1
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From the above expressions note that, in the three dimensions neither the Hermitian

component R̂[3]
± of the spin ladder operator is a projector nor the Unitary component

Û
[3]
± is Pauli-X operator σ̂[3]x , when compared to the two dimensional operators. In two

dimensions, the 2×2 non-Hermitian spin ladder operators σ̂± and their polar decomposition

into positive semi-definite Hermitian (R̂) and Unitary (Û) are given as, σ̂[2]− = Û
[2]
− R̂

[2]
− =

σ̂
[2]
x Π̂

[2]
0 and σ̂

[2]
+ = Û

[2]
+ R̂

[2]
+ = σ̂

[2]
x Π̂

[2]
1 , where Π̂

[2]
0 and Π̂

[2]
1 are the 2 × 2 projectors

associated with the basis states |0⟩ and |1⟩. The expectation values of the ladder operators

σ̂
[3]
± in the qutrit state given in the Majorana representation in Eqn. 4.8 is obtained as,

〈
σ̂
[3]
+

〉
=
〈
ψ(3)

∣∣∣ σ̂[3]+

∣∣∣ψ(3)
〉
= Γ2

(
eiϕ1 sin(θ1) + eiϕ2 sin(θ2)

)
(4.14)

=
2
(
eiϕ1 sin(θ1) + eiϕ2 sin(θ2)

)
3 + cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2)

(4.15)

〈
σ̂
[3]
−

〉
=
〈
ψ(3)

∣∣∣ σ̂[3]− ∣∣∣ψ(3)
〉
= Γ2

(
e−iϕ1 sin(θ1) + e−iϕ2 sin(θ2)

)
(4.16)

=
2
(
e−iϕ1 sin(θ1) + e−iϕ2 sin(θ2)

)
3 + cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2)

(4.17)

So, the expectation values
〈
σ̂
[3]
±

〉
are the function of all the four parameters {θ1, ϕ1, θ2, ϕ2}

associated with the qutrit and none of the individual parameters can be directly extracted

from the magnitude, Argand phase, real part or imaginary part of the complex expectation

values of the spin ladder operators. It seems that, if we rewrite the spin ladder operators in

terms of two ladder-like 5 operators, we may be able to obtain eiϕ1 sin(θ1) and eiϕ2 sin(θ2)

separately from the complex expectation values. Sadly, that is not the case with Majorana

representation, as shown in the computations below.

❑ Expectation Values of the Ladder-Like Operators:

Now, let us consider the three-dimensional Hilbert space is spanned by the basis states

{|1⟩ , |2⟩ , |3⟩}, where

5Strictly, they are not the spin ladder operators because they do not follow from
1

2
(σ̂x ± iσ̂y).
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|1⟩ =


1

0

0

 , |2⟩ =


0

1

0

 , |3⟩ =


0

0

1

 (4.18)

Therefore, for the qutrits, we can consider the ladder-like 6 non-Hermitian operators

Â3→1, Â2→1 and Â3→2 as given in the following, where Âi→j is an operator similar to

the raising operator that takes the basis state |i⟩ to the state |j⟩.

Â3→1 =


0 0 1

0 0 0

0 0 0

 , Â2→1 =


0 1 0

0 0 0

0 0 0

 , Â3→2 =


0 0 0

0 0 1

0 0 0

 (4.19)

The expectation values of the above ladder-like operators in the state |ψ⟩(3) given in

Eqn. 4.8 are computed as the following,

〈
Â3→1

〉
=

Γ2

2
ei(ϕ1+ϕ2) sin(θ1) sin(θ2) (4.20)

〈
Â2→1

〉
=

Γ2

√
2

[
eiϕ1 sin(θ1) cos

2

(
θ2
2

)
+ eiϕ2 sin(θ2) cos

2

(
θ1
2

)]
(4.21)

〈
Â3→2

〉
=

Γ2

√
2

[
eiϕ1 sin(θ1) sin

2

(
θ2
2

)
+ eiϕ2 sin(θ2) sin

2

(
θ1
2

)]
(4.22)

Again all the expectation values computed above are functions of all the four parameters,

i.e., {θ1, θ2, ϕ1, ϕ2}. Thus, the state parameters can not be determined individually from

the expectation values of the ladder-like operators as well. This implies that identifying the

state parameters associated with a qudit in Majorana representation is not that straight

forward. Therefore, we require an alternative representation for qudits and aim to obtain

6Since the dimension is discreet, and there is a prior hierarchy or non-degeneracy among states, the

ladder operator that raises the state
(
1 0 0

)T

to
(
0 1 0

)T

is on the same footing as the operator

that takes
(
0 0 1

)T

to
(
1 0 0

)T

.
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the relative phases directly as the phase in the Argand plane in the complex expectation

values of the ladder-like operators.

4.1.2 Episphere Representation

In the last subsection, we have seen the Majorana representation of a d-dimensional qudit

where a pure qudit is represented as a set of (d−1) points on the surface of a unit 2-sphere

i.e., the Bloch sphere. (2d−2) quantities {θj , ϕj} with j = 1, 2, . . . , (d−1), can completely

describe the pure qudit |ψ⟩(d), where each set (θm, ϕm) with θm ∈ [0, π] and ϕm ∈ [−π, π)

represents the polar angle and azimuthal angle associated with a point Pm on S(2). Here,

we will propose another way of parameterizing the d-dimensional states, where each pure

state |ψ⟩(d) in d-dimension would be represented as a chain of vectors within epispheres.

The name “Episphere” is considered along the terms of ‘epicycles’ which represent a circle

whose center lies on the circumference of another circle. Thus, here the term “Episphere”

is used to represent the sphere which originates at a point lying on the surface of another

previously existing sphere.

In the proposed Episphere representation of a qudit, any d-dimensional pure state |ψ⟩(d)

can be represented as a sequence of (d− 1) Bloch vectors, defined within what we term as

‘Epispheres’. For a d-dimensional qudit, we construct (d−1) spheres, with the origin of the

k-th sphere being located at the tip of the (k− 1)-th Bloch vector defined in the (k− 1)-th

sphere, where 1 ≤ k ≤ d − 1 as shown in Fig. 4.1. Each sphere represents a subsequent

two-dimensional subspace of the d-dimensional Hilbert space. The 1st sphere represents

the first two-dimensional sub-space spanned by the states {|1⟩ , |2⟩}. The tip of the Bloch

vector associated with the first sub-space, located at (θ1, ϕ1) on the surface of this sphere,

is considered as the origin of the 2nd sphere, which is the first episphere in the sequence.

The 2nd sphere in the sequence represents the sub-space spanned by the states {|2⟩ , |3⟩}

and the corresponding Bloch vector has the tip at (θ2, ϕ2) on the surface of this sphere.

Consequently, the n-th sphere in the sequence (i.e., the (n − 1)-th episphere) represents

the n-th two-dimensional subspace spanned by the basis states |n⟩ and |n+ 1⟩. Therefore,

in the Episphere representation, we parameterize the state |ψ⟩(d) in terms of the (d − 1)

two-dimensional sub-spaces of the d-dimensional space in a specific sequence.



Chapter 4. QSI for Qudits and Bipartite Qubit 179

𝜃1
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𝑂
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𝑂

Figure 4.1: Episphere representation of a qudit (with d=4): Representation of a pure

state |ψ⟩(d=4) as a chain of three Bloch vectors presented with orange, green and maroon

arrows. The ‘orange’ Bloch vector spans the 1st two-dimensional subspace with basis

vectors {|1⟩ , |2⟩}. The 2nd subspace with basis vectors {|2⟩ , |3⟩} is represented by the

episphere (shown in ‘orange’) that originates from the tip of the ‘orange’ vector at (θ1, ϕ1)

and is spanned by the ‘green’ Bloch vector. The 3rd subspace with basis states {|3⟩ , |4⟩}

is spanned by the ‘maroon’ vector within the episphere (shown in ‘green’) whose origin lies

at the tip of the ‘green’ Bloch vector at (θ2, ϕ2). θi and ϕi in each sphere represent the

polar and azimuthal angles corresponding to different Bloch vectors.

4.1.3 Episphere Representation of Qutrits

The Majorana representation of a qutrit involves the description of two points on S(2) −

the Bloch sphere. Instead of using the same Bloch sphere, in Episphere representation we

construct two Bloch spheres and the qutrit is represented by a chain of two Bloch vectors.

The tip of the first Bloch vector lies on the surface of the first Bloch sphere (with center at

O) at any point O1 denoted by the parameters (θ1, ϕ1) where θ1 ∈ [0, π] and ϕ1 ∈ [−π, π)
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respectively represent the angle that the Bloch vector (
−−→
OO1) makes with ẑ and the angle

that the projection of Bloch vector on x − y plane makes with x̂. The tip of the second

Bloch vector (
−−−→
O1O2) represents a point O2 denoted by (θ2, ϕ2) on the surface of the second

Bloch sphere which originate at the point O1 ≡ (θ1, ϕ1). We can very well represent the

two vectors on a single Bloch sphere or two separate Bloch spheres as long as the ordering

of the vectors is clear. Representing the vectors as a chain makes the collection of the Bloch

vectors an ordered set, which will be important in the representation of 3-dimensional state.

Each Bloch-vector (say, v⃗j) defined in a Bloch sphere that represents the pure state

space of the corresponding two-dimensional subspace (say, j-th subspace where j = 1, 2

for qutrit), can be represented in terms of polar co-ordinates (θj , ϕj) as the following.

v⃗j =


cos

(
θj
2

)

eiϕj sin

(
θj
2

)
 (4.23)

Therefore, the episphere representation of the three-dimensional pure state |ψ⟩(3) in the

form of a chain of two Bloch vectors, is given by,

|ψ⟩(3) =



cos

(
θ1
2

)

eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)

eiϕ2 sin

(
θ2
2

)



=



cos

(
θ1
2

)

eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)

ei(ϕ1+ϕ2) sin

(
θ1
2

)
sin

(
θ2
2

)


(4.24)

Here, the second two-dimensional subspace spanned by the second Bloch vector v⃗2 param-

eterized with (θ2, ϕ2) is multiplied with the second element of the first Bloch vector v⃗1

parameterized with (θ1, ϕ1) to generate a vector |ψ⟩(3) in the three dimensions.

❑ Does |ψ(θ1, θ2, ϕ1, ϕ2)⟩(3) spans the entire 3-dimensional Hilbert space?

In order to show that the above representation spans all the rays in the 3-dimensional

Hilbert space, we have to show that we can construct a set of three arbitrary complex
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numbers {α1, α2, α3} that represent a three dimensional vector a⃗ up to a global phase and

with the constraint of normalization, i.e.,
∑3

k=1 |αk|
2 = 1. So, we can write a vector a⃗ in

three dimensions as,

a⃗ =


α1

α2

α3

 =


|α1|ei arg(α1)

|α2|ei arg(α2)

|α3|ei arg(α3)

 = ei arg(α1)


|α1|

|α2|ei(arg(α2)−arg(α1))

|α3|ei(arg(α3)−arg(α1))

 (4.25)

First, we can always multiply the vector a⃗ with e−i arg(α1) as ϕg = arg(α1) is considered

as the global phase of the state, which gives a new vector a⃗′ = e−iϕg a⃗ =
(
α β γ

)T
.

The first element of the new vector is given as α = |α1| which is a positive real quantity.

Due to normalization constraint, i.e.,
∑3

k=1 |αk|
2 = 1, we will always have |α1| ≤ 1 and

thus |α1| can be parameterized by cos

(
θ1
2

)
, where, 0 ≤ θ1 ≤ π ensures that 0 ≤ |α1| ≤ 1.

So, we have the first element of the vector a⃗′ as α = cos

(
θ1
2

)
.

The second element of the new vector a⃗′ is, β = |α2|eiφ21 where φ21 = arg(α2)−arg(α1).

Thus, β is a new complex number with magnitude |β| = |α2| and argument arg(β) = φ21.

The normalization constraint imposes that |β| ≤
√
1− |α|2. Now we have

√
1− |α|2 =√

1− cos2
(
θ1
2

)
= sin

(
θ1
2

)
, making the above condition to be |β| ≤ sin

(
θ1
2

)
. Thus,

the magnitude of the complex number β can be represented as |β| = sin

(
θ1
2

)
cos

(
θ2
2

)
which ensures 0 ≤ |β| ≤ sin

(
θ1
2

)
, given θ2 ∈ [0, π]. The argument of the quantity β can

be arbitrary and hence can be represented by ϕ1 with ϕ1 ∈ [−π, π). Therefore, it gives

ϕ1 = arg(β) = φ21, i.e., ϕ1 = arg(α2) − arg(α1). So, we have the second element of the

vector a⃗′ as β = eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)
.

The last element of the vector a⃗′ is another complex number, γ = |α3|eiφ31 , where

φ31 = arg(α3)−arg(α1). The magnitude of γ is constrained by the normalization condition

and hence has to be |γ| =
√
1− |α|2 − |β|2 =

√
1− cos2

(
θ1
2

)
− sin2

(
θ1
2

)
cos2

(
θ2
2

)
=√

sin2
(
θ1
2

)
− sin2

(
θ1
2

)
cos2

(
θ2
2

)
= sin

(
θ1
2

)
sin

(
θ2
2

)
. The argument of γ is given by

arg(γ) = φ31 = arg(α3)− arg(α1) = (arg(α3)− arg(α2)) + (arg(α2)− arg(α1)) = ϕ2 + ϕ1,
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where we considered ϕ2 = arg(α3) − arg(α2). Thus, the phase of γ in the Argand plane

can be spanned by (ϕ1 + ϕ2), where ϕ2 ∈ [−π, π). So, we have the last element of the

vector as γ = ei(ϕ1+ϕ2) sin

(
θ1
2

)
sin

(
θ2
2

)
.

Hence, the vector a⃗′ in three dimensions can be written in terms of the parameters

{θ1, θ2, ϕ1, ϕ2} as the following,

a⃗′ =


α

β

γ

 =



cos

(
θ1
2

)

eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)

ei(ϕ1+ϕ2) sin

(
θ1
2

)
sin

(
θ2
2

)


(4.26)

The vector a⃗′ in three dimensions has the same representation as the state |ψ⟩(3) given in

Eqn. 4.24. Thus, we have shown that the state |ψ⟩(3) can be represented by any set of

three arbitrary complex numbers, up to a global phase. By varying the state parameters

{θ1, θ2, ϕ1, ϕ2} one can make |ψ⟩(3) span the entire ray space in three dimensions.

❑ Expectation Values of the Ladder Operators and the Ladder-Like

Operators in the State |ψ⟩(3):
Next, let us check if we can determine the individual parameters of the qutrit from the

expectation values of the ladder operators σ̂[3]+ , σ̂[3]− given in Eqn. 4.10, Eqn. 4.12 re-

spectively or from the expectation values of ladder-like operators Â3→1, Â2→1 and Â3→2

given in Eqn. 4.19. The expectation values of these non-Hermitian operators in the three

dimensions, computed for the state |ψ⟩(3) given in the Episphere representation as shown

in Eqn. 4.24, are expressed as the following,

〈
σ̂
[3]
+

〉
=

1√
2

[
eiϕ1 sin(θ1) cos

(
θ2
2

)
+ eiϕ2 sin2

(
θ1
2

)
sin(θ2)

]
(4.27)

〈
σ̂
[3]
−

〉
=

1√
2

[
e−iϕ1 sin(θ1) cos

(
θ2
2

)
+ e−iϕ2 sin2

(
θ1
2

)
sin(θ2)

]
(4.28)
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〈
Â3→1

〉
=

1

2
ei(ϕ1+ϕ2) sin(θ1) sin

(
θ2
2

)
(4.29)

〈
Â2→1

〉
=

1

2
eiϕ1 sin(θ1) cos

(
θ2
2

)
(4.30)

〈
Â3→2

〉
=

1

2
eiϕ2 sin2

(
θ1
2

)
sin(θ2) (4.31)

So, the expectation values of the ladder operators
〈
σ̂
[3]
±

〉
involves all the four state

parameters {θ1, ϕ1, θ2, ϕ2}, thus would not help much in extracting the individual parame-

ters. However, by measuring the complex expectation values of any two of the above three

ladder-like operators, we can infer the relative phases in Bloch spheres i.e., ϕ1 and ϕ2 from

their arguments. For example, if we have
〈
Â2→1

〉
and

〈
Â3→1

〉
then we get the phases as,

ϕ1 = arg
(〈
Â2→1

〉)
and ϕ2 = arg

(〈
Â3→1

〉)
− ϕ1 (4.32)

Also, we can obtain ϕ2 directly from
〈
Â3→2

〉
as, ϕ2 = arg

(〈
Â3→2

〉)
. Now, we can infer

θ1 and θ2 from the magnitudes of these complex expectation values, as the following:

∣∣∣〈Â3→1
〉∣∣∣2 + ∣∣∣〈Â2→1

〉∣∣∣2 = 1

4
sin2(θ1) (4.33)

=⇒ θ1 = sin−1

(
2

√∣∣∣〈Â3→1
〉∣∣∣2 + ∣∣∣〈Â2→1

〉∣∣∣2 ) (4.34)

Knowing θ1, we can find out θ2 from the magnitude of the expectation value of any one of

the ladder-like operators.

θ2 = 2 sin−1

2
∣∣∣〈Â3→1

〉∣∣∣
sin(θ1)

 = 2 cos−1

2
∣∣∣〈Â2→1

〉∣∣∣
sin(θ1)

 = sin−1

2
∣∣∣〈Â3→2

〉∣∣∣
sin2

(
θ1
2

)

(4.35)
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Hence, from the above discussion, we can conclude that the parameters {θ1, θ2, ϕ1, ϕ2}

associated with any pure qutrit can be inferred from the expectation values of the two

ladder-like operators Â2→1 and Â3→1. Experimentally, the expectation values of the above

non-Hermitian operators can be obtained from the interference pattern formed in a Mach-

Zehnder interferometer with each arm having the components corresponding to the oper-

ators obtained from the polar decomposition of the non-Hermitian operators.

4.1.4 Episphere Representation of Qudits

Here, we aim to extend the idea presented in SubSec. 4.1.3 for the parameterization of

qutrits to d-dimensional qudits. In the Episphere representation, any pure state in the

d-dimensional Hilbert space is depicted as a chain of (d − 1) Bloch vectors, instead of

having (d − 1) points on a single Bloch sphere as in the Majorana representation. Each

Bloch vector, in this parameterization, is defined within a Bloch sphere that represents

a subsequent two-dimensional subspace of the d-dimensional Hilbert space. Out of the

(d − 1) spheres constructed for any d-dimensional pure state, (d − 2) are the epispheres

(except for the first one), where the origin of the k-th Bloch sphere (with k > 1) lies at the

tip of the (k − 1)-th Bloch vector, located on the surface of the (k − 1)-th Bloch sphere.

Any ray in d-dimensional Hilbert space can be characterized by (2d−2) real parameters

{θj , ϕj} with j = 1, 2, . . . , (d− 1). Here, θj ∈ [0, π] and ϕj ∈ [−π, π) respectively represent

the polar angle and the azimuthal angle associated with the j-th Bloch vector defined

within the j-th Bloch sphere in the sequence. Eqn. 4.23 presents the Bloch vector v⃗j for

the j-th two dimensional subspace, spanned by |j⟩ and |j + 1⟩. Similar to the expression

in Eqn. 4.24, the Episphere representation of the pure qudit |ψ⟩(d) can be derived by

multiplying the k-th Bloch vector v⃗k with the second element of (k − 1)-th Bloch vector

v⃗k−1 for all k’s varying from 2 to (d− 1) in that particular sequence. Thus, the Episphere

representation of the state for the k-th two-dimensional subspace is obtained as,

|ψ⟩(2;d)k =

k−1∏
j=1

exp(iϕj) sin

(
θj
2

)


cos

(
θk
2

)

exp(iϕk) sin

(
θk
2

)
cos

(
θk+1

2

)
 (4.36)
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The first Bloch vector v⃗1 defined within the 1st Bloch sphere spans the first two-

dimensional subspace given by the states {|1⟩ , |2⟩} and the tip of this Bloch vector lies

at a point with the co-ordinates (θ1, ϕ1) on the surface of this Bloch sphere. The sec-

ond Bloch vector v⃗2 parameterized by (θ2, ϕ2) is defined within the 2nd Bloch sphere

(which is the 1st episphere) that originate from the point (θ1, ϕ1) and spans the 2nd two-

dimensional subspace given by {|2⟩ , |3⟩}. In this way, the (d−1)-th Bloch vector spans the

last two-dimensional subspace of the d-dimensional space with states {|d− 1⟩ , |d⟩} and is

parameterized by (θd−1, ϕd−1). So, in the Episphere representation, a pure qudit can be

parameterized with (d− 1) polar angles θj ’s and (d− 1) azimuthal angles ϕj ’s, with each

pair of parameters arranged in a particular sequence.

Therefore, the Episphere representation of the pure state |ψ⟩(d) in the d-dimensions

can be obtained as,

|ψ⟩(d) =



cos

(
θ1
2

)

eiϕ1 sin

(
θ1
2

)



cos

(
θ2
2

)

eiϕ2 sin

(
θ2
2

)



. . .



cos

(
θk
2

)

eiϕk sin

(
θk
2

)


. . .


cos

(
θd−1

2

)

eiϕd−1 sin

(
θd−1

2

)











(4.37)

Hence, from the above expression, we can see that in terms of the parameters {θj , ϕj}

corresponding to the (d− 1) Bloch vectors, a d-dimensional pure qudit is expressed in the

form of a nested column vector. Now, omitting the nested brackets from Eqn. 4.37 we can
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write the state |ψ⟩(d) as the following single column vector in the Episphere representation.

|ψ⟩(d) =



cos

(
θ1
2

)

eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)
...

k−1∏
j=1

eiϕj sin

(
θj
2

)
cos

(
θk
2

)
...

d−1∏
j=1

eiϕj sin

(
θj
2

)



(4.38)

❑ Does |ψ⟩(d) in Episphere representation spans the entire d-dimensional

Hilbert space?

Next, we need to show that the Episphere representation of the vector |ψ⟩(d) shown above

spans all the rays in the d-dimensional Hilbert space. A general pure state (say, |Ψ⟩(d))

in d-dimensions can be represented by a set of d arbitrary complex numbers αi’s, where

αi ∈ C2 with i = 1, 2, . . . , d. Therefore, we have an arbitrary pure qudit as,

|Ψ⟩(d) = α1 |1⟩+ α2 |2⟩+ . . . . . .+ αd |d⟩ (4.39)

provided the normalization constraint as given below:

|α1|2 + |α2|2 + . . . . . .+ |αd|2 = 1 =⇒
d∑
i=1

|αi|2 = 1 (4.40)

The first term of the vector |Ψ⟩(d) can always be considered as a positive real num-

ber (say, α = |α1|) because the global phase has no physically observable consequence

upon measurement and hence, can be ignored. The normalization constraint restricts the

maximum possible value of this real positive quantity to be 1, i.e., |α1| ≤ 1. Therefore

the term α can always be expressed as α = cos

(
θ1
2

)
, where θ1 ∈ [0, π]. The second
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term, say β, can be in general complex but can have the maximum possible magnitude as√
1− |α1|2 =

√
1− cos2

(
θ1
2

)
= sin

(
θ1
2

)
. Hence, the magnitude of the second term β

can be written as |β| = sin

(
θ1
2

)
cos

(
θ2
2

)
∈ [0, sin

(
θ1
2

)
] given θ2 ∈ [0, π]. So, in the

polar form [15] the second term of the vector can be written as eiϕ1 sin
(
θ1
2

)
cos

(
θ2
2

)
,

where ϕ1 is the argument of the complex number β. Similarly, the k-th term in the vec-

tor can be written as

(
k−1∏
j=1

eiϕj sin

(
θj
2

))
cos

(
θk
2

)
, with the argument being

∑k−1
j=1 ϕj .

The magnitude of the final term i.e., the d-th term for the d-dimensional state, is deter-

mined by all the previous terms due to the given normalization condition and hence, is

expressed as
d−1∏
j=1

eiϕj sin

(
θj
2

)
. Therefore, the polar representation of a pure state |Ψ⟩(d)

in d-dimensional Hilbert space will be the same as given in Eqn. 4.38, i.e., |Ψ⟩(d) ≡ |ψ⟩(d).

Also, we have already verified that in this representation |ψ⟩(2) spans the Hilbert space

for d = 2 (Bloch sphere for qubits) and |ψ⟩(3) spans the Hilbert space for d = 3 (two

sequential Bloch spheres for qutrit, where the second sphere originates from the surface

of the first sphere). Here, we will prove that the set of (2d − 2) parameters {θj , ϕj} with

j = 1, 2, . . . , (d− 1) makes |ψ⟩(d) span the entire vector space in d-dimension by the use of

principle of mathematical induction. For this, first we assume that the state |ψ⟩(m) spans

the entire m-dimensional Hilbert space and then we aim to argue that, by implication,

|ψ⟩(m+1) spans all the rays in the (m+ 1)-dimensional Hilbert space. So, we have

|ψ⟩(m) =



α1

α2

...

αm


=



cos

(
θ1
2

)

eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)
...

m−1∏
j=1

eiϕj sin

(
θj
2

)


(4.41)

Since, |ψ⟩(m) spans the m-dimensional Hilbert space, here we have {α1, α2, . . . , αm} as

the set of arbitrary complex numbers that represent the state |ψ⟩(m) up to a global phase

and constrained to normalization,
∑m

i=1 |αi|
2 = 1. Therefore, we now have to show that

αm+1 is an arbitrary complex number as well, so that the set {α1, α2, . . . , αm, αm+1} can

completely represent the (m+ 1) dimensional state |ψ⟩(m+1).
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The pure state in (m+ 1) dimension can be written as,

|ψ⟩(m+1) =



cos

(
θ1
2

)
...

m−1∏
j=1

eiϕj sin

(
θj
2

)
cos

(
θm
2

)

eiϕm sin

(
θm
2

)



=



β1

...

βm

βm+1


(4.42)

Here, we have to show that {β1, β2, . . . , βm, βm+1} are a set of arbitrary complex numbers,

that can span any ray in the (m + 1)-dimensional Hilbert space. Comparing the vectors

shown in Eqn. 4.41 and Eqn. 4.42, we get the elements of the vectors are same up to the

(m− 1)-th term, i.e., βn = αn for n = 1, 2, . . . , (m− 1). Therefore, from analogy the set,

{β1, β2, . . . , βm−1} are arbitrary complex numbers. Next, we have βm = αm cos

(
θm
2

)
,

i.e., βm is obtained by scaling αm with cos

(
θm
2

)
that ranges between 0 to 1. There-

fore, βm represents an arbitrary complex number as well, given θm ∈ [0, π] which makes

βm ∈ [0, αm]. Thus, we now have to show that βm+1 can be any arbitrary complex number.

Here, we have βm+1 =

(
m−1∏
j=1

eiϕj sin

(
θj
2

))
eiϕm sin

(
θm
2

)
= αm eiϕm sin

(
θm
2

)
.

Since αm is an arbitrary complex number as defined for the description of |ψ⟩(m), the

conditions that θm ∈ [0, π] and ϕm ∈ [−π, π) makes βm+1 an arbitrary complex number as

well with the magnitude |βm+1| bounded by

∣∣∣∣∣ m∏j=1
eiϕj sin

(
θj
2

)∣∣∣∣∣. Thus |ψ⟩(m+1) spans the

entire (m+ 1)-dimensional Hilbert space.

This way of representing a qudit forms an intuitive map between the dynamics of qudits

with dynamics of N -pendulums joined serially end to end [16, 17]. Although in Fig. 4.1

we have represented the z-axis of all the Bloch spheres along the z-axis of the first Bloch

sphere, this is not a requirement and the subsequent Bloch spheres can be rotated along

the direction of the previous Bloch vector. The crucial component of this description is

the sequence in which the Bloch vectors representing the state are arranged.
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4.1.5 Implication from the Normalization Condition for Qudit

Any pure state |ψ⟩(d) in the d-dimensional Hilbert space can be expressed as the superpo-

sition of all the basis states {|k⟩ ; k = 1, 2, . . . , d}, i.e., |ψ⟩(d) =
∑d

k=1 αk |k⟩. Here, αk’s are

complex coefficients representing the probability amplitudes associated with the respective

basis states and are constrained by the normalization condition
∑d

k=1 |αk|
2 = 1. Therefore,

any pure qutrit spanned by the three basis states {|1⟩ , |2⟩ , |3⟩} can be written as,

|ψ⟩(3) = α1 |1⟩+ α2 |2⟩+ α3 |3⟩ (4.43)

satisfying |α1|2 + |α2|2 + |α3|2 = 1 (4.44)

The Episphere representation of the qudit given in Eqn. 4.38 parameterizes the state

with {θj , ϕj}, where j = 1, 2, . . . , (d − 1) and θj ∈ [0, π], ϕj ∈ [−π, π). The k-th term of

the vector |ψ⟩(d) in this representation is given as the following,

αk =

k−1∏
j=1

exp(iϕj) sin

(
θj
2

) cos

(
θk
2

)
(4.45)

Thus, expanding the expression of αk as shown in Eqn. 4.45 for the determination of the

complex coefficients α1, α2 and α3 for a qutrit, we get

α1 = cos

(
θ1
2

)
(4.46)

α2 = exp(iϕ1) sin

(
θ1
2

)
cos

(
θ2
2

)
(4.47)

α3 = exp(iϕ1) sin

(
θ1
2

)
exp(iϕ2) sin

(
θ2
2

)
cos

(
θ3
2

)
(4.48)

Putting these values in the normalization condition
∑3

k=1 |αk|
2 = 1, we get

cos2
(
θ1
2

)
+ sin2

(
θ1
2

)
cos2

(
θ2
2

)
+ sin2

(
θ1
2

)
sin2

(
θ2
2

)
cos2

(
θ3
2

)
= 1 (4.49)



190 Chapter 4. QSI for Qudits and Bipartite Qubit

Rearranging the above expression we get the following,

sin2
(
θ1
2

)[
cos2

(
θ2
2

)
+ sin2

(
θ2
2

)
cos2

(
θ3
2

)]
= 1− cos2

(
θ1
2

)
= sin2

(
θ1
2

)

=⇒ cos2
(
θ2
2

)
+ sin2

(
θ2
2

)
cos2

(
θ3
2

)
= 1

=⇒ sin2
(
θ2
2

)
cos2

(
θ3
2

)
= 1− cos2

(
θ2
2

)
= sin2

(
θ2
2

)

=⇒ cos2
(
θ3
2

)
= 1

Therefore, from the above expression obtained using the normalization condition of

qutrit, we get

θ3 = 2 cos−1 (±1) (4.50)

θ3 = 2nπ, with n = 0, 1, 2, . . . positive integer (4.51)

Since θj ∈ [0, π], the only value that θ3 can take is θ3 = 0. Using the same logic we can

show that a d-dimensional pure state spanned by the basis vectors {|1⟩ , |2⟩ , . . . , |d⟩} when

represented in polar co-ordinates, the normalization condition gives:

θd = 0 (4.52)

Therefore, from Eqn. 4.45 the complex coefficient αd for a pure state in d-dimensions

can be expressed as,

αd =

d−1∏
j=1

exp(iϕj) sin

(
θj
2

) cos

(
θd
2

)
=

d−1∏
j=1

exp(iϕj) sin

(
θj
2

)
(4.53)
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This value θd = 0 will appear to be very useful in the discussion of the next sections in

this chapter where we will attempt to infer the state parameters from the experimentally

obtained interferometric quantities using the scheme Quantum State Interferography.

Quantum State Interferography for Qutrit4.2

Characterization of an arbitrary pure state in 3-dimensional Hilbert space requires 4 real

quantities. In the Episphere representation, as discussed in SubSec. 4.1.3, a pure qutrit is

expressed with {θ1, θ2, ϕ1, ϕ2} as the following,

|ψ⟩(3) =



cos

(
θ1
2

)

eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)

ei(ϕ1+ϕ2) sin

(
θ1
2

)
sin

(
θ2
2

)


(4.54)

Here, the four parameters {θ1, θ2, ϕ1, ϕ2} with θj ∈ [0, π] and ϕj ∈ [−π, π) can span the

entire three dimensional ray space. Thus, an unknown state |ψ⟩(3) can be inferred by ex-

perimentally determining the values of these four parameters that represent the state.

This section will introduce an interferometric scheme using which one can infer the four

parameters associated with a qutrit |ψ⟩(3) − the scheme is termed as Quantum State Inter-

ferography for qutrits. This technique is an extension of the concept discussed in Chapter.

2 which involves the determination of an unknown quantum state in 2-dimensions (i.e.,

any arbitrary qubit), to any pure state in 3-dimensions. Employing Quantum State In-

tererography (QSI), any pure qutrit can be reconstructed by processing two interference

patterns − one obtained by performing single qubit QSI on the 1st two dimensional sub-

space spanned by {|1⟩ , |2⟩} and the other obtained by performing single qubit QSI on the

2nd two dimensional subspace spanned by {|2⟩ , |3⟩}. We will illustrate the method for the

reconstruction of a pure state in spin degrees of freedom, using the schematic in Fig 4.2.
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4.2.1 Theory

The three dimensional Hilbert space spanned by {|1⟩ , |2⟩ , |3⟩} can be considered to have 2

two dimensional subspaces − the 1st subspace consisting of the basis states {|1⟩ , |2⟩} and

the 2nd subspace consisting of the basis states {|2⟩ , |3⟩}. Let, |ψ⟩(2;3)1 and |ψ⟩(2;3)2 are the

components of the states |ψ⟩(3) in the 1st and 2nd two dimensional subspaces respectively,

which in general are not normalized and can be expressed as,

|ψ⟩(2;3)1 =


cos

(
θ1
2

)

eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)
 (4.55)

|ψ⟩(2;3)2 =


eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)

ei(ϕ1+ϕ2) sin

(
θ1
2

)
sin

(
θ2
2

)
 = eiϕ1 sin

(
θ1
2

)
cos

(
θ2
2

)

eiϕ2 sin

(
θ2
2

)
 (4.56)

The superscripts (2; 3) in |ψ⟩(2;3)1 and |ψ⟩(2;3)2 indicates that the states are defined for the

2-dimensional subspaces of the 3-dimensional Hilbert space.

Let, σ̂(1)± represent the spin ladder operator that acts on the 1st two dimensional sub-

space, i.e., σ̂(1)+ raises the state |1⟩ to |2⟩ and σ̂(1)− lowers the state |2⟩ to |1⟩. Similarly, σ̂(2)±

represent the spin ladder operator for the 2nd two dimensional subspace. The expectation

value of σ̂(1)± for the state |ψ⟩(2;3)1 shown in Eqn. 4.55 can be computed as,

〈
σ̂
(1)
±

〉
=
〈
ψ
(2;3)
1

∣∣∣σ̂(1)± ∣∣∣ψ(2;3)
1

〉
=

1

2
exp(±iϕ1) sin(θ1) cos

(
θ2
2

)
(4.57)

Similarly, the expectation value of σ̂(2)± for the state |ψ⟩(2;3)2 expressed in Eqn. 4.56 is

computed to be,

〈
σ̂
(2)
±

〉
=
〈
ψ
(2;3)
2

∣∣∣σ̂(2)± ∣∣∣ψ(2;3)
2

〉
=

1

2
exp(±iϕ2) sin2

(
θ1
2

)
sin(θ2) (4.58)
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Therefore, the parameters ϕ1 and ϕ2 can be determined directly from the arguments of

the expectation values of the spin ladder operators i.e.,
〈
σ̂
(1)
±

〉
defined for the 1st two

dimensional subspace and
〈
σ̂
(2)
±

〉
defined for the 2nd two dimensional subspace.

ϕ1 = ± arg
(〈
σ̂
(1)
±

〉)
(4.59)

ϕ2 = ± arg
(〈
σ̂
(2)
±

〉)
(4.60)

Next, the parameters θ1 and θ2 can be determined from the magnitudes of the complex

expectation values
〈
σ̂
(1)
±

〉
and

〈
σ̂
(2)
±

〉
given in Eqn. 4.57 and Eqn. 4.58 respectively.

∣∣∣〈σ̂(1)± 〉∣∣∣ = 1

2
sin(θ1) cos

(
θ2
2

)
(4.61)

∣∣∣〈σ̂(2)± 〉∣∣∣ = 1

2
sin2

(
θ1
2

)
sin(θ2) (4.62)

One possible way of determining the two quantities θ1 and θ2 is by simultaneous solution of

the above two expressions given in Eqn. 4.61 and Eqn. 4.62. Alternatively, as in the case

for qubits, we can determine the expectation values of the projector operators Π̂
(1)
0 and

Π̂
(2)
0 that acts on the 1st and 2nd two dimensional sub-spaces of the 3-dimensional Hilbert

space, respectively. Π̂
(1)
0 projects any state in the 1st subspace spanned by {|1⟩ , |2⟩} on to

the state |1⟩, thus, can be defined as Π̂(1)
0 = |1⟩⟨1|. Similarly, Π̂(2)

0 projects any state in the

2nd subspace spanned by {|2⟩ , |3⟩} on to the state |2⟩, thus, can be defined as Π̂(2)
0 = |2⟩⟨2|.

The expectation value of the operator Π̂
(1)
0 for the state |ψ⟩(2;3)1 can be computed as,

〈
Π̂

(1)
0

〉
=
〈
ψ
(2;3)
1

∣∣∣Π̂(1)
0

∣∣∣ψ(2;3)
1

〉
= cos2

(
θ1
2

)
(4.63)

Thus, the parameter θ1 can be obtained directly from
〈
Π̂

(1)
0

〉
and knowing θ1 we can

determine θ2 either from Eqn. 4.61 or from Eqn. 4.62.
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θ1 = 2 cos−1

(√〈
Π̂

(1)
0

〉)
(4.64)

θ2 = 2 cos−1

2
∣∣∣〈σ̂(1)± 〉∣∣∣
sin(θ1)

 = sin−1

 2
∣∣∣〈σ̂(2)± 〉∣∣∣

sin2
(
θ1
2

)
 (4.65)

Alternatively, we can also determine the expectation value of Π̂(2)
0 for the state |ψ⟩(2;3)2

in the second two dimensional subspace and can determine θ2 from
〈
Π̂

(2)
0

〉
using the already

known value of θ1 determined from
〈
Π̂

(1)
0

〉
.

〈
Π̂

(2)
0

〉
=
〈
ψ
(2;3)
2

∣∣∣Π̂(2)
0

∣∣∣ψ(2;3)
2

〉
= sin2

(
θ1
2

)
cos2

(
θ2
2

)
(4.66)

giving, θ2 = 2 cos−1


√√√√√√

〈
Π̂

(2)
0

〉
sin2

(
θ1
2

)
 = 2 cos−1


√√√√√

〈
Π̂

(2)
0

〉
1−

〈
Π̂

(1)
0

〉
 (4.67)

Thus, the state parameters associated with an unknown qutrit can be inferred from the

expectation values of the spin ladder operators (σ̂(1)± and σ̂(2)± ) and any of the projector op-

erators (Π̂(1)
0 or Π̂(2)

0 ) defined to act on the respective sub-spaces of the 3-dimensional space.

4.2.2 Experimental Protocol

In order to experimentally determine a pure qutrit |ψ⟩(3) employing the Quantum State In-

terferography (QSI) technique, one needs to design two interferometers, one on each of the

two dimensional sub-spaces of the 3-dimensional space arranged in the sequence in which

we parameterize the three-dimensional vector in the Episphere representation. Here, we

present a generic scheme to construct all the necessary operators in each subspace from the

Pauli operators in the 3-dimensional Hilbert space in order to infer |ψ⟩(3). The proposal

is to use two Mach-Zehnder interferometers (or any equivalent two path interferometers)
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with the required operators in each arms, designed to act on the two individual sub-spaces

as shown in Fig. 4.2 and obtain two interferograms − the post-processing of which will

give the 4 state parameters corresponding to the unknown state |ψ⟩(3).

MZI Setup for 1st Sub-Space 

MZI Setup for 2nd Sub-Space 

𝑀12

𝑀22

𝑀21

𝑆𝑇11

𝑆𝑇12

𝑆𝑇21

𝑆𝑇22

𝑃𝑆1 = exp(𝑖𝜖1)

𝑆𝐹1 =  𝜎𝑥
(1)

𝑃𝑆2 = exp(𝑖𝜖2)

𝑆𝐹2 =  𝜎𝑥
(2)

𝑆𝐶11

𝑆𝐶12

𝑆𝐶22

𝑆𝐶21

𝑀11

𝐵𝑆21

𝐵𝑆22

𝐵𝑆12

𝐵𝑆11

𝐵𝑆0

𝜓 (3)

𝐷2

𝐷1

Figure 4.2: Schematic of the setup to characterize the pure state of a three-dimensional

quantum system, i.e., a pure qutrit using Quantum State Interferography technique. The

beam in the state |ψ⟩(3) is divided into two spatial modes using the beam splitter BS0. Each

mode is made incident on a two path interferometer (here, a Mach-Zehnder Interferometer

formed with beam splitters BSi1 and BSi2 and mirrors Mi1 and Mi2, where i = 1, 2) to

act on the k-th two-dimensional subspace with Π̂
(k)
0 operator in one arm and σ̂(k)x operator

in the other arm of the interferometer; where k = 1, 2 labels the two-dimensional sub-

spaces for d = 3. The intensity distribution Ik as a function of relative phase ϵk of the

interferometer is recorded by the detector Dk placed at the end of each interferometer 7.

7Note that, we have used Ô[d] to represent the operator that acts on the d-dimensional Hilbert space

and Ô(k) to represent the operator that acts on the k-th two dimensional subspace.
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Let us consider the stream of particles in the state |ψ⟩(3) is incident on the QSI setup

shown in Fig. 4.2. First, the input beam is divided into two spatial modes and each such

mode is used to select a particular two dimensional subspace (of the 3-dimensional space)

for which we need to obtain one interferogram. For a qutrit, a 50 : 50 Beam splitter BS0

can be used to divide the incident beam into two spatial modes. For each beam corre-

sponding to a spatial mode, we construct one Mach-Zehnder interferometer (MZI) which

acts on a particular two dimensional subspace. Here, the beam splitters BS11 and BS12

along with the mirrors M11 and M12 forms the MZI for the 1st subspace consisting of spin

modes {|1⟩ , |2⟩}. This is achieved by splitting the beams in the respective paths of the

MZI (after BS11), into three spin modes |1⟩, |2⟩ and |3⟩ by the Spin Tritters ST11 and

ST12 placed in the two individual paths of the MZI and then blocking the beam in the

mode |3⟩. The spin tritter ST is nothing but the σ̂[3]z operation on the beam in the state

|ψ⟩(3), which splits the incident beam into three beams each with one of the eigenstates of

the σ̂[3]z operator. Here, σ̂[3]z is the Pauli spin matrix that acts on the 3-dimensional Hilbert

space. By blocking the beam in the mode |3⟩ in each path of this MZI we effectively select

the two modes |1⟩ and |2⟩ which comprises the first two dimensional subspace.

As in the case for qubit, here also, we polar decompose the non-Hermitian ladder

operator σ̂(1)− for the 1st two dimensional subspace into unitary Û (1) = σ̂
(1)
x which is the

spin flip operator for the modes {|1⟩ , |2⟩} and Hermitian R̂(1) = Π̂
(1)
0 which is the projector

to mode |1⟩ for the 1st space, i.e.,

σ̂
(1)
− = Û (1) R̂(1) = σ̂(1)x Π̂

(1)
0 (4.68)

In order to experimentally obtain the expectation value of σ̂(1)− operator for the 1st sub-

space, we need to place the polar decomposed components σ̂(1)x and Π̂
(1)
0 in each path of

the Mach Zehnder Interferometer (MZI).

Experimentally, the operator Π̂(1)
0 for the 1st two-dimensional subspace with {|1⟩ , |2⟩}

can be effectively realized by blocking the mode |2⟩ in one of the arms of the interfer-

ometer. We then add a phase shifter PS1 in the spin mode |1⟩ in the same arm of the

MZI, which introduces a relative phase ϵ1 between the two interferometric paths. So, the

effective operator in this arm of the MZI is given by exp(iϵ1)Π̂
(1)
0 . In the other arm of the
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MZI, we use the spin flip operator (SF1) to swap the mode |1⟩ with |2⟩ and vice-versa.

Thus, the effective operator in this path is σ̂(1)x . Finally, the spin modes in each arm are

recombined using the spin combiners (reverse of spin tritter) SC11 and SC12 respectively.

Then the beam splitter BS12 recombines the two spatial modes associated with the two

paths of the MZI and the interference pattern generated at the end of this MZI is recorded

using a detector. The detector D1 records the intensity I1 as a function of relative phase ϵ1

of the interferometer, from which we obtain the visibility, phase shift and phase averaged

intensity corresponding to the interference pattern formed for the 1st subspace.

Similarly, the second MZI constructed for the 2nd two dimensional spin subspace

spanned by {|2⟩ , |3⟩} consists of the two beam splitters BS21, BS22 and two mirrors M21,

M22. The 2nd subspace is effectively selected by passing the beams in the two arms of

the interferometer (after BS21) through the spin tritters ST21 and ST22 respectively and

then blocking the beam in the spin mode |1⟩. In one arm of MZI, the beam in the spin

mode |3⟩ is blocked and a phase shifter exp(iϵ2) is placed in the spin mode |2⟩, that ef-

fectively realizes the operator exp(iϵ2)Π̂
(2)
0 in this arm. Here ϵ2 controls the relative phase

between the two paths of the MZI. On the other arm we have a spin-flip operator SF2

which performs the σ̂(2)x operation that swaps the mode |2⟩ with |3⟩ and vice-versa. The

spin modes in each paths of the interferometer are recombined into a single beam using the

spin combiners SC21 and SC22. Then the beams from the two paths of the MZI are com-

bined in BS22 and the intensity I2 as a function of the relative phase ϵ2 is recorded using

the detector D2. The interference pattern obtained for the 2nd subspace is further pro-

cessed to determine the interferometric quantities from which state parameters are inferred.

4.2.3 Inferring the State Parameters to Reconstruct a Pure Qutrit

The MZI designed for the 1st two-dimensional subspace consists of Π̂(1)
0 operator in one arm

and σ̂(1)x operator in the other arm, with the relative phase between the two interferometeric

arms being ϵ1. This makes the overall evolution operator associated the first MZI to be,

Ô(1) =
1

2

(
exp(iϵ1) Π̂

(1)
0 + σ̂(1)x

)
=

1

2

exp(iϵ1) 1

1 0
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When the mode |ψ⟩(2;3)1 associated with the 1st two dimensional subspace propagates

through the Mach Zehnder Interferometer described above, we get the intensity distribution

I1 as a function of ϵ1 at the end of the interferometer as the following,

I1 =
∥∥∥Ô(1) |ψ⟩(2;3)1

∥∥∥2 = 〈
ψ
(2;3)
1

∣∣∣Ô(1)†Ô(1)
∣∣∣ψ(2;3)

1

〉
(4.69)

I1 =
1

4

[〈
1̂(1)

〉
+
〈
Π̂

(1)
0

〉
+ 2
∣∣∣〈σ̂(1)− 〉∣∣∣ cos(ϵ1 + arg

(〈
σ̂
(1)
−

〉))]
(4.70)

where 1̂(1) is the 2 × 2 identity operator for the 1st two dimensional subspace whose

expectation value in the state |ψ⟩(2;3)1 is not equal to 1, since here we have not considered

the normalization of the state. Computing the expectation values of the operators 1̂(1),

Π̂
(1)
0 and σ̂(1)− for the state |ψ⟩(2;3)1 represented in Eqn. 4.55, the intensity I1 as a function

of the relative phase ϵ1 for the 1st subspace can be expressed as,

I1(ϵ1) =
1

16

[
5 + cos(θ2) + cos(θ1)(3− cos(θ2)) + 4 sin(θ1) cos

(
θ2
2

)
cos(ϵ1 − ϕ1)

]
(4.71)

Similarly, the mode |ψ⟩(2;3)2 given in Eqn. 4.56 associated with the 2nd two dimensional

subspace when propagates through the Mach Zehnder Interferometer with Π̂
(2)
0 operator

in one arm and σ̂
(2)
x operator in the other arm, the intensity distribution obtained at the

end of the interferometer as a function of the relative phase ϵ2 can be expressed as,

I2 =
∥∥∥Ô(2) |ψ⟩(2;3)2

∥∥∥2 = 〈
ψ
(2;3)
2

∣∣∣Ô(2)†Ô(2)
∣∣∣ψ(2;3)

2

〉
(4.72)

I2(ϵ2) =
1

4

[〈
1̂(2)

〉
+
〈
Π̂

(2)
0

〉
+ 2
∣∣∣〈σ̂(2)− 〉∣∣∣ cos(ϵ2 + arg

(〈
σ̂
(2)
−

〉))]
(4.73)

I2(ϵ2) =
1

8
sin2

(
θ1
2

)
[3 + cos(θ2) + 2 sin(θ2) cos(ϵ2 − ϕ2)] (4.74)

where Ô(2) is the overall evolution operator corresponding to the MZI designed to act on

the 2nd two dimensional subspace and is given as the following:
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Ô(2) =
1

2

(
exp(iϵ2) Π̂

(2)
0 + σ̂(2)x

)
=

1

2

exp(iϵ2) 1

1 0

 (4.75)

From each of the two interference patterns we need to determine the phase shift (Φk),

phase averaged intensity (Īk) and visibility (Vk) associated with the particular sub-spaces.

❑ Phase Shift: For the 1st subspace, the phase shift Φ1 of the interference pattern

generated in the MZI, is determined at the value of phase ϵ1 that maximizes the intensity

I1. Thus, Φ1 can be obtained by solving for ϵ1 in the equation
∂I1(ϵ1)

∂ϵ1
= 0 and ensuring

that
∂2I1(ϵ1)

∂ϵ12

∣∣∣∣
ϵ1=Φ1

< 0. From Eqn. 4.71 we get,

∂I1(ϵ1)

∂ϵ1

∣∣∣∣
ϵ1=Φ1

= −1

4
sin(θ1) cos

(
θ2
2

)
sin(Φ1 − ϕ1) = 0 (4.76)

The above expression gives Φ1 − ϕ1 = nπ, where n is any integer. When n = 0, we get

Φ1 = ϕ1, for which we ensure that

∂2I1(ϵ1)

∂ϵ12

∣∣∣∣
ϵ1=Φ1=ϕ1

= −1

4
sin(θ1) cos

(
θ2
2

)
< 0 (4.77)

given 0 ≤ sin(θ1) ≤ 1 for θ1 ∈ [0, π] and 0 ≤ cos

(
θ2
2

)
≤ 1 for θ2 ∈ [0, π]. Thus, we get the

phase shift of the interference pattern generated for the first subspace at ϵ1 = ϕ1. So, the

state parameter ϕ1 can be directly obtained from the phase shift of the first interference

pattern I1(ϵ1), i.e.,

ϕ1 = Φ1 (4.78)

Next, the phase shift Φ2 of the interference pattern obtained for the 2nd subspace is

determined at the value of ϵ2 for which the intensity I2 is maximum. Thus, Φ2 can be

obtained from I2(ϵ2) gven in Eqn. 4.74 using the same method discussed for finding Φ1.
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∂I2(ϵ2)

∂ϵ2

∣∣∣∣
ϵ2=Φ2

= −1

4
sin2

(
θ1
2

)
sin(θ2) sin(Φ2 − ϕ2) = 0 (4.79)

∂2I2(ϵ2)

∂ϵ22

∣∣∣∣
ϵ2=Φ2=ϕ2

= −1

4
sin2

(
θ1
2

)
sin(θ2) < 0 (4.80)

provided sin2
(
θ1
2

)
is always positive and 0 ≤ sin(θ2) ≤ 1 as θ2 ∈ [0, π]. Hence, the phase

shift of the interference pattern I2(ϵ2) is obtained at ϵ2 = ϕ2. So, the state parameter ϕ2

can be directly obtained from the phase shift Φ2 of the interferogram, i.e.,

ϕ2 = Φ2 (4.81)

❑ Average Intensity: Now, the phase averaged intensities Ī1 and Ī2 can be obtained

by integrating the interference patterns I1(ϵ1) and I2(ϵ2) over all possible phases.

Ī1 =

∫
ϵ1

I1(ϵ1)dϵ1 =
1

16
[5 + cos(θ2) + cos(θ1)(3− cos(θ2))] (4.82)

Ī2 =

∫
ϵ2

I2(ϵ2)dϵ2 =
1

8
sin2

(
θ1
2

)
[3 + cos(θ2)] (4.83)

Here, both Ī1 and Ī2 are functions of the polar angles θ1 and θ2 respectively. Therefore,

we can obtain the state parameters θ1, θ2 from the simultaneous solutions of the above

two expressions using the experimentally obtained quantities Ī1 and Ī2. Hence, the four

state parameters {θ1, θ2, ϕ1, ϕ2} can be obtained from the phase shifts and the average

intensities of the two interference patterns obtained for the two sub-spaces.

❑ Visibility: The visibility of an interference pattern can be computed using the

maximum intensity I(max) and the minimum intensity I(min), as the following:

V =
I(max) − I(min)

I(max) + I(min)
(4.84)
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Now, if we compute the visibilities of the two interference patterns I1(ϵ1) and I2(ϵ2) ob-

tained at the end of the QSI setup for qutrit depicted in Fig. 4.2, we get

V1 =

4 sin(θ1) cos

(
θ2
2

)
5 + cos(θ2) + cos(θ1)(3− cos(θ2))

(4.85)

V2 =
2 sin(θ2)

3 + cos(θ2)
(4.86)

From the above expressions of visibility we can see that V2 is a unique function of θ2.

Therefore, the parameter θ2 can be directly obtained from the visibility V2 of the interfer-

ence pattern obtained for the 2nd two dimensional subspace. Knowing θ2 we can determine

θ1 from the visibility V1. Thus, the 4 state parameters associated with a pure qutrit can

also be determined from the experimentally obtained phase shifts and visibilities of the

interference patterns. Alternatively, θ1 can also be computed from the experimentally

determined average intensity Ī1 using Eqn. 4.82 or Ī2 using 4.83, considering we have

already determined the value of θ2 from the visibility V2.

In summary, the Quantum State Interferography technique can be employed to char-

acterize an unknown pure state of a 3-dimensional quantum system. In this protocol, the 4

state parameters {θ1, θ2, ϕ1, ϕ2} with θ1, θ2 ∈ [0, π] and ϕ1, ϕ2 ∈ [−π, π), representing the

state |ψ⟩(3) can be obtained from the post-processing of two interference patterens only.

The two interferograms are formed at the end of the interferometric setup with 2 two path

interferometers designed to act on each of the two dimensional sub-spaces {|1⟩ , |2⟩} and

{|2⟩ , |3⟩} of the 3-dimensional Hilbert space. The parameters ϕ1 and ϕ2 can be inferred

directly from the phase shifts of the two interference patterns and the parameters θ1 and

θ2 can be determined either from the visibilities or from the phase averaged intensities

of the two interferograms. This scheme can be further generalized to d-dimensions where

the state parameters for an unknown qudit |ψ⟩(d) can be inferred from (d − 1) interfero-

grams associated with the (d− 1) two dimensional sub-spaces. The respective sub-spaces

can be selected by blocking all the components after a spin splitter (eqivalent to Spin Trit-

ter ST for qutrit) except for the desired pair − details will be discussed in the next section.
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Quantum State Interferography for Qudit: The
General Scheme

4.3

We have already seen how the Quantum State Interferography technique can be employed

for the reconstruction of any arbitrary qubit (d = 2), whether mixed or pure, as well as the

pure state of a qutrit (d = 3). In this section, we will present an extension of the scheme

to generalize the characterization of an unknown qudit (d > 2) using interferometry as the

tool. This extended protocol, however, is only applicable for pure state reconstructions in

d-dimension and does not work for mixed states in general.

In the Episphere representation, a pure state in a d-dimensional Hilbert space i.e., a

pure qudit can be expressed in the polar spherical form with (2d− 2) parameters {θj , ϕj},

discussed in SubSec. 4.1.4, as the following:

|ψ⟩(d) =



cos

(
θ1
2

)

exp(iϕ1) sin

(
θ1
2

)
cos

(
θ2
2

)
...

n−1∏
j=1

exp(iϕj) sin

(
θj
2

)
cos

(
θn
2

)
...

d−1∏
j=1

exp(iϕj) sin

(
θj
2

)



(4.87)

Now, if we consider that the d-dimensional Hilbert space is spanned by the basis vectors

{|1⟩ , |2⟩ , . . . , |d⟩}, then the complex co-efficient αn associated with the n-th basis state

(|n⟩) can be written as,

αn =

n−1∏
j=1

exp(iϕj) sin

(
θj
2

) cos

(
θn
2

)
(4.88)

The d-dimensional space can be considered to have (d− 1) two dimensional sub-spaces ar-

ranged in a particular sequence, each sub-space consisting of two consecutive basis states in
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that sequence. For example, the 1st two dimensional subspace consists of the basis states

{|1⟩ , |2⟩}. The component of the state |ψ⟩(d) associated with this subspace is labeled as

|ψ⟩(2;d)1 which, in general, is not normalized and can be expressed as |ψ⟩(2;d)1 =

α1

α2

. Sim-

ilarly, the 2nd subspace consists of the basis states {|2⟩ , |3⟩} and the component of |ψ⟩(d)

in this subspace is written as |ψ⟩(2;d)2 =

α2

α3

 and so on. Thus, the k-th two dimensional

subspace would be spanned by the basis states {|k⟩ , |k + 1⟩} with the associated complex

coefficients αk and αk+1 being expressed as,

αk =

k−1∏
j=1

exp(iϕj) sin

(
θj
2

) cos

(
θk
2

)
(4.89)

αk+1 =

 k∏
j=1

exp(iϕj) sin

(
θj
2

) cos

(
θk+1

2

)
(4.90)

Therefore, the component of |ψ⟩(d) associated with the k-th two-dimensional subspace in

the Episphere representation, can be written as the following:

|ψ⟩(2;d)k =

 αk

αk+1

 =

k−1∏
j=1

exp(iϕj) sin

(
θj
2

)


cos

(
θk
2

)

exp(iϕk) sin

(
θk
2

)
cos

(
θk+1

2

)


(4.91)

In order to infer the state |ψ⟩(d) experimentally, we need to determine the (2d − 2)

state parameters {θj , ϕj} with j = 1, 2, . . . , (d − 1), where θj ∈ [0, π] and ϕj ∈ [−π, π).

The determination of all these (2d − 2) parameters associated with the state |ψ⟩(d) using

the interferometric scheme − the quantum state interferography (QSI) for d-dimensional

systems requires post-processing of the quantities obtained from (d − 1) interferograms.

To achieve this, we need to construct (d − 1) interferometers, one acting on each of the

two dimensional sub-spaces (arranged in a particular order) of the d-dimensional space and

need to perform single qubit QSI on each of the sub-spaces.
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Although, here we shall be formulating the protocol of QSI for qudits using (d − 1)

interferometers for ease of conceptualization, in principle and for many physical systems

in practice, the state can be inferred from (d − 1) interferograms obtained with a setup

involving only two interferometers. This is achieved by using the same interferometer for

all the two dimensional sub-spaces and getting all the information required to infer |ψ⟩(d)

at once at the end of the interferometer; the details of which will be discussed in Section 4.4.

4.3.1 Theory

The component |ψ⟩(2;d)k of the pure qudit |ψ⟩(d), in the k-th two dimensional subspace

spanned by {|k⟩ , |k + 1⟩} is given in the Eqn. 4.91. Now, let us consider σ̂(k)± be the spin

ladder operator for the k-th two-dimensional subspace, 8 i.e., σ̂(k)+ raises the state |k⟩ to

|k + 1⟩ and σ̂(k)− lowers the state |k + 1⟩ to |k⟩. The complex expectation values of the spin

ladder operators σ̂(k)± in the k-th two dimensional subspace can be computed as,

〈
σ̂
(k)
±

〉
=
〈
ψ
(2;d)
k

∣∣∣σ̂(k)± ∣∣∣ψ(2;d)
k

〉

=
1

2

k−1∏
j=1

sin2
(
θj
2

) exp(±iϕk) sin(θk) cos
(
θk+1

2

)
(4.92)

〈
σ̂
(k)
±

〉
=

1

2
ξ(k) exp(±iϕk) sin(θk) cos

(
θk+1

2

)
(4.93)

where, we have considered ξ(k) =
k−1∏
j=1

sin2
(
θj
2

)
. So, from the above expression, we get

the argument and the magnitude of the complex expectation values
〈
σ̂
(k)
±

〉
as,

arg
(〈
σ̂
(k)
±

〉)
= ± ϕk (4.94)

8Here, the notation Ô(k) is used to denote the operator Ô meant for the qubit associated with the k-th

two dimensional subspace. The operators for d-dimensional qudits are represented as Ô[k].
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∣∣∣〈σ̂(k)± 〉∣∣∣ = ξ(k)

2
sin(θk) cos

(
θk+1

2

)
(4.95)

So, from Eqn. 4.94 we directly get the relative phase ϕk of the k-th two-dimensional

subspace from the argument of the matrix element of the spin ladder operator in that

subspace. From Eqn. 4.95, however, we can see that the determination of θk requires the

knowledge of θk+1 and ξ(k), which is a function of {θ1, θ2, . . . , θk−1}. For the 1st sub-space

(i.e., k = 1), where ξ(1) = 1, the magnitude of the expectation value
〈
ψ
(2;d)
1

∣∣∣σ̂(1)± ∣∣∣ψ(2;d)
1

〉
is a function of both θ1 and θ2, as can be seen from the expression below and hence, can

not be determined without any additional information.

∣∣∣〈σ̂(1)± 〉∣∣∣ = ∣∣∣ 〈ψ(2;d)
1

∣∣∣σ̂(1)± ∣∣∣ψ(2;d)
1

〉∣∣∣ = 1

2
sin(θ1) cos

(
θ2
2

)
(4.96)

Nevertheless, as in the case for qubits, we can compute the matrix element of Π̂(k)
0 in

the k-th two-dimensional subspace, where Π̂
(k)
0 is the projector to the first mode in that

subspace. Thus, for the k-th subspace spanned with {|k⟩ , |k + 1⟩}, we have Π̂
(k)
0 = |k⟩⟨k|.

The expectation value of this projector computed for the state |ψ⟩(2;d)k is given as,

〈
Π̂

(k)
0

〉
=
〈
ψ
(2;d)
k

∣∣∣Π̂(k)
0

∣∣∣ψ(2;d)
k

〉
= ξ(k) cos2

(
θk
2

)
(4.97)

Therefore, θk can be determined from the above expression provided we already know ξ(k),

i.e., {θ1, θ2, . . . , θk−1}. Now, for the 1st subspace consisting of the basis vectors {|1⟩ , |2⟩}

if we determine the expectation value of Π̂(1)
0 which is the projector to state |1⟩, we get

〈
Π̂

(1)
0

〉
=
〈
ψ
(2;d)
1

∣∣∣Π̂(1)
0

∣∣∣ψ(2;d)
1

〉
= cos2

(
θ1
2

)
(4.98)

Thus, from the above equation we can determine θ1 as the following,

θ1 = 2 cos−1

(√〈
Π̂

(1)
0

〉)
(4.99)
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Once θ1 is known, subsequently we can determine θ2 using the values of either
∣∣∣〈σ̂(1)± 〉∣∣∣ =∣∣∣ 〈ψ(2;d)

1

∣∣∣σ̂(1)± ∣∣∣ψ(2;d)
1

〉∣∣∣ or
〈
Π̂

(2)
0

〉
=
〈
ψ
(2;d)
2

∣∣∣Π̂(2)
0

∣∣∣ψ(2;d)
2

〉
.

θ2 = 2 cos−1

2
∣∣∣〈σ̂(1)± 〉∣∣∣
sin(θ1)

 (4.100)

or

θ2 = 2 cos−1


√√√√√√

〈
Π̂

(2)
0

〉
sin2

(
θ1
2

)
 (4.101)

Similarly, θ3 can be determined from the already known values of θ1 and θ2 using either∣∣∣〈σ̂(2)± 〉∣∣∣ or
〈
Π̂

(3)
0

〉
.

Hence, for inferring a d-dimensional pure state |ψ⟩(d) the state parameters ϕk’s can

be determined directly from the arguments of the expectation values of the spin ladder

operators in the respective sub-spaces, i.e., from arg
(〈
σ̂
(k)
±

〉)
. The polar angle θ1 is

determined using the value of
〈
Π̂

(1)
0

〉
and θ2 is determined either from

∣∣∣〈σ̂(1)± 〉∣∣∣ or from〈
Π̂

(2)
0

〉
, using the value of θ1. Therefore, once θk is determined, θk+1 can be obtained

sequentially either from the magnitude of
〈
σ̂
(k)
±

〉
or from the value of

〈
Π̂

(k+1)
0

〉
. So, the

state parameters of |ψ⟩(d) are inferred as,

ϕk = ± arg
(〈
σ̂
(k)
±

〉)

θk = 2 cos−1


√√√√〈Π̂(k)

0

〉
ξ(k)




k = 1, 2, 3, . . . , d− 1

or

θk′ = 2 cos−1

 2

∣∣∣∣〈σ̂(k′−1)±

〉∣∣∣∣
ξ(k′ − 1) sin

(
θk′−1

)


 k
′
= 2, 3, . . . , d− 1 (4.102)
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4.3.2 Experimental Protocol

So far we have discussed how the (2d − 2) parameters {θj , ϕj} with j = 1, 2, . . . , (d − 1),

necessary to characterize a pure state in the d-dimensions, can be inferred from the expec-

tation values of the spin ladder operators
〈
σ̂
(k)
±

〉
and the projector

〈
Π̂

(k)
0

〉
, obtained for

the individual two dimensional sub-spaces. In this subsection, we will present a generic

protocol for experimentally determining the expectation values of the sequence of spin

ladder operators and the projectors in order to reconstruct the pure qudit |ψ⟩(d) using the

interferometric state determination technique, quantum state interferography (QSI). The

protocol involves constructing (d− 1) Mach Zehnder interferometers (or an equivalent two

path interferometer) on each of the two-dimensional sub-space of the d-dimensional state

|ψ⟩(d), in the sequence in which we represent the vector. Each interferometer yields an

interferogram (i.e., the intensity distribution over the relative phase between the two inter-

ferometric paths) and the information from these (d− 1) interferograms is post-processed

to obtain the state parameters {θj , ϕj}.

The QSI setup for reconstructing a d-dimensional pure state would be similar to the

setup for reconstructing a qutrit i.e., a state in d = 3, as shown in Fig. 4.2, but with

(d − 1) Mach-Zehnder interferometers (MZI) instead of just two. In the interferometric

setup for d-dimensional pure qudit reconstruction, the incident beam in the unknown state

|ψ⟩(d) is split into (d − 1) spatial modes. Each spatial mode, for example the k-th mode,

selects a specific two dimensional sub-space spanned by the states {|k⟩ , |k + 1⟩} of the

d-dimensional space. A MZI, with the respective operators in its two paths, is aligned

for each of the spatial modes on which single qubit QSI is performed that generates an

interference pattern corresponding to a particular subspace. This method is scalable to

any higher dimensional system.

We employ the same scheme of polar decomposing the non-Hermitian spin ladder op-

erator σ̂(k)− in the two-dimensional k-th subspace into the Unitary σ̂(k)x and positive semi-

definite Hermitian Π̂
(k)
0 , as the following

σ̂
(k)
− = σ̂(k)x Π̂

(k)
0 (4.103)
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To experimentally determine
〈
σ̂
(k)
−

〉
for the two dimensional subspace with {|k⟩ , |k + 1⟩},

we place the polar decomposed components of this non-Hermitian operator in the two re-

spective arms of a Mach Zehnder interferometer (or any equivalent two path interferom-

eter). On one arm of the interferometer, we have the operator exp(iϵk)Π̂
(k)
0 , i.e., a phase

shifter PSk that controls the relative phase ϵk between the two arms of the k-th interfer-

ometer and a projector Π̂
(k)
0 on the mode |k⟩ in k-th two dimensional subspace. In the

other arm of the interferometer, we have the operator σ̂(k)x which is the spin-flip operator

in the k-th subspace that swaps |k⟩ with |k + 1⟩ and vice versa. Experimentally we have to

design (d−1) such Mach-Zehnder interferometer (MZI) setups for estimating the state of a

d-dimensional pure qudit. From each such MZI, we can effectively obtain the expectation

value of the ladder operator σ̂(k)− for k-th subspace.

Let’s consider that a stream of identically prepared quantum particles in the state

|ψ⟩(d) is incident on the experimental setup with (d − 1) Mach-Zehnder interferometers,

each having the operators σ̂(k)x and exp(iϵk)Π̂
(k)
0 associated with the respective sub-spaces

in the individual arms. First, the beam is divided into (d−1) spatial modes and each such

spatial mode is used to select one of the two dimensional sub-spaces. If the initial beam

is incident on the setup with the intensity I, then each of the spatial mode would have

the intensity
I

d− 1
(ideally). Now, (d − 1) components of |ψ⟩(d) corresponding to each

subspace, i.e., the states |ψ⟩(2;d)n where n = 1, 2, . . . , (d− 1), associated with the individual

two-dimensional sub-spaces are prepared from each of the spatial modes. For example,

consider the state |ψ⟩(2;d)k associated with the k-th two dimensional subspace spanned by

the basis {|k⟩ , |k + 1⟩} is prepared from one of the spatial modes. This state preparation

in a particular spatial mode of the beam is done in three steps;

(i) First, decomposing the d-dimensional state into the basis states i.e., {|1⟩ , |2⟩ , . . . , |d⟩}

using a spin-splitter (say, SSk). This can be achieved by applying the σ̂[d]z operator

on the k-th spatial mode of the beam.

(ii) Then, blocking all the eigen states of σ̂[d]z operator except the desired pair, i.e., except

|k⟩ and |k + 1⟩ for selecting the k-th subspace.

(iii) Lastly, recombining the beams in the two states |k⟩ and |k + 1⟩ into a single beam

using a spin-combiner (say, SCk).
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The beam in the k-th spatial mode is now prepared in the state |ψ⟩(2;d)k , given in

Eqn. 4.91. Next, this beam in the particular state |ψ⟩(2;d)k associated with the k-th

two-dimensional subspace is made incident on the Mach-Zehnder interferometer (MZI)

constructed to act on that particular subspace. The MZI designed using two beam split-

ters BSk1, BSk2 and two mirrors Mk1, Mk2, consists of the operators exp(iϵk)Π̂
(k)
0 in one

arm and the operator σ̂(k)x in the other arm. The intensity Ik at one of the output ports

of the final beam splitter BSk2 of the MZI, is recorded as a function of the relative phase

ϵk, which is processed to get the state parameters.

The effective evolution operator, from the input port of the beam splitter BSk1 to one

of the output ports of the final beam splitter BSk2, of the two path interferometer acting

on the k-th subspace, can be written as

Ô(k) =
1

2

(
exp(iϵk) Π̂

(k)
0 + σ̂(k)x

)
(4.104)

=⇒ Ô(k) =
1

2

exp(iϵk) 1

1 0


(2;d)

k

(4.105)

Therefore, when a beam in the state |ψ⟩(2;d)k propagates through an interferometer with

the corresponding evolution operator Ô(k), the final state at one of the output ports after

the interferometer is obtained to be,

|Ψ⟩(2;d)k = Ô(k) |ψ⟩(2;d)k (4.106)

Thus, the intensity Ik recorded by the detector Dk at the end of the interferometer

constructed to act on k-th two dimensional subspace is given by,

Ik =
∥∥∥|Ψ⟩(2;d)k

∥∥∥2 = ∣∣∣〈Ψ(2;d)
k

∣∣∣Ψ(2;d)
k

〉∣∣∣2 (4.107)

Using the expressions given in Eqn. 4.104 and Eqn. 4.106 we get the expression for

intensity as a function of the relative phase ϵk as the following:
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Ik(ϵk) =
〈
ψ
(2;d)
k

∣∣∣Ô(k)†Ô(k)
∣∣∣ψ(2;d)
k

〉
(4.108)

=
1

4

〈
ψ
(2;d)
k

∣∣∣ [(σ̂(k)x

)†
σ̂(k)x +

(
Π̂

(k)
0

)†
Π̂

(k)
0 + exp(iϵk)

(
σ̂(k)x

)†
Π̂

(k)
0

+ exp(−iϵk)
(
Π̂

(k)
0

)†
σ̂(k)x

] ∣∣∣ψ(2;d)
k

〉 (4.109)

Here, σ̂(k)x is a Hermitian operator, i.e.,
(
σ̂
(k)
x

)†
= σ̂

(k)
x . So, we get

(
σ̂
(k)
x

)†
σ̂
(k)
x =

(
σ̂
(k)
x

)2
=

1̂(k). Again, since Π̂
(k)
0 is the projector on to the k-th mode in the corresponding two

dimensional subspace, we have
(
Π̂

(k)
0

)†
= Π̂

(k)
0 and

(
Π̂

(k)
0

)†
Π̂

(k)
0 = Π̂

(k)
0 . Therefore, the

above expression of intensity can be written as,

Ik(ϵk) =
1

4

[〈
1̂(k)

〉
+
〈
Π̂

(k)
0

〉
+ 2Re

(
exp(iϵk)

〈
σ̂(k)x Π̂

(k)
0

〉)]

=
1

4

[〈
1̂(k)

〉
+
〈
Π̂

(k)
0

〉
+ 2Re

(
exp(iϵk)

〈
σ̂
(k)
−

〉)]

=
1

4

[〈
1̂(k)

〉
+
〈
Π̂

(k)
0

〉
+ 2
∣∣∣〈σ̂(k)− 〉∣∣∣ cos(ϵk + arg

(〈
σ̂
(k)
−

〉))]
(4.110)

Note that, here the expectation value of the identity operator in the two dimensional

k-th subspace is not unity, i.e.,
〈
1̂(k)

〉
̸= 1. This is because the mode

∣∣∣ψ(2;d)
k

〉
for which

the expectation value is being computed, is a component of the state |ψ⟩(d) and it is not

normalized. The expectation value of 1̂(k) in the state
∣∣∣ψ(2;d)
k

〉
is computed to be,

〈
1̂(k)

〉
=
〈
ψ
(2;d)
k

∣∣∣1̂(k)
∣∣∣ψ(2;d)
k

〉
= ξ(k)

[
cos2

(
θk
2

)
+ sin2

(
θk
2

)
cos2

(
θk+1

2

)]
(4.111)

Putting the values of
〈
1̂(k)

〉
,
〈
Π̂

(k)
0

〉
, the argument and magnitude of

〈
σ̂
(k)
−

〉
from Eqn.

4.111, Eqn. 4.97, Eqn. 4.94 and Eqn. 4.95 respectively, in the expression given in Eqn.

4.110 we get the intensity Ik as a function of relative phase ϵk obtained at the end of the

interferometer designed for the two dimensional k-th subspace.
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Ik(ϵk)

=
ξ(k)

4

[
2 cos2

(
θk
2

)
+ sin2

(
θk
2

)
cos2

(
θk+1

2

)
+ sin(θk) cos

(
θk+1

2

)
cos(ϵk − ϕk)

]

=
ξ(k)

16

[
5 + cos(θk+1) + cos(θk)(3− cos(θk+1)) + 4 sin(θk) cos

(
θk+1

2

)
cos(ϵk − ϕk)

]
(4.112)

Experimentally this intensity Ik is measured as a function of the relative phase ϵk be-

tween the two paths of the k-th interferometer and the interferometric quantities such as

the visibility (Vk), phase shift (Φk) and phase averaged intensity (Īk) are obtained for the

k-th subspace from Ik(ϵk). This is repeated for all the (d− 1) subspaces, i.e, one intensity

distribution (called the interferogram) each is recorded from one interferometer designed

to act on a particular subspace. The information collected from (d − 1) interferograms

are analyzed to infer the (2d− 2) state parameters associated with the state |ψ⟩(d) which

was incident on the setup. The details of the analysis is discussed next, in SubSec. 4.3.3.

Further, the derivation of the expectation values of the operators σ̂(k)± , Π̂(k)
0 corresponding

to the k-th two dimensional subspace and the associated intensity distribution Ik(ϵk) ob-

tained from the single qubit QSI performed on that subspace, considering normalization

of the state |ψ⟩(2;d)k is presented in Appendix 4.A.

4.3.3 Inferring the State Parameters to Reconstruct the Pure Qudit

The mode |ψ⟩(2;d)k associated with the k-th two dimensional subspace of the d-dimensional

space, spanned by {|k⟩ , |k + 1⟩} with k = 1, 2, . . . , (d−1) provided θd = 0, can be expressed

in terms of the Episphere co-ordinates as the following,

|ψ⟩(2;d)k =

k−1∏
j=1

exp(iϕj) sin

(
θj
2

)


cos

(
θk
2

)

exp(iϕk) sin

(
θk
2

)
cos

(
θk+1

2

)
 (4.113)
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The first term outside the matrix form is nothing but a global factor multiplied with the

amplitude of the vector in the k-th subspace. Hence, the intensity modulation Ik obtained

by evolving the state |ψ⟩(2;d)k through the interferometer designed for that subspace, would

not be affected by the factor but would be scaled by the factor
k−1∏
j=1

sin2
(
θj
2

)
.

The intensity pattern Ik(ϵk) for the k-th subspace, formed at the end when the mode

|ψ⟩(2;d)k is incident on the MZI having Π̂
(k)
0 operator in one arm and σ̂

(k)
x operator in the

other arm, with a relative phase ϵk between the two interferometric arms is given as,

Ik =
ξ(k)

16

[
5 + cos(θk+1) + cos(θk)(3− cos(θk+1)) + 4 sin(θk) cos

(
θk+1

2

)
cos(ϵk − ϕk)

]
(4.114)

where the factor ξ(k) is given by,

ξ(k) =
k−1∏
j=1

sin2
(
θj
2

)
(4.115)

❑ Phase Shift: The phase shift Φk of the interferogram is determined from the value

of relative phase ϵk that corresponds to the maximum intensity. Say, for ϵk = ϵ
(m)
k , we

have Ik(ϵk = ϵ
(m)
k ) = I

(max)
k . Therefore,

∂Ik(ϵk)

∂ϵk

∣∣∣∣
ϵk=ϵ

(m)
k

= −ξ(k)
4

sin(θk) cos

(
θk+1

2

)
sin
(
ϵ
(m)
k − ϕk

)
= 0 (4.116)

From the above equation we get, ϵ(m)
k − ϕk = nπ, where n can take the values either 0

giving ϵ(m)
k = ϕk or 1 giving ϵ(m)

k = ϕk+π. Now, at the phase ϵ(m)
k that corresponds to the

maximum intensity, the double derivative of Ik(ϵk) with respect to ϵk would be negative.

So, the criteria that needs to be satisfied would be,

∂2Ik(ϵk)

∂ϵk2

∣∣∣∣
ϵk=ϵ

(m)
k

= −ξ(k)
4

sin(θk) cos

(
θk+1

2

)
cos
(
ϵ
(m)
k − ϕk

)
< 0 (4.117)
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Provided θk ∈ [0, π], both sin(θk) and cos

(
θk+1

2

)
are always positive and we have ξ(k) > 0,

as well. Thus, in order to satisfy the condition presented in Eqn. 4.117 we must have

cos
(
ϵ
(m)
k − ϕk

)
> 0, i.e., 0 ≤ ϵ(m)

k − ϕk <
π

2
. Therefore, the value ϵ(m)

k = ϕk ensures

∂2Ik(ϵk)

∂ϵk2

∣∣∣∣
ϵ
(m)
k =ϕk

< 0 (4.118)

giving Ik(ϵk = ϕk) = I
(max)
k . Hence, the phase shift of the interference pattern generated

for the k-th subspace, would be

Φk = ϕk (4.119)

Thus, the state parameters {ϕk} with k = 1, 2, . . . , (d − 1) for a d-dimensional pure

qudit can be directly obtained from the experimentally observed phase shifts {Φk} of the

(d − 1) interference patterns generated at the end of the Mach Zehnder Interferometers,

each designed to act on a particular two dimensional subspace.

❑ Average Intensity: The phase averaged intensity is obtained by integrating the

intensity distribution Ik(ϵk) over all possible phases (ϵk), i.e.,

Īk =

∫
ϵk

Ik(ϵk)dϵk =
ξ(k)

16
[5 + cos(θk+1) + cos(θk)(3− cos(θk+1))] (4.120)

So, the average intensity Īk of the interferogram obtained for the k-th subspace is a function

of {θ1, θ2, . . . , θk, θk+1}. Using the above equation, the parameter θk can be determined

from the experimentally obtained value of Īk for a given θk+1 and known ξ(k). But in

order to reconstruct the state, all the unknown parameters need to be determined from

the experiment, i.e., from the information recorded in the interferograms.

From (d− 1) interference patterns we have (d− 1) measured values of Īk and need to

infer (d−1) values of θk’s. The determination of the θk’s is not straight forward because of
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the presence of the term ξ(k) =
k−1∏
j=1

sin2
(
θj
2

)
. In order to eliminate the product of sines

the ratio of Īk to Īk−1 can be taken.

Īk
Īk−1

=

sin2
(
θk−1
2

)
[5 + cos(θk+1) + cos(θk)(3− cos(θk+1))]

5 + cos(θk) + cos(θk−1)(3− cos(θk))
(4.121)

The above ratio of average intensities for the k-th and (k−1)-th sub-spaces is a function of

three variables θk−1 , θk and θk+1. Here k represents the chosen two-dimensional subspace,

thus can take values from 1 to (d− 1).

If we take the ratio of average intensities Īd−1 and Īd−2 obtained from the interference

patterns generated for the modes |ψ⟩(2;d)d−1 and |ψ⟩(2;d)d−2 associated with (d−1)-th and (d−2)-

th subspace respectively, we get

Īd−1
Īd−2

=

sin2
(
θd−2
2

)
[5 + cos(θd) + cos(θd−1)(3− cos(θd))]

5 + cos(θd−1) + cos(θd−2)(3− cos(θd−1))
(4.122)

From the normalization criteria for the state |ψ⟩(d), we have θd = 0 as shown in SubSec.

4.1.5. Thus, putting the value cos(θd) = 1 in the above equation we get,

Īd−1
Īd−2

=

2 sin2
(
θd−2
2

)
(3 + cos(θd−1))

5 + cos(θd−1) + cos(θd−2)(3− cos(θd−1))
(4.123)

Therefore, using only the average intensities Īk of the (d − 1) interferograms we can

not determine the state parameters {θk}. However, if any of the parameters θd−1 or θd−2

are known, the other parameter can be determined from the above ratio of the average

intensities
Īd−1
Īd−2

using Eqn. 4.123. Once θd−1, θd−2 are known, the parameter θd−3 can be

obtained from the ratio,
Īd−2
Īd−3

and so on.

Īd−2
Īd−3

=

sin2
(
θd−3
2

)
[5 + cos(θd−1) + cos(θd−2)(3− cos(θd−1))]

5 + cos(θd−2) + cos(θd−3)(3− cos(θd−2))
(4.124)
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❑ Visibility: The visibility of the interference pattern for the k-th subspace can be

determined by computing,

Vk =
I
(max)
k − I(min)k

I
(max)
k + I

(min)
k

(4.125)

where I(max)k and I
(min)
k represents the maximum and minimum values of the intensities

obtained experimentally from the interferogram Ik(ϵk) corresponding to the k-th subspace.

Varying the phase ϵk in the expression given in Eqn. 4.114 we get the maximum and

minimum intensity values as the following,

I
(max)
k =

ξ(k)

16

[
5 + cos(θk+1) + cos(θk)(3− cos(θk+1)) + 4 sin(θk) cos

(
θk+1

2

)]
(4.126)

I
(min)
k =

ξ(k)

16

[
5 + cos(θk+1) + cos(θk)(3− cos(θk+1))− 4 sin(θk) cos

(
θk+1

2

)]
(4.127)

Thus the visibility of the interference pattern for the k-th subspace can be computed as,

Vk =

4 sin(θk) cos

(
θk+1

2

)
5 + cos(θk+1) + cos(θk)(3− cos(θk+1))

(4.128)

This quantity Vk, which is obtained to be a function of θk and θk+1, is experimentally

determined from the interferogram for the k-th subspace and can be used to infer the state

parameters {θj} with j = 1, 2, . . . , (d − 1). Visibility for (d − 1)-th subspace, provided

θd = 0, can be expressed as

Vd−1 =

4 sin(θd−1) cos

(
θd
2

)
5 + cos(θd) + cos(θd−1)(3− cos(θd))

=
2 sin(θd−1)

3 + cos(θd−1)
(4.129)
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So, the value of θd−1 can be determined from the experimentally obtained value of Vd−1

using the Eqn. 4.129 by solving the expression as shown in the following.

(3 + cos(θd−1))Vd−1 = 2 sin(θd−1)

=⇒
(
V 2
d−1 + 4

)
cos2(θd−1) + 6V 2

d−1 cos(θd−1) +
(
9V 2

d−1 − 4
)
= 0 (4.130)

Then the obtained value of θd−1 can be put into Eqn. 4.123 to compute the value of

θd−2. Alternatively, θd−2 can be determined using the experimentally obtained value of

visibility Vd−2 of the interferogram generated for the (d − 2)-th subspace and the known

value of θd−1, from the following expression

Vd−2 =

4 sin(θd−2) cos

(
θd−1
2

)
5 + cos(θd−1) + cos(θd−2)(3− cos(θd−1))

(4.131)

Knowing θd−2, the value for θd−3 can be inferred from the experimentally obtained quantity

Vd−3 as shown in the following or from the ratio
Īd−2
Īd−3

as shown in Eqn. 4.124.

Vd−3 =

4 sin(θd−3) cos

(
θd−2
2

)
5 + cos(θd−2) + cos(θd−3)(3− cos(θd−2))

(4.132)

Therefore, the characterization of a d-dimensional pure state |ψ⟩(d) using Quantum

State Interferography technique requires processing of (d − 1) interferograms generated

for each individual two dimensional sub-spaces of the d-dimensional space. The (d − 1)

values of the azimuthal angles {ϕk} can be directly obtained from the phase shifts Φk of

the respective interferograms. However, the state parameter θd−1 can be inferred from

the experimentally obtained visibility Vd−1 of the interferogram produced for (d − 1)-th

two dimensional subspace. Once θd−1 is determined, all the other polar angles θj (where

j = 1, 2, . . . , (d − 2)) can be determined in the backward sequence as described above,

either from the visibility Vj or from the ratio of the average intensities
Īj+1

Īj
.
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❑ Alternative Method for Determining the Polar Angles:

In the method discussed above, the determination of θj ’s for |ψ⟩(d) require post-processing

of the interferogram for the (d−1)-th subspace first, so that the already known information

θd = 0 can be utilized while inferring θd−1. Once θd−1 is known all the other polar angles

θd−2, θd−3, . . . , θ1 can be determined sequentially. Alternatively, we can directly obtain θ1

and θ2 from the simultaneous solution of the expressions,

V1 =

4 sin(θ1) cos

(
θ2
2

)
5 + cos(θ2) + cos(θ1)(3− cos(θ2))

(4.133)

Ī1 =
1

16
[5 + cos(θ2) + cos(θ1)(3− cos(θ2))] (4.134)

given ξ(1) = 1. Here both the quantities V1 and Ī1 are obtained experimentally from the

interferogram recorded at the end of the interferometer designed to act on the 1st two

dimensional subspace spanned by the states |1⟩ and |2⟩.

The advantage in this process is that once we know the parameters θ1 and θ2, we can

infer θ3 from the experimental quantities Ī2 or V2. In this method, we only have to solve

the simultaneous equations once for the interferometric quantities V1 and Ī1 obtained for

the first subspace. Then the recursive property of Īk and Vk can be used to infer θk+1

and subsequently the other θj ’s. Note that, from above we may have multiple solutions in

which case we have to resort to solving for θk and θk+1 using Vk and Īk.

4.3.4 Quantum State Interferography for Mixed Qudit

After discussing the scheme for the successful reconstruction of an arbitrary pure qudit state

from (d− 1) interference patterns generated in a single setup with (d− 1) interferometers

using quantum state interferography (QSI), the natural question that follows is: Whether

this Interferometric Protocol can be applied to infer any Mixed State of a Qudit?

❑ Inferring Mixed Qudits using QSI: A mixed state in d-dimensional Hilbert space,

say ρ̂[d], can be completely described with (d2 − 1) number of independent real quantities.
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Thus, to reconstruct a mixed state in d-dimensions using the interferometric technique, we

need to infer (d2 − 1) quantities from a number of interference patterns produced when

the state ρ̂[d] evolves through an interferometric setup with the necessary operators. The

protocol described above for the pure state reconstruction, involves (d− 1) interferometers

and three distinct real quantities i.e., phase shift, phase averaged intensity and visibility

to be obtained from each of the interference patterns generated at the end of the inter-

ferometer. Thus, using this particular setup we can have a total of 3(d− 1) experimental

quantities. For d ≥ 3, we have d2 − 1 > 3(d − 1), and hence this protocol, in the current

form, cannot be extended to infer mixed state of qudits.

Thus, in summary, an unknown pure state in d-dimensions can be determined using

an interferometric technique by analyzing (d−1) interference patterns produced in a single

setup. A qudit state |ψ⟩(d), when evolved through an experimental setup with (d− 1) two

path interferometers, each designed to act on a particular two dimensional subspace of the

d-dimensional Hilbert space arranged in a particular sequence, having a projector to the

first mode of the subspace in one path and a spin flip operator for that subspace in the

other path, we obtain (d − 1) interference patterns at the end. All the state parameters

{θj , ϕj} with j = 1, 2, . . . , (d − 1) that specify the d-dimensional pure state as a chain

of (d− 1) Bloch vectors in Episphere representation, can be inferred experimentally from

the phase shifts, average intensities and visibilities of the (d − 1) interference patterns.

Once the (2d − 2) state parameters are known from the experiment, the state |ψ⟩(d) can

be constructed using the Eqn. 4.87. Therefore, quantum state interferography provides a

single shot state determination protocol for qudits, where an unknown pure qudit can be

characterized from a number of interference patterns obtained in a single setup without

the need to alter any internal settings within the setup during the experiment. Further,

for an unknown pure state characterization quantum state interferography (QSI) demands

the number of data acquisitions to be (d − 1) as compared to (5d − 7) in quantum state

tomography (QST) [18] with the pure state assumption, that provides a scaling advantage

as the dimensionality of the Hilbert space increases.
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Quantum State Interferography for Qudit: The
Scheme Employing Two Interferometers4.4

In the last section, we have presented how the Quantum State Interferography (QSI) tech-

nique can be employed to infer a pure quantum state |ψ⟩(d) in d-dimensions from the

(d− 1) interference patterns. The scheme is described with the use of (d− 1) Mach Zehn-

der interferometers designed for each one of the two-dimensional sub-spaces, spanned by

two consecutive basis states of the d-dimensional Hilbert space. The use of Mach Zehnder

interferometer (MZI) in experiments is not trivial because of the need to stabilize the path

length difference of the interferometer against the noises. MZI is very sensitive to the

external vibrations (such as acoustic or mechanical) which changes the path lengths inside

the interferometer over time, affecting the relative phase between the two interferomet-

ric arms. Thus, to obtain any consistent phase information from the interference pattern

formed at the end of the interferometer, it needs to be phase stabilized. Also, aligning

the interferometer in a non-collinear configuration gives the intensity as function of phase

difference directly, without requiring to change any settings in the experimental set-up.

As discussed in the Sec. 4.3, it seems that we need to construct (d− 1) Mach Zehnder

interferometers for inferring the d-dimensional pure qudit state |ψ⟩(d). Hence, it would ap-

pear experimentally challenging to set up that many interferometers with the components

corresponding to the respective operators in each interferometric path, mostly from two

perspectives − one for the increase in the requirement of resources (the optical and opto-

mechanical components) as the dimensionality increases and the other, for the increase in

the complexity in maintaining a constant phase for each of the MZI through phase sta-

bilization. Depending on the system, it could be experimentally easier to switch to other

types of interferometers, like Sagnac interferometer or double slit interferometer, which do

not require stabilization and hence are relatively easy to set up in practice.

However, it is not always necessary to have (d− 1) interferometers to get (d− 1) inter-

ference patterns. To reconstruct a pure qudit state using QSI one needs more and more

interference patterns as the dimension goes higher and higher. But the scaling is linear

i.e., (d− 1) interferograms are required to infer the state of d-dimensional pure qudit. All

these interference patterns can be obtained at once using only two interferometers, if we
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observe the interference patterns on a camera i.e., using a 2D imaging sensor. The key

idea is to stack the interference patterns vertically (assuming each interferogram is formed

along the horizontal) so that the same interferometer can be used for obtaining the required

interferometric information from each subspace.

4.4.1 Experimental Protocol for Single-Shot Characterization of Pure

Qudit: 2D Imaging with Two Interferometers

The scheme presented in Sec. 4.3 is a conceptual extension of QSI for qubits discussed

in Chapter. 2, to higher dimensions where the beam (in the state |ψ⟩(d)) incident on the

setup is divided into (d − 1) spatial modes and each mode is sent through one MZI de-

signed to act on a particular two dimensional subspace. Since, in the process of selecting

a particular two-dimensional subspace from each spatial mode, we discard all particles

that do not belong to the basis states within the desired subspace, the proposed scheme

is a lossy one. From a stream of identical particles incident on the setup, only O
(
2

d

)
particles are used to perform QSI for d-dimensional qudits because after the σ̂[d]z operation

in each spatial mode, we block all the beams except the two corresponding to the two

dimensional sub-spaces inside an interferometer. However, if we make the modification in

the experimental setup as shown in Fig. 4.3, not only the requirement of the interfer-

ometer goes down to two for all d > 2 but also the interferometric technique (QSI) for

inferring |ψ⟩(d) becomes more efficient. The key idea is to obtain all the interferograms,

required to infer the state parameters θj ’s and ϕj ’s, from the same interferometer designed

to act on all the sub-spaces at once and record all of them using the 2D-imaging technique.

First, the d-dimensional qudit, say |ψ⟩(d), incident on the QSI setup is decomposed into

the eigen states of σ̂[d]z operator. This could be implemented for spin degree of freedom

by applying an inhomogeneous magnetic field along ẑ so that the components of the state

split along the z direction, i.e., vertically [19, 20]. In this way the beam in the unknown

state |ψ⟩(d) is divided into d number of spatial modes, each in one of the eigenstates |n⟩,

where n = 1, 2, . . . , d. Next, the Bragg mirrors (labeled as MV in the diagram) make all

the beams in different states propagate along the y-direction i.e., make the beams parallel

to each other arranged along z direction. The beams now pass through the Bragg beam
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splitter BSV1 which then splits each of the beam vertically into two beams with equal

intensities. So, after the beam splitter BSV1 we have 2d number of beams along z; verti-

cally from top the first two beams are in the state |1⟩ (labeled as |1⟩1 , |1⟩2), the 3rd and

4th beams are in the state |2⟩ (labeled as |2⟩3 , |2⟩4) and so on. Thus in general (2n− 1)-

th and 2n-th beam after BSV1 are in the state |n⟩, labeled as |n⟩2n−1 and |n⟩2n respectively.
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Figure 4.3: Schematic of the interferometric setup for characterizing a state in the d-

dimensional Hilbert space using Quantum State Interferography technique. The pure qudit

|ψ⟩(d) evolving through the setup can be inferred from (d − 1) interferograms obtained

with the use of only two interferometers. The first interferometer is used to select the two

dimensional sub-spaces on which the required operations can be performed using the second

interferometer to get the interference patterns associated with each of the sub-spaces.

The beams from the adjacent eigenstates |k⟩ and |k + 1⟩ ∀ k = 1, 2 . . . , (d − 1) are

combined using the Bragg beam combiner BSV2 . Thus, after BSV2 we have (d− 1) beams,
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each associated with one of the two dimensional sub-spaces of the d-dimensional Hilbert

space. Here, the combination needs to be coherent and hence the spin splitter σ̂[d]z and

the beam combiner BSV2 forms the first interferometer using which (d− 1) sub-spaces can

be selected simultaneously by stacking the beams vertically. Half of the intensity of the

beams in the eigen modes |1⟩ and |d⟩ are blocked so that each two dimensional subspace

has apriori unbiased contribution from the two eigenstates. So, after BSV2 the k-th beam

from top is in the state |ψ⟩(2;d)k which is a component of |ψ⟩(d) in the k-th two dimensional

subspace spanned by the basis states {|k⟩ , |k + 1⟩}.

❖ The evolution of the state |ψ⟩(d) through the First Interferometer:

Evolution of the d-dimensional qudit incident on the QSI setup shown in Fig. 4.3 from

σ̂
[d]
z operator to BSV2 is shown from left to right in the following,

|ψ⟩(d) σ̂[d]
z−−−→

|1⟩
BSV1−−−−−→

(|1⟩1 + |1⟩2)√
2

|2⟩
BSV1−−−−−→

(|2⟩3 + |2⟩4)√
2


BSV2−−−−−→

(|1⟩2 + |2⟩3)√
2

= |ψ⟩(2;d)1

...

|k⟩
BSV1−−−−−→

(|k⟩2k−1 + |k⟩2k)√
2

|k + 1⟩
BSV1−−−−−→

(|k + 1⟩2k+1 + |k + 1⟩2k+2)√
2


BSV2−−−−−→

(|k⟩2k + |k + 1⟩2k+1)√
2

= |ψ⟩(2;d)k

...

...

|d⟩
BSV1−−−−−→

(|d⟩2d−1 + |d⟩2d)√
2


BSV2−−−−−→

(|d− 1⟩2d−2 + |d⟩2d−1)√
2

= |ψ⟩(2;d)d−1

(4.135)

Once the sub-spaces are selected across the individual beams along z after BSV2 , we

need to obtain the interferograms for each of the subspaces. For this, as shown in the inset

(a) of Fig. 4.3, the state |ψ⟩(2;d)k associated with the k-th two dimensional subspace of

the qudit needs to be made incident and evolved through a two path interferometer, such
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as a Mach Zehnder Interferometer (MZI). On one arm of the interferometer, we need to

have the projector Π̂
(k)
0 for the k-th subspace (which projects a state to the mode |k⟩ in

that subspace) and on the other arm we need to implement the evolution operator σ̂(k)x

(which is the spin-flip operator that swaps the state |k⟩ with |k + 1⟩ and vice-versa) for

the k-th subspace. In the QSI setup for qudit, the Bragg beam splitter BSH1 which splits

an incident beam horizontally into two beams of equal intensities, along with the beam

combiner BSH2 forms the Mach Zehnder interferometer to be acting on all the sub-spaces

at once. The interferometer can be made non-collinear such that the interference pattern

is obtained along the horizontal (i.e., along x) as a function of the relative phase ϵ between

the two paths of the interferometer, as shown in Fig. 4.3.

The (d−1) interferograms can be obtained using the same interferometer as the beams

corresponding to the (d − 1) subspaces are stacked vertically. The use of same pair of

beam splitter and beam combiner (i.e., BSH1 and BSH2) for all the (d − 1) sub-spaces

implies that instead of stabilizing the otherwise (d−1) MZIs now we need to stabilize only

one. Also, the operators Π̂
(k)
0 for the k-th two dimensional subspace can be realized by

simply using the σ̂[d]z measurement operator for the qudit in one arm of the interferometer.

This operator will split the beam in each subspace into two eigenstates. For the k-th

subspace, σ̂[d]z decomposes the state |ψ⟩(2;d)k into |k⟩ and |k + 1⟩. Now to effectively realize

the operator Π̂
(k)
0 for k-th subspace, the beam in the state |k + 1⟩ can be blocked and the

beam in the state |k⟩ can be allowed through the interferometer. The evolution operator

σ̂
(k)
x for the k-th subspace is the same as the σ̂[d]x evolution operator for the d-dimensional

qudit. Thus, the operations R̂ = Π̂
(k)
0 and Û = σ̂

(k)
x , that needs to be performed on

a state to obtain the interferograms in all the two-dimensional sub-spaces can have the

same physical implementation. Therefore, in the second interferometer each beam in the

respective state |ψ⟩(2;d)k evolves through the effective operator Ô(k) as described below.

Ô(k) =
1

2

(
exp(iϵ)Π̂

(k)
0 + σ̂(k)x

)
=

1

2

exp(iϵ) 1

1 0

 (4.136)

where, ϵ is the relative phase between the two paths of the MZI formed with BSH1 and

BSH2 and the mirrors MH1 and MH2 that redirects the beams.
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❖ Evolution through the Second Interferometer:

As the state |ψ⟩(2;d)k evolves through the second interferometer, we have the following:

|ψ⟩(2;d)k
MZI−−−−→ Ô(k) |ψ⟩(2;d)k

This evolution gives the intensity distribution Ik(ϵ) for each of the two dimensional sub-

spaces on a 2D imaging screen as computed below,

Ik(ϵ) =
∥∥∥Ô(k) |ψ⟩(2;d)k

∥∥∥2 = 〈
ψ
(2;d)
k

∣∣∣Ô(k)†Ô(k)
∣∣∣ψ(2;d)
k

〉

=
1

4

[〈
1̂(k)

〉
+
〈
Π̂

(k)
0

〉
+ 2Re

(
exp(iϵ)

〈
σ̂(k)x Π̂

(k)
0

〉)]
(4.137)

In terms of the state parameters {θj , ϕj}, for j = 1, 2, . . . , (d− 1), we can express

Ik(ϵ) =
ξ(k)

16

[
5 + cos(θk+1) + cos(θk)(3− cos(θk+1)) + 4 sin(θk) cos

(
θk+1

2

)
cos(ϵ− ϕk)

]
(4.138)

where, the factor ξ(k) is expressed as, ξ(k) =
k−1∏
j=1

sin2
(
θj
2

)
. Processing the k-th inter-

ference pattern Ik(ϵ) formed on the screen, we obtain the quantities such as the phase

shift (Φk), phase-averaged intensity (Īk) and visibility (Vk) as presented in Eqn. 4.119,

Eqn. 4.120 and Eqn. 4.128 respectively. All these interferometric information, obtained

experimentally from the (d− 1) interferograms recorded simultaneously at the end of the

setup using 2D imaging technique, are further utilized to infer the state parameters to

characterize |ψ⟩(d) as discussed in detail in SubSec. 4.3.3.

4.4.2 Operator Descriptions for d-dimensions:

Here, we will present how the operators Π̂[d]
0 and σ̂[d]x described to act on the d-dimensional

Hilbert space, can effectively function as the operators Π̂
(k)
0 and σ̂

(k)
x for the k-th two

dimensional subspace. For a d-dimensional system, the matrix elements of σ̂[d]x and σ̂
[d]
z

operators are given as [21],
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σ̂x

∣∣∣∣[d]
i,j

= (δi+1,j + δi,j+1)
√

(s+ 1)(i+ j − 1)− ij (4.139)

σ̂z

∣∣∣∣[d]
i,j

= 2δi,j(s+ 1− i) (4.140)

where, we have i, j = 1, 2, . . . d for d-dimensions. The dimensionality of the Hilbert space

is given by d = 2s + 1, with s representing the spin quantum number 9 associated with

the spin angular momentum S of the quantum system [22] (where, S = ℏ
√
s(s+ 1) with

ℏ being the reduced Plank Constant, i.e., ℏ =
h

2π
). For example, the dimension d = 5

corresponds to s = 2.

For the k-th two dimensional subspace, we have i = k, k + 1 and j = k, k + 1. Thus,

using Eqn. 4.139 we can compute the corresponding matrix elements σ̂x
∣∣[d]
i,j

of the σ̂[d]x

operator for that subspace. The elements are as expressed in the following:

σ̂x

∣∣∣∣[d]
k,k

= (δk+1,k + δk,k+1)
√
(s+ 1)(2k − 1)− k2 = 0 (4.141)

σ̂x

∣∣∣∣[d]
k,k+1

= (δk+1,k+1 + δk,k+2)
√

(s+ 1)(2k)− k(k + 1) =
√
k(d− k) (4.142)

σ̂x

∣∣∣∣[d]
k+1,k

= (δk+2,k + δk+1,k+1)
√
(s+ 1)(2k)− (k + 1)k =

√
k(d− k) (4.143)

σ̂x

∣∣∣∣[d]
k+1,k+1

= (δk+2,k+1 + δk+1,k+2)
√
(s+ 1)(2k + 1)− (k + 1)2 = 0 (4.144)

Therefore, using the elements computed above, the 2× 2 spin-flip operator σ̂(k)x for the

k-th two dimensional subspace of the d-dimensional space can be written as,

9The spin quantum number s can take integer or half-integer values, i.e., s =
n

2
, where n is any

non-negative integer.
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σ̂(k)x =

 σ̂x
∣∣[d]
k,k

σ̂x
∣∣[d]
k,k+1

σ̂x
∣∣[d]
k+1,k

σ̂x
∣∣[d]
k+1,k+1

 =
√
k(d− k)

0 1

1 0

 (4.145)

The factor
√
k(d− k) only modifies the amplitude of the states after the evolution through

the σ̂(k)x operation which swaps |k⟩ with |k + 1⟩ and vice-versa. Hence, when the input is

restricted to the subspace {|k⟩ , |k + 1⟩}, the σ̂[d]x operator for the d-dimensional Hilbert

space also acts as the σ̂(k)x operator for the two dimensional k-th subspace. Thus, the

σ̂
(k)
x operators for all the two dimensional sub-spaces can be realized by the action of σ̂[d]x

operator within the 2nd interferometer.

As we can see from the example below, for the operator σ̂[5]x described within d = 5

dimensional Hilbert space, the highlighted two-dimensional matrices σ̂(k)x are a scalar times

the σ̂x operation in the respective two dimensional sub-spaces. This holds true for all the

sequential pairwise two-dimensional sub-spaces for arbitrary d-dimensions.

σ̂[5]x =



0 2 0 0 0

2 0
√
6 0 0

0
√
6 0

√
6 0

0 0
√
6 0 2

0 0 0 2 0



Next, we will determine the σ̂[d]z operator and the respective σ̂(k)z operators correspond-

ing to the two-dimensional sub-spaces. From the expression of matrix elements σ̂z
∣∣[d]
i,j

shown in Eqn. 4.140, we can imply that only the diagonal elements of σ̂[d]z operator would

survive. For the k-th subspace, for which i = k, k+1 and j = k, k+1 we can compute the

matrix elements as,

σ̂z

∣∣∣∣[d]
k,k

= 2δk,k(s+ 1− k) = 2(s+ 1− k) (4.146)

σ̂z

∣∣∣∣[d]
k,k+1

= 2δk,k+1(s+ 1− k) = 0 (4.147)
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σ̂z

∣∣∣∣[d]
k+1,k

= 2δk+1,k(s+ 1− k − 1) = 0 (4.148)

σ̂z

∣∣∣∣[d]
k+1,k+1

= 2δk+1,k+1(s+ 1− k − 1) = 2(s− k) (4.149)

Using the elements of σ̂[d]z operator computed above, we can write the σ̂(k)z operator for

the k-th two dimensional subspace as follows,

σ̂(k)z =

 σ̂z
∣∣[d]
k,k

σ̂z
∣∣[d]
k,k+1

σ̂z
∣∣[d]
k+1,k

σ̂z
∣∣[d]
k+1,k+1

 = 2

s+ 1− k 0

0 s− k

 (4.150)

As an example, the operator σ̂[d]z described for the d = 5 dimensional Hilbert space

can be obtained as a diagonal matrix with the diagonal elements representing the values

of spin-magnetic quantum number ms = {2, 1, 0,−1,−2} for a spin s = 2 system 10.

σ̂[5]z = 2



2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 − 1 0

0 0 0 0 −2



In the matrix representation of the operator σ̂[d]z shown above, the operators σ̂(k)z for the two

dimensional sub-spaces of the 5-dimensional space are highlighted with different colours,

which are all diagonal matrices associated with the states |k⟩ and |k + 1⟩ that span the

corresponding subspace. Therefore, the σ̂[d]z operator for any arbitrary value of d, can serve

as the σ̂(k)z operator for any subspace k with the input state |ψ⟩(2;d)k .

10Spin-magnetic quantum number ms represents the projection of the spin angular momentum S along

z-direction as Sz = msℏ. Hence, ms is also referred to as the spin-projection quantum number along z.
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4.4.3 Quantum State Interferography for Pure Qudit: An Alternate

Approach with Two Interferometers

So far in this Section, we have seen how a d-dimensional pure state |ψ⟩(d) can be character-

ized using the Quantum State Interferography (QSI) technique from (d−1) interferograms,

produced with only two interferometers − one used to prepare the states corresponding to

the two-dimensional sub-spaces and the other used to perform single qubit QSI on those

sub-spaces. The protocol described in SubSec. 4.4.1 provides a single shot state estimation

scheme for the qudits, in which all the (d−1) interference patterns required to reconstruct

the state can be obtained employing a 2D-imaging technique without the need to make

any changes in the experimental settings once the setup is aligned. However, if captur-

ing a 2D image is not possible for some specific system, we can alternatively change the

experimental settings for (d − 1) times in the two interferometer setup to obtain (d − 1)

interferograms as shown in Fig. 4.4 and discussed in detail in the context of a d = 5

dimensional pure state reconstruction.

Let us consider an unknown state in 5-dimensions |ψ⟩(d=5) needs to be characterized

experimentally using the interferometric technique for a system where any one of the

following is satisfied, i.e, where,

(i) it is impossible to physically realize the operators Π̂
[5]
0 and σ̂

[5]
x that can act on all

the two-dimensional sub-spaces of the 5-dimensional space at the same time,

(ii) there is no scope to prepare the beams in the states |ψ⟩(2;5)k associated with different

two dimensional sub-spaces all together,

(iii) it is impossible to capture a 2D image in that system.

For such a system, the stream of particles in the state |ψ⟩(5) incident on the setup, is first

resolved into the d = 5 eigenstates of the σ̂[5]z operator that acts on the 5-dimensional

Hilbert space, as expressed in Eqn. 4.4.2. Any two adjacent beams in the states |k⟩ and

|k + 1⟩ where k = 1, 2, 3, 4, (say, in states |2⟩ and |3⟩, as shown in schematic of Fig. 4.4),

can be allowed to pass through in order to select one of the two-dimensional sub-spaces

(here, the 2nd subspace spanned by {|2⟩ , |3⟩}) and the rest (here, |1⟩ , |4⟩ and |5⟩) can be

blocked using beam blockers. Those two beams are combined into a single beam using a

beam combiner to effectively prepare the state for a particular two dimensional subspace
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(here, |ψ⟩(2;5)2 for 2nd subspace). This needs to be a coherent combination and effectively

the beam combiner along with σ̂
[5]
z would form one interferometer. The setting inside

the interferometer needs to be changed for (d − 1) times (4 times for this example) to

select (d − 1) sub-spaces for performing QSI in d-dimension. For each setting the beam

blockers need to be moved between the beams such that only one pair of adjacent beams in

states |k⟩ and |k + 1⟩ passes through and recombines into a single beam in the state |ψ⟩(2;d)k .

𝑄𝑢𝑑𝑖𝑡

𝜓 (5)

 𝜎𝑧
[5]

|1⟩

|2⟩

|3⟩

|4⟩

|5⟩

𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝐹𝑖𝑟𝑠𝑡 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟

𝐵𝑒𝑎𝑚
𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑟

𝑆𝑒𝑐𝑜𝑛𝑑
𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟

 𝜎𝑥
[5]

 𝑅𝑘↔𝑘+1 Π0
[5]

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑎𝑡𝑡𝑒𝑟𝑛
𝑓𝑜𝑟 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒

𝐵𝑒𝑎𝑚
𝐵𝑙𝑜𝑐𝑘𝑒𝑟

Figure 4.4: Schematic of the Quantum State Interferography setup for a generic d-

dimensional qudit (here, d = 5) state reconstruction with two interferometers. All the

state parameters of a pure state in d-dimensions are inferred by processing (d − 1) inter-

ferograms obtained by changing the settings of the two interferometers (d− 1) times. The

first interferometer selects one particular subspace and the second interferometer performs

the single qubit QSI on that subspace at a particular time.

Next, to perform QSI on the selected subspace k, we need one more interferometer with

the polar decomposed components of non-Hermitian σ̂
(k)
− operator in the two respective

paths. Here, in the setup shown in Fig. 4.4 a double slit interferometer is used, with σ̂(k)x

operator on one of the slits and Π̂
(k)
0 operator on the other slit. The spin-flip operator σ̂(k)x

can simply be the σ̂[5]x operator on the d = 5 dimensional Hilbert space, as shown in SubSec.

4.4.2. The projector Π̂
(k)
0 for the k-th two dimensional subspace can be constructed from

Π̂
[5]
0 operator with the rotation of basis using the operators R̂k↔k+1. The operator Π̂

[5]
0
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is effectively realized with a σ̂[5]z operator with all the beams except the beam in the first

eigenstate being blocked. By changing the orientation of the components corresponding to

these rotation operations R̂k↔k+1, different Π̂(k)
0 operators for the choice of subspace with

{|k⟩ , |k + 1⟩} can be realized.

Hence, overall for the reconstruction of arbitrarily high d-dimensional qudits, only two

interferometers are needed to be set up − one for choosing one particular subspace i.e.,

decomposing the incident unknown state into its basis states and combining the beams in a

selected subspace (this can be a Sagnac interferometer) and the other being the double slit

interferometer that performs single qubit QSI on the selected two dimensional subspace.

The cost, however is that, we need to move the blocks (d− 1) times to allow a certain pair

of states, say |k⟩ and |k + 1⟩, to pass through and for each such combination the projector

needs to be rotated so that it is set to Π̂
(k)
0 . Therefore, unlike the scheme presented in

SubSec. 4.4.1, this QSI scheme without the use of 2D imaging does not provide a single-

shot state estimation technique for the qudits. However, both the QSI schemes with the

use of two interferometers, described in this section appear to be more efficient than the

scheme described in Sec. 4.3 (details in Appendix. 4.B).

In summary, the pure state reconstruction in a d-dimensional Hilbert space using

Quantum State Interferography technique requires post-processing of (d − 1) interfero-

grams which can be obtained from as low as two interferometers. The state |ψ⟩(d) can be

inferred in a single shot where there is no need to change the internal settings of the setup

and all the interferograms are recorded at once using a 2D imaging screen i.e., using a

camera. The operators for the subspace can be realized with the operators available for d-

dimensional Hilbert space. Alternatively the state can be inferred from two interferometers

by changing the setup for (d−1) times and recording a single interference pattern at a time

− each time selecting a different subspace using the first interferometer and performing

QSI on that subspace using the second interefrometer. Although, the above schemes are

discussed in the context of spin degree of freedom, characterization of the pure qudit can

be achieved for most systems with the realization of the suitable operators.
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Quantum State Interferography for Bipartite Qubits4.5

So far, Quantum State Interferography technique has been discussed as an interferometric

tool to determine arbitrary (pure or mixed) states of qubits (d = 2) and pure states of

qudits (d > 2). It has appeared as a single-shot state determination scheme for qubits as

well as for qudits, which does not require any change in the experimental setting in between

the incidence of the unknown state and extraction of the state information. In this section,

the scope of the Quantum State Interferography (QSI) technique will be extended for the

determination of the unknown state of bipartite systems. The interferometric scheme for

characterizing the bipartite states in polarization degree of freedom of light will be pre-

sented. The method shall be applicable to all bipartite systems once one identifies the

realization of relevant operators required in this protocol.

First, the general state of a two qubit system would be parameterized in terms of

the Bloch sphere co-ordinates and then an experimental protocol with the post-processing

analysis techniques to determine those parameters associated with the unknown bipartite

qubit state will be presented, in this section. Here, the protocol for the reconstruction

of the polarization state associated with a pair of photons, say signal photon A and idler

photon B, generated by Spontaneous Parametric Down Conversion (SPDC) process [23,

24] will be worked out. We will explore that an unknown bipartite state reconstruction

using Quantum State Interferography (QSI) requires post-processing of 3 interference pat-

terns −− two interference patterns obtained by performing single qubit QSI on the two

individual particles A and B respectively and one heralded interference pattern obtained

from the single qubit QSI of the B particles conditioned to A particles being projected to

state |H⟩. Just for comparison, the conventional and widely used technique − Quantum

State Tomography (QST) for bipartite qubit state assuming that the state is pure would

require 9 measurement settings [25, 26] whereas Quantum State Interferography requires

only 2 experimental settings to generate those 3 interference patterns to infer a pure qubit

state associated with the bipartite system.

Performing the single qubit QSI on either particles A or B to obtain the unheralded i.e.,

singles interference pattern can give us the reduced density matrix (ρA or ρB) associated
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with the respective subsystems. This makes QSI an efficient technique for quantification

of entanglement of pure bipartite states using a single setup, the details of which will be

discussed in the section 4.6.

4.5.1 Parameterization of Pure Bipartite Qubit

The state of a two qubit system, represented in the polarization degree of freedom, is con-

sidered to belong to the joint Hilbert space of the individual subsystems. The subsystems

A and B are described within the two dimensional Hilbert spaces HA and HB respectively,

where HA is spanned by the basis vectors {|H⟩A , |V ⟩A} and HB is spanned by the basis

vectors {|H⟩B , |V ⟩B}. Thus, the bipartite qubit states are described as the vectors in the

2× 2 = 4 dimensional composite vector space HAB = HA⊗HB associated with the bipar-

tite system and is spanned by the four basis states {|HH⟩AB , |HV ⟩AB , |V H⟩AB , |V V ⟩AB},

where |HH⟩AB = |H⟩A ⊗ |H⟩B = |H⟩A |H⟩B and so on.

In general, the pure state of a bipartite system can be written as the superposition of

the four basis states of HAB as the following,

|Ψ⟩AB = α1 |HH⟩AB + α2 |HV ⟩AB + α3 |V H⟩AB + α4 |V V ⟩AB (4.151)

= α1 |H⟩A |H⟩B + α2 |H⟩A |V ⟩B + α3 |V ⟩A |H⟩B + α4 |V ⟩A |V ⟩B (4.152)

Here, α1, α2, α3, α4 are the four complex coefficients (αj ∈ C2) or the probability ampli-

tudes associated with the four basis states in the Hilbert space HAB and are constrained

to the normalization condition that
∑4

j=1 |αj |
2 = 1. Therefore,

|Ψ⟩AB =



α1

α2

α3

α4


=



|α1| eiφ1

|α2| eiφ2

|α3| eiφ3

|α4| eiφ4


= eiφ1



|α1|

|α2| eiφ21

|α3| eiφ31

|α4| eiφ41


(4.153)
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where, we have expressed each complex quantity αj in terms of its magnitude |αj | and

argument arg(αj) = φj as αj = |αj |eiφj . Also we have considered eiφmn = ei(φm−φn).

The factor eiφ1 is associated with the global phase φ1 and has no physically observable

effects, thus can be ignored. Hence, 4×2−2 = 6 real quantities are required to completely

describe a pure bipartite qubit state |Ψ⟩AB.

From the expression of |Ψ⟩AB presented in Eqn. 4.152, we can can collect the polar-

ization of the subsystem A, so that it helps to parameterize the state in terms of the angles

in a single qubit Bloch sphere. So, we get

|Ψ⟩AB = |H⟩A (α1 |H⟩B + α2 |V ⟩B) + |V ⟩A (α3 |H⟩B + α4 |V ⟩B) (4.154)

Hence, when the signal (the subsystem A) state is projected to |H⟩A or |V ⟩A, the idler

(the subsystem B) state respectively becomes |ψ⟩(H)
B or |ψ⟩(V )

B . Therefore,

|ψ⟩(H)
B = α1 |H⟩B + α2 |V ⟩B (4.155)

|ψ⟩(V )
B = α3 |H⟩B + α4 |V ⟩B (4.156)

Note that, if we start with a pure bipartite state |Ψ⟩AB, the state of the idler also reduces

to a pure state once the signal is projected to a particular pure polarization state.

The states |ψ⟩(H)
B and |ψ⟩(V )

B appear to have the same form as a single qubit, but we

have to keep in mind that these states are not normalized to 1, i.e., |α1|2 + |α2|2 ̸= 1

and |α3|2 + |α4|2 ̸= 1. Let, for the state |ψ⟩(H)
B the normalization factor be γ, which is

the probability of the particle A to be projected to the state |H⟩A. Thus, the probability

of the particle A being projected to the state |V ⟩A would be (1 − γ), which will be the

normalization factor for the idler state |ψ⟩(V )
B . Therefore,

|α1|2 + |α2|2 = γ (4.157)

|α3|2 + |α4|2 = 1− γ (4.158)
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For the subsystem B, the single qubit state |ψ⟩(H)
B = α1 |H⟩B + α2 |V ⟩B can be pa-

rameterized in terms of the Bloch sphere angles θH ∈ [0, π] and ϕH ∈ [−π, π) with the

normalization being γ ≤ 1. So, we can write the complex coefficients as the following:

α1 =
√
γ cos

(
θH
2

)
(4.159)

α2 =
√
γ eiϕH sin

(
θH
2

)
(4.160)

The phase of the complex number α1 is absorbed as the global phase. The subscript ‘H’ in

the parameters θH and ϕH reminds us that the state |ψ⟩(H)
B in the Bloch sphere represents

the state for the idler qubit when the signal is projected to |H⟩A.

Similarly, when the signal is projected to |V ⟩A, we can have the parameterization of

the reduced idler state |ψ⟩(V )
B = α3 |H⟩B + α4 |V ⟩B in terms of the Bloch sphere angles

θV ∈ [0, π] and ϕV ∈ [−π, π) with the normalization being (1−γ). Therefore, the complex

coefficients α3 and α4 can be expressed as,

α3 = eiϕr
√

1− γ cos

(
θV
2

)
(4.161)

α4 = eiϕr
√
1− γ eiϕV sin

(
θV
2

)
(4.162)

Here, ϕr is the relative phase between the Bloch vectors √γ
[
cos

(
θH
2

)
+ eiϕH sin

(
θH
2

)]
and
√
1− γ

[
cos

(
θV
2

)
+ eiϕV sin

(
θV
2

)]
associated with the idler states |ψ⟩(H)

B and |ψ⟩(V )
B ,

which are normalized to γ and (1− γ) respectively. Again the subscript ‘V ’ in the param-

eters θV and ϕV refers to the idler state |ψ⟩(V )
B in the Bloch sphere, when the signal state

is projected to |V ⟩A.

We can choose γ = cos2(θr) provided θr ∈ [0, π] to explicitly make γ ≤ 1 which will

help in algebraic simplification later. Consequently, we get (1 − γ) = sin2(θr). Thus, in

terms of θ’s and ϕ’s the complex coefficients {αj} with j = 1, 2, 3, 4 can be written as,
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α1 = cos(θr) cos

(
θH
2

)
(4.163)

α2 = cos(θr) e
iϕH sin

(
θH
2

)
(4.164)

α3 = eiϕr sin(θr) cos

(
θV
2

)
(4.165)

α4 = eiϕr sin(θr) e
iϕV sin

(
θV
2

)
(4.166)

So, any pure bipartite qubit state |Ψ⟩AB can be parameterized in terms of the 6 real

quantities {θH , ϕH , θV , ϕV , θr, ϕr} with θH , θV , θr ∈ [0, π] and ϕH , ϕV , ϕr ∈ [−π, π). The

parametric representation of any arbitrary bipartite pure state is given as,

|Ψ⟩AB =



cos(θr) cos

(
θH
2

)

eiϕH cos(θr) sin

(
θH
2

)

eiϕr sin(θr) cos

(
θV
2

)

eiϕr eiϕV sin(θr) sin

(
θV
2

)


(4.167)

4.5.2 Experimental Protocol

Any pure bipartite qubit state can be parameterized using 6 real quantities, as shown in

Eqn. 4.167. In this subsection, a generic interferometric scheme for the reconstruction

of a pure bipartite qubit in the polarization degree of freedom of light will be presented,

along with the discussion on the required analysis of the experimental quantities extracted

from the interference patterns for the determination of the 6 unknown state parameters.



236 Chapter 4. QSI for Qudits and Bipartite Qubit

Let, a pair of photons A and B, are generated by Spontaneous Parametric Down Con-

version (SPDC) process 11. The combined state of the two particles generated from SPDC,

i.e., |Ψ⟩AB in the polarization degree of freedom (which is an element of bipartite space

HAB) needs to be identified experimentally. The two particles, the signal A and the idler

B, of the bipartite system can be at two spatially separated locations with two different

parties. Therefore, for inferring the unknown state associated with the particles A and B,

we shall avoid performing any global operation. So that the parties, say Alice (with signal

particle A) and Bob (with idler particle B), can perform local single qubit operations on the

respective particles with them and later by classical communication i.e., post-processing

with coincidence logic, can determine the state of the bipartite system.

For this, one single qubit QSI setup, i.e., a Mach-Zehnder interferometer (or any equiv-

alent two path interferometer) with one arm having σ̂x operator and the other arm having

Π̂H operator needs to be designed for each subsystems A and B respectively. σ̂x is the

Pauli-X operator that swaps the polarization states |H⟩ with |V ⟩ and |V ⟩ with |H⟩, which

can be realized using a half-wave plate (HWP ) with the fast axis oriented at 45◦ with

respect to the horizontal. Π̂H is the projector to the polarization |H⟩, which can be effec-

tively realized by transmitting the beam through a polarizing beam splitter (PBS).

As shown in Fig. 4.5, the interferometer in Alice’s setup is formed with two beam

splitters BSA1, BSA2 and two mirrors MA1, MA2, having HWPA (as σ̂(A)x ) in one path

and PBSA (as Π̂
(A)
H ) in the other path along with a CCD array (CCDA) placed at one

of the output ports of BSA2. Similarly, the interferometer in Bob’s setup is formed with

two beam splitters BSB1, BSB2 and two mirrors MB1, MB2, having HWPB (as σ̂(B)
x ) and

PBSB (as Π̂
(B)
H ) in the two respective paths, along with a CCD array (CCDB) placed

at one of the output ports of BSB2. The operators {σ̂(A)x , Π̂
(A)
H } and {σ̂(B)

x , Π̂
(B)
H }, that

acts on the two dimensional polarization spaces HA and HB respectively, are placed at

the respective arms of the Alice’s and Bob’s interferometer. Both Alice and Bob need

to perform single qubit quantum state interferography on their respective signal (A) and

idler (B) photons and record the time-stamps of the particles forming the interference

11SPDC is a non-linear optical process, where a pair of daughter photons (say, A and B) are generated

from a pump photon (say, P ) within a non-linear optical media, obeying the law of conservation of energy

(i.e., EP = EA+EB or ℏωP = ℏωA+ℏωB) and the law of conservation of momentum (i.e., k⃗P = k⃗A+ k⃗B).
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pattern. One of the parties, here Bob, needs to perform quantum state interferography

with the heralded B particles subject to A particles being projected on to |H⟩A, which can

be achieved by blocking the interferometer arm containing σ̂(A)x operator in Alice’s setup.

Bob can extract the heralded intensity pattern by correlating the time-stamps of the idler

photons (B) with that of the signal photons (A) projected to |H⟩A. The information about

the timestamps can be shared via classical communication.

QSI Setup 
Alice

QSI Setup 
Bob

Bipartite State 
Generation 

(SPDC)

Coincidence 
Logic

𝑀𝐵

𝑀𝐴
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Figure 4.5: Quantum State Interferography (QSI) for bipartite state characterization: The

two spatially separated parties Alice and Bob perform single qubit QSI on the respective

particles A and B with them. Bob additionally performs single qubit QSI with the heralded

B particles subject to A particles being projected to |H⟩.

Thus, in total, for the pure qubit state reconstruction of a bipartite system, Alice

and Bob would just need two experimental settings to obtain three interference patterns

from which all the six state parameters for specifying the unknown bipartite state can be

determined. So, overall the QSI for bipartite system requires,
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(i) Intensity pattern (I(h)B ) generated from heralded B particles conditioned to particle

A being projected on to |H⟩A − Heralded single qubit QSI for B,

(ii) Interference pattern (IB) generated from singles of idler particle B − Unheralded

single qubit QSI for B,

(iii) Interference pattern (IA) generated from singles of signal particle A Unheralded

single qubit QSI for A.

4.5.3 Method and Inferring the State Parameters

Here, we will discuss how the three intensity profiles I(h)B , IB and IA obtained for the

three different cases mentioned above, can be processed to infer the state parameters

{θH , ϕH , θV , ϕV , θr, ϕr} to reconstruct the bipartite state |Ψ⟩AB.

❑ Single Qubit QSI with Heralded B Particles:

The general form of the bipartite qubit state |Ψ⟩AB in terms of the complex coefficients

{α1, α2, α3, α4} is shown in Eqn. 4.152, provided the normalization
∑4

j=1 |αj |
2 = 1.

|Ψ⟩AB = α1 |H⟩A |H⟩B + α2 |H⟩A |V ⟩B + α3 |V ⟩A |H⟩B + α4 |V ⟩A |V ⟩B

The parametric representation of the state |Ψ⟩AB in terms of {θH , ϕH , θV , ϕV , θr, ϕr}, where

θH , θV , θr ∈ [0, π] and ϕH , ϕV , ϕr ∈ [−π, π), is shown in Eqn. 4.167. When Alice projects

the particles A to the state |H⟩A, the state of the particle B becomes

|ψ⟩(H)
B = α1 |H⟩B + α2 |V ⟩B =

α1

α2



|ψ⟩(H)
B =


cos(θr) cos

(
θH
2

)

eiϕH cos(θr) sin

(
θH
2

)
 = cos(θr)


cos

(
θH
2

)

eiϕH sin

(
θH
2

)
 (4.168)
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Here, cos(θr) is the global factor and would only affect the normalization of the state

|ψ⟩(H)
B . This factor has no effect on the intensity modulation with respect to the relative

interferometric phase generated by the heralded B particles at the end of the two path

interferometer (with Bob), formed with the beam splitters BSB1 and BSB2, having the

operators σ̂(B)
x in one path and Π̂

(B)
H in the other path.

The evolution of the state |ψ⟩(H)
B through the QSI setup of Bob to one of the output

ports of the second beam splitter (BSB2) with CCDB, can be described using the effective

evolution operator ÊB, which is given by

ÊB =
1

2

(
exp(iϵ) Π̂

(B)
H + σ̂(B)

x

)
(4.169)

ÊB =
1

2

exp(iϵ)
1 0

0 0


B

+

0 1

1 0


B

 =
1

2

eiϵ 1

1 0


B

(4.170)

Here, ϵ is the relative phase between the two paths of the interferometer. This evolution

operator is non-Unitary because of the losses associated with the operator Π̂
(B)
H and the

fact that we are detecting the particles only in one of the two ports of the second beam

splitter BSB2 of the interferometer. Note that, ÊB is only employed here as a short-cut

to the detailed derivation (the Unitary description of the evolution) shown in Chapter. 2.

Experimentally, the A particles can be projected to state |H⟩A by blocking the path

with σ̂(A)x operator in Alice’s setup, since the other path of the interferometer already has

the projector Π̂
(A)
H . The interferometer in Bob’s setup can be made non-collinear so that

the intensity can be directly obtained as a function of phase difference ϵ in the CCD array

CCDB. Here, we can consider CCDB to be a camera that can be gated, so that CCDB

only records the B particles when it is triggered by the signal from CCDA generated upon

the detection of the A particle in state |H⟩A. Alternatively, we can consider that both

the CCD arrays CCDA and CCDB can record time-stamps of the detected photons, so

that the correlation of the detected B particles in Bob’s setup can be obtained with the

detected A particles in the Alice’s setup. In this way, the intensity pattern generated by the

heralded B particles conditioned to A particles being projected to |H⟩A can be obtained.
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At this setting of the setup, the intensity recorded by CCDB is given as,

I
(h)
B =

∥∥∥ÊB |ψ⟩(H)
B

∥∥∥2 (4.171)

Now, using the expressions of ÊB and |ψ⟩(H)
B given in Eqn. 4.170 and Eqn. 4.168 we get,

ÊB |ψ⟩(H)
B =

cos(θr)

2


eiϵ cos

(
θH
2

)
+ eiϕH sin

(
θH
2

)

cos

(
θH
2

)
 (4.172)

Hence, the heralded intensity pattern I(h)B as a function of relative phase ϵ recorded by

Bob conditioned to Alice detecting the particles A in the state |H⟩A, can be expressed as

I
(h)
B (ϵ) =

1

8
cos2(θr) [3 + cos(θH) + 2 sin(θH) cos(ϵ− ϕH)] (4.173)

The superscript ‘(h)’ in I
(h)
B indicates that this intensity distribution obtained for the B

particles from Bob’s QSI setup is subject to heralding of the A particles in the state |H⟩A.

The above expression of intensity is similar to the intensity distribution obtained when a

pure qubit state evolves through the QSI setup, as presented in Chapter. 2, except for the

additional scaling factor cos2(θr) which is associated with the normalization of the qubit

corresponding to the subsystem B (with µ = 1 due to assumption that the bipartite state

is pure, causing |ψ⟩(H)
B to be pure).

Experimentally, cos2(θr) can be determined from the observed probability of A parti-

cles being projected to |H⟩A. If Alice just blocks the arm with σ̂(A)x operation to effectively

perform this projection on A particles and computes the probability of detecting the hor-

izontally projected particles to be P (H)
dA

from the number of particles reaching the CCD

array CCDA, then the normalization factor γ can be obtained as γ = 4 P
(H)
dA

. The factor 4

is introduced to compensate for the losses in the particles due to the presence of two 50 : 50

beam splitters, BSA1 and BSA2, which in a ideal situation allows only 25% of the photons

incident on Alice’s setup to reach to CCDA. Therefore, accounting for the particles that
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are not being collected by CCDA due to the fact that we have the projector Π̂
(A)
H in one

of the output ports of BSA1 and are detecting the particles at one output port of BSA2,

we get the normalization factor γ as:

γ = cos2(θr) = 4 P
(H)
dA

(4.174)

=⇒ θr = cos−1
(√

4 P
(H)
dA

)
(4.175)

Since Alice can determine θr by experimentally observing P (H)
dA

, Bob can use it to suitably

normalize his state from the observed intensity.

The phase shift (Φ
(h)
B ) of the heralded interference pattern can be obtained by finding

the value of phase ϵ at which the intensity I
(h)
B (ϵ) is maximum. This is obtained by

solving the equation
∂I

(h)
B (ϵ)

∂ϵ
= 0 for ϵ and ensuring that

∂2I
(h)
B (ϵ)

∂ϵ2

∣∣∣∣∣
ϵ=Φ

(h)
B

< 0. From the

expression of heralded intensity in Eqn. 4.173, we get

∂I
(h)
B (ϵ)

∂ϵ

∣∣∣∣∣
ϵ=Φ

(h)
B

= −1

4
cos2(θr) sin(θH) sin

(
Φ
(h)
B − ϕH

)
= 0 (4.176)

∂2I
(h)
B (ϵ)

∂ϵ2

∣∣∣∣∣
ϵ=Φ

(h)
B

= −1

4
cos2(θr) sin(θH) cos

(
Φ
(h)
B − ϕH

)
(4.177)

So, for Φ
(h)
B = ϕH , we get the expression in Eqn. 4.177 to be

∂2I
(h)
B (ϵ)

∂ϵ2

∣∣∣∣∣
ϵ=Φ

(h)
B =ϕH

< 0 ,

given that sin(θH) is positive for θH ∈ [0, π] and cos2(θr) > 0 for all θr .

Therefore, at the phase ϵ = ϕH , we obtain the heralded intensity to be the maximum,

giving the phase shift of the interference pattern as Φ
(h)
B = ϕH . So, the state parameter

ϕH ∈ [−π, π) can be directly obtained from the phase shift Φ
(h)
B of the heralded intensity

distribution I(h)B (ϵ) of the B particles.

ϕH = Φ
(h)
B (4.178)
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The phase averaged intensity of the intensity distribution is obtained by integrating

I
(h)
B (ϵ) over all possible phases ϵ and is given as,

Ī
(h)
B =

∫
ϵ
I
(h)
B (ϵ) dϵ =

1

8
cos2(θr) (3 + cos(θH)) (4.179)

Since Alice can determine cos2(θr) from the probability of detecting the particle A in the

state |H⟩A as shown in Eqn. 4.174, Bob can use that information to determine θH from

the above expression as the following,

θH = cos−1

(
8 Ī

(h)
B

cos2(θr)
− 3

)
(4.180)

Thus, from the setting which projects the A particles to |H⟩A and generates the her-

alded interference pattern I
(h)
B (ϵ) of B particles, Alice and Bob can determine 3 state

parameters θr, θH and ϕH associated with the unknown state |Ψ⟩AB.

❑ Single Qubit QSI with Unheralded B Particles:

Now, if Bob considers all the particles detected in the CCD array CCDB without any

heralding, we get the unheralded interference pattern (IB) generated at the end of the QSI

setup that is with Bob. In this case, we need to consider the reduced state of the particle

B which, in general, is mixed. Thus, here we need to deal with the density matrix ρ̂AB, as-

sociated with the pure state of the bipartite system, from which we can obtain the reduced

density matrix for particle B after performing partial trace [27] over A, i.e., ρ̂B = TrA(ρ̂AB).

In terms of the complex amplitudes {αj}, the density matrix for the pure state of the

two qubit system can be written as,

ρ̂AB = |Ψ⟩AB ⟨Ψ|AB =



|α1|2 α1α
∗
2 α1α

∗
3 α1α

∗
4

α2α
∗
1 |α2|2 α2α

∗
3 α2α

∗
4

α3α
∗
1 α3α

∗
2 |α3|2 α3α

∗
4

α4α
∗
1 α4α

∗
2 α4α

∗
3 |α4|2


(4.181)
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Now, in terms of the state parameters {θH , ϕH , θV , ϕV , θr, ϕr}, the elements of the density

matrix ρ̂AB are computed as the following,

|α1|2 = cos2 (θr) cos2
(
θH
2

)
(4.182)

|α2|2 = cos2 (θr) sin2
(
θH
2

)
(4.183)

|α3|2 = sin2 (θr) cos2
(
θV
2

)
(4.184)

|α4|2 = sin2 (θr) sin2
(
θV
2

)
(4.185)

α1α
∗
2 = (α2α

∗
1)
∗ =

1

2
cos2 (θr) sin (θH) e

−iϕH (4.186)

α1α
∗
3 = (α3α

∗
1)
∗ =

1

2
sin (2θr) cos

(
θH
2

)
cos

(
θV
2

)
e−iϕr (4.187)

α1α
∗
4 = (α4α

∗
1)
∗ =

1

2
sin (2θr) cos

(
θH
2

)
sin

(
θV
2

)
e−i(ϕV +ϕr) (4.188)

α2α
∗
3 = (α3α

∗
2)
∗ =

1

2
sin (2θr) sin

(
θH
2

)
cos

(
θV
2

)
ei(ϕH−ϕr) (4.189)

α2α
∗
4 = (α4α

∗
2)
∗ =

1

2
sin (2θr) sin

(
θH
2

)
sin

(
θV
2

)
ei(ϕH−ϕV −ϕr) (4.190)

α3α
∗
4 = (α4α

∗
3)
∗ =

1

2
sin2 (θr) sin (θV ) e

−iϕV (4.191)

Therefore, the reduced density matrix ρ̂B associated with the subsystem B can be

computed as,
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ρ̂B = TrA (ρ̂AB) =

 |α1|2 + |α3|2 α1α
∗
2 + α3α

∗
4

α2α
∗
1 + α4α

∗
3 |α2|2 + |α4|2

 (4.192)

In terms of the state parameters ρ̂B can be expressed as,

ρ̂B(θr, θH , θV , ϕH , ϕV ) =



cos2 (θr) cos
2

(
θH
2

)
+ sin2 (θr) cos

2

(
θV
2

) 1

2
[cos2 (θr) sin (θH) e

−iϕH

+ sin2 (θr) sin (θV ) e
−iϕV ]

1

2
[cos2 (θr) sin (θH) e

iϕH

+ sin2 (θr) sin (θV ) e
iϕV ]

cos2 (θr) sin
2

(
θH
2

)
+ sin2 (θr) sin

2

(
θV
2

)


(4.193)

As the B particles travel through the single qubit QSI setup of Bob, an unconditional

interference pattern is generated at the end of the interferometer. This intensity distri-

bution IB in the port with CCDB, can be derived by evolving the state ρ̂B through the

effective evolution operator ÊB =
1

2

(
exp(iϵB) Π̂

(B)
H + σ̂

(B)
x

)
, where ϵB is the relative phase

between the two paths of the interferometer. So, we compute IB as,

IB = Tr
(
ÊB ρ̂B Ê†B

)
(4.194)

The unheralded intensity distribution as a function of the phase difference ϵB, recorded by

Bob at one of the output ports of BSB2 can be written as follows:

IB(ϵB) =
1

8

[
3 + cos2(θr) ( cos(θH) + 2 sin(θH) cos(ϵB − ϕH) )

+ sin2(θr) ( cos(θV ) + 2 sin(θV ) cos(ϵB − ϕV ) )
]

(4.195)
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The unheralded intensity IB(ϵB) is a function of the state parameters θr, θH , ϕH , θV , ϕV

apart from the relative phase ϵB. Post-processing the intensity distribution obtained due

to the detection of heralded B particles subject to A particles being projected to |H⟩A, i.e.,

from I
(h)
B , we have already determined the parameters θr, θH and ϕH . Now, if we compute

the phase averaged intensity from the unheralded intensity distribution IB, we get

ĪB =
1

8

[
3 + cos2(θr) cos(θH) + sin2(θr) cos(θV )

]
(4.196)

So, the average intensity ĪB varies depending on the parameters θr, θH and θV . Since, θr

and θH are already known, we can infer θV from the above expression of average intensity.

θV = cos−1
(
8 ĪB − 3− cos2(θr) cos(θH)

sin2(θr)

)
(4.197)

Again, the phase shift ΦB of the interference pattern IB(ϵB) can be obtained experi-

mentally by finding the phase ϵB for which IB has the maximum value. Analytically the

value ΦB can be determined by solving the equation
∂IB(ϵB)

∂ϵB

∣∣∣∣
ϵB=ΦB

= 0 and ensuring

∂2IB(ϵB)

∂ϵB2

∣∣∣∣
ϵB=ΦB

< 0 . Thus, using the expression in Eqn. 4.195 we get,

∂IB(ϵB)

∂ϵB

∣∣∣∣
ϵB=ΦB

= 0 (4.198)

=⇒ −1

4
[ cos2(θr) sin(θH) sin(ΦB − ϕH) + sin2(θr) sin(θV ) sin(ΦB − ϕV ) ] = 0

=⇒ sin(ΦB − ϕV )
sin(ΦB − ϕH)

= −cos2(θr) sin(θH)

sin2(θr) sin(θV )
(4.199)

=⇒ sin(ΦB − ϕV ) = − cot2(θr)

(
sin(θH)

sin(θV )

)
sin(ΦB − ϕH) (4.200)

Once, the phase shift ΦB of the interference pattern is experimentally determined from

the phase corresponding to the maximum intensity IB, the state parameter ϕV can be
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obtained from Eqn. 4.200 using the already known values of θr, θH , θV and ϕH . Thus we

get ϕV as the following,

ϕV = ΦB + sin−1
(
cot2(θr)

sin(θH)

sin(θV )
sin(ΦB − ϕH)

)
(4.201)

Care should be taken to verify that ϕV maximizes IB for the values of θH , θV and ϕH

determined earlier, i.e. need to ensure

∂2IB(ϵB)

∂ϵB2

∣∣∣∣
ϵB=ΦB

< 0 (4.202)

If IB gets minimized instead, π must be added for consistency. Therefore, from the aver-

age intensity ĪB and the phase shift ΦB of the unheralded interference pattern obtained

experimentally by performing single qubit QSI on the subsystem B, we can determine the

state parameters θV and ϕV respectively.

So far, we have determined all the state parameters except ϕr. Although without the

knowledge of ϕr, the state |Ψ⟩AB can not be determined completely, we can infer some im-

portant properties about the state from the already obtained parameters − such as whether

the pure state |Ψ⟩AB is entangled or not. The von Neumann entropy S of the reduced den-

sity matrix ρ̂B is a unique measure of the entanglement for the bipartite pure state |Ψ⟩AB.

Since, the reduced state ρ̂B of the subsystem B is a function of {θr, θH , θV , ϕH , ϕV }; we

can construct ρ̂B using the already determined values of the state parameters from the

Eqn. 4.193.

❑ Single Qubit QSI with Unheralded A Particles:

Next, for the complete state reconstruction, we need to perform Quantum State Interfer-

ography on the unheralded A particles in Alice’s setup. The reduced density matrix ρ̂A

associated with the subsystem A is obtained as,

ρ̂A = TrB (ρ̂AB) =

 |α1|2 + |α2|2 α1α
∗
3 + α2α

∗
4

α3α
∗
1 + α4α

∗
2 |α3|2 + |α4|2

 (4.203)
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In terms of the state parameters the density matrix ρ̂A can be expressed as,

ρ̂A(θH , θV , θr, ϕH , ϕV , ϕr) =



cos2 (θr)

1

2
sin (2θr)e

−iϕr
[
cos

(
θH
2

)
cos

(
θV
2

)

+ sin

(
θH
2

)
sin

(
θV
2

)
ei(ϕH−ϕV )

]

1

2
sin (2θr)e

iϕr

[
cos

(
θH
2

)
cos

(
θV
2

)

+ sin

(
θH
2

)
sin

(
θV
2

)
e−i(ϕH−ϕV )

] sin2 (θr)


(4.204)

Now, when the A particles travel through the single qubit QSI setup of Alice, having the

operators σ̂(A)x and Π̂
(A)
H in the respective paths of the two path interferometer with Alice,

an interference pattern is generated at the end of the setup. The corresponding intensity

distribution IA in the output port of BSA2 with CCDA can be obtained by evolving the

state ρ̂A through the effective evolution operator ÊA as given below. Therefore,

IA = Tr
(
ÊA ρ̂A Ê†A

)
(4.205)

where, ÊA =
1

2

(
exp(iϵA) Π̂

(A)
H + σ̂(A)x

)
(4.206)

where ϵA is the relative phase between the two paths of the interferometer in Alice’s setup.

The intensity distribution as a function of ϵA as recorded by Alice, can computed to be

IA(ϵA) =
1

8

[
3 + cos(2θr) + 2 sin(2θr)

(
cos

(
θH
2

)
cos

(
θV
2

)
cos(ϵA − ϕr)

+ sin

(
θH
2

)
sin

(
θV
2

)
cos(ϵA + ϕH − ϕV − ϕr)

)]
(4.207)
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The average intensity of the interference pattern IA(ϵA) is obtained by integrating it

over all possible phases ϵA and is given by,

ĪA =
1

8
(3 + cos(2θr)) (4.208)

Thus, the state parameter θr can also be determined from the experimentally obtained

average intensity ĪA of the interference pattern produced by performing single qubit QSI

on A particles, i.e.,

θr =
cos−1

(
8ĪA − 3

)
2

(4.209)

Next, we obtain the phase shift ΦA of the interference pattern by experimentally finding

the phase ϵA for which IA is maximum. The parameter ϕr can be determined by considering

the relation
∂IA(ϵA)

∂ϵA

∣∣∣∣
ϵA=ΦA

= 0, since we know all other parameters. From Eqn. 4.207,

we get

∂IA(ϵA)

∂ϵA

∣∣∣∣
ϵA=ΦA

= 0 (4.210)

cos

(
θH
2

)
cos

(
θV
2

)
sin(ΦA − ϕr) + sin

(
θH
2

)
sin

(
θV
2

)
sin(ΦA + ϕH − ϕV − ϕr) = 0

=⇒ sin(ΦA + ϕH − ϕV − ϕr)
sin(ΦA − ϕr)

= − cot

(
θH
2

)
cot

(
θV
2

)
(4.211)

Expanding the above expression using sin(C +D) = sin(C) cos(D)+cos(C) sin(D), we get

sin(ΦA − ϕr) cos(ϕH − ϕV ) + cos(ΦA − ϕr) sin(ϕH − ϕV )
sin(ΦA − ϕr)

= − cot

(
θH
2

)
cot

(
θV
2

)

=⇒ cot(ΦA − ϕr) sin(ϕH − ϕV ) = −
[
cos(ϕH − ϕV ) + cot

(
θH
2

)
cot

(
θV
2

)]
(4.212)
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Thus, the state parameter ϕr can be obtained using experimentally obtained phase shift

ΦA and the other state parameters from the expression in Eqn. 4.212, as the following

ϕr = ΦA + cot−1

cot(ϕH − ϕV ) +
cot

(
θH
2

)
cot

(
θV
2

)
sin(ϕH − ϕV )

 (4.213)

The above expression must be picked with appropriate signs which maximizes IA for a

given set values of other parameters obtained earlier.

Therefore, from the average intensity ĪA and the phase shift ΦA of the unheralded

interference pattern produced experimentally by performing single qubit QSI on the sub-

system A, we can determine the state parameters θr and ϕr respectively.

In summary, the interferometric state determination scheme − Quantum State Inter-

ferography allows the complete characterization of a pure state associated with a two qubit

system within the Hilbert space HAB = HA ⊗HB, using the information processed from

three interference patterns generated in two experimental settings. In one setting, the path

of the interferometer with σ̂(A)x operator in Alice’s setup for subsystem A is blocked, that

allows the particles to undergo |H⟩A projection through the operator Π̂
(A)
H present in the

other interferometric path. At this condition without changing the experimental setting,

the parameters θr, θH , ϕH , θV and ϕV are determined from the two intensity patterns ob-

tained by Bob in the same single qubit QSI setup − (i) one intensity pattern formed with

the B particles heralded to |H⟩A projection of the A particles and (ii) the other formed

with the unheralded B particles. Another setting of the interferometric setup, where Alice

performs single qubit QSI on the subsystem A by allowing the particles to evolve through

the interferometric setup (that is with Alice) having the respective operators in the two

arms, is required to determine the parameter ϕr. Thus, for the complete reconstruction

of the pure bipartite qubit state |Ψ⟩AB by identifying the six quantities that describe the

state, QSI requires two experimental settings as compared to nine measurement settings

required for Quantum State Tomography (QST). Nevertheless, the entanglement of the

bipartite pure state can be quantified from a single setting of this setup, the details of

which will be discussed next.
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Quantification of Entanglement using QSI Scheme4.6

The phenomena of entanglement is one of the most fundamental features of quantum

mechanics that represents a non-classical correlation between the sub-systems of a com-

posite quantum system, which persists regardless of the spatial separation between the

sub-systems [28, 29]. Quantum entanglement has been the subject of extensive research

over decades, due to both its inherent properties that do not have any classical counterpart

and its potential applications in advancing quantum technologies; especially in the fields

of quantum information processing [30, 31, 32] and in the development of secure quantum

communication protocols [33, 34, 35]. A state of a two-particle system, say |Ψ⟩AB, defined

within a composite Hilbert space HAB = HA ⊗HB of two subsystems A and B, is said to

be entangled if it can not be expressed as a product of two separable states |ψ⟩A and |ψ⟩B
corresponding to the two sub-systems, i.e., |Ψ⟩AB ̸= |ψ⟩A ⊗ |ψ⟩B [36].

One of the most challenging and fundamental aspects of entanglement theory con-

cerns the quantification of entanglement [37]. The quantification of entanglement becomes

important, while dealing with entangled systems, as it characterizes the degree of non-

classical correlation present in the quantum system [38]. This knowledge is essential for

manipulating the quantum states and for gauging the eventual fidelity or the efficiency

of the quantum computation or communication protocols involving entanglement. Inter-

estingly, the Quantum State Interferography (QSI) technique can be used to quantify the

entanglement of bipartite states from a single measurement.

Entanglement of a bipartite system, with the prior knowledge about the bipartite state

being pure, can be quantified by the von-Neumman entropy of the reduced density matrix

of one of the subsystems [39, 40]. Consider, A and B are the two subsystems of a pure

bipartite system and |Ψ⟩AB is an element of the composite vector space HAB, then the

entanglement of the state can be quantified by the measure E, computed as the following:

E(ρ̂AB) = S(ρ̂A) = S(ρ̂B) (4.214)
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Therefore, the knowledge of the ρ̂A and ρ̂B can be used individually to compute the

entanglement measure E(ρ̂AB).

E(ρ̂AB) = S(ρ̂A) = −Tr (ρ̂A log(ρ̂A)) (4.215)

or, E(ρ̂AB) = S(ρ̂B) = −Tr (ρ̂B log(ρ̂B)) (4.216)

Here, ρ̂AB is the density matrix characterizing the composite system. ρ̂A and ρ̂B are

the reduced density matrices [1] associated with the subsystems A and B respectively,

which are in general mixed, i.e., Tr
(
ρ̂2A
)
< 1 and Tr

(
ρ̂2B
)
< 1. The reduced density matrix

for one of the subsystems (say, i) is derived from the composite system state ρ̂ij by tracing

out the basis states in the associated degree of freedom of the rest of the system (i.e., j),

such that ρ̂i = Trj(ρ̂ij). Therefore, we have ρ̂A and ρ̂B given as the following:

ρ̂A = TrB(ρ̂AB) and ρ̂B = TrA(ρ̂AB) (4.217)

where, ρ̂AB = |Ψ⟩AB ⟨Ψ|AB (4.218)

In the last section, we have shown with a single experimental setting of the QSI setup

for the B particles, the reduced density matrix ρ̂B can be determined. Therefore, this

interferometric technique can be used to quantify the entanglement of pure states of bipar-

tite qubits from Eqn. 4.216. With alternative procedures like quantum state tomography

(QMT) one would require 9 measurements to be performed on the entire system to quan-

tify the entanglement of the associated state. For entanglement quantification from Bell

inequality violation, one would need at least 3 measurement settings if the basis is known,

else the optimization procedure requires many more measurements. Thus, Quantum State

Interferography (QSI) provides a single-shot entanglement quantification technique using

which one can measure the entanglement from a single experimental setting without the

need to change any internal settings during the procedure.
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Conclusion4.7

In this chapter, we have established Quantum State Interferography (QSI) as an efficient

state determination scheme for higher dimensional (d > 2) and bipartite quantum systems

employing interferometry as a tool. In this technique, an unknown state can be charac-

terized by finding the associated state parameters from the phase shift, phase averaged

intensity and visibility of a number of interference patterns produced in an interferometric

setup. Here, we introduce a parametric representation of a d-dimensional pure qudit |ψ⟩(d)

as a chain of (d − 1) Bloch vectors within the sequence of Epispheres which are the unit

S(2) spheres, each defined for one of the two-dimensional sub-spaces of the d-dimensional

space, having their origin at the location of the tip of the Bloch vector defined within the

previous sphere. This chapter presents three different experimental setups involving either

(d− 1) or 2 interferometers that can be employed to infer the (2d− 2) state parameters of

a general qudit, without the need to change the experimental settings during the process

of data acquisition. Therefore, Quantum State Interfergraphy appears as a true single shot

state determination scheme for qudits, which require post-processing of (d − 1) interfero-

grams generated at the end of the setup. Also, QSI can be considered to be an efficient

state determination technique for higher dimensional pure states and can serve as a less

cumbersome and promising alternative to QST. Further, we have shown that this interfer-

ometric protocol can be employed to infer the unknown states of a bipartite system with

the prior knowledge about the system state being pure by analyzing only three interference

patterns generated with two experimental settings, as compared to nine measurement set-

tings required in Quantum State Tomography (QST). Lastly, we have presented Quantum

state Interferography as a single shot entanglement quantification scheme for pure bipartite

states using which the entanglement measure of a pure bipartite qubit can be determined

from the von-Neumann entropy of the reduced density matrix of one of the subsystems.
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Appendix

Quantum State Interferography for Pure Qudits:
Discussion With Normalization

4.A

In the Section. 4.3 we have discussed how an unknown pure qudit |ψ⟩(d) can be inferred

from (d− 1) interferograms produced using the Quantum State Interferography technique.

The theory for the state determination from the complex expectation values of the spin-

ladder operators σ̂(k)± in each of the two-dimensional sub-spaces of the d-dimensional space

given by k = 1, 2, . . . , (d− 1) (in SubSec. 4.3.1) and the calculations corresponding to the

post-processing of the experimentally obtained quantities such as the phase shift (Φk), aver-

age intensity (Īk) and visibility (Vk) of the interferograms obtained for different sub-spaces

(in SubSec. 4.3.3), are presented considering the evolution of the component of |ψ⟩(d) in

k-th two dimensional subspace. In the discussion presented in Sec. 4.3, the component of

the qudit in the k-th two-dimensional subspace spanned by {|k⟩ , |k + 1⟩}, is represented

by the state |ψ⟩(2;d)k expressed in Eqn. 4.91, which is not normalized. Further, we have not

considered the normalization while computing the expectation values of different operators

both in theory and in the post-processing of collected data. In this section, we will present

the same scheme for characterizing the qudit |ψ⟩(d), with all the calculations performed

taking normalization into account.

The state |ψ⟩(2;d)k can be considered as the projection of the state |ψ⟩(d) on the k-th two

dimensional subspace. Apriori, there is no need for normalization because the projection

of a vector need not have any pre-defined norm. However, the norm of the vector |ψ⟩(2;d)k

given in Eqn. 4.91 can be computed as,

∥∥∥|Ψ⟩(2;d)k

∥∥∥ =

√
ξ(k)

[
cos2

(
θk
2

)
+ sin2

(
θk
2

)
cos2

(
θk+1

2

)]
(4.219)
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=⇒
∥∥∥|Ψ⟩(2;d)k

∥∥∥ =

√
ξ(k)

4
[3 + cos(θk+1) + cos(θk)(1− cos(θk+1))] (4.220)

where, ξ(k) =
k−1∏
j=1

sin2
(
θj
2

)
. Therefore the normalized vector, represented as

∣∣ψ(n)
〉(2;d)
k

,

in the two dimensional k-th subspace can be expressed as the following:

∣∣∣ψ(n)
〉(2;d)
k

=

(
k−1∏
j=1

exp(iϕj) sin

(
θj
2

))
√
ξ(k)

4
[3 + cos(θk+1) + cos(θk)(1− cos(θk+1))]


cos

(
θk
2

)

eiϕk sin

(
θk
2

)
cos

(
θk+1

2

)


(4.221)

4.A.1 Theory Considering Normalization

If we compute the expectation value of the spin ladder operator σ̂(k)± for the state
∣∣ψ(n)

〉(2;d)
k

or in other words express the expectation value of σ̂(k)± in normalized form, we get

〈
σ̂
(k)
±

〉(n)
=

〈
ψ
(2;d)
k

∣∣∣σ̂(k)± ∣∣∣ψ(2;d)
k

〉
〈
ψ
(2;d)
k

∣∣∣ψ(2;d)
k

〉 =

2 exp(±iϕk) sin(θk) cos
(
θk+1

2

)
3 + cos(θk+1) + cos(θk)(1− cos(θk+1))

(4.222)

The above form assumes that the factor ξ(k) =
∏k−1
j=1 sin

2

(
θj
2

)
cancel out between the

numerator and denominator requiring that θj ̸= 0 ∀ j < k. It should be pointed out that

in the limiting case, the terms always cancel out. However, when θk = π and θk+1 = π

simultaneously, |ψ⟩(2;d)k cannot be normalized.

The argument and the magnitude of the expectation value of σ̂(k)± in the normalized

form can be written as,
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arg

(〈
σ̂
(k)
±

〉(n))
= ±ϕk (4.223)

∣∣∣∣〈σ̂(k)± 〉(n)∣∣∣∣ = 2 sin(θk) cos

(
θk+1

2

)
3 + cos(θk+1) + cos(θk)(1− cos(θk+1))

(4.224)

Thus, even in the normalized form, the argument of the complex expectation value of the

ladder operator σ̂(k)± directly gives the relative phase ϕk associated with the k-th two di-

mensional subspace. The magnitude
∣∣∣∣〈σ̂(k)± 〉(n)∣∣∣∣ is a function of θk and θk+1. So, the polar

angle θk can be determined from the value of
∣∣∣∣〈σ̂(k)± 〉(n)∣∣∣∣ if θk+1 is known.

For (d − 1)-th subspace spanned by the states {|d− 1⟩ , |d⟩}, the magnitude of the

expectation value of the ladder operator
∣∣∣∣〈σ̂(d−1)±

〉(n)∣∣∣∣ would be a function of θd−1 and θd.

Now the normalization condition of the qudit pure state gives θd = 0, as shown in SubSec.

4.1.5. Thus, for the (d− 1)-th subspace we have,

∣∣∣∣〈σ̂(d−1)±

〉(n)∣∣∣∣ = 2 sin(θd−1) cos

(
θd
2

)
3 + cos(θd) + cos(θd−1)(1− cos(θd))

=
sin(θd−1)

2
(4.225)

=⇒ θd−1 = sin−1
(
2

∣∣∣∣〈σ̂(d−1)±

〉(n)∣∣∣∣) (4.226)

Hence, from the value of the magnitude of the expectation value
〈
σ̂
(d−1)
±

〉(n)
for the (d−1)-

th subspace we can compute the polar angle θd−1. Once θd−1 is known, we can compute

θd−2 from the value of expectation of spin ladder operator
∣∣∣∣〈σ̂(d−2)±

〉(n)∣∣∣∣ obtained for the

(d− 2)-th subspace from the following expression.

∣∣∣∣〈σ̂(d−2)±

〉(n)∣∣∣∣ = 2 sin(θd−2) cos

(
θd−1
2

)
3 + cos(θd−1) + cos(θd−2)(1− cos(θd−1))

(4.227)

In this manner, using the recursive relations all the polar angles {θj} (with θj ∈ [0, π])

describing the state |ψ⟩(d) can be determined sequentially from the magnitude of the nor-
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malized form of the expectation values of spin ladder operators associated with two di-

mensional sub-spaces. All the azimuthal angles {ϕj} (with ϕj ∈ [−π, π) ) are directly

determined from the argument of the expectation values of σ̂(k)± as given in Eqn. 4.223.

Thus, when normalization of the states |ψ⟩(2;d)k are taken into account, all the state pa-

rameters are obtained from the expectation values of spin-ladder operators, i.e,
〈
σ̂
(k)
±

〉(n)
.

Hence, the state |ψ⟩(d) can be inferred from the (d− 1) complex valued quantities derived

for (d− 1) two dimensional sub-spaces of d-dimensional Hilbert space.

4.A.2 Experimental protocol and Inferring the State Parameters Con-

sidering Normalization

If we consider a beam in the state
∣∣ψ(n)

〉(2;d)
k

associated with two dimensional k-th subspace

propagates through a Mach-Zehnder (or any equivalent two path) interferometer having the

operator σ̂(k)x in one arm and the effective operator exp(iϵk)Π̂
(k)
0 in the other arm, where ϵk

is the relative phase between the two arms of the interferometer, then the intensity profile

obtained at one of the output ports of the interferometer is given as follows,

I
(n)
k =

〈
ψ
(2;d)
k

∣∣∣Ô(k)†Ô(k)
∣∣∣ψ(2;d)
k

〉
〈
ψ
(2;d)
k

∣∣∣ψ(2;d)
k

〉 (4.228)

Here Ô(k) is the overall evolution operator (non-unitary) corresponding to the action of

the MZI with the respective operators given by Eqn. 4.104,

Ô(k) =
1

2

(
exp(iϵk) Π̂

(k)
0 + σ̂(k)x

)
=

1

2

exp(iϵk) 1

1 0

(2;d)

k

(4.229)

Considering normalization of the state, the intensity I(n)k as a function of the relative

phase ϵk recorded from one of the output ports of the MZI acting on k-th two dimensional

subspace is given by,

I
(n)
k (ϵk) =

1

4

[〈
1̂(k)

〉(n)
+
〈
Π̂

(k)
0

〉(n)
+ 2Re

(
exp(iϵk)

〈
σ̂(k)x Π̂

(k)
0

〉(n))]
(4.230)
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I
(n)
k (ϵk) =

1

4

[〈
1̂(k)

〉(n)
+
〈
Π̂

(k)
0

〉(n)
+ 2Re

(
exp(iϵk)

〈
σ̂
(k)
−

〉(n))]
(4.231)

=
5 + cos(θk+1) + cos(θk)(3− cos(θk+1)) + 4 sin(θk) cos

(
θk+1

2

)
cos(ϵk − ϕk)

4 [3 + cos(θk+1) + cos(θk)(1− cos(θk+1))]

(4.232)

Here,
〈
1̂(k)

〉(n) and
〈
Π̂

(k)
0

〉(n)
respectively represent the normalized form of the expec-

tation values of 2 × 2 identity operator and projection operator corresponding to the

k-th two-dimensional subspace. The above form of intensity assumes that the factor

ξ(k) =
∏k−1
j=1 sin

2

(
θj
2

)
cancel out between the numerator and denominator requiring

that θj ̸= 0 ∀j < k.

The value of phase ϵk, for which the intensity distribution I(n)k (ϵk) have the maximum

value, determines the phase shift Φ
(n)
k of the interferogram. The expression of intensity

given in Eqn. 4.232 has the maximum value for ϵk = ϕk, given θk, θk+1 ∈ [0, π]. So,

the azimuthal angle ϕk can be directly obtained from the phase shift of the interefrogram

generated for k-th two dimensional subspace, i.e.,

Φ
(n)
k = ϕk (4.233)

Similarly, the phase averaged intensity Ī(n)k can be obtained by integrating I(n)k (ϵk) over

all the phases ϵk and is expressed in the normalized form as follows,

Ī
(n)
k =

5 + cos(θk+1) + cos(θk)(3− cos(θk+1))

4 [3 + cos(θk+1) + cos(θk)(1− cos(θk+1))]
(4.234)

The advantage of having the normalized form is that the quantity Ī(n)k now only involves

θk and θk+1 and does not carry the effect of all θj ’s in the form of ξ(k) =
∏k−1
j=1 sin

2

(
θj
2

)
.

Therefore, provided that we already know θd = 0, the state parameter θd−1 can be

computed directly using the experimentally obtained quantity Ī(n)d−1, which is the average

intensity of the interferogram generated for (d− 1)-th subspace.
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Ī
(n)
d−1 =

5 + cos(θd) + cos(θd−1)(3− cos(θd))

4 [3 + cos(θd) + cos(θd−1)(1− cos(θd))]
=

3 + cos(θd−1)

8
(4.235)

=⇒ θd−1 = cos−1
(
8 Ī

(n)
d−1 − 3

)
(4.236)

Knowing θd−1, we can compute θd−2 from the experimentally obtained quantity Ī(n)d−2 and

then iteratively all the θk’s can be found.

Ī
(n)
d−2 =

5 + cos(θd−1) + cos(θd−2)(3− cos(θd−1))

4 [3 + cos(θd−1) + cos(θd−2)(1− cos(θd−1))]
(4.237)

Additionally, we can make use of the visibility of the interference pattern to infer the

polar angles θj ’s. The visibility of the interferogram I
(n)
k (ϵk) for the k-th two dimensional

subspace can be computed as,

V
(n)
k =

I
(n)(max)

k − I(n)
(min)

k

I
(n)(max)

k + I
(n)(min)

k

=

4 sin(θk) cos

(
θk+1

2

)
5 + cos(θk+1) + cos(θk)(3− cos(θk+1))

(4.238)

Visibility V
(n)
k computed from the maximum intensity I

(n)(max)

k and minimum intensity

I
(n)(min)

k obtained for the evolution of the normalized state
∣∣ψ(n)

〉(2;d)
k

through the k-th

MZI has the same form as the visibility Vk obtained for the evolution of the state |ψ⟩(2;d)k

through the same setup as given in Eqn. 4.128.

Similar to the procedure discussed in SubSec. 4.3.3, the polar angle θd−1 can be de-

termined using the experimentally obtained quantity V (n)
d−1 of the interferogram formed for

the k-th two dimensional subspace.

V
(n)
d−1 =

4 sin(θd−1) cos

(
θd
2

)
5 + cos(θd) + cos(θd−1)(3− cos(θd))

=
2 sin(θd−1)

3 + cos(θd−1)
(4.239)

Once θd−1 is determined, we can use this value to determine θd−2 from the value of experi-

mentally obtained visibility V (n)
d−2 for the (d−2)-th subspace using the following expression,



Chapter 4. QSI for Qudits and Bipartite Qubit 259

V
(n)
d−2 =

4 sin(θd−2) cos

(
θd−1
2

)
5 + cos(θd−1) + cos(θd−2)(3− cos(θd−1))

(4.240)

Knowing θd−2, we can infer θd−3 from V
(n)
d−3 and so on. In this sequential method we can

determine all the polar angles θj ’s that specifies the state |ψ⟩(d).

❑ Alternative Method to Infer the Polar Angles:

Here again, the θj ’s are determined by post-processing the interferograms obtained for (d−

1)-th subspace, (d−2)-th subspace and so on in this particular sequence, as determination

of θk requires the knowledge of θk+1 and here we can use the already known information

that θd = 0. But, alternatively we can directly obtain θ1 and θ2 by simultaneously solving

the following expressions,

V
(n)
1 =

4 sin(θ1) cos

(
θ2
2

)
5 + cos(θ2) + cos(θ1)(3− cos(θ2))

(4.241)

Ī
(n)
1 =

5 + cos(θ2) + cos(θ1)(3− cos(θ2))

4 [3 + cos(θ2) + cos(θ1)(1− cos(θ2))]
(4.242)

Once we know θ1, θ2 we can obtain θ3 from experimentally obtained quantities Ī(n)2 or

V
(n)
2 .

In summary, considering the normalized form of the expectation values or considering

normalization of the state |ψ⟩(2;d)k , the azimuthal angles ϕj ’s and the polar angles θj ’s can

be determined from the argument and the magnitude of the expectation value of the spin

ladder operator σ̂(k)± only. Experimentally, ϕj ’s can be determined from the phase shift of

the interferograms associated with respective subspaces and θj ’s can be determined either

from the visibility or the average intensity computed from the interferograms. The advan-

tage of considering the normalization is that the polar angle determination requires any

one quantity, either average intensity or the visibility, to be computed from the interfero-

grams, thus it reduces the amount of post-processing required for inferring the unknown

qudit state |ψ⟩(d) compare to the method without normalization.
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QSI for Qudit: Estimating Losses in Schemes with
(d-1) Interferometers vs Two Interferometers4.B

In Sec. 4.3 and Sec. 4.4 we have shown how a single interferometric setup can be em-

ployed to characterize a pure state of a d-dimensional quantum system, i.e., a pure qudit

|ψ⟩(d). The interferometric information such as the phase shift, phase averaged intensity,

and visibility obtained from (d − 1) interferograms produced in the setup, are processed

to infer the (2d − 2) parameters required to uniquely specify a state |ψ⟩(d). However, the

scheme presented in Sec. 4.3 requires setting up (d − 1) two path interferometers (de-

scribed using MZI), each for one of the two-dimensional sub-spaces of the d-dimensional

space arranged in a particular sequence. A single interferometer (say, the k-th interferom-

eter) produces one interferogram Ik(ϵk) by performing single qubit QSI on the component

|ψ⟩(2;d)k associated with the k-th two-dimensional subspace spanned by {|k⟩ , |k + 1⟩}. In

order to select the component related to a particular subspace (say, k-th subspace) within

one interferometer, the incident beam in the state |ψ⟩(d) is split into d beams in the d

eigen modes of σ̂[d]z operator and all the beams except the two beams in states |k⟩ and

|k + 1⟩ are blocked. Therefore, this scheme for inferring an unknown pure qudit utilizes

only
(
2

d

)
·N number of particles out of N particles incident on the setup in the state |ψ⟩(d).

However, the scheme described in Sec. 4.4 utilizes only two interferometers to infer the

unknown state |ψ⟩(d) incident on the setup. Here, (d − 1) interferograms are generated

by performing single qubit QSI on all the two-dimensional components |ψ⟩(2;d)k of |ψ⟩(d)

(where k ranges from 1 to (d − 1)) at once, applying the necessary operators altogether.

The first interferometer in the setup selects the component states |ψ⟩(2;d)k associated with

two-dimensional subspaces, by blocking only half of the particles belonging to the extreme

eigenstates of σ̂[d]z operator. Therefore,
(
d− 1

d

)
· N number of particles evolve through

the second interferometer, which generates (d− 1) interferograms at the end of the setup,

processing which the unknown qudit state can be inferred. Thus, the loss associated with

the QSI scheme employing 2 interferometers is O
(
1

d

)
as compared to loss O

(
d− 2

d

)
for

the scheme employing (d − 1) interferometers. Therefore, the comparison shows that the

losses are negligible for the scheme with two interferometers for higher dimensional state

reconstruction and hence it provides an efficient single shot qudit state determination

procedure over the procedure with (d− 1) interferometers.
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In standard quantum physics, the comprehensive description of a micro-system is cen-

tered around the wave function, the knowledge of which enables one to make predictions

about the probabilistic outcomes of a measurement performed on the system. However,

wave functions, so far, are complex-valued abstract mathematical constructs without any

tangible physical meaning assigned to them. As a result, we still lack a realistic description

of the micro-world. Over the decades, several alternative interpretations of quantum theory

have been introduced, each attempting to provide a more “realistic” understanding of the

micro-system from different perspectives. Quantum Measure Theory (QMT), introduced

in 1994, is one such alternative viewpoint to quantum theory based on the path-integral or

the related sum over histories approach. It considers the histories of a micro-system as the

elements of reality and interprets the probabilistic behavior of a quantum system from the

perspective of a suitably generalized theory of Stochastic processes. Unlike the customary

point of view, QMT provides an observer-independent and space-time realist interpreta-

tion of quantum theory, characterizing micro-systems in terms of histories instead of wave

functions. The histories in this approach take into account the entire physical processes

of the micro-systems from the start, thereby connecting the micro-world with practical

scenarios. This history-based formalism generalizes the concept of probability measure to

accommodate quantum interference and assigns a ‘generalized probability’, also referred

to as ‘quantum measure’, to the set of histories associated with the system. The ‘quan-

tum measure’ differs from the traditional probability measure and can even surpass the

classical upper limit of one, revealing non-classical behaviors in the presence of interference.

In this chapter, we present a study of a two-site hopper within the context of QMT

and develop the concepts that would be useful to perform a table-top experiment for

measuring the ‘quantum measure’ associated with a chosen set of histories. Here, at first,

we provide some background helpful for understanding the significance of reformulating

quantum theory as history-based generalized probability theory, along with highlighting

the key concepts that makes QMT different from the standard quantum theory. Next, a

discussion on the existing theoretical proposal for inferring the value of ‘quantum measure’

will be presented, including an introduction to ideas such as event filtering and ancilla

based path marking etc. within an experimental scenario. Finally, we explore potential

designs for an ‘event filter’ in an optical setup allowing interference, for a specific hopper

event, with an objective of capturing the non-classical nature of the ‘quantum measure’.
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Introduction: Conventional Quantum Theory to
Quantum Measure Theory5.1

A micro-system, in the conventional mathematical formalism of quantum theory, is de-

scribed by a wave function that is defined within a Hilbert space, and the dynamics of the

system is governed by the Schrödinger wave equation that allows a unitary time evolution

of the wave function under a particular Hamiltonian. A property of the system manifests

itself through the outcome of a measurement [1], performed on the given system, of an

observable − a Herimitian operator. The probability distribution of different possible out-

comes of a measurement can be obtained using the Born rule [2] from the knowledge of

the wave function and the observable that is being measured. Although the predictions

made by this formalism have always been found to be consistent with the experimental

results, the theory appears to be inadequate as it fails to comment on the reality of the

micro-system, prior to an observation. Consequently, the physical procedures occurring at

intermediate times between the preparation and the detection associated with the measure-

ment process remain a mystery. The two questions − “Is it possible to assign an ontological

meaning to the wave function? ” [3, 4] and “What exactly happens during a measurement

procedure from the preparation to the observation? ” − have remained a subject of contin-

uing debates [5] and lie at the core of the quantum measurement problem [6].

Here, a non-perturbing, minimally disturbing, measurement scheme − weak measure-

ment (WM) [7, 8], described within the standard formalism, comes to the rescue providing

a tool that attempts to extract the system information at an intermediate time during its

evolution from the pre-measurement state (i.e., the pre-selection) to the final state (i.e., the

post-selection). However, the information obtained from the WM can not be considered to

be complete as the results of this measurement i.e., the ‘weak values’ are limited up to the

first-order approximation. Also, from the weak value one can only infer the average system

property between an initial state and a given final state − no answers could be provided

to the question asking for the mechanism or the physical process behind the state reduction.

Amidst all the interpretational debates and the attempts to provide a complete de-

scription of the quantum system and its behaviors, there lies the fact that the conventional

theory of quantum mechanics puts significant emphasis on the process of measurement,
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based on an apriori division of the universe into an observer (classical system) and ob-

served (quantum system). However, the theory presumes this division without providing

any coherent account of the “Heisenberg’s cut” [9, 10]. This led to the need for establishing

a more realistic and unified approach to quantum theory that can extend its field of appli-

cability beyond the experiments or observations and consistently describe physical systems

in both the micro and macro worlds within a single framework.

In quantum mechanics, wave functions are conceptualized as functions of space evolv-

ing continuously over time. In contrast, the covariant description of gravitational physics

involves concepts that are global to space-time. This space-time description is more in-

tuitive in the context of Quantum Field Theory and High Energy Physics. Therefore, it

has been argued that Feynman’s path integral approach [11] or more generally, the sum

over histories approach [12] towards quantum dynamics is more appropriate in adapting

quantum mechanics in the framework of general relativity [13]. This allies with the philos-

ophy of “gravitizing quantum mechanics” [14] i.e., modifying quantum mechanics in a way

that fits well with the description of general relativity. This is in contrast to “quantization

of gravity” (alternately referred to as “quantizing gravity”) i.e., making the description of

gravitational physics fit along the lines of the existing formulation of quantum mechanics

and quantum field theory [15].

Moreover, getting rid of the concepts like wave functions, observables, observers and

state reduction in a new quantum formalism would render it more applicable in the con-

text of cosmology and study of the early universe [16]. This is due to the fact that the

physics of the early universe, where quantum effects cannot be neglected, do not present

any natural way to discriminate state preparation and measurement, unlike a laboratory

setting. Additionally, in the realm of cosmology no recognizable observer or concepts like

measurement could exist, nor could any aspect of physics of that epoch be associated with

these concepts. The quantum measure theory (QMT) is such a formalism that allows the

description without any inherent need for functions evolving in time providing the correct

dynamical framework for quantum gravity [17, 18]. This space-time history based formal-

ism offers a fresh perspective to the behavior of the micro-system and attempts to resolve

the existing interpretational challenges.
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5.1.1 Quantum Measure Theory: An Alternate Formulation

Quantum Measure Theory (QMT) appears to provide a realist space-time formulation to

quantum mechanics based on sum over histories [12] or path integral approach [11]. It

interprets the behavior of a quantum system from the perspective of generalized stochastic

theory [19]. According to this approach, the kinematics of a micro-system is described in

terms a ‘history’ and the dynamics is governed by a kind of quantum stochastic law of mo-

tion for the histories [20]. A history in this framework is considered as the basic element of

reality throughout space-time and is defined as the finest piece of information, conceivable

in the theory, which can provide the most complete description of the physical reality of

a given system. For example, the history of a particle would be its potential space-time

trajectories; for a field, the history would be the possible space-time configurations, and

so on. In general, the definition of history depends on the system one is dealing with and

the context or any adopted model that can best describe the system. An event is then

defined as a set of histories related to the system, which is mapped to a non-negative real

number called the quantum measure that encodes the inherently probabilistic nature of the

micro-system. Quantum measure generalizes the classical notion of probability measure,

so as to incorporate quantum interference. This history-based formulation of the quantum

theory is akin to the generalization of classical stochastic dynamics rather than classical

Hamiltonian dynamics [21] and presents itself as a global realist approach toward quantum

foundations. To be compatible with relativity, the ‘events’ in the history space, rather

than measurement outcomes in quantum descriptions need to respect the causal structure.

Quantum Measure Space: A Brief Overview5.2

A measure space is fundamental to measure theory which consists of a measurable space

and a measure on it [22]. Classical measure space, such as a probability space in probability

theory, is composed of the triple (Ω,A,P); where Ω is the sample space which is the space

over possible realities, A is the set algebra which is a set of all possible measurable subsets

of the sample space Ω i.e., a σ-algebra on Ω, and P is the measure which is a function
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that systematically assigns numerical values to the elements of A. The set algebra A is a

subset of the power set P(Ω) of Ω. When Ω is finite, we have A = P(Ω). In the context

of probability theory, the classical measure is a probability measure over the sample space

having the values between 0 to 1, i.e., P : A 7→ [0, 1]. The probability measure P obeys

the probability sum rule. Hence, the probability of occurrence of the events A or B, where

A and B are the elements of the set algebra A, is the same as the sum of the probabilities

of occurrences of the individual events, i.e., P(A ∪B) = P(A) + P(B).

Similarly, the measure space in quantum measure theory for a given system is defined

by the triple (Ω,A, µ); where Ω is the history space which is a space over all possible

realities of the system, A is the event algebra which is the set of all possible sets of histories

in Ω (in other words all possible subsets of Ω) including the empty set Φ and the complete

set Ω itself, to which a measure can be assigned and µ is the quantum measure which is

a function that maps each element of the event algebra to a real positive number, i.e.,

µ : A 7→ R+. The elements of A are the potential events associated with the given system.

Unlike classical measure space, quantum measure space allows for interference, and hence,

the values of quantum measure can not simply be interpreted as the probability measure

in the usual sense (except for some special cases). Quantum measure (µ) neither obeys the

probability sum rule nor has an upper bound of one.

The quantum measure µ can be characterized by certain positivity conditions that

generalize the Kolmogorov sum rule for probabilities. The mathematical expression for the

quantum measure of an event E = {γ1, γ2, ....} comprising of a finite number number of

histories γk is given by,

µ(E) =
∑

γi,γj∈E

A(γi)A∗(γj)δ
γiend,γ

j
end

(5.1)

The above formula is obtained by using the path integral formalism within the framework of

quantum measure theory. Here, A(γi) represent the amplitude of the history γi that com-

prise the event E (similarly, A(γj) is the amplitude of the history γj). The delta-function

δ
γiend,γ

j
end

restricts the interference between the histories that end at the same point. The

knowledge of the quantum measures for all the events of a given system enables one to
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make predictions about the system behavior similar to the Born rule probability in stan-

dard quantum formalism.

The concept of Preclusion is the central theme behind the interpretation of Quantum

Mechanics from the perspective of generalized stochastic theory. The concept of preclusion

says that a real history does not belong to a null set, i.e., a set with measure zero. Hence,

if a real history γr ∈ Ω, then P(E) = 0 implies that γr /∈ E.

5.2.1 Quantum Measure as Generalized Probability

Quantum measure theory generalizes the mathematical description of measure space by

incorporating quantum interference. Consequently, the ‘quantum measure’ provides a

broader perspective following a generalized sum rule and allowing the values beyond the

classical upper limit of one related to the conventional probability measure. Here, we will

illustrate how the intuitive concept of probabilities can be generalized to quantum measure.

We would use the slit system as an example because the path integral is equivalent to the

familiar Huygens scalar wave theory.

In Young’s double slit experiment, the resultant wave at the detector plane when two

slits are open is often calculated as the superposition of the two waves associated with the

conditions when each individual slit is open. Thus, if |ψA(x)⟩ represents the wavefunction

when only slit A is open (slit B is closed) and |ψB(x)⟩ represents the wavefunction when

only slit B is open (slit A is closed), then according to the superposition principle the wave

function |ψAB(x)⟩ when both slit A and slit B are open, is given by

|ψAB(x)⟩ = |ψA(x)⟩+ |ψB(x)⟩ (5.2)

However, in this new approach to quantum theory based on the path integrals, we aim

to do away with wave functions. Instead, we would aim to describe the system directly in

terms of the probabilities, which according to the standard formalism is given by the Born

rule [23]. This would be comparable with the experimental results as well because, unlike

the wave functions, the probability measures can be determined directly in an experiment.
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According to the standard formalism of quantum theory, the probabilities that a system

would travel through slit A and slit B are respectively given as PA(x) = |ψA(x)|2 and

PB(x) = |ψB(x)|2, which could be obtained by placing detectors just after the respective

slits. However, we know that in quantum mechanics, the probability of detection when

both the slits are open is not the same as the sum of the individual probabilities, i.e.,

PAB(x) ̸= PA(x)+PB(x). Therefore, the way the probabilities are added needs to be gen-

eralized. In the new formalism, instead of standard Kolmogorov probabilities, we would

associate a non-negative real number, called the quantum measure, to each individual set

of histories, i.e., to each ‘event’.

Here in the two-slit example, a non-negative real number µA [and µB] is assigned to

the set A ≡ {γA} [and B ≡ {γB}] of histories γA [and γB] corresponding to a quantum

particle going through slit A [and slit B]. When the two slits are open, the measures µA

and µB cannot be simply added to get the measure µA∪B, where A ∪ B represents the

disjoint union of the two sets A and B. The measure µA∪B is associated with the ‘event’

E = A∪B ≡ {γA, γB} corresponding to a particle going through any one of the slits A or

B producing an interference pattern at the end (i.e., on the detection plane). To account

for the interference when both the slits are open, an interference term I(2)A,B needs to be

included in the description of µA∪B. The superscript represents the order of interference,

i.e., here for I(2)A,B the superscript ‘(2)’ implies that the interference is to be expressed in

terms of the pairs of the alternatives (here the paths through the individual slits). For two

slits (A and B), this interference term is defined as follows,

I
(2)
A,B = µA∪B − (µA + µB) (5.3)

From the double-slit interference experiments, we know that the difference between the

measure when both slits A and B are open simultaneously and the sum of the individual

measures when individual slits A or B is open, is non-zero, i.e., µA∪B − (µA + µB) ̸= 0.

This implies that the second-order interference term is non-zero, i.e., I(2)A,B ̸= 0. Therefore,

for a quantum system the second-order sum rule 1 does not hold true. Hence,

1For a double slit, where there can be two sets of histories A ≡ {γA} and B ≡ {γB}, a sum rule would

indicate µA∪B = µA + µB.
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µA∪B ̸= µA + µB (5.4)

However, the above sum rule associated with two-path interference can be extended to

higher-order sum rules. For a three-slit system (say, the slits are A, B, C), the interference

term by generalized extension of the expression in Eqn. 5.3 can be written as,

I(3)A,B,C = µA∪B∪C − (µA∪B + µB∪C + µC∪A) + (µA + µB + µC) (5.5)

The above expression for the third-order interference term I(3)A,B,C is obtained by subtract-

ing the measures for all possible combinations of two-slit configurations (i.e., at a time two

slits are open with the other one being blocked) from the measure for the three-slit config-

uration (i.e., all the three slits are open at the same time) and adding the measures for all

possible one-slit configurations (i.e., only one slit out of the three is open at a time) to the

result. The additive properties of quantum measures can be completed with the two-path

interference terms, if I(3)A,B,C = 0. Using the expressions for the second-order interferences

given in Eqn. 5.3, in the Eqn. 5.5 with the consideration I(3)A,B,C = 0, we get

µA∪B∪C = µA + µB + µC + I(2)A,B + I
(2)
B,C + I

(2)
C,A (5.6)

Further, expanding the expression for measure with three alternatives in terms of the

measure of two alternatives, i.e, expressing µA∪B∪C = µ(A∪B)∪C = µA∪B+µC +I(2)A∪B,C and

using µA∪B = µA + µB + I(2)A∪B we get the third-order interference term from Eqn. 5.5 as

the following,

I(3)A,B,C = I
(2)
A∪B,C − I

(2)
A,C − I

(2)
B,C (5.7)

The above expression would have a similar form if instead of considering overlap between

the sets A and B, we have considered the measure µA∪B∪C as µA∪(B∪C) or µ(A∪C)∪B.

Therefore, given the third order sum rule, i.e., I(3)A,B,C = 0, the second order interference
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terms appears to be bi-additive, equivalent to the inner products in the Hilbert space theory

of the standard quantum formalism [19].

I(2)A∪B,C = I
(2)
A,C + I

(2)
B,C (5.8)

Generalizing the expression of third-order interference term in Eqn. 5.7, preserving the

bi-additivity, the (n + 1)-th order interference term I(n+1) can be related with the n-th

order interference terms I(n) as the following:

I(n+1)
({Ak}) = I

(n)
(Ai∪Aj ,{Ak}|k ̸=i,j) − I

(n)
({Ak}|k ̸=j) − I

(n)
({Ak}|k ̸=i) (5.9)

Therefore, if I(n) = 0 then we get I(n+1) = 0; i.e., all higher-order interference terms would

be inductively shown to be zero if any one of the interference terms in the hierarchy of the

sum rules becomes zero [18].

In the standard description of the wave mechanics, if we assume the validity of the

superposition principle for the wave function in the slit based interference experiments

along with the Born rule from which we can compute the probability as the modulus

square of the wave functions [24], then for the triple slit experiment we get the interference

term I(3)A,B,C = 0. Although, till now there has been no observed deviation from the Born

rule where amplitude division has been used [25], the fact that the superposition principle

cannot be naively applied with wavefront divisions leads to a deviation which has been

reported both in classical [26] and quantum domain [27]. The deviation, however, can be

accounted for if the higher-order Feynman paths are considered in the theory.

The superposition principle is applicable if we restrict ourselves to the set of paths that

cross the slit plane once. When we include paths that cross the slit plane more than once,

the deviation of the results from the superposition principle can be qualitatively explained

[28, 29]. It can be hypothesized that the deviation can be exactly characterized when

all possible Feynman paths are included. The sum over histories approach of Quantum

Measure Theory (QMT) is closer to the Feynman path integral formalism and aims to not

use the wave functions and the associated superposition principle and the Born rule as a



Chapter 5. Measuring the ‘Quantum Measure’ 275

core part of the formalism. Thus, Quantum measure theory can be considered as an alter-

native formulation for quantum mechanics based on the path-integral approach that gives

a generalized form of the probability theory and the ‘quantum measure’ can be considered

as the ‘generalized probability’.

5.2.2 Different Types of Events and the Quantum Measure

An event, in Quantum Measure Theory, is defined as a set of histories that can be mapped

to a ‘generalized probability’ or ‘quantum measure’. Here, the events are broadly classified

into two categories, (i) Instrument events and (ii) Non-instrument events, which might

also be referred to as system events. Instrument events are those that only consider

the histories of an instrument. By “instrument” here we mean a piece of measuring ap-

paratus that exhibits macroscopic behavior and by instrument’s history we refer to the

elements that describe this macroscopic behavior corresponding to different outputs of the

instrument. For example, a detector can have a history space defined as ΩI ≡ {✓,×};

where ✓ and × are the two histories of the detector respectively corresponding to the two

classically admissible outputs of the instrument, which are “click” and “not-click” of the

detector. Hence, the event algebra AI would consist of four possible instrument events

Φ, {✓}, {×}, {✓,×}, with the measures of the first and the last events being 0 and 1

respectively. The measure µ✓ of the event {✓} gives the probability of ‘click’, directly

implying the probability of detection in an experiment provided µ✓ + µ× = 1.

Non-instrument events, on the other hand, are those that consider the histories not asso-

ciated with an instrument, specifically any measuring apparatus. For example, the photonic

events associated with a photon encountering a lossless optical beam splitter. Here, the

two histories T and R, respectively representing the paths of the photon undergoing trans-

mission or reflection through the beam splitter, form the history space ΩNI ≡ {T ,R}. The

associated event algebra ANI consists of four possible non-instrument (photonic) events

Φ, {T }, {R}, {T ,R} with the measures µ(Φ) = 0 and µ({T ,R}) = 1. Further, for an ideal

lossless beam splitter µT + µR = 1, where µT = µ({T }) and µR = µ({R}) respectively

represent the probabilistic behavior of the photon. This is an example of the simplest

non-instrument event involving one device (here, a beam splitter), where the quantum

measures µT and µR are the same as the probabilities of transmission and reflection.
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Non-instrument events, however, can be more complex in the presence of multiple de-

vices with multiple output ports in the path of the system. Interference might be involved

in non-instrument events consisting of the histories that terminate at the same point. The

quantum measure might not be interpreted as the ordinary probability measure for these

non-instrument events. Note that microscopic events similar to the photonic events in the

above example also take place inside a measuring apparatus, like the events related to the

motion of the electrons within the electrical circuit of the detector. However, as long as

the detector functions properly, these microscopic events are of secondary importance as

they do not significantly impact the macroscopic behavior of the instrument.

Although the non-instrument events are not directly observable, some of them can be

inferred from instrument events. A simple example would be the following − when a pho-

ton encounters a beam splitter, we don’t immediately know whether it has transmitted or

reflected until a detector registers the photon either in the transmitting or in the reflecting

port of the beam splitter. However, this kind of inference can only be made based on

the assumption that the detector has high efficiency, i.e., the ‘click’ of the detector upon

arrival of the photon has higher accuracy. Further, the dark counts of the detector can

falsely imply photon arrivals, leading to non-instrument events being mistakenly identified.

Therefore, inferring the occurrence of a non-instrument event from an instrument event

relies on the assumption that there exists a perfect correlation between the two classes of

events considering the specifications of the instrument (detector) being used.

The non-instrument events or the system events are further classified as (i) Serial events

and (ii) Non-serial events. Serial events are those that could, in principle, be directly

inferred from an instrument event or from a sequence of instrument events, without the

need for any ancilla. For example, in a setup with two beam splitters arranged in series, the

event where a photon incident on the setup transmits through both the beam splitters is

a serial event. Mathematically, a serial event can be realized with a sequence of projection

operators and therefore, the occurrence of such an event can be directly identified from

one of the outcomes of a measurement (as defined in standard formalism). The quantum

measure of the serial events can not exceed unity. In contrast, non-serial events are those

that can not be directly identified from the instrument events, as they can not be assigned

with any physically realizable operation or a succession of operations. Detection of such
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events requires the use of ancilla. The information about the occurrence of the event can be

processed through coupling ancillas to the system and designing an ‘event filter’ to extract

the intended set of histories associated with the event. A detailed discussion on this will

be provided in Section. 5.3.

Here, we present a practical scenario to clarify the distinction between serial and non-

serial events. Consider a particle passing through two double slit setups, placed one after

the other with a definite gap in between. Let A1, B1 represent the upper and lower slits in

the first double slit-setup and A2, B2 represent the same in the second double slit-setup.

So, for a particle traveling through this dual double-slit setup, the history space would be

defined as Ω = {A1A2, A1B2, B1A2, B1B2}. Now, the events like E1 = {A1A2, B1A2}

or E2 = {A1A2, A1B2} are considered as the serial events, as they can be simply de-

tected by a placing an instrument (here, a detecting screen) after the second slit-setup

while blocking the slit B2 for E1 and A2 for E2. Even more simply, all the single his-

tory events, i.e., {A1A2}, {A1B2}, {B1A2}, {B1B2} are serial events. All these serial

events can be realized by blocking a subset of the slits to allow the particle to pass only

through the desired set of paths. On the other hand, events like E3 = {A1A2, B1B2} or

E4 = {A1B2, B1A2} are considered as non-serial events, as these events can not be realized

simply by blocking a subset of slits, or the undesired paths. In the attempts to detect the

events E3 or E4 on the screen, the effect of the other two paths that are not a part of this

event can not be eliminated. All the three history events like E5 = {A1A2, A1B2, B1A2}

or {A1A2, B1A2, B1B2} are examples of non-serial events as well.

The standard Quantum Mechanics (QM) interprets the probability of an event from

the probability of an outcome of a measurement or in this case, from the possible detection

by an instrument. Hence, according to standard QM, probabilities are only meaningfully

attributed to instrument events and the dynamics of a micro-system undergoing serial

events can only be interpreted. Quantum Measure Theory (QMT), on the other hand,

goes beyond standard QM by providing information about all kinds of events including

non-serial events. By employing ancilla coupling and designing event filters, QMT broad-

ens the scope of possible measurements beyond conventional definitions, which could pave

the way for a deeper understanding of the micro-world.
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Generalized Experimental Scheme for Measuring
the Quantum Measure5.3

The probabilistic behavior of a quantum system owing to its stochastic dynamics is char-

acterized in terms of the ‘generalized probability’ or the ‘quantum measure’, which within

the framework of Quantum Measure Theory (QMT) assigns a non-negative real number

to every ‘event’ of the micro-system. The quantum measure, in general, provides a kind of

non-classical probability that can not be interpreted as the ordinary probability measure

(the Kolmogorov probability), since the value of quantum measure can exceed the classical

upper limit of one due to interference permitted in QMT. However, in order to understand

the practical significance of this quantity, which remained an abstract theoretical concept

so far, the reference [30] proposes a generalized experimental procedure to determine the

value of the ‘quantum measure’ of any desired event (instrument or non-instrument, se-

rial or non-serial) associated with a quantum system. A successful implementation of this

scheme, providing a more direct experimental footing to ‘quantum measure’, would take

us a step forward toward resolving the foundational issues of quantum theory.

Here, we will describe the experimental scheme simply by considering the physical

system to be a particle that passes through a succession of N similar devices, each with

multiple (say, m number of) output ports. The particle incident on a device can be found

in any one of the m output ports after emerging from the device. Thus, within this (N,m)

kind of experimental setup, there would be mN possible paths for the particle to take and

they would form the history space Ω(N,m) for the particle. Visualizing in terms of the stan-

dard quantum mechanics, each of the devices can be associated with an observable, which

when acted on the system would reduce the system state to one of the eigen states of the

observable defined within the m-dimensional Hilbert space. A history γ ∈ Ω(N,m) in this

scenario, could be viewed as a sequence of N eigenvalues, associated with the measurement

outcomes of a set of N observables at successive moments of times Tγ = {t1, t2, . . . , tN}.

One of the examples for such a system-device combination could be a spin s particle

traversing through N number of Stern-Gerlach (SG) devices oriented in different directions

such that di ̸= di+1. Here, di represents one of the possible local directions (in a plane

transverse to the direction of propagation of the particles) of the inhomogeneous magnetic
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field of i-th SG device; eg. for a stream of particles propagating along local y direction, di

could be any direction on the transverse x−z plane. When the particle passes through any

such device, it can be found in one of the (2s+1) possible paths after the device, associated

with the eigenvalues of the spin projection operator being filtered. Consider a setup, where

a spin-1/2 particle passes through two SG devices oriented in z and x directions respec-

tively. After the first device, the particle can be found either in the state |↑⟩ or in the state

|↓⟩, corresponding to the eigenvalues +1 or −1 of the observable Ẑ. Next, when the particle

enters the second device, it comes out in either |↗⟩ or |↙⟩ associated with the eigenvalues

+1 or −1 of the observable X̂ 2. So, for this setup the possible paths that the particle can

take are as follows: Ω
(2,2)
SG = {Z+1X+1, Z+1X−1, Z−1X+1, Z−1X−1}. The same situation

can be achieved with a photon passing through two optical beam splitters (BS) placed

one after the other. A photon incident on a beam splitter either gets transmitted or gets

reflected, with the chance depending on the splitting ratio T : R of the beam splitter 3.

The history space for the photon can be defined as Ω
(2,2)
BS = {T1T2, T1R2, R1T2, R1R2},

where R1T2 represents the path of the photon undergoing reflection from first BS and

transmission through second BS etc..

In the following, the working principle of the proposed measurement scheme is outlined

that would allow one to interpret the non-classical behavior of a micro-system from the

value of the ‘quantum measure’ of an event, defined in the history-based formalism. For

simplicity, here we will choose our system to pass through N devices, each with two output

ports, i.e., m = 2, giving (N, 2) kind of setup, as shown in the following figure.

|𝑛1
0⟩ |𝑛2

0⟩

 𝑛1  𝑛2  𝑛𝑁

|𝜓0⟩
|𝑛1

1⟩

|𝑛𝑁
0 ⟩

|𝑛2
1⟩ |𝑛𝑁

1 ⟩

Figure 5.1: Schematic of a N -device setup, with each device having two output ports.

2The operators X̂ and Ẑ are the spin-projection operators in the two-dimensional Hilbert space, along

x and z direction respectively. The relation between the eigen states of the observables X̂ and Ẑ are given

as, |↗⟩ = |↑⟩+ |↓⟩√
2

and |↗⟩ = |↑⟩ − |↓⟩√
2

.
3For a beam splitter, T and R respectively represents Transmissivity and Reflectivity of it, provided

T +R = 1.
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5.3.1 Finding the Amplitude of a History

Let, |ψ0⟩ represents the initial state of the system incident on the N -device setup as shown

in Fig. 5.1. Here, each device with two output ports can be associated with an observable

with two eigenvalues, labelled as 0 and 1 (say) corresponding to the system emerging in

the upper and the lower output ports of the device. Let, the i-th device be represented

by the observable n̂i having two eigenvalues γi = 0, 1 associated with the eigen states
∣∣n0i 〉

and
∣∣n1i 〉, respectively representing the state of the system in the upper path and the lower

path after the device. A history γ, in this setup, is one of the 2N trajectories that the

particle can follow and is given by a chain of N -bits as the following,

γ = (γ1, γ2, . . . , γN ) ≡ {γi} with i = 1, 2, . . . , N and γi = 0 or 1 (5.10)

Here, γ ∈ Ω(N,2) where Ω(N,2) is the history space for the system propagating through the

(N, 2) setup, consisting of a total of 2N histories.

According to the standard Quantum Mechanics, the action of the operator n̂i on the

particle state |ψs⟩ can be shown as,

n̂i |ψs⟩ → |nγii ⟩ ⟨n
γi
i |ψs⟩ with γi = 0 or 1 (5.11)

Therefore, for the N -device setup shown in Fig. 5.1, the system states |ψ1⟩ and |ψ2⟩ after

the first and the second devices respectively, can be expressed as the following:

After n̂1 : |ψ1⟩ = |nγ11 ⟩ ⟨n
γ1
1 |ψ0⟩ (5.12)

After n̂2 : |ψ2⟩ = |nγ22 ⟩ ⟨n
γ2
2 |ψ1⟩ = |nγ22 ⟩ ⟨n

γ2
2 |n

γ1
1 ⟩ ⟨n

γ1
1 |ψ0⟩ (5.13)

= |nγ22 ⟩
2∏

k=1

〈
nγkk
∣∣nγk−1

k−1
〉

(5.14)

Here, in the above expression, we have considered |nγ00 ⟩ = |ψ0⟩, which is the state of

the system at the time of incidence on the setup. Hence, after the N -th device (i.e., the

operation through n̂N ) the state of the system would be,
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|ψN ⟩ =

 N∏
k=1

〈
nγkk
∣∣nγk−1

k−1
〉 |nγNN ⟩ (5.15)

Now, relating the histories formalism of quantum mechanics to the standard formalism,

a ‘history’ (γ) of the given system can be considered as a chain of outcomes associated

with the action of a set of observables {n̂1, n̂2, . . . n̂N} on the initial system state |ψ0⟩ at

times Tγ = {t1, t2, . . . , tN}, where ti < ti+1. The final state of the micro-system at the

end of the setup would be dependent on the history γ i.e., the path that the system has

taken within the setup, giving
∣∣∣ψ(γ)
f

〉
= |ψN ⟩ = A(γ)

∣∣nγNN 〉. Hence, from Eqn. 5.15 the

amplitude A(γ) associated with the history γ = (γ1, γ2, . . . , γN ) can be expressed as,

A(γ) =

N∏
k=1

〈
nγkk
∣∣nγk−1

k−1
〉

(5.16)

where, |nγ00 ⟩ = |ψ0⟩ and γk ∈ γ. γk can take the value 0 or 1 depending on the eigen value

of the observable n̂k being emerged out.

Therefore, the quantum measure µ(E) for a set of histories {γp} (where, p can be any

integer between 1 to 2N ) i.e., for an event E = {γp} ⊆ Ω(N,2), evaluated according to the

expression in Eqn. 5.1, is obtained to be

µ(E) =
∑

γp,γq∈E

A(γp)A∗(γq)δγpN ,γ
q
N

(5.17)

µ(E) =
∑

γp,γq∈E

N∏
k,l=1

〈
n
γpk
k

∣∣∣nγpk−1

k−1

〉〈
n
γql−1

l−1

∣∣∣nγqll 〉 δγpN ,γqN (5.18)

Here, A(γp) is the amplitude associated with the history γp = (γp1 , γ
p
2 , . . . , γ

p
N ), with

γpN representing the end point of the history γp. Similarly, A(γq) represents the amplitude

associated with the history γq ending at γqN . The delta function δγpN ,γqN ensures interference

between the histories γp ∈ E and γq ∈ E ending at the same location (i.e., γN ).
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Thus, from the viewpoint of standard Quantum Mechanics, the quantum measure µ(E)

for a set of histories E = {γp} depends on (i) the initial state |ψ0⟩ of the micro-system

with which the system enters the setup, (ii) the histories that comprise the event i.e., the

outcomes of the set of observables associated with the devices through which the system

has traveled and (iii) the transition amplitudes between the eigen states of the successive

observables. The phenomena of interference come into play for those trajectories where the

system exit through the same port of the final device i.e., the N -th apparatus. The value

of the quantum measure, as shown in Eqn. 5.18, is computed using the amplitudes of the

histories from the mathematical expression of quantum measure given in QMT obtained

employing the sum-over histories approach. Next, an experimental methodology will be

established to determine the value of the “measure” through the measurements delineated

in the conventional formalism.

5.3.2 Marking Outcomes via Ancilla Coupling

In order to keep track of the trajectory followed by the particle within the setup consisting

of N -devices, an ancilla is coupled to the system after each device. The ancilla coupled

to a particular device (say, i-th device) undergoes a state transition in accordance with

the outcome of the action of the observable n̂i associated with the device, enabling the

identification of the particle’s path after the device. The action of the i-th device and

ancilla in combination can be expressed as,

|ψs⟩ |ri⟩ai
Device−−−−−−−→ |nγii ⟩ |ri⟩ai

Ancilla−−−−−−−→ |nγii ⟩ |γi⟩ai (5.19)

Here, |ψs⟩ is the system state incident on the i-th device (ni) and |ri⟩ai is the initial state of

the i-th ancilla coupled to this device, also known as ‘ready state’ of the ancilla which can

be any state belonging to any basis corresponding to a Hilbert space that can be different

from that of the system space.

Since we have considered a system hopping between two sites of the devices (a two-site

hopper) here, the particle has been chosen to be a two-level quantum system. Therefore,

the ancilla can be a qubit with the states |0⟩ai and |1⟩ai , or any system in the higher

dimension. The ready state of this ancilla can be chosen to be |0⟩ai or |1⟩ai for a two-level
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ancilla or any state orthogonal to |0⟩ai and |1⟩ai for an ancilla in the Hilbert space of

dimension d > 2. However, the multi-level ancillas are useful for identifying the events

of higher dimensional quantum systems. When the ready state is considered to be |0⟩ai ,

the system-ancilla coupling can be mimicked as a CNOT operation with the system state

being the trigger, i.e.,

Particle in the upper path:
∣∣n0i 〉 |0⟩ai → ∣∣n0i 〉 |0⟩ai (5.20)

Particle in the lower path:
∣∣n1i 〉 |0⟩ai → ∣∣n1i 〉 |1⟩ai (5.21)

Hence, the path information of a particle after a device ni is encoded in the state of the

ancilla ai. So, for the N -device setup, N number of ancillas are to be coupled one after

each device as can be seen from the Fig. 5.2 and the joint state of all the N ancillas would

represent the history chosen by the system.

|𝑛1
0⟩ |𝑛2

0⟩

 𝑛1  𝑛2  𝑛𝑁

|𝜓0⟩
|𝑛1

1⟩

|𝑛𝑁
0 ⟩

|𝑛2
1⟩ |𝑛𝑁

1 ⟩

𝛾1 𝑎1 𝛾2 𝑎2 𝛾𝑁 𝑎𝑁

𝑎1 𝑎2
𝑎3

𝛾 𝑎
…………….

Figure 5.2: Schematic of an N -device setup, with the system after each device coupled to

an individual ancilla undergoing state transition depending on the outcome of the device.

5.3.3 Joint State of System-Ancilla After Coupling

Let, the ready state of the ancillas {ai}, coupled after the respective devices {ni} (with

i = 1, 2, . . . , N), when the system is incident on the (N, 2) setup is {|ri⟩ai}. So, the initial

joint state (|ΨI⟩ ≡ |Ψ(t0)⟩) of the system and N ancillas at time t = t0 is given by,

|ΨI⟩ = |ψ0⟩ |r1⟩a1 |r2⟩a2 . . . . . . |rN ⟩aN = |ψ0⟩
N∏
i=1

|ri⟩ai (5.22)
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Here, |ψ0⟩ is the initial state of the system. As the system passes through the devices

in the setup, its state is altered based on the outcomes of the actions of the observables

{n̂i} at times Tγ = {ti} where i = 1, 2, . . . , N and ti < ti+1, and subsequently the state

of the ancillas are modified one by one. Therefore, for a history γ = (γ1, γ2, . . . , γN ), the

evolution of the joint system-ancilla state through the setup can be expressed as,

|ΨI⟩ = |ψ0⟩
N∏
i=1

|ri⟩ai

After 1st device-ancilla:

→ (⟨nγ11 |ψ0⟩) |nγ11 ⟩ |γ1⟩a1
N∏
i=2

|ri⟩ai

After 2nd device-ancilla:

→ (⟨nγ22 |n
γ1
1 ⟩ ⟨n

γ1
1 |ψ0⟩) |nγ22 ⟩ |γ1⟩a1 |γ2⟩a2

N∏
i=3

|ri⟩ai

=

(
2∏

k=1

〈
nγkk
∣∣nγk−1

k−1
〉)
|nγ22 ⟩ |γ1⟩a1 |γ2⟩a2

N∏
i=3

|ri⟩ai

...
...

...

After N-th device-ancilla:

→

(
N∏
k=1

〈
nγkk
∣∣nγk−1

k−1
〉) ∣∣nγNN 〉 |γ1⟩a1 |γ2⟩a2 . . . |γN ⟩aN

Hence, after the system propagates through all the devices and gets coupled to the

individual ancillas, the final joint state of system-ancilla at the end of the (N, 2) setup for

a particular history γ would be:

∣∣∣Ψ(γ)
f

〉
=

(
N∏
k=1

〈
nγkk
∣∣nγk−1

k−1
〉) ∣∣nγNN 〉

(
N∏
i=1

|γi⟩ai

)
(5.23)

Here, we have assumed |nγ00 ⟩ = |ψ0⟩ representing the initial state of the system and
∣∣nγNN 〉

is the final state of the system after emerging out of the setup. The state at t = tN ,

i.e.,
∣∣∣Ψ(γ)

f

〉
≡ |Ψ(tN )⟩ is the final joint state of system-ancilla associated with a particular
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history γ = (γ1, γ2, . . . , γN ). Using the expression for amplitude A(γ) of the history γ from

Eqn. 5.16, we can write

∣∣∣Ψ(γ)
f

〉
= A(γ)

∣∣nγNN 〉 |γ⟩a (5.24)

with |γ⟩a = |γ1⟩a1 |γ2⟩a2 . . . . . . |γN ⟩aN =

N∏
i=1

|γi⟩ai (5.25)

|γ⟩a represents the joint state of N ancillas that encodes the path information of the system

within the setup for the history γ. So, measurements performed on the joint ancilla states

{|γp⟩a}, where p is any integer between 1 to 2N , in a suitable basis enables us to comment

on the system behavior between the time t = t0 to t = tN without affecting the system.

5.3.4 Determining the Quantum Measure via Projective Measurements

on Suitable Ancilla Basis

So far we have designed a setup consisting of N -apparatus having two output ports each,

enabling a quantum system to follow one of the 2N possible trajectories within the setup

and registered this path information in the states of N ancillas coupled to the system, one

after each apparatus. Here our goal is to find the value of the quantum measure µ(E)

associated with a given set of histories E = {γp}, through the experimental determination

of probability of a certain outcome of a projective measurement, identified as the standard

measurement procedure in the conventional framework of quantum mechanics. Since the

information regarding any history i.e., any path chosen by the system is encoded in the

joint ancilla state |γ⟩a, the measurements needs to be performed on joint ancilla states in

an appropriate basis defined in the joint Hilbert space of ancillas, while ensuring minimal

disturbance caused to the system. So, once all the ancillas have recorded the paths chosen

by the system after the devices, a suitable unitary transformation needs to be performed to

the joint ancilla basis, so that a “click” in the detector associated with one of the states in

the new basis confirms the occurrence of the desired event and the probability of the “click”

corresponding to this particular outcome would be related to the ‘quantum measure’ of

the event with a known factor of proportionality.
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Let, |E⟩a be that joint ancilla state in the new basis after the Unitary transformation

which corresponds to the desired outcome of a projective measurement, the probability of

which would be related to the measure µ(E) for the event E. The operator that projects

the joint ancilla state to |E⟩a leaving the system undisturbed is given by,

Π̂E = 1̂s ⊗ |Ea⟩⟨Ea| (5.26)

Here, 1̂s represents the identity operator (2× 2 matrix for 2-level quantum system) that

acts on the system state.

The expression in Eqn. 5.24 is the final system-ancilla joint state as the system prop-

agates through the path γ (anyone among the 2N paths) within the setup as shown in

Fig 5.1, where γ = (γ1, γ2, . . . , γN ) is a particular sequence of outcomes of the set of ob-

servables {n̂i}. However, according to the wavefunction description of the conventional

quantum framework, prior to an observation, a quantum system is characterized to exist

in a superposition of all possible eigen states of the observable simultaneously. Hence,

in the N -device setup while traversing through the i-th device (the associated operator

being n̂i), the system state is described as a superposition of being in the two output

ports (with the associated eigen states
∣∣n0i 〉 and

∣∣n1i 〉) of the device at the same time, i.e.,

|ψs⟩ = αi0
∣∣n0i 〉+ αi1

∣∣n1i 〉 with |αi0|2 and |αi1|2 respectively representing the probabilities

of finding the particle in the upper and lower paths after the i-th device, upon detection.

So, as per the conventional formalism, before any observation or detection is made, the

joint system-ancilla state corresponding to the device ni would be given as,

|ψs⟩ |ri⟩ai →
〈
n0i
∣∣ψs〉 ∣∣n0i 〉 |0⟩ai + 〈n1i ∣∣ψs〉 ∣∣n1i 〉 |1⟩ai = αi0

∣∣n0i 〉 |0⟩ai + αi1
∣∣n1i 〉 |1⟩ai

(5.27)

From the above expression, it can be seen that coupling between the system and ancilla

after a device results in an entangled state.

For a two device (say, n1, n2) setup with each device having two output ports, the

evolution of the joint system-ancilla state |ΨI⟩ is given as,
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|ΨI⟩ = |ψ0⟩ |r1⟩a1 |r2⟩a2

After 1st device:

→
(〈
n01
∣∣ψ0

〉 ∣∣n01〉 |0⟩a1 + 〈n11∣∣ψ0

〉 ∣∣n11〉 |1⟩a1) |r2⟩a2
After 2nd device:

→
〈
n02
∣∣n01〉 〈n01∣∣ψ0

〉 ∣∣n02〉 |0⟩a1 |0⟩a2 + 〈n12∣∣n01〉 〈n01∣∣ψ0

〉 ∣∣n12〉 |0⟩a1 |1⟩a2
+
〈
n02
∣∣n11〉 〈n11∣∣ψ0

〉 ∣∣n02〉 |1⟩a1 |0⟩a2 + 〈n12∣∣n11〉 〈n11∣∣ψ0

〉 ∣∣n12〉 |1⟩a1 |1⟩a2
Therefore, the final joint state of system-ancilla after the 2nd device can be expressed as,

|Ψf ⟩ = A(00)
∣∣n02〉 |00⟩a +A(01)

∣∣n12〉 |01⟩a +A(10)
∣∣n02〉 |10⟩a +A(11)

∣∣n12〉 |11⟩a
(5.28)

Here, A(γ) represents the amplitude of the history γ = (γ1, γ2). The final joint state |Ψf ⟩

is an entangled state denoting a superposition of system-ancilla joint states associated with

22 = 4 possible histories that form the history space Ω(2,2) = {00, 01, 10, 11}.

Now, a projective measurement on the combined system-ancilla state in the joint ancilla

basis {|00⟩a , |01⟩a , |10⟩a , |11⟩a} ≡ {|γ⟩a}, reveals that the path 00 occurs with probability

P(00) = |A(00)|2 with the system state being projected to
∣∣n02〉, the path 01 occurs with

probability P(01) = |A(01)|2 with the system state being projected to
∣∣n12〉 and so on. For

a desired event E = {00, 10}, measurements in the {|γ⟩a} basis results in the probability

of the event to be
∣∣(1̂s ⊗ |00⟩⟨00|) |Ψf ⟩

∣∣2 + ∣∣(1̂s ⊗ |10⟩⟨10|) |Ψf ⟩
∣∣2 = |A(00)|2 + |A(10)|2 =

P(00)+P(10), which does not contain the information of interference between the paths 00

and 10 ending at the same location, i.e., at the upper path (with the associated system state∣∣n02〉) of the device n2. Hence, within the framework of QMT for the event E = {00, 10}

P(E) ̸= |A(00)|2 + |A(10)|2

=⇒ P(E) ̸= P(00) + P(10) (5.29)
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The above expression of probability for the event E = {00, 10} clearly shows that within

the context of QMT, the probability P(E) does not follow the probability sum rule. How-

ever, we need to capture this effect through the outcome of the measurements on the joint

ancilla states, leaving the system state undisturbed.

The expression in Eqn. 5.29 implies that the measurement on the joint ancilla states

in the basis {|γ⟩a} disturbs the evolution of the system, resulting in no interference. Now,

let {|γu⟩a} be another joint ancilla basis, the measurement on which gives the probability

of the desired event E = {00, 10} as the probability of one of the outcomes
|00⟩a + |10⟩a√

2
of

the projective measurement, without affecting the interference between 00 and 10. Here,

|γu⟩a = Û |γ⟩a with Û †Û = Û Û † = 1̂ (5.30)

Û is the unitary operator that transforms the joint ancilla basis {|γ⟩a} to {|γu⟩a}.

The orthonormal basis {|γu⟩a} ≡ {
|00⟩a + |10⟩a√

2
,
|01⟩a + |11⟩a√

2
,
|00⟩a − |10⟩a√

2
,
|01⟩a − |11⟩a√

2
},

which is chosen appropriate for the final measurement on the ancillas, can be obtained from

the transformation of the basis {|γ⟩a} ≡ {|00⟩a , |01⟩a , |10⟩a , |11⟩a} through the unitary

operator Û as follows,

Û =
1√
2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 =
1√
2

1 1

1 −1

⊗
1 0

0 1

 (5.31)

Therefore, using the expression of |Ψf ⟩ from Eqn. 5.28, the probability of obtaining

the state |x1⟩a =
|00⟩a + |10⟩a√

2
can be computed as,

P(x1) =
∥∥(1̂s ⊗ |x1⟩⟨x1|) |Ψf ⟩

∥∥2 = 1

2
(|A(00) +A(10)|2) = µ(E)

2
(5.32)

Here, µ(E) denotes the quantum measure of the event E = {00, 10}, as computed using

the theoretical formula given in Eqn. 5.1. The above expression shows that the probability
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P(x1) of the outcome |x1⟩a =
|00⟩a + |10⟩a√

2
of the projective measurement is related to

µ(E) for the event E = {00, 10} by a factor
1

2
, allowing us to infer µ(E) from the proba-

bility P(x1) determined experimentally.

Similar to the final joint state associated with a (2, 2) setup shown in Eqn. 5.28, the

final joint state of the system-ancilla prior to observation for a N -device setup i.e., for a

(N, 2) setup depicted in Fig. 5.2, would be in a superposition over the states
∣∣∣nγpNN 〉 |γp⟩a

associated with all the 2N possible paths γp ∈ Ω(N,2). So, according to the conventional

formalism, the final joint system-ancilla entangled state after the system has traveled

through all the devices in a (N, 2) setup is,

|Ψf ⟩ =
2N∑
p=1

A(γp)
∣∣∣nγpNN 〉 |γp⟩a (5.33)

Here, A(γp) is the amplitude related to the history γp within the (N, 2) setup and |γp⟩a
is the combined state of all ancillas {ai} within the setup after coupling with the system,

i.e., |γp⟩a =
∏N
i=1 |γ

p
i ⟩ai .

The preceding discussion on the event {00, 10} makes us conclude that in order to find

the quantum measure of an event E, a projective measurement needs to be performed

on the combined ancilla state in an appropriately chosen basis {|γu⟩a}. This basis must

include a state that would be in unbiased (i.e., with equal weight) superposition of the joint

ancilla states (represented in {|γ⟩a} basis) corresponding to the histories that comprise the

desired event E, with either no relative phase between them or a relative phase between

those histories that end at different points, so that the interference remains unaffected.

Therefore, for finding the measure of an event E = {γ1, γ2, . . . , γk} which is a set of k

number of histories γq ∈ Ω(N,2), the transformed basis must include the state |E⟩a which

would be the intended outcome of the projective measurement. This joint ancilla state

|E⟩a can be represented as,

|E⟩a =
1√
k

k∑
q=1

|γq⟩a (5.34)
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The probability of the desired outcome Ea (with the associated state |E⟩a) of the

projective measurement is obtained by acting the projector Π̂E given in Eqn. 5.26 on the

final state |Ψf ⟩ expressed in Eqn. 5.33, i.e.,

P(E) =
∥∥∥Π̂E |Ψf ⟩

∥∥∥2 = ∥∥(1̂s ⊗ |Ea⟩⟨Ea|) |Ψf ⟩
∥∥2 (5.35)

=

∣∣∣∣∣∣1k
1̂s ⊗ k∑

q′=1

k∑
q=1

∣∣∣γq′〉〈γq∣∣∣
 2N∑

p=1

A(γp)
∣∣∣nγpNN 〉 |γp⟩a

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣1k
k∑

q′=1

k∑
q=1

2N∑
p=1

A(γp) ⟨γq|γp⟩
∣∣∣nγpNN 〉 ∣∣∣γq′〉

a

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣1k
k∑

q
′
=1

k∑
q=1

A(γq)
∣∣∣nγqNN 〉 ∣∣∣γq′〉

a

∣∣∣∣∣∣
2

=
1

k2

k∑
q′=1

k∑
q=1

k∑
r′=1

k∑
r=1

A(γq)A∗(γr)
〈
n
γrN
N

∣∣∣nγqNN 〉〈γr′ ∣∣∣γq′〉

From the orthonormality condition of the ancilla states in the basis {|γ⟩a}, we get
k∑

q′=1

k∑
r′=1

〈
γr

′ ∣∣∣γq′〉 =
k∑

q′=1

k∑
r′=1

δq′ ,r′ = k. Also, we have
〈
n
γrN
N

∣∣∣nγqNN 〉 = δγqN ,γ
r
N

implying the

interference of the particles ending at the same point after the N -th device in the setup.

Therefore, the probability of the outcome |E⟩a of a projective measurement on the joint

ancilla state, is obtained to be:

P(E) =
1

k

k∑
q=1

k∑
r=1

A(γq)A∗(γr) δγqN ,γ
r
N
=
µ(E)

k
(5.36)

Thus, the probability of an event E can be experimentally determined from the probability

of a particular outcome |E⟩a of a projective measurement on the joint ancilla state leaving

the system undisturbed. However, in principle, there may not exist a physically realizable
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observable in the joint Hilbert space of the ancillas having an eigenstate |E⟩a associated

with the desired outcome for an event, necessitating a modification of the setup depending

on the event for which the quantum measure is to be determined.

So, The quantum measure for an event E can be inferred experimentally from the

probability of the event P(E) by multiplying a known factor k as the following,

µ(E) = k P(E) (5.37)

Here, in the above expression, k appears to be a proportionality factor representing the

number of histories that comprise the event E of interest. However, in practice, the factor

may vary depending on the design of the setup, i.e., on the choice of the event, the design

of the event filter to select a particular set of the histories from the history space and to

some extent on the choice of the components to be used in configuring the setup − further

details will be discussed in the next chapter.

Determination of Quantum Measure in Photonic
Systems5.4

The last section outlines a generalized experimental scheme for inferring the value of the

quantum measure of an event described for a particle traveling through a setup having

N devices, each with two outputs. Here, we aim to implement the scheme in a photonic

system propagating through an optical setup. This section provides the possibilities of a

table-top demonstration of the scheme for determining the quantum measure of a specific

event in an experimental scenario with the components available in an optics lab. It also

discusses certain limitations and challenges in the applicability of the scheme, which is de-

scribed with the assumptions of an idealized system-device combination in a real scenario.

Here, we present the possible design of an event filter (involving interference) that helps

filter the desired set of histories and gives a non-classical quantum measure for the event

of interest associated with the photonic system.
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5.4.1 Overview of the Scheme for Photonic System

In order to experimentally determine the value of quantum measure µ(E) for an event E

associated with a photonic system, an optical arrangement needs to be made such that it

relates one of the outcomes of a projective measurement to confirm the occurrence of the

event E. Hence such a setup ensures that the probability of the event E is obtained from

the probability of a measurement outcome, which is then used to infer the value of µ(E).

Here, our system will be a photon that will pass through a succession of non-polarizing

beam splitters, which is the device with two input ports and two output ports. The beam

splitter (BS) setup can be treated as a two-site hopper [31] setting, i.e., a photon entering

a BS would occupy one of its two output ports based on whether it transmits through or

reflects from the BS. In this kind of setup, a BS serves the dual purpose i.e., (i) it causes

amplitude division of the beam being incident on it from any input port, depending on the

transmissivity (T ) and reflectivity (R) of the BS, (ii) it recombines the beams entering

the BS from the two input ports, allowing for interference in case of coherent combination.

0

1

𝐵𝑆1
𝐵𝑆2

𝑀1

𝑀2

Figure 5.3: An optical two-site hopper setup consisting of two non-polarizing beam splitters

arranged in a sequence allowing a photon to take four possible paths within the setup.

To demonstrate the scheme for a photonic event, let us consider a setup consisting of

two beam splitters BS1 and BS2, arranged in the form of a Mach-Zehnder Interferometer

[32, 33], as depicted in Fig. 5.3, where M1 and M2 are mirrors that redirect the photons

at the output of BS1 toward BS2. A photon encountering the first beam splitter BS1
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from the top can take either the upper path through reflection or the lower path through

transmission. Both the paths recombine at the second beam splitter BS2, from where the

photon again can take either the upper path or the lower path. Thus, there are 4 possible

trajectories that a photon entering the setup can take, depending on the transmission or

reflection from each device. If the photons in the upper and lower paths after each beam

splitter are labeled as 0 and 1 respectively, then the history space for the photonic system

can be described as Ω = {00, 01, 10, 11}.

Let, the beam splitters BS1 and BS2 in the setup are lossless and symmetric, i.e, a

photon incident on the beam splitters either gets transmitted or reflected (with possibilities

defined by the splitting ratio T : R) without having any possibility of getting absorbed

in the material of the BS and the reflection amplitudes (and the transmission amplitudes

as well) are the same irrespective of which input port the photon is incident from [34].

Consider, ti and ri respectively represents the transmission and reflection coefficients of

i-th beam splitter BSi, provided |ti|2 + |ri|2 = 1 when no loss is associated with BSi. For

simplicity, we assume ti and ri to be real and a phase φi is acquired by the photon upon

reflection, where {ti, ri, φi} ∈ R. The possible amplitudes associated with the histories of

the photon in this setup, are given as follows:

A(00) = r1e
iφ1r2e

iφ2 , A(01) = r1e
iφ1t2 , A(10) = t1t2 , A(11) = t1r2e

iφ2 (5.38)

Here, we have not considered any relative phase in the setup related to the path difference

between the upper path and lower path of the interferometer.

To demonstrate the applicability of the scheme discussed in the previous section, here

we will choose an event E from the possible non-serial events that can not be associated

with a physically realizable observable, implying that the probability of the event can not

be directly determined from the expectation value of a self-adjoint operator or by simply

blocking the undesired set of paths. Hence, we tend to select an event for which the

scheme manifests its true potential through the use of ancilla. For the setup in Fig. 5.3,

where the photon travels through two beam splitters, the possible non-serial events are

{00, 11}, {10, 01}, {00, 10, 01}, {00, 10, 11}, {00, 01, 11}, {10, 01, 11}. Also, the fact that

the value of the quantum measure for certain events can go beyond the upper limit of the
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classical probability measure (which is one), inspires us to choose one of those events that

involve interference and for which the non-classical nature of the quantum measure can be

captured. Therefore, for the demonstration purpose here we select the three history event

E = {00, 01, 11} as our event of interest, for which two histories 01, 11 ending at the same

port would interfere. From the Eqn. 5.1, for the desired event E = {00, 01, 11} we get

µ(E = {00, 01, 11}) = A(00)A∗(00)δ0,0 +A(00)A∗(01)δ0,1 +A(00)A∗(11)δ0,1

+A(01)A∗(00)δ1,0 +A(01)A∗(01)δ1,1 +A(01)A∗(11)δ1,1

+A(11)A∗(00)δ1,0 +A(11)A∗(01)δ1,1 +A(11)A∗(11)δ1,1

= |A(00)|2 + |A(01)|2 +A(01)A∗(11) +A(11)A∗(01) + |A(11)|2

=⇒ µ(E) = |A(00)|2 + |A(01) + A(11)|2 (5.39)

Putting the expressions of the amplitudes given in Eqn. 5.38 for the photonic system,

the quantum measure µ(E) for the event E = {00, 01, 11} is obtained as,

µ(E) =
∣∣r1r2eiφ1eiφ2

∣∣2 + ∣∣r1t2eiφ1 + t1r2e
iφ2
∣∣2 (5.40)

For symmetric lossless 50 : 50 beam splitters 4 ti = ri =
1√
2

and φi =
π

2
, 5 [35, 34] giving

the value of measure for the lossless system to be,

µ(E) =

∣∣∣∣ i√2 i√
2

∣∣∣∣2 + ∣∣∣∣ i√2 1√
2
+

1√
2

i√
2

∣∣∣∣2 = 1

4
+ 1 =

5

4
(5.41)

Hence, for an ideal, lossless system-device combination, the quantum measure for the event

E = {00, 01, 11} of a photonic system is obtained to be µ(E) =
5

4
= 1.25, that exceeds the

classical upper limit µC,max = 1. The interference between the histories 01 and 11 makes

4The unitary evolution operator represented as, BSsym =

 ti rie
iφi

rie
iφi ti

 =
1√
2

1 i

i 1

.

5The relative phase φi between the reflected and transmitted modes of a real BS varies depending on

the uncertainty in the beam splitter thickness, the surface flatness and thickness of the cement etc.
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the value of the measure to be non-classical, the nature of which is aimed to be captured

in an experimental scenario, as discussed in the following.

5.4.2 Measuring the Quantum Measure for Photonic Systems: Design

of an Event filter, Choice of Ancilla and Measurements

Here, we present an experimental setup allowing interference, the analysis of which would

give the quantum measure for a desired event E = {00, 01, 11} when the system (here

a photon) passes through two optical BS. To experimentally determine the quantum

measure of an event, the setup with the two beam splitters needs to be modified and

arranged in such a way that only the desired set of histories are filtered out from the

history space (Ω) that consists of 4 possible paths. This modified setup is referred to as

the “Event Filter” − the arrival of a photon at the output of the event filter confirms that

the photon has taken one of the paths that comprise the event of interest, not necessarily

revealing the exact path information. Projective measurement at the end of the event filter

on an ensemble of identical systems gives the probability of occurrence of the event from

which the quantum measure of the event can be inferred.
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Figure 5.4: A possible design of an event filter for E = {00, 01, 11} for a photonic system.



296 Chapter 5. Measuring the ‘Quantum Measure’

A possible design of an “Event Filter” for the desired event E = {00, 01, 11} is shown in

the Fig. 5.4. The path degree of freedom of the photon is chosen to represent the histories

and operations are performed on the polarization degree of freedom to selectively allow

only the photons from 00, 01, 11 paths to reach the output of the event filter ensuring

interference between 01 and 11. The two devices i.e., the two beam splitters BS1 and BS2

forms a Mach-Zehnder Interferometer (MZI) with the two mirrors M1, M2 that redirects

the two spatial modes after BS1 towards BS2. The two paths after BS1 are labelled as

path − U and path − L and the same after BS2 are labelled as path − T and path − B.

The potential histories of a photon entering the setup are given as a chain of 2-bits, with

0 and 1 respectively representing the photon in the upper and lower paths after each BS.

Let, a beam of horizontally polarized light is made incident on the setup (on BS1) at

time t0. The horizontal polarization is achieved by passing the beam emitting from a source

through a linear polarizer with the pass axis along the horizontal or transmitting through

a polarizing beam splitter (PBS) or a Glan Thompson polarizer (GT ) in a particular

orientation 6. The unitary evolution operator for a symmetric lossless beam splitter BSi,

with transmission and reflection coefficients being ti and rie
iφi provided |ti|2 + |ri|2 = 1,

is given as

BSi =

 ti rie
iφi

rie
iφi ti

 (5.42)

The state of the system at time t0 is |ψ0⟩ = |H⟩. When the horizontally polarized beam is

incident on the beam splitter BS1, the polarization of the beams in path−U and path−L,

right after the beam splitter is also horizontal, giving the state at time t1 to be,

|ψ1⟩ = (r1e
iφ1 |U⟩ |H⟩)(0) + (t1 |L⟩ |H⟩)(1) (5.43)

6A polarizer allows the component of polarization along its transmission axis to pass through it, while

absorbing the rest. A PBS, on the other hand, transmits and reflects the horizontal and vertical compo-

nents of polarization respectively, of a beam incident on it. A GT , transmits the s-polarized component

and reflects the p-polarized component of the beam incident on it. Hence, horizontally polarized beam

transmits through the GT depending on the orientation of its optic axis. In general, a GT has a relatively

higher extinction ratio than a PBS, thus for better polarization purity a GT is preferred.
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The two terms in |ψ1⟩ represent the states of the photon in the upper and lower paths after

BS1
7, with the superscripts representing the trajectory of the photon.

In order to mark the paths within the interferometer in terms of ancillas, the polar-

ization in one arm can be made orthogonal to the other (say, polarization in path − L is

made |V ⟩), so that any polarization measurement on the basis {|H⟩ , |V ⟩} reveals which

path the photon has taken. For that, a half-wave plate HWP1 is inserted in path−L with

its fast axis oriented to
π

4
, i.e., in σx configuration which transforms the polarization of

the photon in this arm from |H⟩ to |V ⟩. The Jones matrix representation [36] of HWP

with the fast axis oriented at ϑ with respect to the horizontal is given as,

HWP (ϑ) =

cos(2ϑ) sin(2ϑ)

sin(2ϑ) −cos(2ϑ)

 =⇒ HWP (ϑ =
π

4
) =

0 1

1 0

 = σx (5.44)

If the relative phase due to the path length difference (∆L) between the two paths of the

interferometer is given by φr =
2π

λ
∆L, the state at time t2 just before BS2, can be written

as

|ψ2⟩ = (r1e
iφ1 |U⟩ |H⟩)(0) + (t1e

iφr |L⟩ |V ⟩)(1) (5.45)

Immediately after BS2 at t3, the state becomes

|ψ3⟩ = (r1r2e
iφ1eiφ2 |T ⟩ |H⟩)(00) + (r1t2e

iφ1 |B⟩ |H⟩)(01)

+ (t1t2e
iφr |T ⟩ |V ⟩)(10) + (t1r2e

iφ2eiφr |B⟩ |V ⟩)(11)
(5.46)

Here, |T ⟩ and |B⟩ are the states associated with the spatial mode of the photon in the top

and bottom paths after BS2. Thus, from the time t0 to t3, a photon can travel through

any one of the 4 possible paths, with the corresponding amplitudes

A(00) = r1r2e
iφ1eiφ2 , A(01) = r1t2e

iφ1 , A(10) = t1t2e
iφr , A(11) = t1r2e

iφ2eiφr

(5.47)

7Here, |U⟩ and |L⟩ are the states corresponding to the two spatial modes after BS1
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Hence, using the theoretical formula in Eqn. 5.39 the quantum measure for the event

E = {00, 01, 11} can be computed as,

µ(E) =
∣∣r1r2eiφ1eiφ2

∣∣2 + ∣∣r1t2eiφ1 + t1r2e
iφ2eiφr

∣∣2 (5.48)

µ(E) = |r1r2|2 +
∣∣∣r1t2 + t1r2e

i(φ2−φ1)eiφr

∣∣∣2 (5.49)

The region within the setup which the photon travels between the time t0 to t3, i.e., the

region from the input of BS1 to the output of BS2 can be called as “system propagation

region”, where the system is free is choose any of the paths γk belonging to the history

space Ω with k = 1, 2, 3, 4; associated with the propagation of the system through the

series of two devices BS1, BS2. The region next to it, i.e., after BS2 to the end of the

setup is labelled as “filtration region” where the desired set of paths are filtered out in or-

der to determine the value of the quantum measure for the event E. As the photon enters

this region after time t3, operations on polarization d.o.f. of the photon are performed (i)

to select the photons corresponding to the histories 00, 01, 11 while rejecting the photons

from the undesired history 10, (ii) to ensure interference between the histories 01, 11 that

emerge at the same output of the last device, and (iii) to combine the three histories such

that a ‘click’ in the detector at the output of the event filter (i.e., at the detector D1)

confirms that the desired event has happened. Hence, in this design, the polarization d.o.f.

of the photon behaves as the effective ancilla.

In the bottom port of BS2, the photons from the two paths 01 and 11 arrive with

horizontal and vertical polarizations respectively − hence, they can not interfere. In order

to make the two histories interfere, a half-wave plate (HWP2) and PBS combination can

be used. The action of HWP2 with its fast axis oriented at θ with respect to horizontal,

on |H⟩ and |V ⟩ states result,

HWP (θ) |H⟩ = cos(2θ) |H⟩+ sin(2θ) |V ⟩ (5.50)

HWP (θ) |V ⟩ = sin(2θ) |H⟩ − cos(2θ) |V ⟩ (5.51)
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With a PBS placed right after HWP2, both 01 and 11 beams are projected to polarization

|H⟩ in the transmitting port and to polarization |V ⟩ in the reflecting port of the PBS −

causing interference between the two beams. Let, the output port of the PBS, where

01, 11 are projected to |H⟩ i.e., where the detector D1 is located in Fig. 5.4, is chosen as

the output to the event filter as well.

Therefore, from the beam in path−T , only the photons from 00 path need to be directed

towards D1, while preventing the photons from 10 path from reaching the detector. This

is achieved by placing another half-wave plate HWP3 with its fast axis at
π

4
with respect

to the horizontal, i.e., as σx evolution operator in path−T after BS2. The HWP3 changes

the polarization of 00 beam from |H⟩ to |V ⟩, and 10 beam from |V ⟩ to |H⟩, so that 00

beam gets reflected from PBS towards the port with D1 and 01 beam gets transmitted

through PBS towards the other port. Thus, any click in the detector D1 confirms that

the detected photon has not traveled from 10 path, i.e., the event E has happened. With

HWP2 and HWP3 in the setup, the state of the photon just before the PBS becomes,

|ψ4⟩
′
= (r1r2e

iφ1eiφ2 |T ⟩ |V ⟩)(00) + (r1t2e
iφ1 |B⟩ (cos(2θ) |H⟩+ sin(2θ) |V ⟩))(01)

+ (t1t2e
iφr |T ⟩ |H⟩)(10) + (t1r2e

iφ2eiφr |B⟩ (sin(2θ) |H⟩ − cos(2θ) |V ⟩))(11)

(5.52)

To avoid any bias for any paths comprising the event E = {00, 01, 11} during the

detection, the angle of HWP2 is chosen to be θ =
π

8
so that the half-wave plate behaves

as a Hadamard operator that transforms the states |H⟩ and |V ⟩ associated with 01 and

11 beams to |+⟩ and |−⟩ respectively 8, as can be seen by putting θ =
π

8
to Eqn. 5.50

and 5.51. Hence, as the beams from 01, 11 are projected to |H⟩ in the output of the event

filter, the amplitudes A(01) and A(11) are modified by a factor
1√
2
. Similarly, to remove

the bias from 00 beam, a 50 : 50 (non-polarizing) beam splitter BS3 is placed in path−T ,

which modifies the amplitude of the beam in this path by
1√
2

as well. Hence, at this

condition the state just before the PBS becomes,

8where |+⟩ = |H⟩+ |V ⟩√
2

and |−⟩ = |H⟩ − |V ⟩√
2

, represents an unbiased superposition of |H⟩ and |V ⟩.
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|ψ4⟩ =
1√
2

[
(r1r2e

iφ1eiφ2 |T ⟩ |V ⟩)(00) + (r1t2e
iφ1 |B⟩ (|H⟩+ |V ⟩))(01)

+(t1t2e
iφr |T ⟩ |H⟩)(10) + (t1r2e

iφ2eiφr |B⟩ (|H⟩ − |V ⟩))(11)
] (5.53)

As the beam passes through the PBS, the states in the two output ports of it with detectors

D1 and D2 respectively, are given as

|ψ5⟩d1 =
1√
2

[
r1r2e

iφ1eiφ2 |V ⟩+ r1t2e
iφ1 |H⟩+ t1r2e

iφ2eiφr |H⟩
]

(5.54)

|ψ5⟩d2 =
1√
2

[
r1t2e

iφ1 |V ⟩+ t1t2e
iφr |H⟩ − t1r2eiφ2eiφr |V ⟩

]
(5.55)

Hence at the position ofD1, the beams from 01 and 11 paths reach with the polarization

|H⟩ and the beam from 00 path reaches with polarization |V ⟩, i.e., at the output of the

event filter 01, 11 beams interfere. The probability of detection at D1 is,

Pd1 =
∣∣⟨ψ5|ψ5⟩d1

∣∣2 = 1

2

(∣∣r1r2eiφ1eiφ2
∣∣2 + ∣∣r1t2eiφ1 + t1r2e

iφ2eiφr
∣∣2) (5.56)

Pd1 =
1

2

(
|r1r2|2 +

∣∣∣r1t2 + t1r2e
i(φ2−φ1)eiφr

∣∣∣2) (5.57)

In an ideal scenario, the detector D1 clicks in the arrival of a photon from any one of

00, 01, or 11 paths, i.e., D1 clicks when the event E happens. Thus, the probability of

D1 clicking is the same as the probability of occurrence of the event E. Comparing the

probability Pd1 with the expression in Eqn. 5.49, we get Pd1 =
µ(E)

2
. The factor

1

2
arises owing to the design of the event filter, where half of the photons that belong to

the particular event E can not reach the detector D1. This factor appears in the attempt

to combine the histories 00, 01, 11 ensuring interference only between 01 and 11, as we

aim to measure the probability Pd1 at the particular output. The second term in the

expression of Pd1 in Eqn. 5.57 represents the interference between the two paths 01 and

11 with the relative phase being φ = φr + φ2 − φ1. For maximum interference intensity,
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the phase φ can be made to zero by adjusting the path lengths within the MZI, so that

beams from 01 and 11 constructively interfere 9. Thus experimentally, the probability

of click on detector D1 can be obtained by recording the number of photons that arrive

at D1 from an ensemble of identical photons being incident on the setup in a condition

when φ = 0. Upon determining the probability, the quantum measure µ(E) for the event E

is obtained by multiplying it with the factor (here, 2) owing to the design of the event filter.

5.4.3 Comparing the Original Scheme and the Proposed Experiment:

Addressing Potential Challenges and Limitations

The setup outlined in Fig. 5.4 can be considered as a toy model of the ancilla-based event

filter described in [30] for the table top demonstration of determining the quantum mea-

sure of an event. In the original scheme, independent ancillas are coupled to the system

after each device. Path information of the system after a device or the outcome of an

observable corresponding to a device is encoded in the corresponding ancilla state and the

probability of occurrence of an event is obtained non-destructively through measurements

on the joint state of ancillas. Therefore, for a N -device setup, N number of independent

ancillas are to be coupled to the system in a way that coupling of one ancilla does not

affect the information already encoded by the previous ancillas, so that the joint ancilla

state directly represents the trajectory of the system within the setup.

However, the scheme does not talk about any potential interactions between the ancil-

lary systems or does not account for any loss in the combined system-ancilla setup. But in

the real scenario, the evolution of the system throughout the setup is not always unitary,

hence losses are associated. Also, depending on the choice of the ancillas, they can interact

and even affect each others operation causing loss in the information. On top, if variables

corresponding to different degrees of freedom other than the path degree of freedom of the

same system that is propagating through the setup are selected to represent the ancillas,

then observations on the combined ancilla variables to know if the intended event has

9For experiments with single photons, that has finite and small longitudinal coherence length, compen-

sation of the additional path length in 11 beam due to the propagation through the thickness of HWP1

(which is accounted in φr) is important to maintain the longitudinal coherence between the interfering

beams and to get higher interference visibility.
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occurred or not, would lead to destructive measurements, i.e., the particle would be lost

during the detection.

In the setup shown in Fig. 5.4, a click in the detector D1 would correspond to a de-

structive verification of the occurrence of the event. Affirmation of the occurrence of the

event in a non-invasive manner is however possible, through the observation of “no clicks”

in the detectors D2 and D3 once a photon had entered the setup. Here, there will be no

detector at the output of the event filter (i.e., at the location of D1), which would allow the

photons belonging to the desired event E to continue its process without getting affected.

For the setup in 5.4, a photon propagating through it, in a single run of the experiment,

would end up either at D1 or D2 or D3 (in ideal conditions without any loss). Thus, no

click in detectors D2 and D3 would directly imply the arrival of the photon at the location

of D1, i.e., implies the success of the event E. This procedure, where an outcome of an

experiment is inferred when the detector(s) does not register any count, is known as the

“Negative Result Measurement” [37], employed to ensure non-invasive measurability up to

a point where neither the current state nor the subsequent dynamics of the system are

affected by an interaction during the measurement [38]. In this case, the probability of the

event E is given as PE ≡ Pd1 = P ′
d2
P ′
d3

= 1−Pd2 −Pd3 , where Pdi and P ′
di

represents the

probability of “click” and probability of “no click” of the detector Di respectively. Thus,

the probability of the event can be determined from experimentally obtained probabilities

Pd2 and Pd3 . However, in a real scenario affirming the success of the desired event from

no clicks of the detectors D2 and D3, is subjected to the characterization of the setup for

the possible losses and efficiency of the detectors being used.

Again according to the original scheme, in the setup where a photonic system encounters

two beam splitters one after the other, two independent ancillas need to be coupled so that

the joint state of the ancillas, once the system has come out of the setup, could be associated

with the exact path taken by the system. One of the possible choices of the ancillas could

have been the transverse displacement of the system along the two orthogonal directions,

one direction variable each indicating the outputs of one device. Let, the local z-direction

is considered as the direction of propagation of the beam with a Gaussian cross section

along the local x − y plane. The spatial distribution of the system at time t0, when it

incidents on BS1 of the setup in Fig. 5.5 can be expressed as,
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ψ0(x, y) = A exp

(
− x2

4σ2

)
exp

(
− y2

4σ2

)
(5.58)

Here, σ represents the width of the Gaussian beam assumed to be centered about (x0, y0) =

(0, 0) and A is the amplitude of the beam at the time of incidence on BS1 10.
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Figure 5.5: Schematic of the setup with two devices BS1 and BS2, each having two output

ports. The four possible paths of a photon, which is incident on the setup with horizontal

polarization (|H⟩), are combined using a HWP realized as a σx evolution operator (i.e.,

having the fast axis oriented at
π

4
w.r.to the horizontal) in the upper path after BS2 and

a polarizing beamsplitter PBS. The 01, 11 beams in |H⟩ would get transmitted through

the PBS and the 00, 10 beams that are transformed by the HWP from |H⟩ to |V ⟩ would

get reflected from the PBS to the same port. The spatial distribution of the photon

reaching the output taking any of the four paths, when captured by a CCD camera gives

the location of the center/centroid of the beam. The history of the photon within the setup

can be identified by observing the relative displacement of the center/centroid when two

glass plates GPx − tilted to give a transverse shift γx along x and GPy − tilted to give a

transverse shift γy along y are placed respectively in the bottom paths after BS1 and BS2.

10The Gaussian is assumed to be symmetric along the x− y plane, giving σx = σy = σ.
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Now, let one glass plate each be placed in the lower paths after the beam splitters, as

can be seen from Fig. 5.5, so that whenever the system emerges out in the lower path

after a device, its center/centroid undergoes a transverse shift. The glass plates GPx after

BS1 and GPy after BS2 are respectively tilted in such a way that GPx cause a transverse

shift γx along the x−direction and GPy causes a transverse shift γy along the y−direction

of the beams passing through them 11. Thus, at the end of the setup observing the com-

bined ancilla variables i.e., the combined displacements caused by the two glass plates, the

trajectory of the photon within the setup can be inferred.

After BS1, the ancilla coupling makes the spatial distribution of the system associated

with the spatial modes |U⟩ and |L⟩ to be,

Upper path: ψ
(0)
2 (x, y) = Ar1e

iφ1 exp

(
− x2

4σ2

)
exp

(
− y2

4σ2

)
(5.59)

Lower path: ψ
(1)
2 (x, y) = At1 exp

(
−(x− γx)2

4σ2

)
exp

(
− y2

4σ2

)
(5.60)

The above states just before BS2 are represented without considering the relative phase

φr due to the path length difference between the two paths path−U and path−L within

the interferometer.

Next, after BS2 and coupling of the 2nd ancilla, the spatial distribution of the beams

from 00, 01, 10, 11 are respectively represented as,

Path-00: ψ
(00)
4 (x, y) = Ar1r2e

iφ1eiφ2 exp

(
− x2

4σ2

)
exp

(
− y2

4σ2

)
(5.61)

Path-01: ψ
(01)
4 (x, y) = Ar1t2e

iφ1exp

(
− x2

4σ2

)
exp

(
−(y − γy)2

4σ2

)
(5.62)

11Alternately, in the two output ports of a beam splitter two glass plates could have been placed with

the respective tilts causing shifts along +x and −x directions (i.e., x0 ± γx) to the center/centroid of the

system emerging in the upper path and lower path after BS1 and causing shifts along +y and −y directions

(i.e., y0 ± γy) to the system emerging in the upper and lower paths after BS2.
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Path-10: ψ
(10)
4 (x, y) = At1t2 exp

(
−(x− γx)2

4σ2

)
exp

(
− y2

4σ2

)
(5.63)

Path-11: ψ
(11)
4 (x, y) = At1r2e

iφ2 exp

(
−(x− γx)2

4σ2

)
exp

(
−(y − γy)2

4σ2

)
(5.64)

Once all the beams are recombined (say, at time t5), the four possible trajectories of the

system within the setup can be identified by observing the location of the center/centroid

of the beam or the location of the photon on a detecting screen in a single run. So, looking

at the ancilla variables jointly we can comment that the photons that show no shift, a

y−shift, a x−shift and a diagonal shift respectively belong to the paths 00, 01, 10, 11.

Thus, in order to determine the probability of the event E = {00, 01, 11}, the statistics

of the photons at t5 need to be determined except for those that show only horizontal (x-)

shift. Again, to ensure the interference between 01 and 11, quantitatively the displacement

caused by GPx needs to be much smaller than the beam width, i.e., γx << σ. However,

contrary to that the photons coming from the 10 path can not be distinguished (from

the photons from the 00 path) unless the displacement γx is larger than the beam width

σ. A larger transverse shift along x would affect the overlap between 01, 11 beams and

hence the interference, changing the obtained probability of the event. Thus, to avoid the

contest between the requirement of γx << σ to make the histories 01, 11 interfere and

the requirement of γx > σ to identify the photons 10 in order to eliminate them from the

determination of probability, we have chosen a design where the polarization of the photon

behaves as the effective ancilla.

In the design given in Fig. 5.4 operations on the polarization d.o.f. are performed

to ensure interference between the desired set of histories and reject the undesired history

along with associating a particular outcome of a projective measurement on the polarization

basis to the occurrence of the event E of interest. Here, we have given up on the idea of

relating different paths with a separate combination of independent ancilla variables to

identify them individually, rather we constructed the setup to identify the event, i.e., to

confirm the arrival of the photon from any one of the desired set of paths that comprises

the event without actually knowing which path.
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❑ Inferring the measure of a non-serial event from the measures of serial

events: Again, the non-serial event E = {00, 01, 11} can be considered as the disjoint

union of two serial events, E1 = {00} (where a photon emerges in the upper path after

each device) and E2 = {01, 11} (where a photon randomly chooses any of the two paths

after the first device, then emerges at the lower path of the second device). Thus, the event

E can be expressed as E = E1 ∪ E2, implying µ(E) = µ(E1) + µ(E2). Therefore in an

experimental scenario, the measure µ(E) can be determined by adding the measures for

E1 and E2 obtained individually. The measure for a serial event can be directly obtained

through standard measurement procedure, i.e., through the sequence of suitable projective

measurements without the need to use any ancilla, as shown in the Fig. 5.6.
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Figure 5.6: Experimental determination of µ(E) for non-serial event E = {00, 01, 11} from

the sum of the measures µ(E1) and µ(E2) associated with the serial events E1 = {00} and

E2 = {01, 11}, obtained from the two different settings of the experimental setup where

the undesired paths for each event are blocked by beam blockers (BB).

When a horizontally polarized photon enters the setup shown in Fig. 5.6, it can take

four possible paths, all of which are combined using a HWP (with its fast axis at
π

4
w.r.to

horizontal) as σx operator which transforms |H⟩ to |V ⟩ and vice versa and a PBS. The

determination of µ(E) from µ(E1) and µ(E2) requires detection to be made at two different

experimental settings − each corresponding to a serial event, where the photons are made

to follow certain paths by blocking the other possible paths using the beam blockers (BB).

For the setting shown in Fig. 5.6a, i.e., when the lower path after BS1 and lower path after

BS2 are blocked, the probability of click in the detector D gives the measure for E1 = {00}.

Next, in another setting when the upper path after BS2 is blocked as shown in Fig. 5.6b,
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the probability of click in the detector gives the measure for E2 = {01, 11}. The effect of

interference for this event is captured by the detector D in this setting. Though, the deter-

mination of quantum measure in this manner appears to be quantitatively equivalent (i.e.,

produces similar results) to those procedures involving the ancillas, this technique does not

ensure that the detected photons actually belong to the event E, i.e., it does not confirm

the occurrence of the desired event. This is just a computation of the measure value µ(E)

from the two values µ(E1) and µ(E2). Hence, this procedure can not be considered as a

demonstration of the determination of quantum measure of an event, however can be used

for the verification of the value of µ(E) obtained experimentally from the measurements

performed in an “event filter” based setup shown in Fig. 5.4.

Inferring the Quantum Measure of a Photonic
Event: An Experimental Demonstration5.5

The last section discusses the applicability of the experimental scheme presented in Sec.

5.3 for the determination of the quantum measure of an event associated with a photonic

system. Potential design of “event filter” for an event E = {00, 01, 11} is presented in Fig.

5.4, where a photonic system encounters two devices i.e., two beam splitters BS1 and BS2

with the two output ports labelled as 0 and 1 respectively. The histories of the system

are represented by its spatial degree of freedom, while the polarization degree of freedom

of the same system acts as an effective ancilla. Operations on the polarization d.o.f. are

performed in such a way that detection at the output of the event filter reveals that the

desired event E has happened. Determining the probability of the occurrence of the event

E experimentally, the quantum measure µ(E) is inferred. Here, we aim to experimentally

demonstrate the idea of event filtering that would extract the desired set of histories from

the history space and determine the quantum measure of a photonic event by implementing

the model with the components commonly available in an optics lab.

To be able to determine the quantum measure in a laboratory setting would provide

an experimental footing to the quantity that so far has only the theoretical construct. The

knowledge of the quantum measure obtained from the implementation of an ancilla based
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event filter setup would help in interpreting the micro-system and predicting its dynamics,

especially when it undergoes non-serial events like E = {00, 01, 11}, as the probability

for such an event can not be determined from the expectation value of an operator as

described by standard quantum formalism. Additionally, the effect of interference between

01 and 11 paths with a relative phase within a certain range, has the potential to take

the value of the quantum measure of the event E beyond the classical upper limit of one

(i.e., µC,max = 1). Therefore, a successful demonstration of the proposal would present an

experimental scenario capable of capturing the non-classical nature of the quantity, paving

the way for further tests on fundamental aspects of quantum mechanics.

5.5.1 The Experimental Setup:

Here, we will present an experimental setup allowing interference, the analysis of which can

give the value of the quantum measure of a particular event E associated with a photonic

system. For the experimental demonstration within the two-hopper model designed with

two beam splitters, few modifications are made in the optical setup as compared to the

setup shown in Fig. 5.4. Mostly the changes are made in the “system propagation region”,

i.e., in the arrangement of the devices through which the photon has to propagate. Instead

of a Mach-Zehnder Interferometer (MZI) configuration, here the two beam splitters BS1

and BS2 are arranged in the form of a displaced Sagnac Interferometer (DSI), as depicted

in Fig. 5.7. The interferometer is modified to a DSI to achieve better interferometric

stability against the mechanical or acoustic vibrations, noises, temperature variation etc.

that affect the alignment of the optical components 12 and hence, impact the performance

of the setup [39]. Interference in MZI is very sensitive to the ambient condition changes,

as the two paths in the MZI encounter different optical components. Any external vibra-

tion impacts the individual paths differently, resulting in a randomly varying path length

difference that affects the relative phase between the interfering beams, changing the in-

terference intensity for the collinear configuration of the interferometer 13. One of the

possible ways of maintaining a consistent phase throughout the experiment is to actively

12The optomechanics on which the optical components are mounted show a temperature dependent

alignment stability as well, i.e., as the temperature changes its alignment changes.
13For the non-collinear configuration of the interferometer a fluctuating relative phase causes a shift in

the interference fringes over the beam width.
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stabilize the MZI, using a real time closed loop feedback system and a piezo 14 driven

path correcting mechanism [41]. In order to avoid the complexity in the setup, for the

demonstration purpose, we have chosen the displaced Sagnac configuration for designing

the interferometer, which is considered to be more stable than MZI due to its geometry

[42, 43]. In displaced Sagnac configuration, both the interfering paths interact with the

same optical components [44] and hence, any external vibration affects the two paths si-

multaneously in a similar manner, maintaining a constant phase relationship between them.
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Figure 5.7: Schematic of an optical setup for the table top demonstration of inferring the

value of quantum measure of an event E = {00, 01, 11} associated with a photonic system

that passes through two non-polarizing beam splitters, each with two output ports labelled

as 0 and 1, arranged in the displaced Sagnac geometry.

14A piezo-electric device expands or contracts linearly depending on the voltage provided to it. Hence,

a piezo when attached to a mirror in one of the paths of the MZI, its expansion or contraction causes the

mirror to move forward or backward, compensating for the path length difference within the interferometer.

However, to avoid the lateral shift (and any angular shift) of the beam reflecting from the mirror as it

moves, it is preferred to have the piezo mounted on a Corner Cube Retroreflector (CCR) that reflects a

beam parallel to the incident beam with a lateral shift between them depending on the point where the

incident beam hits the CCR [40].
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The experimental setup for the determination of the quantum measure of a particular

event E = {00, 01, 11} of a photonic system is shown in Fig. 5.7, where the system suc-

cessively encounters two 50 : 50 non-polarizing beam splitters BS1 and BS2. The upper

or lower paths, taken by the system while emerging from each beam splitter, are labelled

as 0 or 1 respectively. The two beam splitters are arranged to form a dispaced Sagnac

Interferometer (DSI) with the mirrors MT , MR and MM that directs the system from the

output ports of BS1 to the input ports of BS2 through clockwise and counter-clockwise

paths. Within the “system propagation region”, i.e., from the input to BS1 till the output

of BS2, the system is free to choose any of the four trajectories {00, 01, 10, 11}. After BS2

the event of interest E = {00, 01, 11} would be filtered out by acting on the polarization

d.o.f. of the system in the “event filtration region”, exactly the same manner described for

setup in Fig. 5.4. The value of quantum measure µ(E) would be inferred by analyzing

the counts in the detector D1 at the output of the event filter.

A photon incident on BS1 from one of the input ports, as shown the Fig. 5.7, would

either undergo a counter-clockwise path |⟲⟩ (labelled as 0) after transmission or undergo

a clockwise path |⟳⟩ (lablled as 1) following reflection − both the paths recombine at

BS2. The amplitudes associated with the possible histories within the system propagation

region, would be

A(00) = t1t2, A(01) = t1r2e
iφ2 , A(10) = r1r2e

iφ1eiφ2 , A(11) = r1t2e
iφ1 (5.65)

where ti and rie
iφi respectively represent the transmission and reflection coefficients of

BSi. For the event of interest E = {00, 01, 11}, the quantum measure can be computed

using the expression in Eqn. 5.39, as the following:

µ(E) = |t1t2|2 +
∣∣t1r2eiφ2 + r1t2e

iφ1
∣∣2 (5.66)

For 50 : 50 symmetric beam splitters, ti =
1√
2

and rieiφi =
i√
2
, giving the measure to be

µ(E) =

∣∣∣∣ 1√
2

1√
2

∣∣∣∣2 + ∣∣∣∣ 1√
2

i√
2
+

i√
2

1√
2

∣∣∣∣2 = 1

4
+ 1 =

5

4
= 1.25 (5.67)
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The paths {|⟲⟩ , |⟳⟩} taken by the system within the interferometer are marked by

the polarization states {|H⟩ , |V ⟩}. This is achieved for a system incident on the setup

with horizontal polarization (|H⟩) by evolving it through half-wave plates HWP1 in the

clockwise path and HWP2 in the counter-clockwise path, with their fast axis respectively

at 45◦ and 0◦ with respect to the horizontal. HWP1 at 45◦ realizes a σ̂x operator that

changes |H⟩ to |V ⟩ and vice versa, while HWP2 at 0◦ forms a σ̂z operator that leaves |H⟩

unaffected and introduces a phase π to |V ⟩. Hence, the state of the photon just before

BS2 would be, t1 |⟲⟩ |H⟩+r1eiφ1 |⟳⟩ |V ⟩. The presence of HWP2 in the counter-clockwise

path (i.e., path 0) is important for single photon interferometry in order to compensate for

the additional optical path length introduced in path 1 during the propagation through

HWP1, since the single photons generated through processes like spontaneous paramet-

ric down-conversion (SPDC) typically have smaller coherence lengths (of the order of few

hundreds of µm). However, HWP2 may not be required for the interferometric experiment

with beams having higher coherence lengths (as presented in the next chapter).

The determination non-classical value of measure, i.e., µ(E) = 1.25 as obtained in

Eqn. 5.67, demands constructive interference to occur between the systems coming from

the two paths 01 and 11 that correspond to the same output port of BS2. However, after

the DSI the photons from 01 and 11 paths in the setup have orthogonal polarizations

|H⟩ and |V ⟩ respectively, hence do not interfere. They are made to interfere by evolving

through a half-wave plate HWP3 with its fast axis at 22.5◦ that transforms {|H⟩ , |V ⟩} to

{|+⟩ , |−⟩} and then projecting them to |H⟩ in the transmitting port of a PBS, which is

considered as the output of the event filter. Generally, in an ideal DSI there should not be

any relative phase arising due to the path length difference between the two paths of the

interferometer, because of the given geometry. However, the non-idealness of the optical

components like the scratches, surface roughness, dust on the optics, etc. introduces a

path length difference between the beams in the two paths, as they hit the optics at two

different points due to the displacement between them. This results in a relative phase

between the interfering beams. Therefore, to ensure the constructive interference between

01 and 11, a glass plate GP is placed in any one of the paths within the interferometer and

the tilt of it is adjusted to set any relative phase between the interfering beams to zero 15.

15Details of the effect of the GP is given in Chapter. 6
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Next, in the upper path after BS2, a half-wave plate (HWP4) as σ̂x and a 50 : 50

non-polarizing beam splitter BS3 are placed that direct the photons from 00 path towards

the output of the filter with the same normalizing factor as 01 and 11 paths, while rejecting

the photons from 10. Operations on the polarization d.o.f. combines the three paths in

such a way that any click at detector D1 placed at the output of the event filter reveals

that the detected photon has travelled from any of the three paths 00, 01, 11. The quantum

measure µ(E) of the event E is inferred from the probability of occurrence of the event

which can be determined from the ratio of the obtained counts at the output of the event

filter and at the input to the setup.

However, arranging the two beam splitters BS1 and BS2 experimentally to form a dis-

placed Sagnac geometry in collinear configuration requires fine adjustments to align them

in a way that the cuts of the beam splitters are exactly parallel to each other or at best,

lies along a same straight line. Any relative vibration between the two would change the

overlap of the interfering beams and the relative phase, affecting the interference intensity.

Therefore, to further increase the stability of the setup and to reduce the alignment com-

plexity, the arrangement of two beam splitters (BS1 and BS2) in the design in Fig. 5.7

can be replaced with a single big-sized beam splitter (say, BS). This re-arrangement in

the setup would provide the same experimental demonstration of determining the quantum

measure of a photonic event (here, E = {00, 01, 11}) from the probability of an outcome

of a projective measurement. However, due to this modification, in this case the photon

would encounter a single device (a 50 : 50 BS) twice instead of encountering two iden-

tical devices (i.e., two 50 : 50 beam splitters) one after the other, resulting in the same

value for quantum measures for all the events. Modifying the transmission and reflection

amplitudes with the substitution t1 = t2 = t and r1e
iφ1 = r2e

iφ2 = reiφ, we get the

expression in Eqn. 5.66 giving the quantum measure for event E = {00, 01, 11} to be

µ(E) = |t|2 +
∣∣treiφ + rteiφ

∣∣2 =

∣∣∣∣ 1√
2

∣∣∣∣2 + ∣∣∣∣ 1√
2

i√
2
+

i√
2

1√
2

∣∣∣∣2 =
5

4
= 1.25, which remain

the same as before.

A design of the ‘event-filter’ in a displaced Sagnac configuration with the use of a

single beam splitter, is experimentally implemented in the next chapter of this thesis which

presents a table-top demonstration to determine the value of the quantum measure for the

particular event E = {00, 01, 11} in a laboratory setting.
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Conclusion5.6

In this chapter, we have attempted to address the foundational interpretational puzzles of

standard quantum theory from the perspective of a space-time realistic framework, Quan-

tum Measure Theory that involves a generalization of probability − the ‘quantum measure’

to describe the dynamics of a quantum particle. Here, we have formally defined the con-

stitutes of this framework, such as the histories which describe the kinematics of a system

or the events associated with a system, and shown that the ‘quantum measure’ may differ

from the Kolmogorov probability when interference is involved. An experimental method

to identify the event through which the quantum system has undergone is presented using

the concept of event-filtering employing ancillas, extending it further to infer the value

of the ‘quantum measure’ of that event. A successful determination of quantum measure

provides an immediate experimental footing to this theoretical notion so far, which opens

up avenues for future tests on quantum foundations. For the demonstration, we have

considered a two-site hopper setting in an optical setup. We have implemented it using

amplitude division (instead of wavefront division) so that there would not be a need to

assume whether the higher-order interference terms vanish or not and can be relied sim-

ply on the second-order interference for photons. In the next chapter, a toy model of the

experiment will be presented, which could demonstrate an experimental scenario that can

give a non-classical measure.
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Appendix

Histories Approach to Quantum Theory: State
Based Formalism to History Based Formalism5.A

Histories approach to Quantum Mechanics was introduced by Dirac and Feynman who

aimed to formulate the quantum theory from an observer-independent perspective and

with a space-time way of describing the reality. Histories are fundamental in this approach

as compared to the state vectors or the wave functions in the standard formalism of quan-

tum theory. Conventional non-relativistic quantum mechanics deals with wave functions,

observables, measurement, etc. and puts a heavy emphasis on the notion of time that

determines the events at individual instances. Therefore the histories in terms of standard

theory can be described as a series of events at successive moments of time in between

an initial and final time. Before the history-based formulations, the histories approach in

quantum theory was discussed from the perspective of “standard” QM as discussed below.

5.A.1 Defining Histories in Standard Formalism

At an instant t0, the standard quantum mechanical theory considers the system to be

described by a state |ψ(t0)⟩ evolving in time under a given Hamiltonian H(t) according

to the Unitary evolution operator U(t1, t0) = exp

(
−1

ℏ
∫ t1
t0
H(t)dt

)
within a Hilbert space

H. The evolution is given by, |ψ(t1)⟩ = U(t1, t0) |ψ(t0)⟩, where the evolution operator

satisfies the relation U(t1, t0) = U(t1, t
′
)U(t

′
, t0) for t0 < t

′
< t1. Measurement at an

instant t corresponds to the projection onto a subspace of the Hilbert space H giving a

particular outcome. Thus, every measurement outcome or an “event” according to [15] can

be associated with projection operation, which may or may not be physically realizable.

From the viewpoint of Hilbert space theory in the standard formalism of QM, a history is

described as a sequence of events at successive moments of time i.e., a sequence of outcomes

of a time-ordered set of projection operators [45]. A history γ = (α1, α2, . . . , αn) can be
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described by a set of projectors Pγ = {Pα1 , Pα2 , . . . , Pαn}, where αi is the outcome of the

projection operation Pαi made at time ti (where ti < ti+1). The final state of the quantum

system at time tn at the end of the history is given by,

∣∣∣ψγf (tn)〉 =
Ĉγ |ψ(t0)⟩∥∥∥Ĉγ |ψ(t0)⟩∥∥∥ (5.68)

where, Ĉγ = PαnU(tn, tn−1) . . . . . . Pα2U(t2, t1)Pα1U(t1, t0) (5.69)

Here, in the above expression, |ψ(t0)⟩ represents the initial state of the system at time

t0 and
∥∥∥Ĉγ |ψ(t0)⟩∥∥∥ defines the norm of the final state within the Hilbert space. The

expression 5.69 for the operator (given in the Schrodinger picture) can be represented in

the Heisenberg picture as follows,

Ĉγ = U(tn, t0)Pαn(tn) . . . . . . Pα2(t2)Pα1(t1) (5.70)

where, Pαi(t) = U †(t, t0)PαiU(t, t0) (5.71)

Here, We would like to formulate a theory that can describe the classical macro world

and the micro world consistently without any discrepancy. The decoherent histories ap-

proach can describe a system whose micro states follow quantum dynamics and it behaves

classically at the macro level. For a decoherent set of histories, the non-diagonal terms of

the decoherence functional matrix are zero, and the diagonal terms can be interpreted as

probabilities. Thus, the decoherent histories formalism allows us to assign probabilities to

a set of decoherent or consistent histories, without any requirement for any measurement,

observation, measuring apparatus, etc. Thus this theory can be considered as a general-

ization of the Copenhagen interpretation in describing the entire universe as a whole from

an observer independent perspective, though this theory still applies the notion of state

vectors evolving in a Hilbert space.
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Quantum Measure Theory (QMT) provides an alternative history-based formulation

to quantum mechanics based on the sum over histories or path-integral approach, in which

a quantum system can be described from a more realistic space-time perspective. Here,

the ontology of a micro-system is described in terms of histories − a history gives the most

complete description of the physical reality of a given system. The dynamics of the system

is governed by the stochastic laws of motion for the histories and is presented in terms of

a function − the quantum measure, that assigns a non-negative real number (which can

exceed unity under certain circumstances) to a set of histories (i.e., an event) associated

with the system. The knowledge of the quantum measures of the events for a given micro-

system enables one to make predictions about the system behavior in a similar way to how

the Born rule probability does in standard formalism.

As discussed in the previous chapter, though the quantum measure can be interpreted

as the Born rule probability for certain events, in general, it goes beyond and presents

itself as a generalized probability for all kinds of events, including those which can not be

associated with a physically realizable observable. Therefore, quantum measure can not

be simply interpreted as the expectation value of a self-adjoint operator and finding the

value of it from an experiment seems unfeasible. However, the paper “How to Measure the

Quantum Measure” [1] proposes a generalized experimental scheme that would allow one

to determine the value of the quantum measure for any set of histories related to a given

system. According to the scheme, for a quantum system propagating through a series of

devices − recording the path information in the states of a group of ancillas (each coupled

to the system after a device) and performing a projective measurement on the joint state

of ancillas in a suitably chosen basis, one can infer the quantum measure of a desired event

from the probability of one of the outcomes of the measurement. This chapter will present a

table-top experimental demonstration of the scheme using a toy model of the ancilla-based

event filtering setup for a photonic event. The significance of the experimentally obtained

result would be analyzed through Hypothesis testing with respect to the classical-quantum

boundary in order to establish the non-classical nature of the quantum measure obtained

for an event involving interference.
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The Quantum Measure6.1

The expression for quantum measure (µ) for an event E = {γ1, γ2, ....} obtained using the

path integral formalism in Quantum Measure Theory [2], is given as

µ(E) =
∑

γi,γj∈E

A(γi)A∗(γj)δ
γiend,γ

j
end

(6.1)

where γi (similarly, γj) is one of the histories having the amplitude A(γi) (similarly, the

amplitude for γj being A(γj)) that comprises the event E. The quantity δ
γiend,γ

j
end

ensures

the interference between the histories that end at the same point.

Hence, for the desired event E = {00, 01, 11} 1 the two histories 01 and 11 would

interfere and the quantum measure µ(E) for this event can be expressed as,

µ(E) = |A(00)|2 + |A(01) +A(11)|2 (6.2)

Experimentally we will design an event filter that will ensure the detection of beams com-

ing from 00, 01 or 11 paths and not from 10 path. Then depending on the amplitudes

associated with each detected path the value of the quantum measure would be determined.

Unlike classical measure theory, Quantum Measure Theory (QMT) allows for interfer-

ence and because of that, quantum measure can not in general be interpreted as ordinary

probability measure. Unlike classical probability measures, quantum measures (µ) do not

follow the probability sum rule and can take values greater than one. The classical theory

bounds the maximum possible value of measure to be one. Hence, any value of measure for

an event obtained to be greater than one makes it non-classical. Here we aim to capture

this non-classical nature of the measure associated with a quantum system by designing

an experiment that gives µ value to be greater than one. From this experiment we will

also be able to comment on the effect of interference in a quantum system.

1The reason for choosing this event is discussed in the previous chapter, i.e., Chapter 3.
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Experimental Implementation of an Event Filter for
Determining the Quantum Measure6.2

In this section we will discuss the optical implementation of an ‘event filter’ for a photonic

system using the idea similar to two-site hopper [3]. Here, the device would be a 50 : 50

beam splitter (BS) which has two possible output ports (say, labelled as 0 and 1) − any

single photon incident on the beam splitter can either get transmitted through it or can

get reflected from it. Thus the photon can be found in any one of the two possible spatial

modes after the BS. Depending on the output port at which the photon emerges, the

path of the photon is labelled as 0 or 1. Now, if a photon encounters such a beam splitter

twice, there would be overall 4 possible paths (γ1 = 00, γ2 = 01, γ3 = 10, γ4 = 11) that

the photon can access, making the history space to be Ω = {00, 01, 10, 11}. We intent to

design a setup, called the “Event Filter”, such that we only get the photons coming from

the paths that belong to the desired event E (here, E = {00, 01, 11}) i.e., any detection at

the end of the setup confirms the occurrence of the event E.

This concept of “event filter” strictly applies to a single photon. A single photon en-

tering an optical setup consisting of components that have multiple output ports would

take any one of the n possible paths that comprise the entire history space Ω. In order

that an event filter designed for the event E′
= {γ1, γ2, . . . , γm} succeeds, the detected

photon should have traveled through any one the m (where m ≤ n) paths that comprise

the particular event E′ . Thus, while designing an “event filter” for the event E, the path

of the single photon after each beam splitter BS is something that we are looking for.

If many photons are incident on a beam splitter at once, some of the photons would get

transmitted and some would get reflected depending on the splitting ratio of the given

beam splitter. In other words, some of the photons would take path 0 and some would

take path 1, causing all possible paths to be populated at a given point of time. Thus,

the notion of “event filter” for a laser light source, the emitted beam from which is in the

coherent state [4, 5], may appear inappropriate.

However, here in this experiment, our ultimate aim after designing the event filter is

to obtain the value of measure µ associated with the particular event E. This requires us

to determine the probability of the event. Also, while setting up the filter, the histories
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that end at the same point need to be made to interfere as well. Both these phenomena,

i.e., (i) quantum interference, and (ii) probability measure, are described for an ensemble

and can not be obtained from a single particle. These average statistical properties of light

are equivalent for an ensemble of discrete photons and for a coherent beam, [6]. There-

fore, the quantity of interest i.e, the value of the quantum measure for a particular event

will be the same whether determined using a laser light source or a stream of single photons.

In this experiment, we have used laser light to demonstrate the working principle of an

‘event filter’ modeled for a photonic system and infer the value of the ‘quantum measure’

for a particular event. The system would be passing through a device, a beam splitter BS,

twice within a Displaced Sagnac Interferometer geometry. The path degree of freedom

of the system would be considered to label the histories associated with the system and

the polarization degree of freedom of the same system would be considered as an effective

ancilla, operations on which would filter out the desired event. The intensity of the beam

would be measured at the input and the output of the event filter and the value of quantum

measure would be obtained by post-processing the experimentally obtained data.

6.2.1 Aim of the Experiment:

In this experiment, we aim to demonstrate the determination of the value of the “measure”

for an event E = {00, 01, 11} associated with a photonic system by designing an event

filter employing ancilla-coupling. Here, we also aim to establish the non-classical nature of

the experimentally obtained quantity for the photonic system by analyzing its significance

with respect to the classical-quantum boundary defined for “measure”.

6.2.2 The Experimental Setup

An optical implementation of the event filter for an event E = {00, 01, 11} is shown in

Fig. 6.2. Light at wavelength λ = 810 nm emitting from a narrow bandwidth (linewidth

typically < 300 kHz) diode laser [Toptica DL Pro] is used as the source for this exper-

iment. The laser beam is coupled to a FC/PC to FC/APC Polarization Maintaining

Single Mode Fiber (PMSMF ) [P5−780PM −FC−2, Thorlabs] using a fixed focus lens
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[F220APC − 780, Thorlabs] mounted in a 6− axis kinematic mount [K6XS, Thorlabs]

with an adapter [AD11F, Thorlabs]. The APC (Angled Physical Contact) [7] end of the

PMSMF is connected to the coupling lens to minimize the back reflection and to prevent

the back-reflected beam from entering into the laser cavity. The Polarization Maintaining

Single Mode Fiber [8] is used to (i) maintain the polarization while the beam propagates

through the fiber and hence to get stability in power after any polarization component

placed at the fiber output, (ii) to reduce the pointing fluctuation about the transverse

plane of the beam (compare to the bare beam), (iii) also to get the spatial mode at the

output of the fiber as much Gaussian as possible 2.

At the output end of the PMSMF , an adjustable fiber collimator 3 [CFC11P −

B, Thorlabs] is used to minimize (to be less than 1 mrad) the beam divergence. Here, the

collimator COL is fixed for a condition where we obtain a beam width of around 1750 µm

as recorded using a beam profiler [WinCamD − UCD12], while obtaining a beam di-

vergence ≈ 0.43 mrad. The collimating lens is mounted on a 6 − axis kinematic mount

[K6XS, Thorlabs] with an adapter [AD15F2, Thorlabs]. The beam from the Collimator

is redirected towards the setup for the event filter using the mirror M0 [5102, Newport]

mounted in [SU100− F2K, Newport].

(a) Bare beam shape i.e., beam

shape at the laser output.

(b) Beam shape after the Colli-

mator i.e., at fiber output.

(c) Beam shape after GT i.e., at

the input to the Event filter

Figure 6.1: Transverse beam profiles at different locations of the experimental setup as

recorded by the beam profiler.

2The field distribution of the fundamental mode for single mode fiber can be approximated to be

Gaussian [9, 10] (the transverse profile of the bare beam was not a Gaussian as can be seen in Fig. 6.1)
3In adjustable collimator the distance between the aspheric lens and the tip of the fiber can be adjusted.
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PMSMF

Figure 6.2: Experimental Setup of the event filter for the photonic event E = {00, 01, 11}.

The system is allowed to pass through the beam splitter (BS1) twice inside the Displaced

Sagnac Interferometer (DSI) setup aligned in collinear geometry. The glass plate GP in

one of the paths inside the interferometer controls the relative phase. The upper and lower

paths taken by the photon after each pass through the beam splitter are labeled as 0 and

1 respectively. The system propagating through the interferometer can choose any one of

the 4 possible trajectories; 3 desired trajectories among them are filtered out at the end

of the setup at the location where the PM (here a power meter sensor, can be a single

photon detector as well) is shown.

Before entering the event filter the collimated beam is passed through a Glan-Thompson

polarizer 4 GT [GTH5M−B, Thorlabs], mounted inside a lens tube [SM05L10, Thorlabs]

attached to a 6 − axis kinematic mount [K6X5, Thorlabs], to ensure high degree in po-

larization purity. The optic axis of the GT is oriented with respect to the incident beam

in a way that it transmits the horizontal (|H⟩) component of polarization of the beam

and the transmission is maximized by rotating the output end of the fiber attached to

the collimating lens (COL). The performance of the PMSMF is very sensitive to the

external stress and ambient temperature; any change in these parameters can cause the
4A Glan Thompson polarizer transmits the s−polarized component (the e − ray) and reflects the

p−polarized component (the o− ray) of any unpolarized beam incident on it.
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polarization of the beam at the output of the fiber to vary causing a power fluctuation

after the Glan-Thompson Polarizer (GT ). The transmitted beam through the GT serves

as the input to the Sagnac interferometer in the event filter.

The horizontally polarized beam after the GT is made incident on the beam splitter

BS1 [20BC17MB.2, Newport] which forms the Displaced Sagnac interferometer (DSI)

with the mirrors MT , MR and MM (all of them are [5122, Newport]; MT , MR are mounted

in [Polaris K2T, Thorlabs], MM is mounted in [KS2D, Thorlabs]). A part of the beam

incident on BS1 is transmitted and another part is reflected, depending on the splitting

ratio (T : R) of BS1. Lets consider the paths for the transmitted beam and the reflected

beam inside the interferometer ate labelled as path − U and path − L respectively. MT

is the mirror that the transmitted beam encounters the first, similarly MR is the mirror

that the reflected beam encounters the first and MM is the mirror that sits in the mid-

dle and redirects the transmitted beam from MT to MR and reflected beam from MR to

MT respectively. By adjusting the tilt of MT and MR and the beam splitter BS1 while

looking at the interference fringes in both the output ports of the interferometer, the DSI

is aligned in collinear geometry, i.e., in each of the output ports of the interferometer the

propagation vectors associated with the two beams coming from the individual paths of the

interferometer are made to be collinear and are always on top of each other. In collinear

configuration, the intensity at individual output ports after the interference varies depend-

ing upon the relative phase (φ) between the two paths of the interferometer.

The relative phase of the interferometer is controlled by tilting a Glass Plate GP

[WG40530, Thorlabs] placed in one of the arms of the interferometer, here in path − U .

The GP is mounted on a lens mount [LMR05/M, Thorlabs] attached to a base rotation

mount [PR01/M, Thorlabs] with an adapter [BA2S5/M, Thorlabs] which enables us to

tilt the GP with the surface normal being in a plane parallel to the optical table causing a

longitudinal path delay (say, ∆p = pU−pL) for the beam propagating in path−U compare

to the beam propagating in path − L. Adjusting the angle of tilt of the GP with respect

to the propagation vector of the beam, the relative phase φ 5 between the two paths of the

interferometer can be tuned. For the GP of thickness t (here, t = 3 mm) tilted at angle θ

5Phase φ is computed considering the path difference ∆p introduced due to the presence of a titled

glass plate (of thickness t) in path− U and nothing in path− L.
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with respect to the incident beam, the relative phase (φ) is obtained to be,

φ =
2π

λ
∆p =

2πx

λ
(nr − ni cos(θi − θr)) (6.3)

where, x =
t

cos(θr)
(6.4)

provided, θr = sin−1
(
ni
nr

sin(θi)

)
= sin−1

(
sin(θ)

n

)
(6.5)

where x is the path length of the beam (after refraction) inside the GP when it is tilted

at an angle θ. The angle of incidence θi would be the same as the angle of tilt θ, i.e., θi = θ.

t

t
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(a) A beam incident normally on a glass-plate

(GP ), labelled as “Back-aligned GP” (surface nor-

mal along n̂), propagates straight though it as

shown by the blue line. When the GP is tilted

at an angle θ = θi (surface normal along n̂θ) the

beam incident on it undergoes refraction and the

propagation of the beam through the “Tilted GP ”

is shown using the red line. The tilt of the GP

introduces a longitudinal path delay and a lateral

displacement a to the beam in red compare to the
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Figure 6.3: Beam propagation through a tilted Glass plate
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The angle of refraction θr in Eqn. 6.3 follows the Snell’s law ni sin(θi) = nr sin(θr),

where ni and nr are the refractive indices of the incident medium (here, air with ni = 1)

and the refraction medium (here, UV-fused silica with nr = 1.4531 at 810 nm [11]). Here,

we have considered
nr
ni

= n.

The tilt in the GP also causes a lateral displacement (say, a) of the beam going through

the GP as shown in Fig. 6.3a. From Fig 6.3b it can be seen that even for changing the

phase from 0 to π rad (or 180◦), i.e., to change the interference from a constructive to a

destructive one or vice versa, the 3 mm thick GP used in the experiment needs to be tilted

at an angle ≈ 1.686 degree that gives a lateral shift a (horizontally) in the order of few

tens of microns (≈ 27.537µm) which is much smaller than the beam width (≈ 1.7 mm).

Thus the two interfering beams still have a good overlap that maintains a high degree of

collinearity and the loss in visibility due to the lateral shift in the beam in path−U would

be small enough that it can be ignored. The lateral displacement a of the beam propagating

through the GP of thickness t due to the tilt at an angle θ = θi can be expressed as,

a = x sin(θi − θr) =
t sin(θi − θr)

cos(θr)
(6.6)

In one of the paths (here in path − L) of the Sagnac interferometer a half-wave plate

(HWP1) [WPO02 − H − 810 − UM, NewlightPhotonics] is placed with its fast axis

oriented at
π

4
with respect to the horizontal. The HWP oriented this way realizes the σx

operator 6 which changes the H polarization of the beam in that path to V and acts as

a marker to the path. So, any polarization measurement in the basis {|H⟩ , |V ⟩} at the

output of BS1 can give information about the path of the photon inside the interferometer.

After each encounter of the system with the device i.e., with BS1, the path of the system

is labelled by 0 or 1 depending on the upper path or lower path chosen by the system.

Therefore, there are four possible paths that the system can take after passing through

BS1 twice. The event filter for the event E = {00, 01, 11} is designed by selecting only the

paths 00, 01, 11 and discarding the path 10 by acting on the polarization d.o.f. after DSI.

6Jones matrix representation of a HWP whose fast axis is oriented at ϑ with respect to the horizontal

is given by, Ŝh(ϑ) =

cos(2ϑ) sin(2ϑ)

sin(2ϑ) − cos(2ϑ)

. Hence, Ŝh(
π

4
) =

0 1

1 0

 = σ̂x.
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The polarizing beam splitter PBS1 [PBS122, Thorlabs] placed in the top arm (as seen

in Fig. 6.2) after the DSI reflects the history 10 away from the setup. This is because

the trajectory 10 corresponds to path − L (hence the first bit is 1) inside the interferom-

eter having the HWP1 behaving as σx, which makes the polarization of the system in

this path to be |V ⟩ that gets reflected by the polarizing beam splitter. PBS1 allows the

history 00 (with |H⟩ polarization) to pass through it which is redirected towards the event

filter output using a mirror M2 [5102, Newport] mounted in [SU100 − F2K, Newport].

A half-wave plate HWP2 [RZQ2.15L.0810, B. Halle] (mounted in kinematic rotation

mount [KS1RS, Thorlabs]) and a polarizing beam splitter (PBS2) [PBS122, Thorlabs]

combination is placed in the bottom arm after the DSI that makes the two histories 01, 11

interfere, which otherwise have orthogonal polarizations (|H⟩ and |V ⟩ respectively) after

the Sagnac interferometer. HWP2 has its fast axis oriented at
π

8
with respect to the

Horizontal which physically realizes a Hadamard operator that changes |H⟩ to |D⟩ for

the history 01 and |V ⟩ to |A⟩ for the history 11. After HWP2, the two beams coming

from two different paths of the interferometer with |D⟩ and |A⟩ polarizations respectively

are projected onto |H⟩ in one output port of the PBS2 and into |V ⟩ in the other output

port of it. The event E = {00, 01, 11} can be detected at one of the output ports of

PBS2 using a detector (here a power meter sensor, PM [sensor: S121C, Thorlabs, meter:

PM100D, Thorlabs]) as is shown in Fig. 6.2.

Here, the port of PBS2 at which the beams from 01 and 11 are projected horizontally

is selected as the output of the event filter − hence we need to ensure that the photons

coming from 00 path reaches that port as well. In order to achieve this, another half-

wave plate HWP3 [RZQ2.15L.0810, B. Halle] (mounted in kinematic rotation mount

[KS1RS, Thorlabs]) with its fast axis at
π

4
(i.e., as σx operator) is placed in the top

arm just after PBS1. This HWP3 changes the polarization of the 00 beam from |H⟩

to |V ⟩ so that it gets reflected from PBS2 and reaches PM . A 50 : 50 beam splitter

BS2 [BS005, Thorlabs] placed in the top path reduces the intensity of the 00 beam to

half, in order to remove any bias at the detection associated with any path. The detector

(PM) detects the beams coming from any of the three paths 00, 01, 11 and any detection at

this position confirms that the system being detected belongs to the event E = {00, 01, 11}.
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6.2.3 Method and Data Acquisition

In the experimental setup after ensuring that a decent transverse profile of the beam is

emerging out of the Glan-Thompson GT and the polarization is Horizontal with a high

degree in purity, first the Displaced Sagnac Interferometer (DSI) is aligned in collinear

configuration with a back-aligned glass plate (GP ) being present in one of the paths (here,

path − U). The collinearity is achieved by looking at the individual beams (when sepa-

rated) and the interference (when overlapped) using two beam profilers (BP ) − one placed

at a position very near to BS1 in one port and the other at a position far from BS1 in

the other port of it, so that we can ensure the beams do not cross each other and remain

parallel while propagating the distance from a near position to a far position. Next, the

event filter is set up by placing different polarization optics at different locations keeping

in mind that only the beams from 00, 01, 11 paths need to be detected at the output and

the beams from 01 and 11 need to be made to interfere. Then, the power of the beam

after the Glan-Thompson Polarizer (GT ) is measured using a power meter. This power

(consider Pinput) represents the intensity of the beam being incident on the device (i.e.,

BS1) through which the system has to propagate twice. Also, the power at the output of

the event filter (consider, Pevent) is measured when the beams from the paths 01 and 11

constructively interfere. Constructive interference is ensured by tuning the tilt of the GP

(which earlier was back-aligned) while observing the power at the output end with the top

path after DSI being blocked and fixing the GP at an angle for which the power after the

interference becomes maximum. Using the power data, i.e., Pevent− power associated with

the beams coming from 00, 01, 11 paths at the end of the setup and Pinput− power associ-

ated with the beam being incident on the setup, the probability of detection of the event

E is obtained, from which quantum measure µ(E) for the particular event E is inferred.

Other than these two power data, additionally the powers Pint, P01, P11 are monitored

at the output of the event filter in order to get an idea about the interferometric phase

fluctuation over a long period of time. Here,

• Pint is the power associated with the interference between the beams from the paths

01 and 11, measured with the top arm after DSI being blocked.

• P01 is the power associated with the beam in 01 path, measured with path−L inside

the interferometer and top path after the interferometer being blocked.
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• P11 is the power associated with the beam in path 11, measured with path−U inside

the interferometer and top path after the interferometer being blocked.

Also, the power P00 associated with the beam in 00 path is measured at the output

while the bottom path after DSI is blocked. Experimentally, a few other observations are

made in order to get an idea how different parameters can impact the experimental data

and how the quantity being determined from the experiment gets affected compared to the

expected theoretical value, the details of which will be discussed in the following section.

Experimental Data Analysis: Dealing with Errors6.3

Experimental data is always associated with some real limitations, imperfections, noise,

fluctuations, losses, etc.. The lab conditions and different parameters of the environment

like temperature, pressure, humidity, air current, etc. impact the experimental data as

well. All these effects on the collected data in an experiment are responsible for the de-

viation in the value of the quantity being measured experimentally from the theoretical

value computed considering ideal conditions and effectively manifest as an error in the ex-

perimentally determined quantity. Thus, while analyzing the experimental data different

possible sources of errors need to be kept in mind and corrections for some parameters are

required depending on the degree it affects the experiment.

6.3.1 Types of Experimental Error

In an experiment in quantum mechanics, there would be some inherent random noise

which can originate due to the fundamental nature of quantum mechanics or from classical

sources which are chaotic and hard to trace [12]. Also, high frequency acoustic vibrations

may appear as random noise if the sampling rate is low [13, 14]. However many experi-

mental parameters, although accessible to the one performing the experiment, may not be

precisely controlled during the experiment. In an optical experiment, variation in temper-

ature and pressure often impacts the opto-mechanics affecting the optical alignment and
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a slight change in the alignment mostly affects the outcome of an interferometry based

experiment. For a short time scale the recorded data for these parameters may appear as

showing a drift but if we wait for long enough time they may appear to be visibly oscil-

latory. Depending on the variation of the parameters, be it a slow drift or oscillation, the

required data for the experiment varies. Thus, the time scale at which the data is acquired

in an experiment plays an important role in determining whether and how the data affects

the quantity to be experimentally determined.

Further, there are systematic instrumental errors, which are a matter of characteriza-

tion. The non-linear response of a detector, the power meter sensor (or any sensor being

used in the experiment) and its calibration accuracy may be one of these errors. In an

experiment where we record the powers (or the intensity) using those instruments, some

of the errors like the calibration accuracy, may not affect the experiment as long as we

are interested in the ratio of powers and not in absolute power value. But factors like the

detector’s non-linear response would affect the ratio as well. Some real limitations like

the efficiency of the detector, spatial averaging over a certain pixel size of the camera etc.

affects the experimental result as well.

Also, in optical experiments, there are always some losses associated with absorption

in the material of the optical element. Imperfections in the optical components being used

modify the outcome of the experiment; like deviation in the splitting ratio (T : R) for the

beam splitters from the quoted value modifies the intensities of the transmitted and re-

flected beams, the polarization dependence of reflection 7 from mirrors, beam splitters etc.

adds ellipticity to the polarization of the beam, extinction ratio of optical elements impacts

the polarization purity, surface quality of the optical components causes distortion in the

wavefront of the beam that changes the spatial overlap of the beams during interference etc.

Additionally, in an interferometric experiment, the phase instability inside the inter-

ferometer, beam wander of the two overlapping beams, etc. will also lead to experimental

errors, and their contribution needs to be accounted for in the theory of optics. Also, some

misalignment of the optics, specks of dust or any imperfections present on the surface of

7In most of the optical elements Rs ̸= Rp, i.e., the reflectivity is not the same for s− and p− polarizations

and also reflection adds a relative phase between s− and p−polarized components of the beam.
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optics (like the scratches, uneven surfaces, roughness, quality of anti-reflection coatings,

etc.) modifies the beam path as well as changes the wavefront which affects the inter-

ference and hence impacts the result obtained from any interferometry based experiment.

All these parameters need to be considered while analyzing experimental data in order to

determine the quantity of interest.

6.3.2 Data Analysis Considering Experimental Non-idealness

In Sec. 6.2 we have presented the experimental implementation of an “event filter” in an

optical setup for the particular event E = {00, 01, 11}, for which we want to determine

the quantum measure. After setting up the event filter we aim to demonstrate how the

value of quantum measure µ(E) for the event E can be inferred from the data collected at

different positions of the event filter as discussed in 6.2.3. Ideally, µ(E) could have been

inferred from the ratio
Pevent
Pinput

, where Pinput and Pevent are respectively the powers at the

input and at the output of the event filter. However, in practice, the collected data often

suffers from various non-idealnesses that can cause deviations between the experimentally

determined value and its theoretical prediction. Consequently, a more rigorous analysis

of the data is necessary to accurately determine µ(E), taking into account the potential

sources of non-idealnesses.

The theoretical formula given in Eqn. 6.2 computes the value of the quantum mea-

sure µ(E), for the event E = {00, 01, 11} for a photonic system that encounters a 50 : 50

beam splitter (BS) twice, to be 1.25. This is the value of measure for that event obtained

by considering the system to be lossless and in ideal lab conditions. Any loss within the

setup would only reduce the amplitudes associated with the paths, which would effectively

lower the value of the quantum measure to be obtained experimentally. Also, the value

µ(E) = 1.25 is obtained considering constructive interference between the beams from 01

and 11, i.e., when the relative phase between the two paths of the interferometer is φ = 0.

Hence, any variation in the phase from zero would only reduce the obtained interference

intensity and would effectively reduce the value of µ(E). So, considering the limitations

and errors associated with an experiment the value of the quantum measure to be obtained

experimentally is expected to be less than the value 1.25.
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During an experiment, different sources of experimental errors, as discussed in SubSec.

6.3.1 affect the data acquisition and give the value of the experimentally obtained quantity

within a certain uncertainty range. The experimentally collected data can be corrected for

some of the known sources of errors but for most of the parameters correction would not

be feasible and the errors need to be propagated during the analysis [15]. Also while com-

puting the quantity of interest theoretically, we can modify our expectation by accounting

for the non-idealnesses associated with different parameters in the theory. Some of the

non-idealnesses arise due to the beam wander about a certain mean value in the transverse

plane, temperature and humidity variation within a certain range, wavelength fluctuation

of the laser source, beam shape not being perfectly Gaussian, the polarization of the beam

not being linear, polarization fluctuation, slight non-collinearity in the aligned interferom-

eter, phase noise in the interferometer and imperfections associated with the components

being used in the experiment (like the losses in optical components, deviation from surface

flatness, real transmission and reflection efficiency, detector efficiency etc.).

Here, in the analysis for obtaining the value of µ(E) for the event E,

(i) The effects of phase instability in the interferometer, beam wander causing lack of

overlap of beams, detector non-linearity and imperfections associated with different

components would be accounted for in the theoretical computation in order to have

a more accurate estimate of the quantity to be determined experimentally.

(ii) The loss in the overall power due to absorption of light by optical components would

be accounted and corrected for in the experimental data analysis along with the

analysis for uncertainty due to various drifts.

In summary, the data analysis in this experiment would involve,

(1) Determining the value of quantum measure (say, µexp(E)) associated with the event

E from the experimentally obtained distribution of probability of occurrence of the

event with the necessary corrections in the experimental data; presented in Sec. 6.4.

(2) Comparison of the obtained experimental distribution µexp(E) with the theoretical

distribution (say, µth(E)) estimated using the direct formula for quantum measure

considering real parameters and experimental non-idealnesses; discussed in Sec. 6.5.
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(3) The statistical significance analysis of the quantity obtained from the experiment

(i.e., µexp(E)) with respect to the classical-quantum boundary (µC(max) = 1) as well

as the theoretically computed quantity (µth(E)) using the concepts of evidence-based

hypothesis-testing, presented in Sec. 6.7.

Determination of the Experimental Distribution of
Quantum Measure6.4

The experimental determination of quantum measure for E = {00, 01, 11}, which is a non-

serial event for the history space Ω = {00, 01, 10, 11} associated with a photonic system,

an optical setup must be implemented as outlined in Sec. 6.2 such that any successful

detection at its output assures that the detected particle has travelled through any one of

three paths 00, 01 or 11 within the setup. Such a setup is called an “Event filter” for the

particular event E. Next, the probability of the event E occurring needs to be determined

from the ratio of the powers obtained at the output and the input of the event filter. How-

ever, various experimental parameters cause the power to fluctuate over time and affect

the experimental data, as a result, the probability is obtained as a distribution with an

uncertainty band. Further, to report the uncertainty, we need to understand if the fluctu-

ations in power exhibit any periodicity or are random in nature. Thus, understanding the

temporal behavior of the power data is essential, which is presented in SubSec. 6.4.1.

Upon determining the probability Pexp(E) associated with the event E, the value of

the quantum measure µ(E) can be obtained by multiplying this probability with the loss

factor associated with the design of the event filter. But, here we need to account that

a fraction of the power gets absorbed in the components, mainly in BS1 that due to its

thickness (2 inch thick) causes significant attenuation in the powers in each path. Hence,

the probability distribution Pexp(E) obtained from the ratio of the powers is corrected

after taking into account the absorption loss in the material of the beam splitter BS1. The

experimental quantum measure µexp(E) is then inferred from this corrected probability

distribution (P(c)
exp(E)).
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6.4.1 Understanding the Nature of Power Data

Experimentally, the power at the input to the event filter (Pinput) is measured at a posi-

tion after the Glan Thompson Polarizer (GT ) and the power at the output to the event

filter Pevent is measured after PBS2 at the position where the power meter sensor (PM)

is shown in Fig. 6.2. Under ideal conditions, the probability could have been obtained

by simply taking the ratio of the two powers, i.e., prob(E) =
Pevent
Pinput

, provided both the

powers are measured simultaneously and remain unchanged over the time. As discussed in

the SubSec. 6.3.1, the ambient conditions and other factors affect different experimental

parameters which cause the powers to change over time. Also, in this experimental setup

Pinput and Pevent can not be measured at the same time because putting a power meter

at the input i.e., after GT for recording Pinput would block the beam from entering into

the interferometer. Ideally, simultaneous measurement of both the powers could have been

done by placing a non-polarizing beam splitter in between the GT and DSI, which would

transmit a fraction of the beam into the interferometer so that Pevent can be recorded and

reflect the rest of the beam so that Pinput can be estimated by measuring the power at the

reflecting port of this beam splitter 8. However, given the power fluctuation, Pevent can

not simply be expected to be mere proportional to Pinput as many of the fluctuations in

Pevent may get overridden by the interference effects.

The fluctuation of power Pinput (i.e., the power after the Glan Thompson polarizer)

would be a combination of three things:

(i) Since the power is measured after a Glan Thompson polarizer GT , any polarization

fluctuation after the collimator COL can result in power fluctuation. The polariza-

tion after a polarization maintaining single mode fiber (PMSMF ) can get slightly

affected when the fiber gets subjected to a change in temperature or stress 9 [16,

17]. Thus there would be drifts in power corresponding to the time scale of the

8This further requires the characterization of the beam splitter for its T : R ratio, the absorption loss

through it etc..
9The operating temperature and stress conditions of the PMSMF changes its birefringence that causes

a variation in the delay along the orthogonal fast and slow axes of the fiber. So, any fluctuation in the lab

parameters adds a relative phase between the orthogonal polarizations that are being maintained along

the fast and slow axes of the PMSMF , resulting an elliptic output polarization from the PMSMF with

the ellipticity changing over time depending on the temperature cycle.
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temperature and humidity cycle (as determined by the air-conditioner).

(ii) The centroid/center of the beam before the coupler can drift in the transverse plane,

which would affect the coupling efficiency and hence the power after the Glan Thomp-

son polarizer.

(iii) The overall power from the source can vary depending on the temperature and hu-

midity of the surrounding, since variation in these ambient parameters linearly effects

the cavity parameters of the diode laser.

The power data recorded at the end of the event filter (Pevent) would be affected de-

pending on the variation in the input power. Additionally it would be affected by the phase

shift in the interferometer (the phase stability is very sensitive to the ambient parameters),

beam wander of the two interfering beams that can cause a drop in the degree of overlap,

any variation in laser wavelength etc. The power Pint which corresponds to the interference

between 01 and 11, measured at the end of the filter with the upper path after BS1 being

blocked, would also be affected by the parameters mentioned above. Thus it can give an

estimation of the error in the Pevent data.

All the power data recorded in the experiment would also have some random noise

in the process of detection, along with the drifts due to the above causes. Further, the

measured value, of course, can differ from the true power due to the detector non-linearity

or calibration uncertainty.

❑ Characterizing the Power Data:

As we record the powers Pinput and Pevent at different times, it is important that the pow-

ers remain stable over time so that no bias is introduced in inferring the measure µexp(E)

from the ratio of the two. Though the interferometric phase fluctuation or the change in

the visibility due to beam wander of the interfering beams affects Pevent, computation of

the ratio would be mostly affected if there is a time-dependent drift or oscillation in the

input power. Any variation in Pinput affects Pevent as well, thus a periodic drift over a

long time in the input power data would cause the ratio to have a bias depending on the

time when the data were acquired. Here, we have recorded both the data for a duration of

approximately T = 2 hours and then analyzed to understand the nature of their variation
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with time. This would give us an idea, how to proceed with the data analysis in order to

minimize the bias.

The Pinput data, as presented in the plot in Fig. 6.4a, shows a sinusoidal variation

with the average power over a cycle having a slow upward drift. The power oscillates

with a periodicity of 9 − 11 mins which correlates with the temperature cycle of the Air

Conditioning Unit in the lab. In general, we have the temperature and the humidity going

as a triangular ramp function as the units periodically turns on and off. The length of

the grating cavity of the diode laser changes linearly with the periodic rise and fall of the

temperature, causing the resonating wavelength to change slowly. This results the power

emitting from the laser to vary.

0 10000 20000 30000 40000 50000 60000
Samples in 0.1s interval

2.23

2.26

2.29

2.32

2.35

Po
we

r (
m

W
)

Power after GT: Input to Sagnac
1 hour Data

1 min

(a) Short and Long time Variation of Data

0 5 10 15 20 25
Density (in a.u.)

2.23

2.26

2.29

2.32

2.35

+

Ditribution
median
mean
Input Power

(b) Histogram Plot of the Data

Figure 6.4: Temporal variation of the power (Pinput) incident on the setup as recorded in

the experiment.

Also, since Pinput is the power of the beam after the GT which projects the polariza-

tion into Horizontal, the sinusoidal variation in it is mostly due to the change in polar-

ization before GT . The external temperature (and also stress) causes the birefringence

of the PMSMF to change, which results in the variation of the output polarization of

the PMSMF depending on the temperature cycle. The power after GT is found to be

oscillating by around 3% about the mean owing to the polarization fluctuation of the beam

exiting the fiber. Also, we have seen a slow increase (≈ 0.525%) in the average power over
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the 2 hours of acquisition time. On top of the sinusoidal variation, the data also shows

some short period random fluctuations which appear as the noise on the sine curve. This,

high frequency random fluctuations can be seen in the inset plot of Fig. 6.4a showing the

data for for t = 1 min timescale chosen randomly from Pinput.

The histogram plot in Fig. 6.4b shows that Pinput is not a normal distribution, which

implies that the experimentally recorded powers do have a combination of both − random

fluctuations along with some systematic and periodic drifts. The drift in power seems to

occur at a different time scale than the random fluctuations in power, most likely due to

the temperature cycle. Since the nature of the distribution is not normal, the standard

deviation can not be considered as the measure of spread of the data and median instead

of mean would be a better choice to describe the measure for central tendency of the data.

The uncertainty of the distribution would be defined as the range for the 68.26% confi-

dence interval and would be represented with σ±, where σ+ and σ− are respectively the

ranges of the 84.13th and the 15.87th percentiles of the data with respect to the median.

Since the average power for Pinput rises with time, the uncertainty in this distribution is

obtained to be high. For a small enough time, the power variation is random, as seen from

the histogram plot of a block of data for a period t << T chosen randomly from Pinput

which seems to have a normal distribution.

6.4.2 Fast Fourier Transformation of the Recorded Data

In order to understand the nature of the power variation over time and to get an idea

about the frequencies at which the power tends to fluctuate, Fourier transformation can

be performed on the recorded data. This information will also guide us in choosing the

correct time scale for data analysis so that the uncertainty associated with the measured

probability can be minimized.

In this experiment, we have recorded the powers at the input (Pinput) and the output

(Pevent) of the event filter for about 2 hours at a sampling rate of 10 Hz. Given the data

acquisition was sampled at 0.1s, the maximum frequency for which we can comment is

5 Hz (the Nyquist frequency) [18]. The time for which the data were acquired limits the

minimum frequency about which we can comment on to be of the order of mHz. The spec-
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tral intensity distribution obtained from the Fast Fourier Transformation (FFT) of both

the data Pinput and Pevent, shows there are no significant fluctuations beyond 0.008 Hz.

So, both the low frequency drifts and high frequency vibrations will mostly come into effect

while acquiring data for more than 125s. Thus, statistics up to 125s can be drawn in order

to minimize the effects of power fluctuation. Here, for the data analysis in this experiment,

all the data sets are chosen for the time scale of 100s.

6.4.3 Determination of Probability Distribution

Experimentally the value of quantum measure µexp(E) for the event E would be deter-

mined from the probability (Pexp(E)) obtained using the data Pevent and Pinput. However,

the powers recorded at different times can not, in general, be combined to determine the

probability because the powers have some random fluctuations along with some periodic

drifts over time, as shown in 6.4.2. Depending on the time scale of data acquisition some

random fluctuations (even some high frequency oscillations) in power can be averaged out,

but the effect due to the drift in power over a long period would remain. This would

introduce a systematic error to the experimentally obtained quantity Pexp(E) which would

also propagate to µexp(E).

The data acquisition time plays an important role in minimizing the uncertainty in the

measured quantity caused due to the power fluctuation. The spectral intensity distribution,

obtained from the FFT of the power data Pinput and Pevent, shows that no significant

fluctuation exists within about ≈ 125s. Hence, we draw short time scale (over 100s < 125s)

statistics (say, pI and pE) randomly from the long time data Pinput and Pevent respectively

for determining the probability P(E). The process is repeated for N times 10 in order to

get the probability distribution Pexp(E), which signifies that the probability computed

from the ratio of the powers would have values within a certain range owing to the facts

that both the powers (i) are subject to fluctuation and (ii) are not recorded simultaneously.

To completely avoid the effect due to the systematic drift, ideally both the powers Pevent

and Pinput should have been measured simultaneously. Since this was not the case here,

we had performed statistical analysis on the randomly chosen data. In each trial, pI and

pE are drawn randomly from Pinput and Pevent and the probability is determined as,

10Here, N = 105 samples each are drawn randomly from the distributions Pinput and Pevent.
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P(k)(E) = mean

(
pE(k)

pI(k)

)
(6.7)

The above expression shows the computation of the probability P(k)(E) for the k-th trial.

Now, while determining the probability we need to account that a fraction of the pow-

ers in different paths get absorbed in the components present in the paths, which affect the

power measured at any position after the interferometer. Among all the components inside

the interferometer, the power gets absorbed the most in the material of the 2 inch beam

splitter BS1 because of its thickness. In the Sagnac Interferometer, designed with a beam

splitter BS1 and three mirrors MT , MR and MM , the system passes through the beam

splitter twice, causing a significant drop in the overall power after the interferometer. The

loss due to absorption affects the Pevent data when compared to Pinput, which modifies the

quantity to be determined from the experiment. Thus, a correction for the probability is

needed to account for the loss due to the absorption.

If η is the overall transmission factor (where 0 ≤ η ≤ 1) of the interferometer 11,

then the power associated with each path (γ) after the system leaves the interferometer

becomes, Pγ = η P 0
γ . Here, Pγ is the power experimentally recorded at any point after the

DSI and P 0
γ is the power at the same location without any loss in the interferometer (i.e.,

in ideal case). Thus, the corrected probability distribution can be obtained as,

P(c)
exp(E) =

Pexp(E)

η
(6.8)

Experimentally the overall transmission factor η of the interferometer can be deter-

mined using two methods:

(1) Finding the transmission factor ηs of BS1 when the incident beam passes through

it once (i.e., during single pass) from the power values measured at the input port,

transmitting port and reflecting port of the beam splitter. Here, ηs is computed
11Here, η is the ratio between the total power at the outputs of the interferometer, i.e., (PO1 +PO2) and

at the input of the interferometer, i.e. PI , where O1 and O2 are the two output ports after the DSI.
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as, ηs =
PT + PR

PI
= Tabs + Rabs, where PI is the power of the beam incident on

BS1, PT and PR are respectively the powers of the beams transmitted and reflected

from BS1. Considering the absorption, Tabs and Rabs are the absolute values of the

Transmittance and Reflectance of the BS1, provided Tabs + Rabs < 112. Since the

system in each path (γ) passes through the BS twice, the transmission factor of the

interferometer η can be considered as η = η2s . Thus, the probability distribution

corrected after accounting for the loss due to absorption in the 2 inch BS should be,

P(c)
exp(E) =

Pexp(E)

η2s
(6.9)

(2) Finding the overall transmission factor ηd from the powers measured at the outputs

of the interferometer i.e., after each beam has travelled through the BS twice (double

pass). Here, ηd is computed as, ηd =
P00 + P10 + P01 + P11

PI
. Here, Pij (with i = 0, 1

and j = 0, 1) is the power of the beam from γ = ij path recorded after the DSI.

The beams in the top path and the bottom path after each pass through the beam

splitter are labelled as 0 and 1. Thus, P11 is the beam that respectively reflects and

transmits through the BS1 during its first and second pass. So, here we get η = ηd

and the corrected probability after accounting for the loss due to BS1 becomes,

P(c)
exp(E) =

Pexp(E)

ηd
(6.10)

Here in this experiment, for the analysis of the probability P(c)
exp(E), the first method

discussed above is used. The overall transmission factor of BS1, i.e., ηs is determined from

the recorded data PI , PT and PR. Since the value of ηs obtained experimentally relies on

the measured power values at different locations, it also gets affected by the fluctuations in

power. To minimize the uncertainty in determining ηs, random 100s statistics pI, pT, pR

are drawn from each of the recorded power data and then the mean of the ratio
pT + pR

pI
is

12For BS1 experimentally we obtain Tabs = 49.21% and Rabs = 44.34%.
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computed. The process is repeated for N times, to obtain a distribution for ηs from which

we get ηs = 0.9356+0.0015
−0.0031. Hence, a single pass of the beam through the beam splitter BS1

results in 93.56% transmission of the incident beam, with the remainder being lost. Then,

the correction factor
1

η2s
is multiplied with the probability Pexp(E) to determine P(c)

exp(E).

6.4.4 Quantum Measure Inferred from the Experiment

The quantum measure µ(E) for the event E is determined from the corrected distribution

of probability as the following,

µexp(E) = 2 P(c)
exp(E) = 2

(
1

η2s

)
Pexp(E) (6.11)

The probability P(c)
exp(E) is multiplied with the factor 2 because the design of the event

filter (mainly the “event filtration region”) makes half of the photons, associated with the

event E, move away from the setup. µexp(E) represents the distribution of measure for a

certain event E associated with a photonic system, inferred from an experiment designed

allowing the interference − therefore, we expect µexp(E) to have values beyond the classical

limit i.e., values greater than 1 under certain conditions.
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Figure 6.5: The histogram plot of the experimentally obtained distribution of the quantum

measure for an event E = {00, 01, 11} of a photonic system.
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The plot in Fig. 6.5 shows the distribution of the quantum measure for the event

E = {00, 01, 11}, obtained experimentally by determining the probability distribution of

the event. The histogram plot of the distribution µexp(E) is asymmetric in nature, the

asymmetry arising from the use of the power data Pevent and Pinput in the determination

of the probability, both having systematic drifts over time. The tail towards the left of

the distribution can be associated with the mode hop 13 in the cavity laser, causing inter-

ferometric phase to vary slowly from zero and hence, reducing the power associated with

the interference, giving lower values of the quantum measure. From the distribution of

µexp(E), the experimentally obtained measure can be reported using the median value of

the distribution with 1σ uncertainty which is µe(E) = 1.172+0.013
−0.019.

Determination of the Theoretical Distribution of
Quantum Measure6.5

According to Quantum Measure Theory (QMT), the value of the quantum measure asso-

ciated with an event E = {00, 01, 11} for a photonic system passing through two 50 : 50

beam splitters or passing twice through a single 50 : 50 beam splitter (as in this exper-

iment) should be µidealth = 1.25. This value is derived from the theoretical expression of

the quantum measure µ given in Eqn. 6.2 considering the ideal system, ideal devices and

laboratory conditions. However, due to the limitations, imperfections and noises associ-

ated with an experiment and the losses associated with the real physical components, the

experimentally obtained value of µ(E) is expected to be less than 1.25. It is important

to have an estimation of the quantity to be determined in an experiment, considering the

parameters that impact the measurement. In this section, we will theoretically estimate

the range within which we can expect the µ(E) value to lie.

The experiment for the determination of the quantum measure of a specific event for

a photonic system using an optical setup, as outlined in Sec. 6.2, is influenced by various

factors that alter the value of the measure to be inferred from the experiment from its the-

13Mode hop is observed to happen in every ≈ 40mins interval, due to the changes in the cavity

parameters of the laser.
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oretical value µidealth . Some of the factors are listed here: losses due to absorption during

the transmission through different optical elements that causes a reduction in the power to

be measured; the transmittance (T ) and reflectance (R) of the real beam splitter(s) being

different from 50 : 50 (i.e., T ̸= R) that modifies the amplitudes of the different paths;

polarization dependence of T and R of the beam splitters, polarization dependence of the

reflectivity of the mirrors (i.e., Rs ̸= Rp) which introduces ellipticity in the polarization

of the beam; temperature and humidity variations that impacts the alignment as well

as the laser parameters; temperature and stress affecting properties of PMSMF , hence

the output polarization; fluctuations, noises and drifts in the power which results in an

uncertainty in the quantity to be determined; external vibrations (mostly acoustic);

phase fluctuations within the interferometer that affects the interference and hence the

power; beam wander that changes the overlap of the interfering beams; surface quality

of the optical components being used and dusts on the components that causes wavefront

distortion affecting the interference; the non-linear response of the detector to high pow-

ers, calibration uncertainties etc.

In the following, we will determine the possible distribution for the measure µth(E) cor-

responding to the desired event E, taking into account different parameters that influence

the experimental result. µth(E) can be called as the theoretical expectation considering

the experimental uncertainties.

6.5.1 The Quantum Measure: Theoretical Expression Considering Var-

ious Experimental Parameters

According to quantum measure theory, as obtained using the path-integral approach, the

quantum measure associated with the event E = {00, 01, 11} can be expressed as,

µ(E) = |A(00)|2 + |A(01) +A(11)|2 (6.12)

where A(00), A(01) and A(11) are the amplitudes associated with the respective histories

00, 01 and 11. The second term in the above expression represents interference between

the two histories 01 and 11 corresponding to the beams that emerges out in the same port
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after the device.

The expression for µ(E) assumes constructive interference between the two histories

01 and 11, i.e., the relative phase between 01 and 11 is considered to be φ = 0. But in

general, an interferometric experiment is affected by the relative phase change (φ) between

the interfering paths. Thus, considering the phase dependence of the interference between

01 and 11, makes µ(E) a function of φ. Therefore,

µφ(E) = |A(00)|2 + |A(01) + exp(iφ)A(11)|2 (6.13)

The amplitudes A(γk) associated with different paths γk are computed considering

the effects of different optical components present in the respective paths, as the beam

transmits through them. Consider, the amplitudes Ae(γk) correspond to the history γk

where k = 1, 2, 3, 4 with real components in the experimental design as shown in Fig. 6.2

up to the “system propagation region”, i.e., up to DSI. Thus, for this two-site hopper

setting, the expression for measure becomes,

µeφ(E) = |Ae(00)|2 + |Ae(01) + exp(iφ)Ae(11)|2 (6.14)

µeφ(E) is the theoretically computed value of the measure for the event E = {00, 01, 11}

considering different experimental parameters that affect the outcome. The absorption of

a fraction of the beam in different optics, the reflection from optical surfaces will cause

reduction in the respective amplitudes, i.e.,
∣∣Ae(γk)∣∣ < ∣∣A(γk)∣∣. The variation in phase

from φ = 0 and the losses associated with different paths result in the measure having a

value less than 1.25 for this event. Again, the uncertainty inherent in the parameters cor-

responding to the real optical components and the laboratory environment causes µeφ(E)

to have a range of possible values. This results in a distribution, represented by µth(E), for

the event E. So, the quantity to be obtained from the experiment is expected to fall within

the distribution of µth(E) and the degree of overlap between the distributions µexp(E) and

µth(E) will be analyzed in the next section 6.7.
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6.5.2 Computing the Measure from Modified Amplitudes: Accounting

for Real Optical Components

First, we will determine the distribution of the measure (say, µ1th(E)) for the event E =

{00, 01, 11} considering the effects of the real optical components present in the paths. For

this computation we disregard the phase fluctuation and choose the relative phase to be

maintained at φ = 0. Thus, the measure as given in Eqn. 6.14 would become,

µeφ=0(E) = |Ae(00)|2 + |Ae(01) +Ae(11)|2 (6.15)

Here, Ae(γk) are the amplitudes of the paths γk for the experimental setup. The presence

of the real optical components in different paths modifies the amplitudes, represented by

Ae(γ
k), in comparison to the amplitudes A(γk) obtained considering ideal components.

The experimental setup in Fig. 6.2 shows that within the DSI the beams in all the

three paths 00, 01, 11 interact with a beam splitter BS1 twice and encounters three mir-

rors MT , MR, MM . Paths 00 and 01 have a 3 mm glass plate GP , while path 10 has

a half-wave plate HWP1. All these components are associated with some losses mostly

due to absorption in the material and reflection from the surfaces etc.. The amplitudes

of the paths get affected by the absorption loss depending on the refractive index and the

thickness of the material [19]. The overall transmission factor (η) of a component is either

obtained from its specification sheet or determined experimentally from the ratio of the

measured powers at its output and input. In some cases, the transmission factor (η) of

a component can be calculated using the Beer-Lambert law from the known transmission

factor of another component composed of the same material.

❑ Beer Lambert Law: According to Beer Lambert Law, as light propagates through

an optical media its intensity diminishes along the thickness of the media and the loss in

intensity is linearly proportional to the incident intensity and the length of the media [20,

21]. If I0 is the intensity of light incident on an optical element with thickness l, then the

transmitted intensity after passing through the element would be I = I0 exp(−A), where A

is the absorbance of the material. Absorbance (A) is a measure of attenuation in intensity
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when a beam of a particular wavelength passes through an optical element. For a material

with a uniform concentration across its thickness (l), absorbance is given by A = al, where

a is the attenuation coefficient of the material. Thus, according to Beer-Lambert law,

I = I0 exp(−A) = I0 exp(−al) (6.16)

The transmittance (η) (or the transmission factor) of the material is defined as the

fraction of light being transmitted through the material and is given by,

η =
I

I0
= exp(−al) (6.17)

From the above expression for η we can write, ln (η) = −al [22]. Now, if we have a

material of known thickness l1 and known transmittance η1, the transmittance η2 of the

same material with a different thickness l2 can be determined as the following,

η2 = exp

[(
l2
l1

)
ln (η1)

]
(6.18)

Here, the transmission factor ηg for the GP , which is an AR coated 14 3 mm thick glass

window composed of UV-fused silica, is determined from the known transmission factor

(η′) of an uncoated 10 mm thick glass window [25] made of the same material. The anti-

reflection coating on our GP improves the transmittance ηg of it by minimizing the loss

due to reflection, compared to an uncoated GP for which the Reflectance at wavelength

λ = 810 nm is Rs = Rp = 3.4122 % at 0◦ angle of incidence [26]. Thus, η′ is corrected

for the presence of anti-reflection coating and the corrected value is used to compute ηg

from the Beer-Lambert law as expressed in Eqn. 6.18. The transmission factor ηh for the

half-wave plates is chosen from the specification sheet accounting for the reflection from

the anti-reflection coatings. For BS1 the transmission factor ηs is determined using the
14AR coating or anti-reflection coating [23] is applied to the optical surfaces to minimize the reflection

from the surfaces, hence to increases the transmission through the component. The performance of the

AR coatings is dependent on the wavelength of the light and the angle of incidence. The GP used in the

experiment has B-coating [24] which reduces the reflection loss for the wavelength range 650− 1050 nm.
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experimentally recorded power data at the outputs and at the input of the BS as described

in Sec. 6.4.

Apart from the transmission loss, the parameters that modify the amplitudes are mainly

the T : R ratio of the BS and the polarization dependent reflectivity of the mirrors, where

Rp ̸= Rs. Depending on the splitting ratio (T : R) of BS1, a part of the beam incident on

it gets transmitted and another part gets reflected, where T +R = 1. Though in the speci-

fication sheet, BS1 is mentioned as a 50 : 50 beam splitter, from the experimental data we

found that it has a Transmittance, T ≈ 52.62 and Reflectance, R ≈ 47.38, when normalized

to the total power at the output of BS1. However, as the beam propagates through the

beam splitter, due to the absorption loss we get absolute transmittance Tabs = ηsT and ab-

solute reflectance Rabs = ηsR, where Tabs+Rabs < 1. For BS1 we get, Tabs = 49.21 % and

Rabs = 44.34 %, giving ηs = 93.55 %. Since we have already accounted for the transmission

loss through the 2 inch beam splitter BS1 in the analysis for obtaining the experimental

distribution µexp(E) and corrected for it, we have not considered the absorption loss in

BS1 while computing the amplitudes for finding the theoretical distribution.

In this experiment, we are interested in finding the measure for the event E = {00, 01, 11},

similar to finding the probability of the system choosing any one of the paths 00, 01, 11 while

traveling through the beam splitter BS1 twice. Thus ideally, the theoretical computation

of measure should consider the amplitudes of the paths up to the outputs of DSI, i.e., up

to the system propagation region. The amplitudes Ae associated with the desired paths

i.e., 00, 01 and 11 are determined from the parameters of real optical components, and the

measure is computed from these amplitudes using the Eqn. 6.15. The distribution, µ(1)th (E)

of the measure values, is obtained by accounting for the inherent uncertainties associated

with the parameters of optical components. Considering only the effects of real optical

components present up to DSI in the setup while assuming constructive interference be-

tween the paths 01 and 11, we obtain the theoretical value of measure to be 1.2348±0.0015.

However, this section aims to find a distribution of the values of measures for the event

E computed theoretically considering the limitations and uncertainties associated with the

experiment. This provides an estimate of the range in which the quantity to be deter-

mined experimentally is expected to lie. Since the determination of experimental quantity
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involves measuring the power at the end of the event filter, the parameters associated with

the optics in the event filtration region after the DSI would also come into play and affect

the experimental result. So, the amplitudes of the paths up to the detector, let A(d)
e (γk),

need to be computed and accounted for in the determination of µ(1)th (E).

The splitting ratio T : R and transmission factor (ηbs) of BS2 are determined from

the experimentally measured powers at its input and outputs. Since, the paths after DSI

involve polarization projection, any change in the polarization in the paths will affect the

final power. Thus, a small disorientation of the fast axes of the half-wave plates would

change the amplitudes A(d)
e (γk) and hence µ(1)th (E). The setup for the event filter has three

HWP s; the fast axis of HWP1 and HWP3 are to be oriented at θ = 45◦ w.r.to the hori-

zontal in order to realize σx operator and the fast axis of the HWP2 is to be oriented at

22.5◦ w.r.to the horizontal to realize a Hadamard operator which transforms the polariza-

tion basis from {H,V } to {D,A}. Each of the HWP s is mounted on a kinematic rotation

mount [KS1RS, Thorlabs] which has a least count of 2◦. Thus there can be an associated

uncertainty in the orientation of the fast axis with respect to the desired angle, which would

modify the evolution of the state through the HWP s affecting the interference intensity.

However, for the analysis of the theoretical distribution of µ the error corresponding

to the HWP orientation is ignored. This could be done because in the experiment the

fast-axes of different HWP s are aligned by looking at the desired outcomes, not simply

looking into the labels on the mount. HWP1 and HWP3 are to be oriented to realize as σx

operator, which is achieved by placing a PBS after the HWP and monitoring the power

at the transmitting port of it when a horizontally polarized beam is made incident on the

HWP . The fast axis of the HWP is rotated in small steps and is fixed at the angle for

which the transmitted power through the PBS becomes minimum. For aligning HWP2, a

PBS is placed after it and the powers at both the output ports of it are monitored simul-

taneously. The HWP is rotated in small steps and is fixed at the angle that corresponds

to equal powers in the reflecting and transmitting ports of the PBS when a horizontally or

vertically polarized beam is made incident on the HWP . At this setting HWP2 behaves

as a Hadamard operator. So, the HWP s are aligned observing the intensities (powers)

after the PBSs and not looking at the label on the mount. This makes the uncertainty

associated with the half-wave plate orientation to be related to the random detection noises
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and random power variations, the effect of which on the theoretical computation of µ is

considered in the next subsection 6.5.3.

The amplitudes A(d)
e are determined for the paths 00, 01, 11 considering the real pa-

rameters of the components present in the paths and the distribution µ(1)th (E) is obtained

from the values computed using Eqn. 6.15 keeping in mind that the design of the event

filter causes loss in half of the photons in the paths after the interferometer. Thus, µ(1)th (E)

is the theoretical distribution of expected values of measure with the real optical compo-

nents and without any phase fluctuation, assuming constructive interference between 01

and 11. From the obtained distribution, we get the theoretically expected measure value

to be 1.2095 ± 0.0015 15. Thus the value of measure obtained from the amplitudes up to

the detector i.e., A(d)
e (γk), is less than the one obtained using amplitudes up to DSI i.e.,

Ae(γ
k) which is expected as there are several other components in the paths from DSI to

the detector, all associated with some transmission loss 16.

6.5.3 Computing the Measure from the Intensities: Accounting for

Power Fluctuations and Real Optical Components

The modified expression for measure for the event E = {00, 01, 11} obtained from theory

considering real experimental parameters without the phase fluctuation (assuming con-

structive interference between the histories 01 and 11) is given by Eqn. 6.15,

µeφ=0(E) = |Ae(00)|2 + |Ae(01) +Ae(11)|2

Here, Ae(γk) are the amplitudes associated with the paths γk for the experimental setup.

In terms of intensities, where Ie(γk) =
∣∣Ae(γk)∣∣2 represent the intensity of the beam in the

path γk, the above expression can be written as,
15Since the obtained distribution µ

(1)
th (E) is a normal distribution we report mean ± std, where std is

the standard deviation of the distribution.
16Here, we have ignored the effects of the disorientation (if any) of the HWP s . The least count of 2◦ of

a HWP mounts implies that the fast axis of that HWP lies somewhere between ϑ+ 1◦ to ϑ− 1◦ with ϑ

being the desired angle [27]. Considering this uncertainty in the orientation of the fast axes of the HWP s,

we get the value to be 1.2090± 0.034. This implies that any error in the orientation of the HWP s would

increase the uncertainty i.e., the spread of the distribution µ
(1)
th (E).
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µeφ=0(E) = Ie(00) + Ie(01) + Ie(11) + 2
√
Ie(01) Ie(11) (6.19)

In general, Ae(γk) =
∣∣Ae(γk)∣∣ exp(i arg(Ae(γk))). Since we can always adjust the relative

phase between the two histories 01 and 11 by adjusting the tilt of the GP , we can choose

arg(Ae(01))− arg(Ae(11)) = 0 for the above expression to have constructive interference.

So far we have determined the theoretical distribution µ(1)th (E) of measure for the desired

event E considering only the effects of the real optical components present in the setup. The

inherent uncertainties associated with different parameters of the components make µ(1)th (E)

an almost symmetric distribution about the mean 1.2095 with a standard deviation of

0.0015. Experimentally, the measure µ for the event E is determined from the powers Pinput

and Pevent recorded at the input and the output of the designed event filter. As discussed in

6.4.1, the experimentally recorded powers have high frequency random fluctuations along

with some periodic drifts that affect the quantity to be obtained from the experiment. Here,

we would find the theoretical distribution µ
(2)
th (E) accounting for the effect of the power

fluctuations along with the effects of the real components. Experimentally, the powers

P00, P01, P11 are recorded for the individual histories 00, 01, 11 that comprise the event

E, at different experimental settings. The intensities Ie(γk) are computed after correcting

the powers Pγk accounting for the transmission loss through BS1 and then normalizing

the corrected powers with the incident power PI .

Ie(γ
k) =

1

η2s

(
Pγk

PI

)
(6.20)

The measure µeφ=0(E) for the event is calculated from the intensities Ie(γk) using

the expression given in Eqn. 6.19. The uncertainties associated with the power data

gives a distribution of µeφ=0 values, which is the distribution obtained from the theoretical

expression of measure considering parameters of the real optical components and power

fluctuations when there is no phase fluctuation. The drifts in the power introduces an

asymmetry in the distribution for µ(2)th , thus the expected theoretical value of measure

obtained from the distribution is reported as median+σ+−σ− , where median corresponds to

50th percentile of the distribution, σ+ and σ− respectively represent the ranges of 84.13th
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and 15.87th percentile of the distribution with respect to the median. Given the temporal

variation of power we get the theoretical estimation for measure to be 1.1981+0.0084
−0.0075. The

drift in the power broadens the theoretical distribution for measure µ(2)th (E), i.e., increases

the uncertainty in the estimated theoretical value and makes the distribution a skewed one.

6.5.4 Computing the Measure with Experimental Uncertainties: Ac-

counting for Real Optical Components, Power Variation and In-

terferometric Phase Fluctuation

So far, we have theoretically determined the distribution of measure µ for the event

E = {00, 01, 11} from the modified amplitudes Ae(γk) of the paths γk accounting for

non-idealnesses of the optical components. We have also estimated how the drifts and

fluctuations in power (along with the detection noises) would affect the quantity to be

obtained experimentally. From the distributions, µ(1)th (E) and µ(2)th (E), it can be seen that

the transmission loss associated with different components causes a reduction in the value

of the measure from the one computed considering ideal components (µ(ideal)th (E) = 1.25),

while the power variations mostly cause broadening in the distribution. Computation of

both the distributions assumes a stable interferometric phase at φ = 0 i.e., constructive

interference between the histories 01 and 11. However, any interferometric experiment

is affected by the relative phase fluctuation unless the phase is actively stabilized. Here,

we will find how the phase fluctuations modify the theoretical distribution of measure for

the desired event while considering other parameters that influence the experimental result.

For the event E = {00, 01, 11}, the experimental determination of measure relies on

the measurement of intensity of the beam at the end of the event filter where the two

beams from the paths 01 and 11 interfere. For collinear geometry of the interferometer,

the interference intensity varies depending on the relative phase φ between the interfering

paths 17. The interference intensity is maximum at phase φ = 0 and it drops as the phase

varies in either direction from zero. The theoretical expression for quantum measure for

the event E = {00, 01, 11} accounting for experimental non-idealnesses including the phase

variation is given by,

17For non-collinear geometry, as the relative phase varies the interference fringes redistribute themselves

across the beam width i.e., fringe shift occurs with the average power remaining the same.
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µeφ(E) = |Ae(00)|2 + |Ae(01) + exp(iφ)Ae(11)|2 (6.21)

where Ae(γk) are the modified amplitudes of the histories γk for the particular design of

the event filter i.e., the experimental setup shown in Fig. 6.2.
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Figure 6.6: Theoretical distribution of the measure (µth(E)) varying as a function of the

relative phase φ ∈ [−π, π) between the two interfering paths 01 and 11. The blue dots

and gray lines respectively represent the median and 20 times the 1σ error bar of the

distribution 18computed for a particular phase. The horizontal lines show the maximum

and minimum possible values of the measure for the event E as the interference changes

from constructive (φ = 0◦) to destructive (φ = ±180◦), obtained for both an ideal scenario

as well as the experimental scenario.

Since the powers are measured at the end of the filter where the detector is placed,

the amplitudes up to the detector i.e., A(d)
e (γk) are computed considering non-idealness

of all the components present in the respective paths as discussed in 6.5.2 and from the

amplitudes µeφ is obtained for a particular phase φ using Eqn. 6.21 taking into account

the fact that half of the photons contributing to the event are lost in the filtration region

18The uncertainties associated with each distribution are multiplied by 20 in order to make them visually

noticeable.
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owing to its design. With the phase φ varying within a certain range during the exper-

iment, the theoretical distribution of the measure µ(3)th (E) is obtained. Fig. 6.6 shows

how the variation of the relative phase from −180◦ to +180◦ (or −π to +π) changes the

theoretical distribution of measure for the event E obtained considering the effect of real

optical components present in the setup. The value of the measure decreases as the phase

changes in either direction from 0, implying that any change in phase from 0◦ during the

experiment would result in a reduction in the value of the measure. Additionally, the plot

shows that for a certain range of phase, the measure can take values greater than 1 i.e.,

beyond the classical limit. This indicates that the phenomena of “interference” allowed in

Quantum Measure Theory is the cause of µ having values in the non-classical region.

❏ Finding the Interferometric Phase from the Experiment:

In order to find the theoretical distribution of measure considering the effect of experimental

phase fluctuation, we need to find the potential range of the interferometric phase within

which it can vary during the experiment. This is achieved from the recorded power data

P01, P11 and Pint 19, respectively representing the powers associated with 01 path, 11 path

and the interference between 01 and 11 paths. When two beams of intensities I1 and I2

interferes with each other, the interference intensity I as a function of relative phase can

be expressed as,

I(φ) = I1 + I2 + 2
√
I1I2 cos(φ) (6.22)

Experimentally, the intensities I1 and I2 are obtained from P01 and P11 data and the

interference intensity I(φ) is obtained from the power Pint recorded at the end of the event

filter with the top arm after DSI being blocked. As the power PI (i.e., Pinput) incident

on the setup varies as a combination of high frequency random fluctuations along with

low frequency periodic drift because of the reasons listed in Sec. 6.4, P01 and P11 vary

accordingly having their own distributions for the time of data acquisition. Similarly, we

have a distribution for Pint data as well. There are several factors that causes the power

data Pint to vary over time as listed in the following.
19Detail of the data acquisition procedure is given in the subsection 6.2.3 titled “Method and Data

Acquisition”.
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(i) The fluctuation in the powers P01, P11 associated with the two interfering beams,

(ii) The beam wander and the beam drift of the two interfering beams that changes the

degree of overlap of the beams on the detector plane affecting the collinearity and

hence the interference intensity,

(iii) The fluctuation in relative phase between two interfering beams as a result of the

vibrations in any opto-mechanical components inside the interferometer and any drift

in the laser wavelength (mode hopping) that affect the interference20.

If the powers associated with two interfering beams were equal i.e., I1 = I2 = I0 say,

then the relative phase φ between them could have been found only from the interference

intensity i.e., from Pint data over time. In this case, the interference intensity as a function

of phase can be written as,

I(φ) = 2I0(1 + cos(φ)) (6.23)

giving, Imax = I(φ = 0) = 4I0 (6.24)

Using the above expressions the relative phase φ can be obtained as the following,

I(φ)

Imax
=

1 + cos(φ)

2
(6.25)

=⇒ φ = arccos

(
2I(φ)

Imax
− 1

)
(6.26)

The variation of phase φ during the experiment can be obtained from the interference in-

tensity I(φ) provided both the interfering beams have equal powers that remain constant

throughout the data acquisition. However, this assumption may not hold true in practice.

20We have seen a periodic drop in the interference power Iint (and also for Pevent) for very short duration

at an interval of ≈ 40 mins, this happens because the change in the cavity parameters causes instability in

the resonating Laser mode which fluctuates for a small time and then again gets stabilized at a particular

value. This is called mode hop of the Laser that happens periodically.
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In reality, the beams associated with the two paths 01 and 11 pass through different

optical components and thus, encounter different amounts of losses in their intensities,

resulting in I1 ̸= I2. Ignoring the power fluctuations, we can express the intensities as,

I1 =
∣∣∣A(d)

e (01)
∣∣∣2PI and I2 =

∣∣∣A(d)
e (11)

∣∣∣2PI , where PI is the power of the beam incident

on the setup which is assumed to be constant here and A
(d)
e (01), A

(d)
e (11) represent the

amplitudes of the respective histories 01, 11 up to the detector, computed using the real

parameters of the components present in each path. For the case when I1 ̸= I2, the relative

phase (φ) is determined from the interference intensity I(φ) as,

φ = arccos

(
I(φ)− I1 − I2

2
√
I1I2

)
(6.27)

provided the following condition is satisfied,

I(φ) ≤ I1 + I2 + 2
√
I1I2 (6.28)

However, in the experiment, the recorded power data P01 and P11 of the interfering beams

(01 and 11) exhibit temporal variations that cause I1 and I2 to have their own distributions

as well. Thus, the determination of the quantity φ for a particular I(φ) from Eqn. 6.27

using the data from the distributions of I1 and I2, would result in multiple values of φ

within a certain range.

Hence, the interferometric phase fluctuation during the experiment can be determined

using the distribution of interference intensity I ≡ I(φ) and the individual intensities I1, I2

associated with the interfering beams. These intensities are obtained from Pint, P01, andP11

data, ideally to be recorded at the same time. However, since these data are collected at

different times experimentally, the systematic drift of power over time introduces an error

when determining the phase directly from the data. To avoid any time dependence and

minimize the systematic error in computing φ, random samples (say, Is, I1s, I2s) are

drawn from each distribution I, I1, I2 and the phase φ(k) is determined as,

φ(k) = arccos

(
Is− I1s − I2s

2
√
I1sI2s

)
(6.29)
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provided, Is ≤ (I1s + I2s + 2
√
I1sI2s) (6.30)

where φ(k) is the phase determined for the k−th trial. This process is repeated several

times to get the distribution of phase, say Φ, for the experiment. This distribution, in

general, carries the effect of both power and interferometric phase fluctuations. From the

obtained data Pint the effects due to these two factors, i.e., power fluctuation and phase

fluctuation, can not separated from each other.

For a particular trial, the quantity (I1s + I2s + 2
√
I1sI2s) gives the maximum possible

value of the interference intensity when beams of intensities I1s and I2s interferes. Thus

for I1 and I2 obtained from the experimental data, we will have a particular distribution,

say Imax, of the maximum interference intensities. Now, since the power shows a slow

drift and oscillation over time, it can so happen that P01 or/and P11 are recorded during

the falling slope of the average intensity and Pint is recorded during the rising slope of

the average intensity. This situation may cause (I1s + I2s + 2
√
I1sI2s) to have a value

smaller than Is for certain data, which ideally is not possible. Thus, while determining

the phase, we choose only those data for which the condition given in Eqn. 6.30 is satisfied.

❏ Theoretical Distribution of Measure Considering Interferometric Phase

Fluctuation:

For the event E = {00, 01, 11}, the theoretical value of the measure is calculated to be

1.2095±0.0015 considering only the effect of the real optical components and disregarding

the power and phase fluctuations while assuming φ = 0. Next, considering the effects of

real components and the power variation while ignoring phase fluctuation, the expected

theoretical value of the measure is computed to be 1.1981+0.0084
−0.0075. Now, the measure for

the event E will be estimated accounting for the phase fluctuations in the interferometer

as well. After finding the distribution for phase (Φ), we calculate µeφ from Eqn. 6.21 using

random samples drawn from Φ and A
(d)
e (γk) for γk = 00, 01, 11 and repeat the process

multiple times (here, N = 105 times) to get the theoretical distribution µ
(3)
th (E) of differ-

ent µeφ values. Ideally, the obtained distribution Φ should only reflect the relative phase
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between the interfering beams 21, but due to the involvement of the intensities in the ex-

pression of φ, the obtained value of phase carries the effect of power fluctuation as well.

Therefore, µ(3)th (E) is the distribution of measure obtained theoretically that incorporates

all parameters having a significant impact on the experimental outcome.

At first, while determining Φ, we assume that the variation in interference intensity I(φ)

only results from the phase fluctuation ignoring the power fluctuations. Here, we consider

I1 and I2 to remain constant at the median of their respective distributions
∣∣∣A(d)

e (01)
∣∣∣2PI

and
∣∣∣A(d)

e (11)
∣∣∣2PI . Thus here, Φ is obtained from Pint data for which the criteria men-

tioned in Eqn. 6.28 is fulfilled and then the distribution µ(3)th (E) is determined for Φ using

the amplitudes A(d)
e s. The theoretical value of measure obtained in this case is given by

1.2020+0.0052
−0.0043

22. Here, the distributions for the interfering intensities are obtained from

the incident intensity distribution PI and propagating it to the end of the setup through

different optical components accounting for the inherent uncertainties in their parameters,

i.e., using the distributions of A(d)
e (γk) for γk = 01, 11.

Next, the measure is theoretically computed using the distribution of phase (Φ) deter-

mined using I(φ) (obtained from Pint data), and the intensities I1 and I2 of the interfering

beams (obtained from experimentally recorded P01, P11 data). In this case, at first, I1 and

I2 are considered to remain constant at the median values of P01 and P11 respectively and

Φ is determined using the data Pint which is assumed to vary only due to the phase fluctu-

ations. Since the interfering intensities are chosen to be constant, the maximum possible

value of interference intensity Imax = I1 + I2 + 2
√
I1I2 is a constant as well. Here, the

distribution of phase (Φ) is obtained from Pint data for which the condition I(φ) ≤ Imax

is satisfied. Hence, ignoring the effect of experimental power fluctuations, the theoretical

value of the measure is calculated to be 1.1828+0.0125
−0.0097.

However, in reality, the interference intensity I(φ) varies over time not only because

of the interferometric phase fluctuation but due to the temporal variation of the powers

21due to the variation in the path difference between the two interfering beams or due to the variation

in laser wavelength etc..
22When I1, I2 are chosen to be I1 =

∣∣∣A(d)
e (01)

∣∣∣2pI(m) and I2 =
∣∣∣A(d)

e (11)
∣∣∣2pI(m), where pI(m) is the

median value of the data PI recorded at the input of the setup, the theoretical measure value is calculated

to be 1.1993+0.0064
−0.0048.
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associated with the interfering beams as well. The experimentally recorded powers P01 and

P11 fluctuate over time, causing the resultant intensity Pint to vary even in the absence

of phase fluctuations 23. From the distributions of I1 and I2, Φ is obtained using Eqn.

6.29. Interference between two beams with varying intensities I1 and I2 results in a dis-

tribution for Imax, with the maximum value of I(φ) expected to fall anywhere within the

distribution. Thus, considering the effect of power fluctuations of the interfering beams

along with the interferometric phase fluctuation, we get the theoretical value of measure

to be 1.1824+0.0134
−0.0106. This value represents the median and ±1σ error of the distribution

µ
(3)
th (E) for E = {00, 01, 11} obtained theoretically using the distributions of amplitudes

associated with different paths (i.e., 00, 01, 11) accounting for the transmission losses and

real parameters of different optical components and the distribution of phase Φ derived

considering the interferometric phase fluctuation and the temporal variation of the powers.
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Figure 6.7: Comparison of the measures for the event E = {00, 01, 11} associated with

a photonic system for different conditions. Each bar height represents the value of the

measure either obtained or expected to be obtained experimentally for a certain condition

and the solid lines represent the uncertainty associated with the distribution at that condi-

tion. The bar in “yellow”, “red”, “blue”, “green”, and “violet” respectively correspond to the

distributions µ(ideal)th (E) = 1.25, µ
(1)
th (E) = 1.2095± 0.0015, µ

(2)
th (E) = 1.1981+0.0084

−0.0075,

µ
(3)
th (E) = 1.1824+0.0134

−0.0106 and µexp(E) = 1.1723+0.0129
−0.0194.

23The determination of the theoretical value of measure, considering only the power fluctuations assuming

phase to remain constant at φ = 0, using the recorded powers P00, P01, P11 associated with the individual

paths comprising the event E is given in 6.5.3.
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Quantum Measure of a Photonic Event: A Compari-
son of Experimental and Theoretical Distributions6.6

The histogram plot for the experimentally obtained distribution of the quantum measure

µexp(E) for the event E = {00, 01, 11} associated with a photonic system is shown in Fig.

6.8. Since the distribution µexp(E) is not a Normal distribution, the central tendency

and the measure of spread of it are reported with the median and σ± values instead of the

mean and standard deviation (i.e., ±σ). Here the uncertainty of the distribution is given

by ∆σ = σ+ − (−σ−) = σ+ + σ−. The median represents the 50th percentile of the data

and σ+, σ− respectively represent the range of 84.13th percentile and 15.87th percentile

of the data w.r.to the median. The 68.26%, 95.44% and 99.74% confidence intervals CI

(associated with the 1σ, 2σ and 3σ of a Normal distribution) are presented in the plot

with three different shaded regions. Here, the “red” line shows the theoretical expectation

of measure µ(ideal)(E) = 1.25 under ideal lab conditions and the “green” line shows the

upper bound of the probability measure in the classical measure space at µC,max = 1.

𝑆𝑐 = 13.32𝜎 𝑆𝑡 = 0.52𝜎

Figure 6.8: Quantum Measure associated with an event E = {00, 01, 11} for a photonic

system when it passes through a single device with two output ports twice.
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The vertical “blue” line and the “blue” band in Fig. 6.8 respectively represent the

median and the 1σ uncertainty, i.e., ∆σt = σt+ + σt− of µth(E), which is the theoretical

distribution of measure obtained for the event E considering the imperfections, limita-

tions, losses and uncertainties associated with a real experiment. This “blue” band can

be considered as the theoretical uncertainty band, within which the experimentally ob-

tained quantity is expected to lie. Here, the median value of the experimental distribution

µexp(E) is observed to be within 1σ of the theoretical estimation µth(E).

Results: For the event E = {00, 01, 11} associated with a photonic system,

• Experimentally obtained measure, µexp(E) : 1.1723+0.0129
−0.0194

• Theoretical expectation of measure µth(E) : 1.1824+0.0134
−0.0106

The separation between the median values of µexp(E) and µth(E) is due to the sys-

tematic error introduced while determining the experimental quantity from the data sets

(powers at different positions in the setup) recorded at different times, since the power data

shows a slow periodic drift over time. In spite of the unavoidable systematic error, the me-

dian of µexp(E) falls within the theoretical uncertainty band. Further, the experimentally

obtained quantity is shown to be 13.32σ+ away from µC,max, which makes it significant

enough to be considered as something non-classical. More about the significance of the

experimental result will be discussed in the next section.

Statistical Significance Analysis and Hypothesis
Testing6.7

In statistical analysis, the inferential statistics allows us to make conclusions about a pop-

ulation based on the descriptive analysis of the sample data we possess. Any idea or

mathematical model formulated based on one set of data (sample) is called an hypothesis

and is applied for the entire population. Uncertainty of a distribution plays a key role in

statistical inferences and in making any decisions about ideas or hypothesis corresponding

to the population. Testing a hypothesis or a model, in the context of an experiment, in-

volves determining how well the hypothesis can predict the obtained experimental result
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with appropriate evidence [28]. In an experimental study, identifying whether the results

are meaningful or not is determined by examining their statistical significance, which serves

as the evidence either to reject or failing to reject a hypothesis [29]. The statistical signifi-

cance of a quantity of interest (say, t), which is a parameter related to the sample randomly

drawn from the population, is determined as,

S =
t−m
σ

(6.31)

where, t is the sample mean, m is the population mean and σ is the standard deviation.

Note that, the reference to the standard deviation in the above requires a normal or at

least a Student-T distribution. However the statistical significance of a quantity can be

applied to any distribution.

In this experiment, we aim to establish that the quantity “measure” (µ) associated with

an event obtained for a quantum system is something non-classical. The classical measure

space limits the maximum possible value of measure to be one, i.e., µC(max) = 1. Thus

any value of measure exceeding this limit is considered non-classical and is believed that it

belongs to the quantum measure space where quantal interference allows the measure to

take values above one. In order to establish the non-classical nature of the quantity µ for

the event E = {00, 01, 11}, we need to ensure that the experimentally determined value of

measure (µe) from the distribution µexp(E) is significantly away from the classical-quantum

boundary (which is 1). The statistical significance of the experimentally obtained quantity

with respect to the classical-quantum boundary is computed as the following,

Sc =
µe(m) − µcq

σµ
(6.32)

Here, µe(m) is the mean of the experimentally determined distribution of the measure (i.e,

µexp), µcq is the classical-quantum boundary, where µcq = µC(max) = 1, σµ is the standard

deviation of the experimental distribution (µexp). If the significance is more than 3, it

typically is agreed upon to be significant enough to be considered as evidence, the larger

the better [30].
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However, such statistical analysis involves assumptions like the distribution of the sta-

tistical values to be a normal distribution. This often is not the case in an experiment due

to the non-idealness, imperfections and limitations associated with the real parameters

that influence the experiment. Hence, we need to comment on the statistical significance

of the quantity µe obtained experimentally, given the non-idealness of the distribution

µexp(E). For a sample non-ideal distribution, the quantity whose statistical significance is

to be established is considered as the median of the distribution instead of the mean and

σµ is considered to be either σ+ or σ− depending on where the population median lies.

Here σ− to σ+ gives the 68.26% confidence interval of the distribution about its median.

Next, assuming the quantity µ belong to the quantum measure space we have an

expectation for the value to be µidealth (E) = 1.25 under ideal lab-conditions as computed

using the formula given in the quantum measure theory. After accounting for the possible

phase fluctuations, the losses associated with different optics in different paths, the random

and systematic drifts in the recorded powers and other influencing factors, we obtained

a theoretical distribution of measure µth(E) within which the experimentally obtained

quantity is expected to fall on. The statistical significance of our experimentally obtained

quantity (µe) with respect to the theoretical expectations can be determined by computing,

St =
µe(m) − µt(m)

σµ
(6.33)

Here, µt(m) is the median of the theoretical distribution µth(E). To establish that our

experimental result is something that belongs to the quantum measure space, we need

to show that µe(m) lies well within the range of the distribution (µth(E)). A value of St

being less than 1 (smaller the better) is in general, considered significant enough to serve

as evidence which implies that µe(m) lies within 1σ uncertainty of the predicted distribution.

Experimentally, from the obtained distribution µexp(E) for the event E = {00, 01, 11},

we get the value of measure to be µe = 1.1723+0.013
−0.0194. For this distribution µexp(E), which

is not Normal, we determine the statistical significance Sc = 13.32 using the Eqn. 6.32.

The value of Sc > 3 is significant enough to be considered as an evidence that the exper-

imentally obtained quantity is non-classical, i.e., lies beyond the classical measure space.

Again using the theoretical distribution µth(E), computed from quantum measure theory,
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in Eqn. 6.33 we obtain the statistical significance St = 0.523 which provides sufficient

evidence that the idea of the experimentally obtained quantity µe belonging to quantum

measure space can not be rejected.

The purpose of scientific methods in the context of hypothesis testing experiments is

to be able to reject (or not reject) a potential hypothesis with appropriate statistical sig-

nificance. In order to draw a conclusions about a population from the sample distribution,

we first assume one or more hypothesis to be true and then determine how likely the ob-

served value would occur just by random choice of samples alone, given the population

distribution according to the hypothesis. Thus, testing of hypothesis involves analysis of

probability of different outcomes given the random choice of the sample, which makes this

hypothesis statistical in nature. Depending on the sufficient statistical evidence we either

reject a hypothesis or fail to reject a hypothesis [31]. In the context of hypothesis testing,

failing to reject a hypothesis does not imply acceptance of the hypothesis − it only means

that there is not enough evidence to discard it [32]. It is important to note that absence

of evidence is not the same as evidence of absence.

6.7.1 Null Hypothesis Testing

Null hypothesis testing tries to discredit an idea by first assuming the idea is true and

then showing that something contradictory happens when this assumption is made. In the

context of experimental observations and decision making about a hypothesis, we calculate

a p-value to determine level of significance [33] of the observed result. p-value represents

the probability of getting a data as extreme as the observed experimental outcome, con-

sidering the null hypothesis (given by H0) to be true i.e., it can take values between 0 to

1. The smaller the p-value is, the more rare it would be to get an extreme experimental

result just by random chance alone even if the null hypothesis is true. Thus, we can reject

the null-hypothesis when the obtained p-value is significantly low [34].

However, to decide whether the observed data is extreme or rare enough to lead us to

believe that the sample probably does not belong to the null distribution and hence the null

hypothesis can be rejected, we need to compare the obtained p-value with a pre-determined

cutoff α. Here, α represents the threshold of statistical evidence, i.e., a p-value less than
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or equal to α is considered as sufficient evidence that the observed experimental result is

unlikely due to random chance alone, allowing us to reject the null hypothesis. Conversely,

for a p-value obtained to be more than the cutoff α, we fail to reject the null hypothesis. In

the context of hypothesis testing, α gives the probability that we can commit a Type− I

error, i.e., mistakenly reject the hypothesis even if it is true due to the data obtained as a

result of the uncertainty involved in the experiment (getting a false positive) [35].

Here, in this experiment where we determine the value of measure associated with an

event E for a photonic system, the null hypothesis would presume that the measure µ as

the ordinary classical probability measure and thus having an upper bound of µC(max) = 1.

Null Hypothesis (H0) : The quantity µ is the same as the classical

probability measure with an upper bound of 1.

i.e., H0 : µN = 1 (6.34)

µN represents the median value of the measure considering the null distributionN . In order

to establish the significance of the experimental outcome µe given the null distribution N ,

we would associate p-value to the experiment.

❑ p-value: Let, the distribution of data points (i.e., the measures) obtained in the

experiment is given by the probability density function (PDF ) ρ(µ). The cumulative

density function (CDF ) at µc is defined as the probability of obtaining µ ≤ µc, i.e.,

C(µc) =
∫ µc

−∞
ρ(µ)dµ (6.35)

C(µc) represents the chance that we get the data µc or lower, given the distribution ρ(µ).

If the null hypothesis H0 insists that the true value of measure is µN = µc, then we get

the null distribution N assuming the distribution ρ(µ) to be centered around µc. Consid-

ering ρ(µ) to be a symmetric distribution, we get the p-value to be the same as C(µc) 24.
24This could be done since for a given symmetric distribution, the probability of getting an extreme

value at a particular distance from the mean are the same regardless if it is higher or lower than the mean.



Chapter 6. Inferring the ‘Quantum Measure’ Experimentally 369

However, this relation is not applicable while computing the p-value for this experiment,

as µexp(E) is not a symmetric distribution.

For the event E = {00, 01, 11}, we get our experimental result µe at the median of

the experimentally obtained distribution µexp(E) since it is not a normal distribution. A

p-value associated to the experiment, estimates how rare the experimental result µe can

be, given the null distribution (N ) centered around µN . Considering ρN (µ) to be the PDF

of the null distribution (N ) for the obtained value µe in the experiment, the p-value can

be computed as the probability of obtaining µ ≥ µe.

p =

∫ ∞
µe

ρN (µ)dµ (6.36)

If obtained p-value is very small, i.e., say p = 10−3 or p = 10−6, then chance that we obtain

the value µe given N , is one in a thousand or one in a million respectively. Hence, we can

comment that the probability of obtaining µe just by random chance is very low and thus

the hypothesis can be rejected. When ρ is a normal distribution, we can approximate the

chance of one in a million or a thousand by 5σ or 3σ deviation from the mean25. According

to the current scientific consensus, a deviation of more than 3σ provides evidence that the

data might not be from the null distribution and hence the hypothesis can be rejected.

In this experiment, the outcome µe = 1.1723 is found to be 13.32σ+
26 away from

the true value µc = 1 as claimed by the null hypothesis. Hence, if the null hypothesis

is considered to be true, this experimental result is a very unlikely event. So, from the

significance analysis, we can successfully reject the idea that the measure µ associated

with a photonic system is the ordinary probability measure defined in the classical measure

space. Rejecting the null hypothesis based on p-value or the level of significance implies that

there is enough evidence that the observed data is improbable under the null distribution

and must have come from some other distribution. However this, in no way, proves any

alternate hypothesis to be true [36].

25For a normal distribution, 3σ and 5σ deviations from mean imply 0.27% and 0.00006% probability of

occurrence.
26here, σ+ as the distribution obtained in the experiment is not normal and the null distribution N is

obtained assuming the PDF given by ρµ to be centered around µN = 1.
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6.7.2 Alternate Hypothesis Testing

In the case of experimentally determining the value of the measure for a photonic event

E = {00, 01, 11}, we can form an alternate hypothesis assuming that the measure µ belongs

to the quantum measure space, i.e., can be computed using the path-integral approach in

quantum measure theory. Thus, for the given setup µ for the event E is predicted to be

µt = 1.1824 which is the median value of the estimated theoretical distribution µth(E).

Alternate Hypothesis (Ha) : The quantity µ to have the value µt, which is the

median of the theoretical distribution µth(E), given

the experimental setup and non-ideal lab conditions.

i.e., Ha : µA = µt (6.37)

According to the alternate hypothesis, the theoretical value of the measure for a lossless

system under ideal lab conditions would have been µ(ideal)t = 1.25. However, for the setup

as shown in Fig. 6.2, taking into account experimental non-idealness such as power fluctu-

ations, phase-instability, losses and other parameters associated with the real components

etc., we get the theoretical distribution µth(E) giving µA = µt.

We may not reject this alternate hypothesis if the experimentally obtained result i.e.,

µe is within one standard deviation σµ of the prediction by alternate hypothesis, i.e.,

|µe − µA| ≤ σµ. (6.38)

If the above condition is satisfied, it is generally considered as a strong evidence that

the experimentally observed quantity may have been chosen from alternate distribution

A centered about µA. In this experiment, for the observed result µe = 1.1723 and

µA = µt(m) = 1.1824, we get the value |µe − µA| = 0.526σ−
27.

27here, σ− because the distribution is not normal and the alternate distribution A is obtained by assuming

the PDF given by ρµ centered about µA = µt.
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Conclusion6.8

In this chapter, using a two-site hopper model in an optical setup, we have presented

a table-top demonstration showing how the value of the ‘generalized probability’ or the

‘quantum measure’ of a set of histories associated with a photonic system can be inferred

from an experiment. Further, we have established the non-classical nature of the exper-

imentally obtained quantity µe from the evidence-based statistical significance analysis.

The experiment involves devising a toy-model of the ancilla based ‘event filter’ setup that

can extract the desired set of trajectories for the photon by manipulating the polarization

degree of freedom, which serves as an effective ancilla. According to the original proposal,

this could demonstrate a non-destructive procedure to infer the intermediate process that

a micro-system undergoes during its evolution from preparation to detection. The exper-

iment reports quantum measure µe for a photonic event E, which is found to be 13.32

standard deviation away from the maximum value (µC(max) = 1) permissible for classical

probability measure. This, based on sufficient evidence, implies that µe does not belong

to the classical measure space and instead, is non-classical in nature. Moreover, the ex-

perimentally obtained quantity µe is observed to lie within 0.52 standard deviations of

the theoretical estimation, computed within the framework of Quantum Measure Theory

(QMT), which suggests that µe might belong to the quantum measure space. Unlike classi-

cal measure space, quantum measure space allows for interference that causes the measures

to go beyond the classical-quantum boundary (µcq). Therefore, the non-classical nature of

the experimentally obtained quantity captures the effect of quantum interference on the

micro-system, which causes the quantum measure to differ from the standard Kolmogorov

probability measure. Connecting the theoretical constructs like the concepts of events or

quantum measure to more practical scenarios, through experiments like the one reported

here, could pave the way for future exploration and comprehension of the micro-world.
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Chapter 7

Summary and Outlook

This thesis presents the exploration of the phenomena of quantum interference in various

aspects of quantum theory and investigates the potential applications of interferometric

techniques in two distinct scenarios:

• As an experimental tool to characterize the unknown states of a quantum system,

utilizing the information processed from a number of interference patterns.

• To illustrate the practical significance of the non-classical ‘quantum measure’ of an

event related to a quantum system, within the context of a history-based framework.

The two distinct studies, outlined in the thesis, utilize the phenomena of quantum interfer-

ence under various circumstances and include the examination of the interference patterns

to elucidate the operational principles of the proposed schemes for determining quantum

states and the non-classical quantum measure. Both works offer an experimental imple-

mentation of the suggested models in an optical setup, underscoring their practicality for

photonic systems. The experimental results, in conjunction with the associated theories,

are shown to have potential applications in the fields of quantum foundation, quantum

computation, quantum communication and open up possibilities for future tests related to

the fundamental aspects of quantum theory.

Given that the average statistical properties of light are equivalent for a coherent beam

and an ensemble of photons, the interference pattern obtained using a coherent laser light

source would be identical to the pattern produced with a stream of identical photons. As a

result, the findings from the demonstration experiments presented in the thesis, which are

375
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performed using laser light sources, would also apply to the ensemble of identically prepared

single photons. Here, we have preferably chosen laser lights for conducting the interfer-

ometric experiments since the interference patterns produced from single photons were

expected to lack high contrast due to the low statistics of the available sources. Further,

single photons generated from SPDC (spontaneous parametric down conversion) based

sources are found to have significantly shorter longitudinal coherence lengths as compared

to the continuous wave laser beams, which requires precise control over the alignment in a

single photon interferometer to maintain the coherence between the interfering beams.

The discussions across different chapters of the thesis also highlight the challenges,

limitations, and uncertainties associated with an experiment devised in a laboratory set-

ting. These factors could lead to deviations in the experimental results as compared to the

expectations derived from the theoretical models, thereby necessitating further correction

techniques. As we continue to delve deeper into the quantum realm, it is anticipated that

interferometric techniques will play an increasingly crucial role in shaping the future of

quantum science and technology. The journey thus far has been fascinating, and the road

ahead promises to be even more so.

In the next, we will summarize the significant points and the key findings related to

the two applications of the quantum interferometry reported in this thesis and outline the

prospective future research directions.

❑ Quantum State Estimation Using Interferometric Technique:

The knowledge of the quantum state is essential while dealing with a quantum system, as it

enables effective and efficient manipulations of the system for experimental investigations

on quantum foundations, for gauging the eventual fidelity of the quantum computation or

communication-based protocols and for various applications of quantum mechanics towards

the technological advancements. Only a thorough understanding and characterization of

quantum states would enable us to harness the full potential of emerging quantum tech-

nologies. Here, the thesis introduces a novel method, known as Quantum State Interferog-

raphy (QSI), for characterizing the quantum states. This scheme employs interferometry

to reconstruct the indeterminate states of a quantum system by analyzing the information

derived from interference patterns generated in a particular setup.



Chapter 7. Summary and Outlook 377

The fundamental principle of this interferometric state determination technique is based

on the formation of a unique map between a set of interferometric quantities - phase shift,

average intensity, visibility – derived from interference patterns and the set of parameters

that describe the quantum state. The distinctive correlation between the two sets of quan-

tities is established by evolving an ensemble of quantum systems in the unknown state

through an interferometric arrangement with certain operators in the individual paths of

the interferometer. The scheme lessens the amount of data collection and the number

of experimental settings necessary for state reconstruction in comparison to the standard

Quantum State Tomography (QST).

Quantum State Interferography (QSI) emerges as a “true single shot” state character-

ization technique for qubits, allowing the reconstruction of an arbitrary state in a two-

dimensional Hilbert space from a single experimental setting unlike two (for pure state)

or three (for mixed state) measurement settings required in QST. The state parameters of

an unknown qubit, be it pure or mixed, can be inferred by analyzing a single interference

pattern derived from a single setting of a two-path interferometer. The thesis reports a

successful experimental implementation of the QSI protocol in an optical setup, achieving

an average fidelity of 94%, for the reconstruction of polarization qubits of light. It also

provides a comparative study of the results obtained from the QSI techniques implemented

using two distinct interferometers - a Mach-Zehnder and a Sagnac interferometer, leading

to a further discussion on the selection of one interferometric configuration over the other

considering experimental imperfections and noises.

This thesis introduces a new parametric representation for pure qudit (d > 2) states,

termed as ‘Episphere representation’, in which a pure state |ψ⟩(d) in d-dimensions is vi-

sualized as an ordered sequence of (d − 1) Bloch vectors, each spanning a distinct two-

dimensional subspace within the d-dimensional space. The thesis further extends the in-

terferometric state determination scheme theoretically, proposing a method for single-shot

characterization of an unknown pure qudit (d > 2) state utilizing the information derived

from (d− 1) interference patterns. This involves inferring (2d− 2) state parameters asso-

ciated with a qudit from a single setting of an interferometric setup, which could either

consist of just two interferometers or (d− 1) two-path interferometers, each interferometer

acting on a separate two-dimensional subspace. Consequently, QSI emerges as an efficient
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single-shot characterization method for qubits and pure qudits, opening up possibilities for

future development of compact state estimating devices (could be a few cm long, using slit-

based interferometers) where no changes in the internal settings would be required between

the incidence of an unknown state at the input and extraction of the state information at

the output. Additionally, the thesis presents a method to characterize a pure bipartite

qubit state using a dual-interferometer setup and demonstrates it as a technique for the

single-shot quantification of entanglement.

Future works could include:

(i) Discovering uses of this interferometric scheme for characterizing the mixed states in

a d-dimensional (d ≥ 3) Hilbert space, i.e., qudit mixed states.

(ii) Expanding this interferometric protocol in an efficient manner to characterize the

mixed states of bipartite systems.

(iii) Exploring an interferometric scheme for determining a multi-partite (N > 2) quan-

tum state, i.e., a state of a composite system comprising more than two subsystems.

❑ Determining the Non-classical Value of Quantum Measure:

In order to provide a comprehensive understanding of the micro-world and address the in-

terpretational challenges present in standard quantum theory, it was felt necessary to intro-

duce alternative approaches to quantum theory grounded on a realistic viewpoint avoiding

abstract mathematical concepts such as wave functions, superposition, and measurement

that presumes a division of the universe into ‘observer’ and ‘observed’. Quantum Measure

theory (QMT), drawing inspiration from the path integral approach, offers a history-based

realistic formulation of quantum theory. It describes the kinematics of a micro-system

using space-time histories akin to the classical theory and encodes the dynamics of the

system in terms of ‘generalized probability’ or ‘quantum measure’. This thesis presents

an experimental protocol for determining the ‘quantum measure’ of realizing a specific

set of space-time histories (referred to as an ‘event’) of a quantum system, as defined in

the context of QMT, using an ancilla-based event filtering setup. Being able to assign an

empirical significance to these (so far) theoretical concepts would shed light on the inter-

mediate physical events occurring as a quantum system evolves from an initial state (at
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preparation) to a final state (at detection), which could lead to further developments in

the foundational aspects of quantum theory.

The thesis investigates a two-site hopper model for a photonic system within the frame-

work of Quantum Measure Theory (QMT) implemented in an optical setup employing

amplitude division. It presents a discussion on the potential designs of an ‘event filter’ for

a specific hopper event that would select the desired set of paths for a photon as it evolves

through a two beam splitter setup and analyses their feasibility under conditions that

could capture the ‘generalized probability’ beyond the classical limit, in contrast to the

standard Kolmogorov probability. The thesis reports an experiment presenting a tabletop

demonstration for identifying the ‘quantum measure’ of a particular photonic event involv-

ing interference and establishes the non-classical nature of the experimentally obtained

quantity through hypothesis testing and statistical significance analysis. The observations

that the result lies 13.32σ away from the classical-quantum boundary (which is 1) and

within 0.52σ of the estimation made from theoretical analysis in QMT, provide strong

evidence that the quantity is non-classical and lies within the quantum measure space.

Since quantum measure theory expands the scope of measurement procedures by assign-

ing generalized probabilities beyond the Born Rule probabilities to certain non-instrument

events (specifically the non-serial events) that remain experimentally inaccessible in stan-

dard Quantum Mechanics, it could potentially lead to the design of new kinds of quantum

circuits for the applications in quantum computation and quantum information protocols.

Future work could involve:

(i) Designing a Universal Event Filter in an optical setup for a photonic system that

would be capable of determining the quantum measure of any event associated with

the system, irrespective of its initial state, requiring modifications only in the mea-

surement settings in the event filtration region depending on the choice of the event.

(ii) Determining the maximum achievable efficiency in designing an event filter for a

given event of a photonic system while minimizing the losses owing to the design.
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