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Synopsis

Cells have evolved to sense and make an internal representation of the outside en-
vironment as well as display a representation of itself to the environment. This
molecular information flow from the cell to the environment and vice versa, helps
the cell to infer, sense and encode molecular information leading to control and
coordinated decisions. One example is the process of glycosylation, the sequential
covalent attachment of sugar moieties to proteins catalyzed by a set of enzymatic re-
actions within the Endoplasmic reticulum (ER) and the Golgi complex. Glycans, the
final products of this glycosylation assembly line, are delivered to the plasma mem-
brane (PM) conjugated with proteins, whereupon they engage in multiple cellular
functions, including immune recognition, cell identity markers, cell-cell adhesion and
cell signaling. We focus on the role of glycans as markers of cell identity and tissue
niche. For the glycans to play this role, they must inevitably represent a molecular
code. In this thesis, we study one aspect of molecular coding, namely the fidelity
of this molecular code generation. The Golgi complex, where glycosylation primar-
ily takes place, consists of a stacks of flattened, membrane-enclosed compartments
called cisternae. Each Golgi stack typically consists of four to six cisternae, although
some unicellular flagellates can have more than 20. Maximizing the fidelity of this
displayed information results in a trade-off among the limited resources, e.g. num-
ber, type and specificity of enzymes, accessible to the cell. These cellular trade-offs
coupled with the physical forces dictate the intracellular patterning of the organelles
inside cell, e.g. the size, shape and number of Golgi cisternae.

This thesis is primarily a theoretical study of the cellular trade-offs involved in high
fidelity synthesis of complex glycan molecular code, which surprisingly constrains the
architecture of Golgi complex, specifically the number of cisternae, and the number
and specificity of glycosylation enzymes. Subsequently we explore the evolutionary
consequence of enzyme specificity in a more general context.
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Synopsis

The information theory problem that we address in this thesis is to find the op-
timal synthesis machinery, subject to the constraints of physics and biology, that
produces a given complex target signal with high fidelity. Since the idea of complex-
ity of a molecular code in a general sense is lacking in the conventional information
theory, we explore this in the specific context of glycans. Extant glycan distributions
have high complexity, owing to evolutionary pressures arising from (a) reliable cell
type identification amongst a large set of different cell types in a complex organism,
and (b) pathogen-mediated selection pressures. We estimate this glycan complexity
from the mass spectrometry(MS) glycan data by defining complexity of a MS pro-
file as the minimum number of components of a Gaussian Mixture Model (GMM)
required to fit the given MS profile. Using this quantitative definition of complexity
on real MS glycan data of human cells, planaria and hydra we demonstrate that
complex organisms have complex glycan profiles. The target signal for the synthesis
machinery is given by these de-noised MS glycan profiles of real cells.

The glycan synthesis machinery involves sequential chemical processing via cis-
ternal resident enzymes and cisternal transport of the glycans. Each cisterna has a
distinct chemical environment, e.g. pH, which affects the state of enzyme residing
in the cisterna. The enzymes are assumed to act via a induced fit mechanism where
they deform to match the substrate shape, providing enzymes a specificity towards
substrate binding. The cisternal transport of glycans is unidirectional from cis to
trans Golgi. The steady state synthesized glycan distribution is therefore a function
of cellular parameters such as the number and specificity of enzymes, distribution
of the enzymes across the cisternae, inter-cisternal transfer rates, and number of
cisternae.

We minimize the Kullback-Leibler (KL) divergence between the synthesized dis-
tribution of glycans and the target glycan distribution over the enzyme rates, en-
zyme distribution and the transport rates for a fixed number of enzymes, enzyme
specificity and the number of cisternae. The minimum KL divergence is used as a
quantitative measure of fidelity of the synthesis machinery. This fidelity is a function
of the parameters characterizing the glycan synthesis machinery, such as the number
of cisternae, and number and specificity of enzymes. We analyze the trade-offs be-
tween these parameters, in order to achieve a prescribed target glycan distribution
with high fidelity.
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Synopsis

Our analysis leads to a number of interesting results, of which we list a few:

• In order to construct an accurate representation of a complex target distribu-
tion, such as those observed in real cells, one needs to have multiple cisternae
or multiple enzymes. Since having more enzymes invokes a more elaborate
genetic cost to the cell, the analysis provides a quantitative argument for the
evolutionary requirement of multiple-compartments.

• For fixed number of enzymes and cisternae, there is an optimal level of speci-
ficity of enzymes that achieves the complex target distribution with high fi-
delity.

Our results imply that the pressure to achieve the target glycan profile for a given
cell type, places strong constraints on the cisternal number and enzyme specificity.
This would suggest that a description of the non-equilibrium assembly of a fixed
number of Golgi cisternae must combine the dynamics of chemical processing and
membrane dynamics involving fission, fusion and transport.

Inspired by the strong dependence of fidelity of synthesis on enzyme specificity,
we further study the evolutionary implications of non-equilibrium driving to mod-
ulate enzyme specificity in a more general context. Proper functioning of the cell
requires enzymes to discriminate its specific substrates from a multi-component mix-
ture of thousands of different substrates that are present in the cell or the cellular
compartment. Failure to do so can lead to both accumulation of wrong products
and unavailability of the enzyme for the correct substrate, impairing normal cellular
function. Enzymes that are too specific can also invoke costs to the cell in terms
of the requirement of a large number of enzymes, less robustness to mutations and
changing environments. These arguments suggest an optimal intermediate enzyme
specificity and a mechanism to modulate it might have evolutionary advantages.

The enzyme substrate specificity is a result of either kinetic or energetic discrim-
ination of substrates by the enzyme. Kinetic discrimination is based on the number
and height of barriers encountered along various paths connecting one state to an-
other in the free energy landscape. Here the enzyme substrate complexes which, on
average, are separated from the enzyme by multiple high energy barriers are unfa-
vorable as compared to complexes which are separated from the enzyme by fewer
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Synopsis

and lower energy barriers. The energetic discrimination, on the other hand is path
independent, and is based on the differences in free energies of the enzyme substrate
complexes. The steady state relative concentration of products depends on the free
energy of the enzyme substrate complexes, the kinetics of formation of the com-
plexes and the nature of the non equilibrium drive.

We explore two general ways of driving the system out of equilibrium without
selectively biasing the system towards a particular enzyme substrate complex : (a)
a periodic drive to oscillate the states and the barriers between them (b) biasing
trajectories which absorb and dissipate work at a fixed rate by a method called
dynamical biasing. Within bounds, the non-equilibrium driving performs a time
dependent sculpting of the free energy landscape and hence provides a control on
enzyme specificity. We will subsequently do a population dynamics calculation, to
study the effect of enzyme-substrate specificity on robustness of the cell to genetic
mutations and adaptability of the cell to changing environments. The genotype
here is defined by the the free energy landscape of the enzyme-substrate interaction
which depends on the equilibrium conformation of the enzymes and the substrates,
and the interactions between them. The phenotype is determined by the relative
concentrations of products, and the environment is characterized by the optimal
phenotype for that environment. Inheritance is subject to mutations, and the geno-
type to phenotype map is stochastic and depends on the the non-equilibrium drive.
A specific instance of this general calculation is the improvement of the fidelity of
glycan synthesis if a cisternal control of enzyme specificity is allowed.

To summarize, in this thesis we provide an information theoretic language to
analyze the cellular trade-offs involved in the synthesis of glycan information to
show that the functional requirement of generating a high fidelity glycan code puts
constraints of the number of Golgi cisternae and number and specificity of enzymes.
In future we plan to invoke error correcting mechanisms that might be involved in
the generation of the glycan code.
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Chapter 1

Introduction

1.1 Cell as an information processing entity

Living systems constantly interact with their environment to perform necessary
biological functions, e.g. taking in nutrients and external chemical signals [1]. The
survival of the organism critically depends on the ability to communicate reliably
with the its environment. Complex organisms have a dedicated neuronal system that
carries out this functionality at the scale of the organism. However, at the scale of
the cell, both within complex organisms as well as in simpler unicellular organism,
communication with the environment is carried out by sensing chemical signals
from the environment, e.g. in chemotaxis [2], and displaying chemical signals to the
external environment, e.g. in immune response [3]. The information flow [4] from the
cell to the environment and vice versa, carried out by molecules, is constrained by
the laws of thermodynamics and other resource constraints. Cells which maximize
this information flow given the physical constraints can get selective advantages at
performing a critical function, like finding food in chemotaxis and increase the fitness
of the organism.

One way of maximizing the information flow between the cell and the environment
is by creating compressed representations. The internal state of the cell at anytime is
the detailed chemical composition in the cell, the concentrations of all the molecules
and there spatial distribution. This description is way too detailed for any external
agent to sense or detect and therefore does not have any functional relevance. There-
fore, the functionally relevant part of the internal state should be represented, in a
reliable and compressed way, with a smaller subset of molecules which is accessible
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1. Introduction

to the external environment. Similarly the cell must create a functionally relevant
internal representation of the environment. Maximizing the information flow by
creating reliable and compressed representations results in a trade-offs among the
limited resources, e.g. number of enzymes, accessible to the cell. These trade-offs
on resources coupled with the physical and chemical forces dictate the organization
inside the cell - intracellular patterning [5] of the organelles.

The classical information theory [6], pioneered by Shannon, deals with the notion
of compression for a sequence of immutable symbols. However, the symbols in
biology are molecules which carry out certain functions. Therefore, quantification
of biological information requires a context, which is set by the functions of the
molecule in the cell [7]. This extended information theoretic framework leads to
optimization principles which sheds light on the resource and physical trade-offs
that might be operational in the cell.

In this thesis, we focus on the information processing in the Golgi complex, a
cellular organelle, which consists of a collection of flattened, membrane-enclosed
compartments called cisternae. Each Golgi stack typically consists of four to six
cisternae, although some unicellular flagellates can have more than 20 [1]. The
Golgi complex maintains a stable structure despite being subjected to a constant
non-equilibrium flux of vesicles carrying cargo from the Endoplasmic Rerticulum
(ER). It is the site of glycosylation [8], a process of sequential attachment of sugar
moieties to proteins synthesized in the ER by a set of enzymatic reactions. Glycans,
the final products of this glycosylation assembly line, are delivered to the plasma
membrane(PM) conjugated with proteins, whereupon they engage in multiple cellu-
lar functions, including immune recognition, cell identity markers, cell-cell adhesion
and cell signaling [9]. We study the resulting cellular trade-offs from glycans as the
carrier of information.

We start with a brief introduction to the classical information theory and define
the basic information theoretic quantities that we will use in the thesis later. It is
heavily borrowed from the classic textbooks [6, 10]. We follow this up with a section
on the use of information theory in biology which sets up the broader context of this
work. We provide introduce a essential introduction to thermodynamic and Markov
processes in the following section. At last, we give a brief phenomenology of the
biological system of interest of this thesis - the Golgi complex and glycosylation.
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1. Introduction

1.2 Foundations of information theory

The information content in a sequence of random variables in the context of com-
munication is based on asking two basic questions :

1. Data compression: How much can we “compress” a sequence of random vari-
ables?

2. Data transmission: What rate can we transmit random variables through a
noisy channel and expect to recover them back perfectly?

The answer to both these questions is in the notion of uncertainty in a random
variable. We provide the following example to give an intuitive feel for what is meant
by ‘information’, ‘uncertainty’ and ‘compression’ before formally defining them.

Suppose we have a set of N hypothesis Y := {y1, . . . , yn} and their associated
probabilities P := {p1, . . . , pn} of correctly explaining a particular phenomenon.
Our task is to identify the correct hypothesis from the set by doing the least number
of experiments. Initially, lets assume that each experiment can only tell whether
a single hypothesis is correct or not. If all the hypothesis are equally probable
then we can randomly pick a hypothesis to experiment for and rule it out until
we find the correct hypothesis. On the other hand, if all the hypothesis are not
equiprobable it makes sense to first test for the most probable one, and go to the
next most probable one and so on until we hit the correct hypothesis. The average
of experiments needed in the first case will be higher than in the second case. What
happens if we are allowed to pool hypothesis in experiments, what should be the
best pooling strategy? Again, lets first start with the case when the hypothesis are
equiprobable. The best pooling strategy is going to when we divide the two halves
N/2, then N/4 and so on. The optimal pooling strategy divides the hypothesis in
equiprobable groups at each stage.

Here we are trying to elucidate the fact that a given probability distribution is
associated with a certain amount of uncertainty (measured in the previous example
by the number of experiments required). With this in mind we now formally de-
fine some important information theoretic quantities and state their mathematical
properties.
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1. Introduction

Definition 1 (Shannon information content) Ensemble X is a triple (x,AX , PA),
where x is the outcome which takes values in the discrete set of symbols, called al-
phabet, AX = {a1, a2, . . . , aI} with probabilities PX = {p1, p2, . . . pI}. The Shannon
information content of the the outcome x is defined as

h(x = ai) = − log2 p(x = ai) = − log2 pi (1.1)

This function has the following nice properties which align with our intuitive
notion of uncertainty and quantifies our surprise given an outcome.

1. h(x) ≥ 0 with h(x) = 0 only if the outcome is a certainty (p(x) = 1).

2. h(x) of a less probable outcomes is higher than more probable outcomes cap-
turing the intuitive notion that a unlikely outcome carries more information
than a likely outcome.

3. The information content of a composite event x′ = x1 OR x2 is given by
h(x′) = h(x1) + h(x2).

Definition 2 (Shannon entropy) The average information content of an ensem-
ble, called Shannon entropy, is given by

H(X) := −
∑
x∈AX

p(x) log2 p(x) (1.2)

The following properties of Shannon entropy follow from the definition

1. H(X) ≥ 0

2. H(X) is maximum for ensemble with equiprobable events. H(X) ≤ log2 |AX |

3. The entropy of two independent ensembles, X and Y , H(X, Y ) = H(X) +

H(Y ), for any other pair of ensembles X and Y , H(X, Y ) ≤ H(X) +H(Y )

4. Additivity of composite events

These properties can conversely be used to uniquely define the Shannon entropy
function [11]. We will show that Shannon entropy is approximately equal to the
logarithm of the number of typical values that the variable can take.
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1. Introduction

We now describe a key property of a large sequence of independent identically
distributed (i.i.d.) random variables which allow us to answer the two basic questions
asked in the beginning of the section. Informally, almost all large sequences of i.i.d.
random variables belong to a subset, called the typical set, of all possible sequences.
The probability of finding a sequence not in the typical set is almost zero as the
length of the sequence tends to infinity. We will show that the size of this typical set
is related to the Shannon entropy. We can therefore store just the typical sequences
rather than all sequences with asymptotically zero probability of making an error.

Let xN = (x1, x2, . . . xN) be a sequence of N identical independently distributed
(i.i.d.) random variables drawn from the ensemble X = (x,AX , PX). We now define
a set called the ε− typical set which contains almost all sequence of i.i.d. random
variables coming from the ensemble X:

Definition 3 (ε−typical set) For some ε > 0, a sequence, xN, of iid random
variables from an ensemble X with entropy H(X) is ε−typical if∣∣∣∣− 1

N
logP (xN)−H(X)

∣∣∣∣ ≤ ε (1.3)

The set of all such sequences, Anε is called the ε− typical set

This set contains all the ‘typical’ sequences of the i.i.d. random variables We
now state the asymptotic equipartition (AEP) theorem which forms the basis of the
Shannon source coding theorem.

Theorem 1 (AEP) Let ANε be an ε− typical set, then

1. limn→∞ P (xN ∈ ANε ) = 1

2. For large enough N , exp(N |H(X)− ε|) ≤ |ANε | ≤ exp(N |H(X) + ε|)

3. For any xN ∈ Anε , exp(−N |H(X) + ε|) ≤ P (xN) ≤ exp(−N |H(X)− ε|)

Loosely, AEP states that the total number of sequences of i.i.d. random variables
asymptotically approaches exp(NH(X)) as the length of the sequence goes to in-
finity. Asymptotically all the sequences are typical and the size of the typical set is
given by the Shannon information exp(NH(X)).
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1. Introduction

1.2.1 Data Compression

Suppose we have several N base pair long DNA sequences and the probability of
occurrence of nucleotides A,T,C and G in these sequences is pA, pT , pC and pG

respectively. How can we store these sequences in a database using the least amount
of memory? Clearly, we need to define a one to one mapping, called coding scheme,
between A,T,C,G to some other symbols, e.g. A is coded as 0, T is coded as 1, C is
coded 01 and G is coded as 010. The length of the coded sequence is different from
the length of the original sequence. If we design a coding scheme which codes the
more probable nucleotides with a shorter character and the less probable nucleotides
with a longer character, then we can make the expected length of a long sequence
smaller than the original length. The Shannon’s source coding theorem shows that
there exists a coding scheme in which the average length is less than the original
length and is bounded by the Shannon entropy.

Now we formally define codes and then state the Shannon source coding theorem.

Definition 4 (Code) A code C(X) for an ensemble X is a mapping from the set
of alphabets, AX to {0, 1}+, c(x) denotes the codeword corresponding to the outcome
x and l(x) denotes its length.

Average length of the code is L(X) =
∑

x p(x)l(x). A code is called uniquely
decodable code if and only if for x 6= y, c(x) 6= c(y) ∀x, y ∈ AX . A code in which
no codeword is a prefix of any other codeword is called a prefix code. Prefix codes
are self punctuating or instantaneously decodable without looking ahead at the
subsequent codeword. Note that the codeword lengths of a uniquely decodable code
C(X) over the binary alphabet must satisfy the Kraft’s inequality -

∑|AX |
i=1 2−li ≤ 1.

Theorem 2 (Shannon’s source coding theorem) For an ensemble X, there ex-
ists a prefix code C(X) with average length satisfying

H(X) ≤ L(C,X) ≤ H(X) + 1 (1.4)

Shannon’s source coding theorem is based on the idea that we can define a coding
scheme which shortens the length of typical sequences at the expense of making the
atypical sequences longer and since by the AEP theorem almost all long sequences
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1. Introduction

(a) (b)

Figure 1.1. (a) DNA replication as an information channel. f is the probability
of error, (b) The conditional entropy between the next and the present generation.
The uncertainty increases as the probability of error increase.

are typical we end up reducing the expected length. Note that Shannon’s theorem
only gives the theoretical bound on the minimum length (memory) required to store
a sequence of random variables coming from a probability distribution but it does
not say anything about how to achieve that limit. Finding out the coding scheme
that reaches close to the Shannon limit is part of coding theory and there is no formal
way of finding the optimal coding scheme. Another point to note is that Shannon’s
theorem is about lossless compression, which requires that there is a codeword for
every symbol in the alphabet.

1.2.2 Data transmission

We now analyze the transmission of information over space or time through a noisy
channel. As a concrete biological example, we look at information transfer from
one generation to the next during the process of DNA replication. The replication
process is noisy due to the possibility of chemical errors. Let the probability of this
error be f , therefore all nucleotides A,T,C and G are correctly replicated in the
next generation with a probability 1− f (See Figure 1.1). We want to quantify the
information transferred during such process and can we have perfect information
transfer in presence of noise?

9
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The conditional probabilities for this channel can be written as:

p(Xn+1|Xn) =

1− f Xn+1 = Xn

f/3 Xn+1 6= Xn

(1.5)

Here Xi ∈ {A, T, C,G}. We can quantify the reduction in uncertainty of the random
variable Xn+1 on the revelation of another random variable Xn by calculating the
Shannon entropy of the conditional probability

H(Xn+1|Xn) =
4∑
i=1

p(Xn) [p(Xn+1|Xn) log2 p(Xn+1|Xn)]

Assuming all base pairs are equiprobable, the conditional entropy of this system
comes out to be H(Xn+1|Xn) = −(1 − f) log2(1 − f) − f log2(f/3). The graph
in Figure 1.1 shows that the conditional uncertainty of the next generation is an
increasing function of f implying that the present generation gets less and less
informative about the next generation on increasing the noise. We now define a
related quantity, the mutual information, which measures the dependence of two
random variables. It is the reduction in uncertainty of one random variable on the
revelation of the other random variable.

Definition 5 (Mutual information) Mutual information, I, between two ensem-
bles X and Y is given by

I(X, Y ) := −
∑
x,y

p(x, y) log2

p(x, y)

p(x)p(y)

= H(X)−H(X|Y ) = H(Y )−H(Y |X) (1.6)

Mutual information is a symmetric quantity and captures the dependence of the
random variableX on Y and vice versa. IfX and Y are independent thenH(X|Y ) =

H(X), H(Y |X) = H(y) and I(X, Y ) = 0, on the other hand if X, Y are completely
dependent, X is a function of Y , then H(X|Y ) = H(Y |X) = 0 and I(X, Y ) =

H(X) = H(Y ). Note that mutual information is a nonlinear measure of relatedness
and can capture the relation between X and Y which are highly informative but not
detected by linear correlations [12]. Figure 1.2 illustrates the relationship between
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1. Introduction

Figure 1.2. Relationship between entropies, H(X) H(Y ), conditional entropies,
H(X|Y ) andH(Y |X), joint entropy, H(X, Y ), and the mutual information, I(X, Y ),
between the set of random variables X and Y .

entropies, H(X, Y ), H(X), H(Y ), H(X|Y ), and the mutual information, I(X, Y ).
The mutual information between the next generation and the present generation

in the last example decreases on increasing the noise indicating a loss of information
during the transmission process due to noise. There are two ways of reducing the
loss of information in the channel - (i) we either reduce the noise in the replication
process using biophysical means like kinetic proofreading or (ii) we can introduce an
encoding-decoding scheme which adds redundancies to help identify and fix errors
that might arise during the transmission.

Here we focus on the later, in the previous example, see Figure 1.1, instead of just
transmitting the nucleotides (A,T,C,G) directly we first encode them by a rule that
introduces redundancies, then transmit the encoded message through the channel
and later decode the message. The encoded message can still be corrupted by the
noisy channel but if the corruption is below a threshold will still be able to recover
the message correctly. A simple example of a encoding-decoding scheme can be
to encode A as AAA, T as TTT, C as CCC and G as GGG. Here for every A
we will transmit A three times, similarly for the rest (T,C,G). While decoding the
transmitted message we wait for three transmissions and then take the majority as
the message. This simple scheme can reduce the probability of making errors by 1/f

but the cost we have to pay is that we use the channel three times to transmit a single
message (nucleotide). Shannon worked out that minimum amount of redundancies
we need to introduce to ensure lossless transmission of information through a noisy
channel and surprisingly he found that the amount of redundancies that we need to
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1. Introduction

add are finite to ensure lossless transmission. We can therefore transmit losslessly
over a noisy channel at a non-zero rate.

We now formally define what we mean by information channel, an encoder -
decoder, rate of transmission and then state the Shannon channel theorem.

Definition 6 (Channel) A discrete memoryless channel Q is characterized by an
input alphabet AX , an output alphabet AY and a transition probability matrix Q(y|x)

for x ∈ AX and y ∈ AY

Definition 7 (NK Block code) A (N,K) block code for channel Q is a list of
S = 2K codewords

{x(1), . . . ,x(2K)} x(s) ∈ ANX

each of length N . The encoder encode a signal s ∈ {1, . . . 2K} as x(s). The rate of
code R = K/N . The decoder for an (N,K) block code is a mapping from the set of
N length string of channel output ANY to a codeword label ŝ ∈ {0, 1, . . . , 2K}.

The probability of block error pB =
∑

sin
P (sin)P (sout 6= sin|sin). The maximum

probability of error pBM = maxsin P (sout 6= sin|sin).

Theorem 3 (Shannon’s channel coding theorem) 1. For every discrete mem-
oryless channel, the channel capacity C = maxp(x) I(X;Y ) has the following
property. For any ε > 0 and R < C, for large enough N , there exists a code
of length N and rate ≥ R and a decoding algorithm, such that the maximal
probability of error pBM < ε.

2. If probability of bit error pb is acceptable, rates up to R(pb) are achievable,
where R(pb) = C

1−H2(pb)

3. For any pb, rates greater than R(pb) are not achievable.

It is a remarkable fact that one can transmit information without error along a
channel that has a nonzero noise level provided that the rate of transmission does not
exceed this capacity. Note that, the channel capacity is obtained by maximizing over
all possible source (input) probability distributions and is therefore just a function of
the channel, i.e the transition probabilities. Shannon’s channel coding theorem again
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Figure 1.3. Schematic of a communication system. A source message is first
compressed using some coding scheme which reduces the size of the message. It
is then endoded into the transmitted signal using an encoding scheme which adds
redundancies so that the message can be transmitted through a noisey channel
without errors. The reciever then performs the inverse operations of decoding and
decompressing to receive the message.
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only gives the theoretical bounds on the capacity of lossless transmission by a channel
but does not say anything about how to design the encoder-decoder scheme that
achieves this capacity. We note that actually finding the capacity of a channel, given
a detailed model of the input-output relation and noise as represented by P (y|x),
can be challenging and, only simple models, such as y being a linearly filtered version
of x with added Gaussian noise, are tractable. The complete communication system
can be schematically represented as shown in the Figure 1.3. Shannon’s theorems
give the fundamental theoretical bounds for lossless compression and transmission
of data.

There is a formalism in information theory which allows deals with lossy com-
pression or transmission of information - the rate distortion theory. Let X be an
ensemble defined by random variable X, alphabet AX and probabilities pX(x). As
the size of the alphabet, |AX |, increases and the input probability is well distributed
over the alphabet AX , both lossless compression and transmission becomes more
demanding. This is especially relevant in biology where lossless compression and
transmission of information maybe too costly and unnecessary for the cell. From
this detailed ensemble we want to go to a smaller ensemble, Y defined by random
variable Y , alphabet AY , probabilities pY (y) and |AY | < |AX |, while maintaining a
certain level of functionality. The functionality is measured by a distortion function,
denoted by d(x, y) and defined on |AX | × |AY | space, which measures the distance
betweenX and Y in some relevant sense. Since both x ∈ AX and y ∈ AY are random
variables we are interested in the average distortion, 〈d(x, y)〉 =

∑
x,y p(x, y)d(x, y).

The average distortion is a measure of how badly we are doing on a particular func-
tion by moving from the ensemble X to Y and we want this average distortion to
be less than certain threshold, D. These considerations can be formally represented
by the following optimization problem

R(D) = minp(y|x) I(X, Y )

s.t. 〈d(x, y)〉 ≤ D

which can be equivalently written as

R(λ) = min
p(y|x)

I(X, Y ) + λ 〈d(x, y)〉 (1.7)
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Figure 1.4. An illustration of rate distortion function, R(λ). The each point on
the red curve is the optimal solution for a given value of λ. The curve represents
the minimum distortion acheivable for a particular compression.

Minimizing I(X, Y ), the mutual information between X and Y , compresses X to
Y and minimizing the average distortion, 〈d(x, y)〉, increases the functionality of this
change of ensemble. The optimization, therefore, compresses the information while
maintaining the functional relevance, λ decides the weight of these two competing
forces. The balance between these two factors, compression and the functional
relevance, is given by the rate distortion curve, R(λ) (See Figure 1.4 for a typical
curve). The region in the figure above the rate distortion curve is unachievable. and
this can potentially lead to physical or biological constraints in biological systems [?
]. One practical limitation for the use of rate distortion framework in biology is the
difficult of coming up with a with relevant distortion function. In [13], proposed a
Information Bottleneck(IB) principle to circumvent the requirement of a distortion
function by having a target ensemble which represents the function. We discuss
more about IB and use it in our calculation in Chapter 2 of the thesis.

We now define one more information theoretic quantity that we use in this thesis
to measure the similarity of two probability distributions.

Definition 8 (KL divergence) The KL Divergence between two probability dis-
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tribution is given by

DKL(p||q) :=
∑
x

p(x) log2

p(x)

q(x)
(1.8)

The KL divergence has the following properties:

1. DKL(p||q) ≥ 0 This is sometimes called the Gibbs inequality, DKL(p||q) = 0

iff p = q ∀x

2. in general DKL(p||q) 6= DKL(q||p)

3. The entropy is a convex function, convex functions satisfy the Jenson inequal-
ity which is very useful in proving properties of information theoretic quan-
tities. For a convex function f(x), f(E(x)) ≤ E(f(x)), here E denotes the
expectation value. This inequality directly follows from the definition of con-
vex functions.

1.3 Information theory in biology

Living systems process information and perform computations at various spatial
and temporal scales, ranging from microns in bacterial chemotaxis to meters in the
neural system of large organisms. The mechanisms that carry information are also
widely different ranging from electrical signals in neuronal systems to molecules
and mechanical signals in cellular information processing. It is attractive to discuss
information transmission in these wide variety of biological cases in the same units
(bits) using the unifying language of information theory. The framework described in
the previous section quantified the information carried by a probability distribution
over immutable symbols and described the theoretical limits of compression and
transmission of that information. While this framework has been greatly successful
in communication applications, describing biological system using this framework
requires more care and meaningful extensions.

In engineering applications, the main concern is devising coding schemes, i.e., al-
gorithms that transform inputs x into messages to be sent through the channel (and
likewise recover x from the channel output), so that information can be transmitted
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over noisy channels as close to capacity as possible using bounded processing re-
sources. Biological information processing systems, on the other hand, are driven out
of equilibrium by a continuous consumption of energy and they are shaped by evolu-
tion to operate robustly in the presence of thermal, active or chemical noise [2, 14],
be energy and resource efficient [15], exhibit parametric robustness [16], i.e. do not
require precise tuning of parameters, and be evolvable [17], i.e. can adapt to chang-
ing environments. Capacity attaining encoding-decoding schemes, therefore, may
not be relevant in biological information processing systems. However, optimization
principles arising from information theoretic considerations (like maximizing mutual
information between two random variables) in biological systems have resulted in
physical constraints on the system. One example of physical resources limiting the
information transmission is the synthesis of transcription factor proteins (TFs) that
bind to DNA and influence the rate at which encoded information is read out to
make other proteins; here the transcription factor concentration is the input, and
the resulting protein concentration is the output. The number of molecules of TF
can limit the maximum amount of information that can be transmitted through this
channel [18].

Quantifying information in biological systems in a meaningful way is critical in
arriving at relevant optimization principles which put physical constraints on the
system. Inside the cell, information is carried by molecules which are not like the
immutable symbols of the classical information theory but are involved in carrying
out certain functions, have different life spans, utility and production cost to the cell.
One possible direction in quantifying biological information is the idea of functional
complexity given by Jack Szostak and coworkers [7]. The idea is based of different
mRNA sequences resulting in proteins that after folding perform the same function
and therefore are functionally equivalent. This additional redundancy can be used
to further compress the sequence beyond the Shannon entropy giving rise to a new
limiting complexity, called functional complexity, which is dependent on the function
that the sequence is performing.

Another way of formally using function to come up with relevant information
theoretic optimization principles is the framework rate-distortion theory described
in the previous section. If we can come up with a relevant distortion measure for a
biological information processing system, the framework allows for lossy compression
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of data while keeping functionality above a threshold. We now give a few instances of
where a biologically important function can be replaced with an abstract information
theoretic optimization principle. that can put constraints the system.

In [19], the authors analyzed the problem of sensing the time-dependent ligand
profile outside the cell by a collection of distributed and mobile sensors on the surface
of the cell to find the optimal placement of the sensors. There are two competing
objectives : to faithfully read the ligand concentration at a given position requires
the sensor to stay there and take multiple measurements of the ligand in time.
But this sampling requires one to cluster the receptors at some position leaving the
ligand at other locations undetected by the sensors. They found that depending
on the sensor concentrations and the ease of clustering there are three phases of
optimal sensor placement - (a) at low sensor concentrations the receptors diffuse
freely to sense the ligand signal (b) at high sensor concentrations but low ease of
clustering, the optimal distribution is sensors fixed on a lattice (c) at high sensor
concentrations but high ease of clustering, the optimal distributions is some sensors
randomly forming a cluster and some sensors diffusing freely. All these phases are
found in real biological systems with consistent sensor concentration and ease of
clustering.

In [20], the authors show that sensing the ligand(morphogen) outside to infer
cells position inside the development tissue accurately requires two kind of recep-
tors (specific and non specific to the ligand) and a negative correlation, due to a
feedback mechanism, between the bound specific and bound non-specific receptor.
This calculation is an instance of optimizing over the channel properties to achieve
better functionality.

One roadblock in applying information theory to biology is the difficulty of quanti-
fying real information flows in biological systems. Estimating information theoretic
quantities, like mutual information, is extremely difficult because they require the
knowledge of the whole probability distribution, whereas most of the time we have
access to only a small number of samples coming from that distribution. The re-
quirement of high quality data, therefore, has pushed for both better experimental
and statistical techniques (See [4] for a review).

Information theory is also used as a tool for the analysis of biological data, e.g. the
use of maximum entropy models to infer the underlying Hamiltonian that describes
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correlations observed in experiments [21], and using mutual information to detect
relatedness of two experimentally observed variables that is not captured by linear
correlations [12].

In the next section we will discuss the physical constrained put on by thermody-
namics on the molecules that carry biological information.

1.4 Physics of molecular information processing sys-

tems

The link between information and thermodynamics goes back to the idea of Maxwell’s
demon which revealed the relationship between entropy and information. It demon-
strated that, by using information, one can relax the restrictions imposed by the
second law on the energy exchanged between a system and its surroundings [22].
Later, Rolf Landauer pointed out that erasure of information is necessarily a dis-
sipative process. His insight is that erasure always involves the compression of
phase space, and so is irreversible [22]. Information manipulations such as mea-
surement, erasure, copying and feedback can be thought of as physical operations
with a thermodynamic costs. Therefore, thermodynamics provides constraints on
the information processing capabilities of a physical system. Information in biology
is carried by molecules, which are again subjected to the laws of thermodynamics.
We are primarily interested in the thermodynamics of these molecules and how it
constraints the information processing capabilities.

Thermodynamics describes the properties of macroscopic equilibrium systems in
form of thermodynamic laws. The first law of thermodynamics is a statement about
the conservation of energy and the second law of thermodynamics places constraints
on what thermodynamic processes are physically realizable: only those that increase
entropy. Emergence of structure and in particular of life, the most complex structure
we know of, seems contradictory in the face of the second law, but these systems
are not equilibrium systems and are kept out of equilibrium by a continuous influx
of energy.

Here we provide a brief description of non-equilibrium thermodynamics [23] and
the Markov formalism [24].

19



1. Introduction

1.4.1 Non-equilibrium Thermodynamics

We express the change in entropy dS = deS + diS, as change due to equilibrium
(reversible) exchange of entropy to the environment and irreversible entropy produc-
tion. Irreversible process are caused by dissipative thermodynamic forces driving
thermodynamic flows. For example, concentration gradient causing flow of matter
or temperature gradient causing flow of heat. We can write the irreversible entropy
production as follows

diS =
∑
k

FkdXk (1.9)

Here Fk is the generalized thermodynamic force and dXk is the thermodynamic
flow. The equilibrium flow of entropy can be written as

TdeS = dU − dW −
∑
k

µkdeNk (1.10)

Here T is the temperature, dU is the change in internal energy, dW is the work
done, µ is the chemical potential and deNk is the reversible exchange of particle.
Note that, deS = 0 for a closed system which does not exchange matter or energy
from the surrounding. A stronger form of the second law of thermodynamics for a
system with many subsystems can be stated as diS = diS

(1)+diS
(2)+. . .+diS

(r) ≥ 0

and each diS(k) ≥ 0 ∀ k.
When a system is isolated, deS = 0, the entropy of the system will continue to

increase due to irreversible processes and reach the maximum possible value, the
state of thermodynamic equilibrium. In the state of equilibrium, all irreversible pro-
cesses cease. When a system begins to exchange entropy with the exterior, then, in
general, it is driven away from equilibrium and the entropy-producing irreversible
processes begin to operate. The exchange of entropy is due to the exchange of heat
and matter. The entropy flowing out of the system is always larger than the entropy
flowing into the system, the difference arising due to entropy produced by irreversible
processes within the system. Systems that exchange entropy with their exterior do
not simply increase the entropy of the exterior, but may undergo dramatic spon-
taneous ‘self-organization’. The irreversible processes that produce entropy create
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these organized states. Such self-organized states range from convection patterns in
fluids to life. Irreversible processes are the driving force that creates this order.

We now describe the thermodynamics of chemical systems. For a general chemical
reaction

a1A1 + a2A2 + . . .+ anAn
Kf−−⇀↽−−
Kr

b1B1 + b2B2 + . . . bnBn (1.11)

The entropy production for this chemical system can be written as

dS = dSe + dSi =
dU − dW −

∑
k µkdeNk

T
−
∑
k

µk
T
diNk (1.12)

Here, dNk = deNk + diNk, the change in number of molecules can be divided into
the reversible exchange of matter with the environment and diNk is the irreversible
change. The entropy production for a closed system is given by deNk = 0 and
diNK =

diS

dt
=
∑
k

µk
T

diNK

dt
(1.13)

Almost no chemical system is in equilibrium due to constant influx of matter
and energy from an external source but almost all systems are in “local" equilib-
rium [23]. Local equilibrium is based on the idea that at sufficiently small length-
scales, the timescale of equilibrium relaxation is much faster than the timescale of
non-equilibrium drive. This allows us to meaningfully assign a temperature and
other thermodynamic variables to every elemental volume. Thermodynamic rela-
tions are valid for the thermodynamic variables assigned to the elemental volume.
For systems in local equilibrium, the intensive thermodynamic variables like tem-
perature, chemical potential and pressure become a function of space and time -
T (x, t), µ(x, t) and p(x, t) respectively, and the extensive thermodynamic variables
like entropy, internal energy and particle number are replaced by their densities -
s(x, t), u(x, t), n(x, t) respectively. The extensive quantities obey conservation equa-
tions like the one described below

∂s

∂t
+ ~∇ · Js = σ (1.14)

Here J s is the entropy current and σ is the local entropy produced at that position
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due to irreversible processes, the equation represents the idea that local entropy can
change by the flow of entropy from the surrounding into the infinitesimal volume
and the local irreversible entropy production. Similar equation can be written for
other extensive thermodynamic quantities like energy and number density.

Chemical systems can be formally described by Markov systems and the ther-
modynamics of chemical reactions can be extended for a general Markov system.
We give a brief overview of Markov systems and their thermodynamics in the next
section. The presentation is based on [24, 25]

1.4.2 Markov systems

Markov systems do not have memory and the stochastic evolution in future only
depends only on the current state and not on the past. They are described by the
general Chapman -Kolmogrov equation

p(xn; tn) =

∫
p(xn|xn−1)p(xn−1|xn−2) . . . p(x2|x1)p(x0; t0)dx0 . . . dxn−1 (1.15)

For discrete random variables, the differential form of the Chapman-Kolmogrov
equation gives rise to the Master equation which describes the dynamics of jumps
between the states of the random variable.

dpi
dt

=
∑
j

Wi,jpj −Wj,ipi (1.16)

Here pi is the probability of occupancy of the i−th state and Wi,j is the transition
rate from the j-th to i-th state. Note that the matrix W is a stochastic matrix with
column sum(

∑
jWij = 0) equal to zero, which preserves the normalization. Such

systems can be represented on a graph with nodes being the states and the edges
being the transition rates. We can solve the master equation using the method of
generating functions which turns this system of ordinary differential equations to
a partial differential equation. The steady state can be obtained by the null space
of W and using

∑
i pi = 1 or by a graphical method described in [25]. The net

current flowing through two nodes i and j is given by Jij = Wijpj −Wjipi. In the
special condition of detailed balance, which correspond to equilibrium systems, the
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net current is zero(Wjipi = Wijpj). The entropy production for a general discrete
Markov system [25] is given by

dS

dt
=

∑
all edges

Jij log
Wijpj
Wjipi

=
∑

all edges

Jij

(
log

Wij

Wji

+ log
pj
pi

)
(1.17)

Clearly, entropy production is always positive, Ṡ ≥ 0, entropy production is zero
if and only if the system is in detail balance. Entropy production is the energy
requirement to make the system stay out of equilibrium. An application of this
formalism in biology is kinetic proofreading [14] where the non-equilibrium driving
leads to better discrimination by the enzyme between a right and a wrong product.
The manipulation of the flux in such driven biological Markov system can lead to
interesting speed, accuracy and energy trade-offs [15].

For a continuous Markov systems, the expansion of differential form of Chapman-
Kolmogrov equation results in the Fokker-Planck equation

∂p(x)

∂t
=

∂

∂x

(
F (x)p(x)−D(x)

∂

∂x
p(x)

)
(1.18)

Here the first term on the right hand side is the drift term and the second term is
the diffusion term. The Fokker Planck equation is a local conservation equation, the
term inside the bracket on the right hand side represents the probability current.
There is an equivalent description of the system in terms of the dynamics of the
random variable, x, instead of the probability, p(x), given by the Langevin equation

dx

dt
= F (x) +D(x)η(t) (1.19)

In this formulation, F (x) is a deterministic driving force and η(t) is the white noise
which which characterizes the fluctuations and D(x) is the diffusion constant which
decides the strength of fluctuations. Many of the thermodynamic results for macro-
scopic equilibrium systems can be extended to these non-equilibrium Markov sys-
tems by meaningfully assigning thermodynamic properties, like work, entropy etc.,
to the trajectories of these Markov systems (See [26] for a review).

Recent studies in non equilibrium Markov system have proven a series of bounds
on fluctuations in these systems, called the thermodynamic uncertainty relations
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(TUR) [27]. An example of TUR in Markov systems is the following bound:

Var(Jτ )
〈Jτ 〉

≥ 2kB
Στ

(1.20)

here Jτ and Στ = τ
∑

i,j Jij log
Wij

Wji
is the dissipation. Recently, [28] has given a bio-

logical relevant TUR, in the context of sensing of a ligand, bounding the fluctuations
in the occupancy time of discrete Markov states by the entropy dissipation.

1.5 Gycans, Glycosylation and the Golgi Complex

Eukaryotic cells are internally divided into membrane enclosed functionally distinct
compartments called organelles. Each of these organelles have a specialized set of
enzymes and other molecules for optimal chemical processing required to perform a
function. There is also a complex transport system, consisting of gated/channels in
the membrane, protein translocation mechanisms and vesicular transport, which car-
ries cargo between these organelle [1]. These organelle are functionally important for
the cell because they increase the membrane area to host biochemical reactions and
provide functionally specialized aqueous region optimized for specific biochemical
reactions. Here we discuss one of these organelle, the Endoplasmic Reticulum(ER)
- Golgi secretion system, which is the focus of this thesis.

1.5.1 The ER- Golgi Complex secretion system

ER is a large labyrinth of membraneous sac surrounding the cell nucleus which is
held together by the cytoskeleton (See Figure 1.5). Part of the ER is dotted with
ribosomes and is the site for protein and lipid synthesis. The post-translational
modifications of the synthesized proteins and lipids also begins in the ER before they
are transported to various target locations in the cell, mainly the Golgi complex.
The Golgi complex is a collection of flattened membrane bound sac like structures
called, cisternae, held together by microtubules (See Figure 1.5). Each cisternae
has distinct chemical composition in terms of the pH, the enzymes present inside
the cisternae and other molecules. The Golgi complex maintains a stable structure
in the face of the constant influx of vesicles from the ER and outflux to plasma
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(a) (b)

Figure 1.5. (a)The ER Golgi secretion system: Proteins and lipids from the ER
are transported to the Golgi complex by vesicles where they are chemically modified
before finally being transported to different parts of the cell. (b) Cartoon of glycans
on the surface on the cell attached to protein embedded in the cell membrane.
Picture credit: (a) https://www.nature.com/scitable/topicpage/ how-do-proteins-move-through-
the-golgi-14397318, (b) https://www.glytech-inc.com/glycan/glycans-and-cells/

membrane and other parts of the cell.
The ER-Golgi secretion systems (See Figure 1.5) deals with the production, mod-

ification and transport of proteins and lipids. Proteins are synthesized by the ribo-
somes on the surface of ER in the cytoplasm. They are then flipped into the lumen
of ER where the post translational modification begin, e.g. addition of sugar tree
like structures on the surface top of the protein core by a process called glycosy-
lation [1]. The modified proteins are then transported to the cis-Golgi by vesicles,
from where they are further transported to the trans-Golgi network, plasma mem-
brane and other cellular destinations through vesicles. The transport of synthesized
protein depends on the sorting signals that direct their delivery to locations outside
the cytosol or to organelle surfaces.

1.5.2 Non equilibrium self assembly of the Golgi complex

As previously stated, the Golgi complex is a stable membranous structures, subject
to and driven by a continuous flux of membrane-bound material from the ER to the
plasma membrane (PM). The morphology and chemical identity of compartments
over large spatio-temporal scales should therefore emerge as the self organized steady
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states of a driven non-equilibrium system [29].
The flux of vesicles from ER transports proteins and lipids to the Golgi complex

for further modification. A complete understanding of protein transport through the
Golgi stack is lacking with two competing models representing the extreme cases -
the vesicular transport model and the cisternal progression model. In the vesicular
exchange model, cisternae are stable “static” structures and transit proteins move
along the stack by anterograde vesicular transport. In the cisternal progression
model, the entire cisternae progress through the stack and Golgi resident enzymes
undergo retrograde (backward) transport to remain in a fixed position. A theoretical
model of cargo transport within the Golgi cisternae should therefore accommodate
both these extreme cases, one such model is given in [30]. The localization of resident
proteins/enzymes in Golgi cisternae against a bulk flow of material suggests the
presence of cargo specific retrograde transport to maintain chemical identity of the
cisternae [31].

The size, shape, composition, and location are all important and regulated fea-
tures of these organelles that ultimately contribute to the organelle’s function. In
this thesis we focus on how the number of Golgi cisternae affect the process of gly-
cosylation and motivate the need for a multi-cisternal system. Implying that there
should be a coupling between the enzyme kinetics, which carry out the function,
and the dynamics of compartmentalization responsible for the non-equilibrium self
assembly of the Golgi cisternae.

1.5.3 Glycosylation

Glycosylation of protein, arguably the most diverse post-translational modification,
is a complex, multistep process that employs around many glycosyltransferase en-
zymes (200 in humans [8]) that determine which proteins are to become glycopro-
teins, the positions of glycans on those proteins and the glycan structures assem-
bled [8]. There is a tremendous diversity in the kind of glycoconjugates that can
be obtained, much more than polynucleotides and polypeptides. There are nine
common monosaccharides found in vertebrate glycoconjugates which can be linked
through glycosidic bonds, to make oligosaccharides or polysaccharides. The diver-
sity arises not only from the choice of sugars but also from the way they are linked,
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allowing not only more linear products, but also branched products. Branching is a
prime characteristic of many glycans found on mammalian cell surfaces with glycans
having two, three or four branches. The are two major types of eukaryotic protein
glycans - N-glycans and O-glycans. An N-glycan makes a glycosidic bond with the
side-chain nitrogen of an asparagine residue. An O-glycan makes a glycosidic bond
with the terminal oxygen of a serine or threonine residue. Glycosylation also involves
addition of other groups, like sulfation etc., to the glycan structure. One particu-
larly interesting one, abundant in mammalian cells, is the process of Sialylation, a
terminal modification, which prevents further addition of sugar monomers to the
glycan chain [8].

All forms of glycosylation in the secretory pathway are highly ordered and se-
quential processes, typically involving glycosyltransferase reactions. The general
glycosylation reaction, shown below, involves the catalysis of a group transfer re-
action in which the monosaccharide moiety of a simple sugar donor substrate, e.g.
UDP-Gal, is transferred to the acceptor substrate [8]

Acceptor + glycosyl donor + Enzyme −⇀↽− [Acceptor · glycosyl donor · Enzyme]

−→ glycosylated acceptor + nucleotide + Enzyme

Most glycosylation reactions use activated forms of monosaccharides (nucleotide
sugars) as donors for glycosyltransferases. In eukaryotes, most of these donors are
actively transported across a membrane bilayer by specific multipass transporter
proteins, becoming available for reactions within the lumen of the ER–Golgi path-
way [32, 33].

The majority of Golgi glycosylation enzymes are membrane proteins placing their
catalytic sequences in the Golgi lumen, where they participate in the synthesis of
the glycan chains on proteins and lipids during their transit through the secretory
pathway. These enzymes, their glycan substrates (attached to protein or lipid), and
the appropriate nucleotide sugar donor must be located in the same compartment.
Biochemical and ultrastructural studies indicate that glycosyltransferases segregate
into distinct overlapping compartments within the secretory pathway. Generally
speaking, enzymes acting early in the biosynthetic pathway localize to cis- and
medial-Golgi compartments, whereas those acting later in the pathway tend to lo-
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calize in the trans-Golgi cisternae and the TGN [8].
Glycosyltransferases constitute a very large family of enzymes, most show a high

degree of specificity for both their donor and acceptor substrates but some are
promiscuous. Generally speaking, the enzymes that elongate glycans act sequen-
tially so that the product of one enzyme yields a preferred acceptor substrate for
the subsequent action of another. The end result is a linear and/or branched struc-
ture composed of monosaccharides linked to one another. Acceptor recognition
by these glycan-elongating glycosyltransferases does not typically care about the
polypeptide or lipid moiety at the root of the acceptor substrate [8]. Apart from
the the glycosyltransferases there are glycosidases that remove monosaccharides to
form intermediates that are then acted on by glycosyltransferases also play a role
in the biosynthesis of some glycan types. In addition, glycans can be modified
by many other enzyme types, like sulfotransferases, which add groups other than
monosaccharides .

Functions of glycans

Glycosylation greatly amplifies the proteome by producing diverse proteoforms with
different properties, thereby instructing myriad functions. Glycans, being the most
diverse and flexible molecules, are ideal to position at the interface between cells and
the extracellular milieu (See Figure 1.5) possibly due to their relative hydrophilicity,
flexibility, and mobility in aqueous environments and their extreme diversity, allow-
ing short-term and long-term adaptations to changing environments and pathogen
regimes [9].

Glycans are involved in structural functions, e.g., extracellular scaffolds: cell walls
and extracellular matrices, in energy metabolism and as carriers of molecular infor-
mation. In this thesis we focus on the role of glycans as information carriers. Glycan
binding proteins (GBPs) recognise the molecular patterns of glycans and selectively
bind to the glycans. The role of glycans as information carriers is particularly promi-
nent in the assembly of complex multicellular organs and organisms, which requires
interactions between cells and the surrounding matrix. Being on the outer surface
of cellular and secreted macromolecules, glycans are in a position to modulate or
mediate a variety of events in cell–cell, cell–matrix, and cell–molecule interactions

28



1. Introduction

critical to the development and function of a complex multicellular organism [8].
They can also mediate interactions between organisms, e.g., between host and a
parasite, pathogen, or a symbiont. This internal and external glycan recognition
in a multicellular organism can also act as opposing selective forces, simultaneously
constraining and driving evolutionary change respectively, likely accounting for the
enormous diversity of glycans in nature. Diversity is further enhanced by microbial
pathogens engaged in “molecular mimicry”, evading immune reactions by decorating
themselves with glycans typical of their hosts [8].

Studies of deficiencies in glycosylation enzymes in animal models and human dis-
eases have advanced understanding of biological functions of protein glycosylation
and demonstrated that most glycosyltransferases serve essential roles in mammalian
physiology [8]. The glycome is produced and regulated by the glycosylation machin-
ery in a single cell, yet analysis of glycans at the single-cell level is not possible with
current glycomics methods, which are limited to probing with glycan-specific anti-
bodies and glycan-binding proteins (such as lectins). It is therefore often perceived
as a daunting task to uncover and dissect specific biological functions of glycans
and the underlying molecular mechanisms. Advances in next-generation sequencing
and proteomics are beginning to provide single-cell transcriptomes and proteomes,
which has opened the way for global analysis of the network of enzymes that orches-
trate protein glycosylation and the assessment of the glycosylation capacities of any
given cell [34]. Accompanying these are the nuclease-based gene editing technologies
that — through precise manipulation of glycosylation enzymes — provide virtually
unlimited opportunities for engineering, exploration and custom design of cellular
glycosylation capacities. We can now probe glycosylation systematically through a
genetic entry point, and with additional efforts we will be able to connect informa-
tion on cellular glycosylation capacities with the actual outcome of the glycome and
roles of glycosylation in cells. The biological consequences of experimentally alter-
ing glycosylation in various systems seem to be highly variable and unpredictable.
Also, a given glycan can have different roles in different tissues, at different times
in development (organism-intrinsic functions) or in different environmental contexts
(organism-extrinsic functions) [8].
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1.6 Scope of the thesis

In this thesis, we look at glycosylation from the lens of information theory in an
effort to give meaning to what is colloquially called the “glycan code" [35]. We then
show that how this “glycan code” puts constraints on the synthesis machinery made
up of the Golgi cisternae and the glycosylation enzymes.

• In the second chapter, we characterize the complexity of the glyan code and
show that complex organisms indeed have complex glycan code.

• In the third chapter, we provide a simple model of glycosylation as a sequential
chemical modification by enzymes that can catalyze more than one substrate in
chemically distinct compartments. We then discuss what kind of concentration
profiles are obtained by this synthesis model and how are they controlled by
the parameters of the model.

• In the fourth chapter, we study the constraints put on the glycosylation syn-
thesis machinery by the requirement of having a complex glycan code. We
bring out the various trade-offs in terms of number of compartments, number
and substrate specificity of enzymes and the complexity of the observed glycan
distributions.

• In the fifth chapter, we study the modulation of enzyme specificity by non-
equilibrium driving and its implication to the fidelity of synthesis of a complex
glycan profile.

We conclude in the sixth chapter with a short discussion and outline the directions
of future work.
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Chapter 2

Complexity of the glycan code

In the introduction we described the role of glycans as information carriers. Specif-
ically, glycans on the cell surface are recognized by the Glycan Binding Proteins
(GBP) of host cells to identify particular cell types and niches within a multi-cellular
organism [11]. Simultaneously these glycans are also recognized by pathogens for
identification of cells to infect [11]. Due to the role of glycans as the markers of cell
type and niche identity, the distribution of glycans on the surface of the cell can be
thought of as a code [1] which is shaped by evolution to have certain properties. The
competition between the ability to reliably and precisely identify different cell types
and niche within a multi-cellular organism on one hand while simultaneously evad-
ing recognition from pathogens in a changing environment on the other requires a
“complex" and “diverse" distribution, and hence code, of glycans on the cell surface.

In this chapter we develop the notion of complexity of the glycan code. We start
with a general notion of complexity explored in various contexts and the properties
shared by a complex system. We will then explore the notion of complexity for glycan
codes before finally coming to quantifying the complexity of real mass spectrometry
(MS) glycan profiles. We will find that, indeed, the glycan distribution in complex
multi-cellular organisms is more “complex" than simpler organisms.

2.1 Complexity depends on the context

The idea of complexity of a system has been explored in various fields like computer
science. We start with a few examples and look the the general characteristics shared
by systems which we intuitively understand to be complex.
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2. Complexity of the glycan code

In computer science, problems are classified in various complexity classes - P, NP
and NP complete depending upon how the computational time or memory required
by an algorithm to solve the problem of scales with the size of the problem [2].
This scaling is a fundamental property of the problem and is independent of the
particulars of how the computations are performed. Problems within a complexity
class can be mapped to one-another and therefore the complexity classification has
both conceptual and practical importance. Here the most complex problems have
exponential scaling of required computation time or memory with problem size.

In dynamical systems, complexity is associated with systems having the large
number of interacting parts generating complex behavior. The following general
properties are shared by all dynamical systems which we intuitively call complex [3]
- (a) They are between total order and disorder, e.g. liquids are much more complex
than solids and gases (b) They have hierarchies of timescales and length-scales,
and interaction between these hierarchies (c) They have many interacting parts
and, strong non-trivial correlation between these parts (d) There are correlations
between the system and the environment. One way to quantify complexity in these
dynamical systems is by using the Kolmogrov-Sinai complexity [3] defined on the
trajectories of this system. It is defined by partitioning the trajectories into discrete
regions and generating a sequence of symbols from the trajectories and defining a
Shannon entropy on these sequences. This is related to difficulty of prediction the
future trajectory given the past.

In communication, complexity is defined in terms of memory required to store and
retrieve the shortest code that can generate a given sequence of symbols. This is
called the algorithmic or Kolmogrov complexity [4, 5]. A sequence of symbols that
is generated by a longer code is more complex than the one generated by a shorter
code. The Kolmogrov complexity of a sequence of symbols is related to the Shannon
entropy of the sequence.

In all these cases the complexity is related to the difficulty of performing a task,
e.g. in computer science it is related to the difficulty of solving a problem, in dy-
namical systems it is related to the difficulty of predicting the future trajectories,
in communication it is the difficulty to generate a sequence of symbols and in sta-
tistical modeling it is the difficulty to model the probability distribution of a data.
Grassberger fittingly defines complexity as the “difficulty of meaningful task" [3] .
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2. Complexity of the glycan code

The difficulty in most cases can be quantified by the Shannon information but the
“meaningful" part requires a definition of complexity which depends on the context.

In the following section we describe how Shannon information is inadequate in
characterizing complexity of a system and how can the notion of “meaning" be
added to information theory resulting in a more reasonable information theoretic
description of complexity.

2.1.1 Information and complexity

A key obstacle in quantifying complexity using information theoretic approach is
to differentiate between a “complex" system and a totally disordered system. The
Shannon entropy and other similar quantifications of information are good at quan-
tifying the uncertainty in predicting the next symbol in a sequence of symbols but
are maximized by a totally random distribution. We give a brief summary of a
couple of approaches that prevent totally random distributions from becoming the
most complex ones by associating “meaning” or functional relevance with appropri-
ate information theoretic quantities.

In ??, the authors quantify complexity of a time series by relating it to the pre-
dictability, defined as “predictive information", Ip(T ) which is the mutual informa-
tion between the past and the future of the time series. They argue that this is the
part of information that has functional consequences or “meaning" for a living or-
ganism. Let x(t) be a stream of data, xpast = x(t) for −T < t < 0 and xfuture = x(t)

for 0 < t < T ′ represent the past and future data respectively. Then the predictive
information is defined by

Ip(T, T
′) =

〈
log

P (xfuture|xpast)

P (xfuture)

〉
= −〈logP (xfuture)〉 − 〈logP (xpast)〉 − (−〈logP (xfuture, xpast)〉

= H(T ) +H(T ′)−H(T + T ′) (2.1)

The last line is obtained by assuming that the data is coming from stationary, i.e.
time translation invariant source. H(T ) is extensive in T , i.e limT→∞

H(T )
T

= H0 and
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H(T ) = H0T +H1(T ). In the limit of future going to infinity we can write

Ip(T ) = lim
T ′→∞

Ip(T, T
′) = H1(T ) (2.2)

All the useful information of the past is in the sub-extensive part of the entropy of
the time series. Scaling of the predictive information or the sub-extensive entropy
(H1(T )) with system size reveals complexity of the system. As an illustration, the
authors take an Ising system and study the predictability of a sequence of words of
a fixed length formed by combining a fixed number of consecutive Ising spins. They
show that the predictive information is constant with respect to the word length
for a simple Ising system with a constant nearest neighbor interaction but for a
complex Ising system with random long range decaying interactions the predictive
information scales logarithmically with the word length.

Another way of incorporating the functionality into information theory frame-
work, called the Information Bottleneck, was developed by Tishby, Pereira and
Bialek in [6]. Here instead of complexity of a time series data we can define the
complexity of any arbitrary sequence of random variables as long as we have a no-
tion of a target/relevant set of random variables, information about which should
be preserved while compressing the original sequence of random variables.

The information between two random variables X and Y is squeezed through a
bottleneck representation, T (See Figure 2.1). Here the random variable Y repre-
sents some relevant variable, e.g. in physics and biology many times the microscopic
details of a system are not relevant to a description in terms of meso or macro vari-
ables at a longer length or timescale. The random variables X and Y represent the
microscopic and relevant variables(respectively) in the description. The microscopic
description of the system might be too elaborate (|X| too large) for any practical
computation and thus requires compression while still preserving enough informa-
tion about Y to be functional. These two opposing forces gives rise to what is called
the relevance-compression trade-off.

This is like the rate distortion principle discussed in the previous chapter where
the distortion function is given by the mutual information between the target(Y )
and compressed(T ) set. The information bottleneck principle [6] for data X, and a
target or relevant random variable set Y coming from a joint probability P (X, Y ),
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and the compressed random variable set T , is described by the the optimization of
the Information Bottleneck(IB) functional, I(X,T ) − βI(Y, T ), over the transition
probabilities, p(t|x)).

R(β) = min
p(t|x)

I(X,T )− βI(Y, T ) (2.3)

Here the mutual informations, I(X,T ) and I(T, Y ) represent the compression and
the relevance respectively and β is the trade-off parameter. Notice that the random
variables X, Y, T form a Markov chain represented by T ↔ X ↔ Y , the Data
Processing Inequality(DPI) on this Markov process implies I(T, Y ) ≤ I(X, Y ). We
obtain the IB function, like the rate distortion function, by doing the optimization
in (2.3) for various values of β. This gives a curve in the space of I(T,X) and I(T, Y )

which characterizes the compression-relevance of the joint probability P (X, Y ). The
area above the curve marks the unfeasible region in this space. The complexity of
the system can then be defined on the basis of where a particular system is placed
in the relevance-compression curve.
In the following section we apply the Information bottleneck framework to get

the complexity of the glycan distribution keeping in mind their role in cell type and
niche identification.

2.2 What drives the glycan complexity?

One of the important function of glycans is cell-type and niche differentiation in
a multicellular organisms; they are markers of cell type identity and niche which
are seen by other cells of the organism like the immune cells. Each cell type (in
a niche) is identified with a distinct glycan profile [1, 7, 8], and this glycan profile
is noisy because of both the cell to cell variations in the synthesis and transport
machinery, and the stochastic noise associated with the synthesis and transport [8,
9, 10]. Moreover, the cell type and niche differentiation has to be performed while
evading pathogen in a changing environment. This is further complicated by the
fact that pathogens themselves can engage in mimicry of glycans of the host cell
to evade the immune response [11]. We are interested in defining the complexity of
glycan distribution in the context of reliable cell type differentiation in presence of
cellular variations and pathogens. Initially, we focus on cell type differentiation in
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Figure 2.1. Glycan information bottleneck schematic. Each element of the set X is
called a protein word and it represents the protein expression of a cell, each element
of the set Y is the a cell type and niche, and each element of the set T is a glycan.
The information of cell type and niche is characterized by the protein words and
contained in the joint P (X, Y ). This information is squeezed through the smaller
(|X| � |T |), bottleneck set of glycans (T ). Information bottleneck principle gives
the the optimal encoding, transition probabilities p(t|x), that preserves information
about the set Y .

40



2. Complexity of the glycan code

presence of cellular variations, and identify the characterstics of a more complex code
vs a less complex code in this context. We subsequently use these characteristics to
characterize the complexity of the mass spectrometry glycan profile of the real cell
types.

Cells of different cell types and niches in an organism can be characterized on the
basis of proteins expressed in the cell. The signature of cell type and niche is in a
subset of all the proteins expressed in the cell as evident by the lower dimensional
representations (like t-SNE, PCA, etc.) of single cell mRNA analysis [15, 16]. There
are house-keeping proteins which are shared by most of the cells and are not impor-
tant for the purposes of cell type identification. We look at how this information
of cell type and niche is encoded into the glycans from the proteins, and what are
the theoretical properties of such an encoding. The advantage of this encoding for
the organism might be a compressed representation of its identity that can be mod-
ulated on a much faster timescale than proteins, endowing the cell with the ability
to adapt to fast changing pathogen properties.

Figure 2.1 shows the schematic of the calculation. The set X represents the set
of expression levels for all proteins, each protein expression word is a string of bits,
which are assumed to be to be binary, representing whether the protein is expressed
in the cell-type or not. There is a joint probability associated with the elements of
set X and elements of the set of cell-types, Y . Single cell mRNA sequencing data
can be used to estimate the joint probability distribution of the cell type and protein
expression. The set of glycans T is the bottleneck set of much smaller size than the
protein set. The information of the protein word is to be translated to a smaller
glycan set while preserving the cell type identification functionality.

In the following section we provide a toy model to generate the joint probability of
a protein word and cell type and niches, and study the information bottleneck encod-
ing. We will subsequently use the single cell mRNA sequencing data for estimating
the joint probability between the protein expression and cell type.
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2.3 A toy model for the joint probability of protein

words, and cell types and niches

Denoting the total number of proteins by Np, a cell-type α can be characterized by
the binary string - xα = {sα1 , sα2 , . . . sαNp} where s

α
j ∈ {0, 1}, ∀j, α, represents whether

the protein sj is expressed in cell-type α or not.
The protein expression across the cells of the same cell type can have some varia-

tion due to cell to cell variations in the synthesis and transport machinery and other
sources of noise. While this distribution can be taken from the m-RNA data across
cells of a given cell type, we define a point probability, q, which is the probability
of a single bit flipping in the binary string (xα) associated with a cell type. Given
this rule we can associate a conditional probability between a cell type and a binary
string of length Np.

Prob(xα|α) = 1/Z

Prob(x ∈ Dα
1 |α) = q/Z Dα

1 = {x : |x− xα| = 1}

Prob(x ∈ Dα
n |α) = qn/Z Dα

n = {x : |x− xα| = n} (2.4)

Here |x − xα| represents the Hamming distance between x and xα, Dn is the set
of all x that are n bit flips away from xα and Z is a normalization constant. Figure
2.2 show a typical realization of the conditional probability of protein word x given
the cell type y, p(x|y), generated by the model. The joint probability, p(x, y), was
obtained by assuming uniform distribution over the cell types, p(y) = 1/NC .
We do the optimization of the IB functional (2.3) for the above joint p(x, y)

probability distribution and characterize the relevance - compression trade-offs for
this system. The goal is to quantitatively capture the notion of complexity for such
a system and show how this complexity is affected by various system parameters i.e
the variations in the set X, number of cell types NC etc.
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Figure 2.2. A typical realization of the conditional probability of protein word x
given the cell type y, p(x|y), generated by the model.

2.3.1 Optimizing the IB functional

In [6], the authors prove that the conditional p(t|x) is a stationary point of the IB
functional L = I(T,X)− βI(T, Y ) if and only if

p(t|x) =
p(t)

Z(x, β)
exp(−βDKL[p(y|x)||p(y, t)]), ∀t ∈ T , x ∈ X (2.5)

where DKL is the KL Divergence (See Chapter 1 (1.8)) between two probability dis-
tributions. The above equation along with the fact that the IB variablesX, Y, T form
a Markov chain represented by T ↔ X ↔ Y , give rise to an iterative scheme which
converges to a stationary point of the IB function with respect to the transitional
probabilities p(t|x). This algorithm is sensitive to the initial conditions and only
finds the local minimum, and therefore requires many initializations. We combine
the iIB algorithm with a deterministic algorithm called aIB [12] into an annealing
like procedure. We start with performing the aIB procedure for a very high β. In
the limit of high β the transition probabilities become a delta function and the aIB
provides the optimal solution. We then decrease β slightly and use the previous
optimal p(t|x) as the new initial condition for iIB and repeat this process annealing
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β close to zero.

2.3.2 Results

We summarize the results of the calculation below:

• Figure 2.3 shows the relevance compression trade-off for different values of the
cardinality of the bottleneck (glycan) set, NG. Note that the compression de-
creases as we go from zero to one on the x-axis and the mutual informations
(I(T ;X), I(T ;Y )) are normalized such that the range is between zero and one.
The area above the curve is the unfeasible region for the system, meaning that
above the curve relevance can not be achieved by the system for that value of
compression. The points on the curves represent a particular value of β, the
β values increase as we go from left to right on the curve, β = 0 corresponds
to the most compressed point on the curve (origin) and β →∞ represents the
most relevant point on the curve. As we increase the cardinality of the bot-
tleneck (glycan) set we can achieve more relevance at the cost of compression.
The lower cardinalities saturate earlier because of the compression caused by
not having enough elements to represent (encode) the relevant information in
the set X(proteins).

• Figure 2.4 shows the IB characteristics as a function of the bit flipping proba-
bility, q : (a) The IB curve for lower values of q saturate to a lower relevance
and the saturation starts at a higher value of compression. Saturating rele-
vance is achieved at a higher compression for low q systems. (b) shows the
saturating (maximum) relevance achieved as a function of the cardinality of
the bottleneck (glycan) set for various values of q. The shaded region repre-
sents ensembles of the same q. Higher q saturates at a larger NG and at a
lower maximum relevance.

• Figure 2.5 shows the IB characteristics as a function of the cardinality of the
target set (the number of cell types), NC (a) For low NC , higher relevance can
be achieved at higher compression, the curves saturates to the best relevance
faster and the unfeasible region is smaller. (b) The saturating relevance can be
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achieved by a smaller bottleneck (glycan) set for a system with lower number
of cell types (NC).

• Figure 2.6 shows complexity of encoding the protein set to the glycan set:
The distribution over the glycan set, p(t) becomes more detailed as we move
to more higher relevance on the IB curve.

The results of Figure 2.6 show that the detail in the probability distribution over
the glycan set is an indicator of the effectiveness of the glycans as a carrier of cell
type information. We use this fact to define glycan complexity of real mass spec-
trometry glycan profiles. We can fit the glycan probability to a Gaussian Mixture
model(GMM) and the number of GMM components required will correspond to the
detail and hence the complexity of a glycan distribution. We detail this procedure
for real Mass spectrometry glycan data in the following section.

2.4 Estimating complexity of the glycan molecular

code

As described in the previous section, a large number of different cell types can be
differentiated only if the cells are able to produce a large set of complex glycan pro-
files. We identified the complexity of a glycan profile with the amount of detail in
the profile, which can be quantitatively measured by number of Gaussians needed to
fit the profile well. A set of more complex glycan profiles is able to support differen-
tiation of a larger number cell types, or equivalently, a more complex organism. In
this section we measure the complexity of the mass spectrometry(MS) glycan profile
of several cell types.

Before quantifying the complexity of the MS glycan profiles, we first need a consis-
tent way of smoothening or coarse-graining the the raw glycan profiles obtained from
MSMS measurements to remove measurement and synthesis noise. Here, we denoise
the glycan profile by approximating it by a Gaussian mixture model (GMM) with
specified number of components that are supported on a finite set of indices [13].
Consistent with the measure of complexity described in the previous section, we
define the complexity of a mixture of Gaussians as the number of components m.
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Figure 2.3. Curve showing relevance-compression trade-off for different values
of the cardinality of the bottleneck (glycan) set, NG. Note that the compression
decreases as we go from zero to one on the x-axis. The area above the curve is
the unfeasible region for the system meaning that relevance above the curve can
not be achieved by the system for that value of compression. The points on the
curves represent a particular value of β, the β values increase as we go from left
to right on the curve, β = 0 corresponds to the most compressed point on the
curve (origin) and β → ∞ represents the most relevant point on the curve. As we
increase the cardinality of the middle/bottleneck (glycan) set we can achieve more
relevance at the cost of compression. The lower cardinalities saturate earlier because
of the compression caused by not having enough elements to represent (encode) the
relevant information in the set X(proteins).
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(a) (b)

Figure 2.4. IB characteristics as a function of the bit flipping probability, q : (a)
The IB curve for lower values of q saturate to a lower relevance and the saturation
starts at a higher value of compression. Saturating relevance is achieved at a higher
compression for low q systems. (b) shows the saturating (maximum) relevance
achieved as a function of the cardinality of the bottleneck (glycan) set for various
values of q. The shaded region represents ensembles of the same q. Higher q saturates
at a larger NG and at a lower maximum relevance.

(a) (b)

Figure 2.5. IB characteristics as a function of the cardinality of the target set
(the number of cell types), NC (a) For low NC , higher relevance can be achieved
at higher compression, the curves saturates to the best relevance faster and the
unfeasible region is smaller. (b) The saturating relevance can be achieved by a
smaller bottleneck (glycan) set for a system with lower number of cell types (NC).
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Figure 2.6. Complexity of encoding the protein set to the glycan set: The distribu-
tion over the glycan set, p(t) becomes more detailed as we move to higher relevance
on the IB curve.

48



2. Complexity of the glycan code

(a)

(b)

Figure 2.7. Living cells display a complex glycan distribution. (a) 3-GMM and
20-GMM approximation for the relative abundance of glycans taken from MSMS
data of planaria S.mediterranea, hydra magnipapillata and human Neutrophils. (b)
The change in the KL-divergence D(pT‖p(m)

GMM) as a function of the number of GMM
components m. The KL-divergence for planaria saturates at m = 5, for hydra at
m = 11, and for human cells atm = 20. Thus, the number of components required to
approximate the glycan profile correlates well with the complexity of the organism.
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Figure 1 demonstrates that the value of m at which the m-component GMM ap-
proximation of the target profile saturates, is a good measure of complexity. Using
this we see that the complexity of the glycan profiles of various organisms correlates
well with the number of cell types in an organism

We compare the complexity of glycan profiles of Hydra, Planaria and Humans.
The number of cell types in Hydra, Planaria and Humans are around 41 [14], 44 [15]
and 103 [16] respectively, based on transcriptome analysis (these are lower bounds
based on the main cell types, and especially for Planaria and Hydra, are subject to
constant revision). Our analysis of the MSMS data of these organisms suggest that
organism with fewer cell types have less complex glycan distribution.

We give the detailed procedure of obtaining the GMM fit from the mass spec-
trometry data in the following section.

2.4.1 Statistical model for Glycan MS data: GMM

The distribution of the glycans on the cell surface is obtained via mass spectrometry.
The x-axis of mass spectroscopy (MS) graphs is mass/charge of the ionized sample
molecules and the y-axis is relative intensity corresponding to each mass/charge
value, taking the highest intensity as 100%. This relative intensity roughly correlates
with the relative abundances of the molecules in the sample.

The raw MS data is noisy and cannot be directly used for further calculations.
There are three major sources of noise in the MS data [17]: chemical noise in the
sample, the Poisson noise associated with detecting discrete events, and the Nyquist-
Johnson noise associated with any charge system. We propose a simple model that
accounts for the chemical noise and the Poisson sampling noise. Using this noise
model and the available MS data, we generate parametric bootstrap samples of
glycan measurements, and fit a Gaussian Mixture Model (GMM) on this sample to
approximate the glycan distribution. .

The MS data obtained from [18, 19, 20] had mass ranging between 500 to 5000
Daltons with intensity reported at every 0.0153 Daltons. We first bin this MS data
into 180 bins and take the maximum value within each bin as the value of intensity
for that bin. Fig. 1 plots the raw MS data and the binned distribution. Next, we
describe the parametric bootstrap model that we used to generate the glycan data.
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Let Īk represents the relative intensity of the k-th bin in the binned MS graph. We
generate a sample population of glycans using the MS data in the following way:

1. Poisson sampling noise: The MS data does not have absolute count informa-
tion. We assume an arbitrary maximum count Imax, and define the intensity
Ik = ImaxĪk. The plots in Appendix 2.4 Fig. 2 (a) show that the results are
not sensitive to the specific value of Imax.

2. Chemical noise: The sample used for MS analysis also contains small amounts
of molecules that are not glycans. These appear as the very small peaks in
the MS data. We assume that the probability pk that the peak at index k

corresponds to a glycan is given by

pk = 1− e−
Ik

Imax = 1− e−Īk

which adequately suppresses this chemical noise.

3. Bootstrapped glycan data: The count nk at the glycan index k is distributed
according to the following distribution:

nk =

{
0 (1− pk) n = 0

n pke
−Ik (Ik)n

n!
n ≥ 1.

We assume that the MS data was generated from N different cells. Thus,
the total count at glycan index k is given by the sum of N i.i.d. samples
distributed according to the distribution above. We in Appendix 2.4 Fig. 2 (b)
show that results are insensitive to N . We normalize the count distribution
by the total number of counts across all the bins to obtain the bootstrapped
probability mass function pT .

The bootstrapped distribution pT is is noisy, and hence can not be used directly as
the target distribution. We use a Gaussian Mixture Model (GMM) based approach
to de-noise the raw data. The advantage of using a GMM based approach is that it
creates an easily interpretable hierarchy of increasingly more detailed distributions
to approximate the mass spectrometry profile. We define the complexity of a mass
spectrometry profile as the minimum number of components (individual Gaussians)
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in the GMM model required to approximate it. The details of the GMM calcula-
tions are as follows. We fix the number of components m. We want to approximate
the bootstrapped probability pT by the m-component mixture of Gaussian distri-
butions pGMM(θ) =

∑m
i=1wiNηi,∆i

, where Nηi,∆i
denotes the Gaussian distribution

with mean ηi and variance ∆i, wi ≥ 0 and
∑m

i=1wi = 1, the parameter vector
θ = (w,η,∆) We compute the optimal m-component GMM approximation by
minimizing the KL-divergence D(pT ||pGMM(θ)) as a function of parameter vector
θ. Since

D(pT ||pGMM(θ)) :=
Ns∑
k=1

pT (k) log

(
pT (k)∑m

i wiNηi,∆i
(k)

)

=
Ns∑
k=1

pT (k) log pT (k)−
Ns∑
k=1

pT (k) log
( m∑

i

wiNηi,∆i
(k)
)
,

the optimization problem minθD(pT ||pGMM(θ)) is equivalent to

max
θ

g(θ) :=

NS∑
k=1

pT (k) log

(
m∑
i=1

wiNηi,∆i
(k)

)

This is a non-convex optimization. We use an Expectation-Maximization (EM)
based iterative heuristic to compute a local maximum. Let θ(t) denote the current
value of the parameters. For each component i = 1, . . . ,m, and index k = 1, . . . , Ns,
define

z
(t)
i (k) =

w
(t)
i Nη(t)i ,∆

(t)
i

(k)∑m
j=1w

(t)
j Nη(t)j ,∆

(t)
j

(k)
.

Then z(t)
i (k) ≥ 0, and

∑m
i=1 z

(t)
i (k) = 1. We interpret z(t)

i (k) as the probability that
the count in bin k came from component i. Define

Q(θ,θ(t)) =

NS∑
k=1

m∑
i=1

pT (k)z
(t)
i (k) log

(
wiNηi,∆i

(k)

z
(t)
i (k)

)

Then we have that

Q(θ̂, θ̂) =

NS∑
k=1

m∑
i=1

pT (k)ẑi(k) log

(
m∑
i=1

wiNηi,∆i
(k)

)
=

NS∑
k=1

pT (k) log

(
m∑
i=1

wiNηi,∆i
(k)

)
= g(θ̂),
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and

g(θ) =

NS∑
k=1

pT (k) log

(
m∑
i=1

wiNηi,∆i
(k)

z
(t)
i (k)

z
(t)
i (k)

)

≥
NS∑
k=1

m∑
i=1

pT (k)z
(t)
i (k) log

(
wiNηi,∆i

(k)

z
(t)
i (k)

)
= Q(θ,θ(t)).

Define
θ(t+1) = argmax

θ
Q(θ, θ̂) (2.6)

Then, we have that

g(θ(t+1)) ≥ Q(θ(t+1), θ(t)) ≥ Q(θ(t), θ(t)) = g(θ(t)).

Therefore, the iterative algorithm in (2.6) generates a sequence {θ(t) : t ≥ 1} with
non-decreasing values of g, and the sequence converges to a local maximum. Next,
we show that the optimization in (2.6) can be computed efficiently.

1. w-update

w(t+1) = argmax
w

NS∑
k=1

m∑
i=1

pTk)z
(t)
i (k) log(wi) =⇒ w

(t+1)
i =

∑NS
k=1 z

(t)
i (k)pT (k)∑m

i=1

∑NS
k=1 z

(t)
i (k)pT (k)
(2.7)

2. η-update

η
(t+1)
i = argmin

η

NS∑
k=1

pT (k)ẑi(k)|k − ηi|2 =⇒ η
(t+1)
i =

∑Ns
k=1 z

(t)
i (k)k∑Ns

k=1 z
(t)
i (k)

. (2.8)

3. ∆-update

∆
(t+1)
i = argmax∆≥∆cut

{
−
∑Ns

k=1 pT (k)z
(t)
i (k)|k − ηt+1

i |2

2∆
− log(∆)

}

= max


√√√√∑NS

k=1 pT (k)z
(t)
i (k)|k − η(t+1)

i |2∑Ns
k=1 pT (k)z

(t)
i (k)

,∆cut

 , (2.9)
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where ∆cut is the minimum allowed width of the Gaussians, in our case ∆cut =

1 since glycan index, k ∈ {1, 2, . . . NS}, takes integer values with spacing 1.

Since this is a heuristic algorithm for a non convex optimization, we performed
several initialization of the algorithm to identify the best local maximum. The
KL divergence between the true and GMM approximated(D(pT ||pGMM)), shown in
Figure 2.7, saturates at some value of number of components, adding components
beyond this only increases model complexity without increasing quality of approxi-
mation.

2.5 Future extensions

In future, we will use real single cell mRNA data, instead of the toy model, to
estimate the joint probability of protein words and cell types. We are getting open
source data from Satija’s lab [21] and going to characterize the relevance-compression
trade-off for this joint probability. We will then compare the MS glycan profile with
the profile that we get from the bottleneck set.

Currently, our framework deals with cell type differentiation in presence of only
chemical noise. Another future direction is to extended this framework to include the
dynamics of host-pathogen interactions which will further increase the complexity
of the glycan distribution. Here we add an extra term in the information bottleneck
functional which is the mutual information between the glycans and the host. We
want to minimize this mutual information. The probabilities are now time dependent
because of being given by the dynamics of host pathogen interaction.

2.6 Conclusion

We started with trying to define complexity of glycan distribution in the cell. In
general the notion of complexity of a system depends on the function that the
system performs. Here we have described the complexity of the glycan distribution
in the cell from the context of glycans being the markers of cell type identity. We
use the framework of information bottleneck to describe this system. We find that
reliable differentiation of many cell types requires a complex glycan distribution in
the sense it has more visual detail and requires more number of Gaussians to fit the
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distribution reliably. We plan to extend this framework to include the dynamics of
host pathogen interaction and how that affects the glycan complexity.

The complexity of glycans arises due to their role in cell type differentiation.
They have to be identified as a proper cell type in a proper niche while avoiding
recognition from the pathogens. The glycan profiles can be modulated on a short
timescale leading to interesting host pathogen interactions which increases the glycan
complexity.

We estimated the complexity of glycan profiles of Human neutrophils and t-cells,
planaria and hydra. We find that the human cells have more complex glycan distri-
bution than planaria and hydra suggesting complex organisms have complex glycan
profiles.

The cellular machinery required for synthesizing a more complex glycan distribu-
tion with high fidelity should be more elaborate than a less complex one. In the next
chapter we present a simple model for the synthesis machinery. We then explore the
trade-offs in various synthesis costs due to the requirement of high fidelity synthesis
of a complex distribution.
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Chapter 3

Encoder of the glycan code: Chemical syn-
thesis machinery

In previous chapters we discussed the functions of glycans in the cell and particularly
focussed on the role of glycans as the carriers of information. We demostrated
that for glycans to faithfully represent the cell type and niche identity, the glycan
distribution must be ‘complex’, i.e. have many well separated detailed peaks. In this
chapter we look at the how such a ‘complex’ glycan distribution can be synthesised
in the Golgi compartments. We provide a basic mathematical model for the glycan
synthesis machinery which captures some of the salient features of the complex
biological process of glycan synthesis. We start with a phenomenological summary
of the glycan synthesis and the previous attempts at modeling glycosylation. We
then introduce our approach to model glycosylation and subsequently discuss the
results of the model.

3.1 Glycosylation

3.1.1 Phenomenology

The glycan display at the cell surface is a result of proteins that flux through and
undergo sequential chemical modification in the secretory pathway, comprising an
array of Golgi cisternae situated between the Endoplasmic Reticulum (ER) and the
Plasma Membrane (PM), as depicted in Fig 3.1. Proteins are delivered from the
ER to the first cisterna, whereupon they are processed by the resident enzymes in a
sequence of steps that constitute the N-glycosylation process [1] (See Figure 1.5). A
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3. Encoder of the glycan code: Chemical synthesis machinery

generic enzymatic reaction in the cisterna involves the catalysis of a group transfer
reaction in which the monosaccharide moiety of a simple sugar donor substrate, e.g.
UDP-Gal, is transferred to the acceptor substrate, by a Michaelis-Menten (MM)
type reaction [1]

Acceptor + glycosyl donor + Enzyme
ωf−⇀↽−
ωb

[Acceptor · glycosyl donor · Enzyme]

ωc−→ glycosylated acceptor + nucleotide + Enzyme
(3.1)

From the first cisterna, the proteins with attached sugars are delivered to the second
cisterna at a given inter-cisternal transfer rate, where further chemical processing
catalysed by the enzymes resident in the second cisterna occurs. This chemical
processing and inter-cisternal transfer continues until the last cisterna, thereupon
the fully processed glycans are displayed at the PM [1]. The network of chemical
processing and inter-cisternal transfer forms the basis of the physical model that we
will subsequently describe.

3.1.2 Previous detailed computational models

Bailey and coworkers [2], in the first attempt to mathematically model glycosyla-
tion, modelled a small glycosylation reaction network using mass action enzyme
kinetics with transport. The reaction network consisted of 33 reactions that formed
33 oligosacharides of high mannose, hybrid, hybrid-bisected, complex and complex-
bisected types. Each reaction of the central reaction network has an enzyme associ-
ated with it and they had 7 enzymes in their model. These enzymes are distributed
in three Golgi compartments according the the literature on CHO cells and the
enzyme parameters are also taken by from a literature review of glycosylation in
CHO cells. They look at the steady state distribution of different types of glycan
and found it to be in good agreement with the experimental data on the wild type
CHO cells. The model then tries to predict the ratio of various types of glycans
on perturbations in enzyme parameters from the wild type and compare it with
experiments.

Building on this work, [4] extended the mathematical model to include new types
of reaction which were not present in [2], like galactosylation, fucosylation, extension
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of branches of the oligosacharides and sialytion. This considerably extended the
reaction network to generate 7,565 glycan structures in a network of 22,871 reactions.
They accomplished this by assigning enzyme rules to the set of 11 enzymes - these
rules decide the substrate and product for a particular enzyme. The enzymes are
again distributed in three Golgi compartments. Since then the same group has
produced more and more detailed models of glycosylation [3].

A recent study by Ungar and coworkers [5, 6] developed a detailed stochastic
simulation for glycosylation, which shows how the overall Golgi transit time and
cisternal number, can be tuned to engineer a homogeneous glycan distribution.

These attempts of computationally modeling glycosylation by putting in an ever
increasing number of rules, in order to get more and more detailed description of
glycosylation, are of great practical importance in the controlled manufacture of
pharmaceutical glycans. We, however, are trying to make a conceptual point which
does not require the level of detail that is present in these models, on the contrary
this level of detail can potentially obscure the point. To this end, we provide an
simple model of glycosylation in the following section.

3.2 Basic mathematical model of Glycosylation

We provide a fairly general basic model of glycosylation with which we try to capture
the salient features of glycosylation and, try and see how these features affect the
glycan profile. The elements of this model are summarized below:

• Reaction network: The reaction network takes into account that a diverse
set of glycan are sequentially produced from a fixed set precursor glycans
coming from the ER. The simplest example of a possible reaction network is a
linear one with no branching. Note that the glycans in the linear network can
still be branched. We can add more glycosylation features to make the reaction
network more realistic like addition of branching, pruning and capping. Each
of these features will change the topology of the reaction network, e.g. most
general glycan branching will add branchesin the reaction network topology,
pruning will give rise to cycles and capping will differentially saturate the
length of branches of the network.

61



3. Encoder of the glycan code: Chemical synthesis machinery

• Transport network: A model for transfer of glycans from ER to Golgi and
from one Golgi cisternae to another. The detailed vesicular transport system
is too complex for our analysis but at the appropriate scale the complexity of
the transport mechanism can be coarse-grained. The probability of a vesicle
coming from one compartment to another can be approximated by exponential
distribution with some rate.

• Model for enzyme kinetics: Glycosylation reactions are carried out by
enzymes, both glycosyltranseferase and glycosidases, which show some level of
substrate promiscuity. The enzyme kinetics should therefore incorporate this
feature.

• Golgi compartments: Golgi compartments are homogenized reaction cham-
bers each with a distinct chemical environment, e.g. pH, which affects the
efficiency of enzyme reactions in a cisterna. This can be potentially facilitate
cisternal localisation of Golgi enzymes [1].

A family of synthesis models can be created with these basic elements. In the
following sections we describe one simple model out of this family. We first describe
the reaction and transport network and then describe the enzyme kinetics model.

3.2.1 Reaction and transport network

We consider an array of NC Golgi cisternae, labeled by j = 1, . . . , NC , between the
ER and the PM (Fig. 2). Proteins, denoted as Pc(1)

1 , are delivered from the ER
to cisterna-1 at an injection rate q. It is well established that the concentration
of the glycosyl donor in the j-th cisterna is chemostated [1, 7, 8, 9], thus in our
model we hold its concentration c

(j)
0 constant in time for the j-th cisterna. The

acceptor Pc(1)
1 reacts with c(1)

0 to form the glycosylated acceptor Pc(1)
2 , following an

MM-reaction (3.1) catalysed by the appropriate enzyme. The acceptor Pc(1)
2 has the

potential of being transformed into Pc(1)
3 , and so on, provided the requisite enzymes

are present in that cisterna. This leads to the sequence of enzymatic reactions
Pc(1)

1 → Pc
(1)
2 → . . .Pc(1)

k → . . ., where k enumerates the sequence of glycosylated
acceptors, using a consistent scheme (such as in [2]). We assume that this sequence of
reactions stops at a finite value, which we call Ns. For the N-glycosylation pathway
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Figure 3.1. Enzymatic reaction and transport network in the secretory pathway.
Represented here is the array of Golgi cisternae (blue) indexed by j = 1, . . . , NC

situated between the ER and PM. Glycan-binding proteins Pc(1)
1 are injected from

the ER to cisterna-1 at rate q. Superimposed on the Golgi cisternae is transition
network of chemical reactions (column) - intercisternal transfer (rows), the latter
with rates µ(j). Pc(j)

k denotes the acceptor substrate in compartment j and the gly-
cosyl donor c0 is chemostated in each cisterna. This results in a distribution (relative
abundance) of glycans displayed at the PM (red curve), that is representative of the
cell type.

in a typical mammalian cell, Ns = 2 × 104 and NC = 4-8 [2, 3, 4, 6]. We denote
the reaction rate of formation of glycan k in compartment j, Pc(j)

k , by Reff (j, k).
The glycosylated proteins are transported from cisterna-1 to cisterna-2 at an inter-
cisternal transfer rate µ(1), whereupon similar enzymatic reactions proceed. The
processes of intra-cisternal chemical reactions and inter-cisternal transfer continue
to the other cisternae and form a network as depicted in Fig. 3.1. Although, in this
thesis, we focus on a sequence of reactions that form a line-graph, the methodology
we propose extends to tree-like reaction sequences, and more generally to reaction
sequences that form a directed acyclic graphs [10].
We now add to this chemical reaction kinetics, the rates of injection (q) and inter-

cisternal transport µ(j) from the cisterna j to j+1; the complete set of equations that
describe the changes in the substrate concentrations c(j)

k with time in the following.
These kinetic equations automatically obey the conservation law for the protein
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concentration (p).

dc
(1)
1

dt
= q −Reff (1, 1)c

(1)
1 − µ(1)c

(1)
1

dc
(1)
k

dt
=Reff (1, k − 1)c

(1)
k−1 −Reff (1, k)c

(1)
k − µ

(1)c
(1)
k

dc
(1)
Ns

dt
=Reff (1, Ns − 1)c

(1)
Ns−1 − µ

(1)c
(1)
Ns

(3.2)

for cisterna-1, and

dc
(j)
1

dt
= µ(j−1)c

(j−1)
1 −Reff (j, 1)c

(j)
1 − µ(j)c

(j)
1

dc
(j)
k

dt
= µ(j−1)c

(j−1)
k +Reff (j, k − 1)c

(j)
k−1 −Reff (j, k)c

(j)
k − µ

(j)c
(j)
k

dc
(j)
Ns

dt
= µ(j−1)c

(j−1)
Ns

+Reff (j,Ns − 1)c
(j)
Ns−1 − µ

(j)c
(j)
Ns

(3.3)

for cisternae j = 2, 3, . . . , NC . These set of dynamical equations (3.2)-(3.3), with
initial conditions, can be solved to obtain the concentration c(j)

k (t) for t ≥ 0. Equa-
tions (3.2)-(3.3) automatically obey the conservation law for the protein concentra-
tion (p), i.e., the total protein concentration p(j) =

∑Ns
k′=1 c

(j)
k′ in the j-th cisterna

automatically satisfies,

dp(1)

dt
= q − µ(1)p(1)

dp(j)

dt
= µ(j−1)p(j−1) − µ(j)p(j)

for j = 2, 3, . . . NC .
At steady state, the left hand side of in equations (3.2)-(3.3) is set to zero, which

after rescaling the kinetic parameters in terms of the injection rate q, i.e. Reff (j, k) =

Reff (j, k)/q and µ(j) = µ(j)/q, gives the following recursion relations for the steady
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state concentrations of the glycans in each cisterna. In the first cisterna,

c
(1)
1 =

1

µ(1) +Reff (1, 1)

c
(1)
k =

Reff (j, k − 1)c
(1)
k−1

µ(1) +Reff (j, k)
(3.4)

c
(1)
Ns

=
Reff (j,Ns − 1)c

(1)
Ns−1

µ(1)

and in cisternae j ≥ 2,

c
(j)
1 =

µ(j−1)c
(j−1)
1

µ(j) +Reff (j, 1)

c
(j)
k =

µ(j−1)c
(j−1)
k +Reff (j, k − 1)c

(j)
k−1

µ(j) +Reff (j, k)
(3.5)

c
(j)
Ns

=
µ(j−1)c

(j−1)
Ns

+Reff (j,Ns − 1)c
(j)
Ns−1

µ(j)

Equations (3.10)-(3.11) automatically imply that the total steady state glycan con-
centration in each cisterna j = 1, . . . , Nc is given by

Ns∑
k=1

c
(j)
k =

1

µ(j)
.

The steady state mass glycan concentrations depend on the transport rate µ
and the reaction rate Reff where the reaction rate Reff is a result of the enzymes
kinetics of glycosylation enzymes. In the following section we provide a model for
the kinetics of glycosylation enzymes.

3.2.2 Model for enzyme action

Let the glycosylation reactions in each cisterna j, catalysed by enzymes labeled
as E(j)

α , with α = 1, . . . , NE, where NE is the total number of enzyme species in
each cisterna. Since many substrates can compete for the substrate binding site on
each enzyme, one expects in general that Ns � NE. The configuration space of
the network in Fig. 3.1 is Ns × NC . For the N-glycosylation pathway in a typical

65



3. Encoder of the glycan code: Chemical synthesis machinery

Figure 3.2. Schematic for the enzyme model showing induced fit model for a fixed
substrate and flexible enzyme.

mammalian cell, Ns = 2 × 104, NE = 10-20 and NC = 4-8 [2, 3, 4, 6]. We account
for the fact that the enzymes have specific cisternal localisation, by setting their
activities to zero in those cisternae where they are not present.

The action of enzyme E(j)
α on the substrate Pc(j)

k in cisterna j is given by

Pc(j)
k + E(j)

α

ωf (j,k,α)c
(j)
0−−−−−−−⇀↽−−−−−−−

ωb(j,k,α)

[
E(j)
α − Pc

(j)
k − c

(j)
0

]
ωc(j,k,α)−−−−−→ Pc(j)

k+1 + E(j)
α (3.6)

where k = 1, . . . Ns − 1. In general, the forward, backward and catalytic rates ωf ,
ωb and ωc, respectively, depend on the cisternal label j, the reaction label k, and the
enzyme label α, that parametrize the MM-reactions [11]. For instance, structural
studies on glycosyltransferase-mediated synthesis of glycans [12], would suggest that
the forward rate ωf to depend on the binding energy of the enzyme E(j)

α to acceptor
substrate Pc(j)

k and a physical variable that characterizes the cisternae.
A potential candidate for such a cisternal variable is pH [13], whose value is main-

tained homeostatically in each cisterna [14]; changes in pH can affect the shape
of an enzyme (substrate) or their charge properties, and in general the reaction
efficiency of an enzyme has a pH optimum [11]. Another possible candidate for
a cisternal variable is membrane bilayer thickness [15] - indeed both pH [16] and
membrane thickness are known to have a gradient across the Golgi cisternae. We
take ωf (j, k, α) ∝ P (j)(k, α), where P (j)(k, α) ∈ (0, 1), is the binding probability
of enzyme E(j)

α with substrate Pc(j)
k , and define the binding probability P (j)(k, α)

using a biophysical model, similar in spirit to the Monod-Wyman-Changeux model
of enzyme kinetics [17, 18] that depends on enzyme-substrate induced fit (See Fig-
ure 3.2).
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Let `(j)
α and `k denote, respectively, the optimal “shape” for enzyme E(j)

α and the
substrate Pc(j)

k . We assume that the mismatch (or distortion) energy between the
substrate k and enzyme E(j)

α is ‖`k − `(j)
α ‖, with a binding probability given by,

P (j)(k, α) = exp
(
−σ(j)

α ‖`k − `(j)
α ‖
)

(3.7)

where ‖ · ‖ is a distance metric defined on the space of `(j)
α (e.g., the square of

the `2-norm would be related to an elastic distortion model [19]) and the vector
σ ≡ [σ

(j)
α ] parametrizes enzyme specificity. This distortion model captures the

above idea that the reaction between the flexible enzyme and fixed substrate is
facilitated by an induced fit. A large value of σ(j)

α indicates a highly specific enzyme,
a small value of σ(j)

α indicates a promiscuous enzyme. It is recognized that the
degree of enzyme specificity or sloppiness is an important determinant of glycan
distribution [1, 20, 21, 22].

Our synthesis model is mean-field, in that we ignore stochasticity in glycan syn-
thesis that may arise from low copy numbers of substrates and enzymes, multiple
substrates competing for the same enzymes, and kinetics of inter-cisternal trans-
fer [2, 3, 4]. Then the usual MM-steady state conditions for (3.6), which assumes that
the concentration of the intermediate enzyme-substrate complex does not change
with time, imply that

[
E(j)
α − Pc

(j)
k − c

(j)
0

]
=

ωf (j, k, α) c
(j)
0

ωb(j, k, α) + ωc(j, k, α)
E(j)
α c

(j)
k .

where c(j)
k is the concentration of the acceptor substrate Pc(j)

k in compartment j.
Together with the constancy of the total enzyme concentration,

[
E

(j)
α

]
tot

= E
(j)
α +∑Ns

k=1

[
E

(j)
α − Pc(j)

k − c
(j)
0

]
, this immediately fixes the kinetics of product formation

(not including inter-cisternal transport),

dc
(j)
k+1

dt
=

NE∑
α=1

V (j, k, α)P (j)(k, α)c
(j)
k

M(j, k, α)

(
1 +

∑Ns
k′=1

P (j)(k′,α)c
(j)

k′
M(j,k′,α)

) k = 1, . . . , NS; j = 1, . . . , NC

(3.8)
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where
M(j, k, α) =

ωb(j, k, α) + ωc(j, k, α)

ωf (j, k, α)c
(j)
0

P (j)(k, α)

and
V (j, k, α) = ωc(j, k, α)

[
E(j)
α

]
tot
.

This reparametrization of the reaction rates ωf , ωb, ωc in terms of M,V is convenient,
since it relates to experimentally measurable parameters Vmax and MM-constant
KM , for each (j, k, α) which can be easily read out. As is the usual case, the maxi-
mum velocity Vmax is not an intrinsic property of the enzyme, because it is dependent
on the enzyme concentration

[
E

(j)
α

]
tot
; while KM(j, k, α) = M(j, k, α)c

(j)
0 /P (j)(k, α)

is an intrinsic parameter of the enzyme and the enzyme-substrate interaction. The
enzyme catalytic efficiency, the so-called “kcat/KM" ∝ P (j)(k, α) and is high for
perfect enzymes [23] with minimum mismatch.

Reff (j, k) =

NE∑
α=1

V (j, k, α)P (j)(k, α)

M(j, k, α)

(
1 +

∑Ns
k′=1

P (j)(k′,α)c
(j)

k′
M(j,k′,α)

) k = 1, . . . , NS; j = 1, . . . , NC

(3.9)
Having defined the model for obtaining Reff , we are now in a position to obtain

the steady state glycan profiles and see the effect of various reaction and transport
parameters on the steady state glycan concentration profile.
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3.3 Steady state concentrations of glycans

The steady state glycan concentrations are obtained by putting the value of Reff

given by Eq. 4.3 into the steady state equations, Eq. 3.4 and 3.5. In the first cisterna,

c
(1)
1 =

1

µ(1) +
∑NE

α=1
V (1,1,α)P (1)(1,α)c

(1)
1

M(1,1,α)

(
1+
∑Ns
k′=1

P (1)(k′,α)c(1)
k′

M(1,k′,α)

)

c
(1)
k =

∑NE
α=1

V (1,k−1,α)P (1)(k−1,α)c
(1)
k−1

M(1,k−1,α)

(
1+
∑Ns
k′=1

P (1)(k′,α)c(1)
k′

M(1,k′,α)

)

µ(1) +
∑NE

α=1

V (1,k,α)P (1)(k,α)c
(1)
k

M(1,k,α)

(
1+
∑Ns
k′=1

P (1)(k′,α)c(1)
k′

M(1,k′,α)

) (3.10)

c
(1)
Ns

=

∑NE
α=1

V (1,Ns−1,α)P (1)(Ns−1,α)c
(1)
Ns−1

M(1,Ns−1,α)

(
1+
∑Ns
k′=1

P (1)(k′,α)c(1)
k′

M(1,k′,α)

)
µ(1)

and in cisternae j ≥ 2,

c
(j)
1 =

µ(j−1)c
(j−1)
1

µ(j) +
∑NE

α=1
V (j,1,α)P (j)(1,α)c

(j)
1

M(j,1,α)

(
1+
∑Ns
k′=1

P (j)(k′,α)c(j)
k′

M(j,k′,α)

) (3.11)

c
(j)
k =

µ(j−1)c
(j−1)
k +

∑NE
α=1

V (j,k−1,α)P (j)(k−1,α)c
(j)
k−1

M(j,k−1,α)

(
1+
∑Ns
k′=1

P (j)(k′,α)c(j)
k′

M(j,k′,α)

)

µ(j) +
∑NE

α=1

V (j,k,α)P (j)(k,α)c
(j)
k

M(j,k,α)

(
1+
∑Ns
k′=1

P (j)(k′,α)c(j)
k′

M(j,k′,α)

)

c
(j)
Ns

=

µ(j−1)c
(j−1)
Ns

+
∑NE

α=1

V (j,Ns−1,α)P (j)(Ns−1,α)c
(j)
Ns−1

M(j,Ns−1,α)

(
1+
∑Ns
k′=1

P (j)(k′,α)c(j)
k′

M(j,k′,α)

)
µ(j)

Equations (3.10)-(3.11) automatically imply that the total steady state glycan con-
centration in each cisterna j = 1, . . . , Nc is given by

Ns∑
k=1

c
(j)
k =

1

µ(j)
.
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The steady state glycan concentrations, c ≡ c
(j)
k , as a function of the independent

vectors M ≡ [M(j, k, α)], V ≡ [V (j, k, α)], and L ≡ ‖`k − `(j)
α ‖, the transport

rates µ ≡ [µ(j)] and specificity, σ ≡ [σ
(j)
α ]. While it is possible to numerically solve

the above nonlinear recursion relation to obtain the steady state glycan profile for
a given value of the parameters (M,V, L, σ, µ), it is extremely computationally
expensive; making exploration in the high dimension space of the parameters pro-
hibitive expensive. In the following section, we give a different formulation of the
steady state glycan profiles in terms of new parameters (R,L, σ, µ), in which the
concentrations are given by a linear recursion relation. We then prove that both the
formulations are equivalent in the sense that the set of all possible glycan profiles
in both the formulations is the same. Therefore, instead of exploring in the com-
putationally expensive, (M,V, L, σ, µ) space, we can explore in the much cheaper,
(R,L, σ, µ) space.

3.3.1 Equivalent formulation of the steady state glycan pro-

files

Define a new set of parameters,

R(j, k, α) =
V (j, k, α)

M(j, k, α)

(
1 +

∑Ns
k′=1

P (j)(k′,α)c
(j)

k′
M(j,k′,α)

) (3.12)

where c denotes the steady state glycan concentration corresponding to a specific
(M,V, L, σ, µ). Define v by the following set of linear equations:

v
(1)
1 =

1

µ(1) +
∑NE

α=1 R(1, 1, α)P (1)(1, α)

v
(1)
k =

v
(1)
k−1

∑NE
α=1R(1, k − 1, α)P (1)(k − 1, α)

µ(1) +
∑NE

α=1 R(1, k, α)P (1)(k, α)

v
(1)
Ns

=
v

(1)
Ns−1

∑NE
α=1 R(1, Ns − 1, α)P (1)(Ns − 1, α)

µ(1)

(3.13)

for j = 1, and
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v
(j)
1 =

v
(j−1)
1 µ(j−1)

µ(j) +
∑NE

α=1R(j, 1, α)P (j)(1, α)

v
(j)
k =

v
(j−1)
k µ(j−1)

µ(j) +
∑NE

α=1R(j, k, α)P (j)(k, α)

+
v

(j)
k−1

∑NE
α=1 R(j, k − 1, α)P (j)(k − 1, α)

µ(j) +
∑NE

α=1R(j, k, α)P (j)(k, α)

v
(j)
Ns

=
v

(j−1)
Ns

∑NE
α=1 R(j,Ns − 1, α)P (j)(Ns − 1, α)

µ(j)
+
v

(j−1)
Ns

µ(j−1)

µ(j)

(3.14)

for j = 2, . . . , NC . Then, by the definition of R in (3.12), it trivially follows that
the steady state concentration c corresponding to (M,V, L, σ, µ) is a solution for
(3.13)-(3.14).

Next, we show that for v obtained from (3.13)-(3.14) for any parameter (R,L, σ, µ),
there exists parameter (M,V, L, σ, µ) such that (3.10)-(3.11) are automatically sat-
isfied when we set c = v, i.e. v is the steady state concentration for (M,V, L, σ, µ),
and vice versa. Let

A =

{
[c

(j)
k ]j,k :

µ(j) ≥ 0,M(j, k, α) ≥ 0, V (j, k, α) ≥ 0, l
(j)
α ≥ 0,

[c
(j)
k ]jk given by (3.10) and (3.11),

}

and let

B =

{
[v

(j)
k ]j,k :

µ(j) ≥ 0, R(j, k, α) ≥ 0, l
(j)
α ≥ 0

[v
(j)
k ]j,k given by (3.13) and (3.14)

}
.

Then, our task is to show that A = B. Suppose [c
(j)
k ]j,k ∈ A. Let [M(j, k, α)],

[V (j, k, α)] and [l
(j)
α ] be the corresponding parameters. Define

R(j, k, α) =

NE∑
α=1

V (j, k, α)

M(j, k, α)

(
1 +

∑Ns
k′=1

P (j)(k′,α)c
(j)

k′
M(j,k′,α)

) ≥ 0

Then [c
(j)
k ]j,k ∈ B.

Next, suppose [v
(j)
k ]j,k ∈ B. Let [R(j, k, α)], [l

(j)
α ] denote the corresponding param-

eters. Since
∑Ns

k=1 v
(j)
k = 1/µ(j) < ∞, it follows that

∑Ns
k=1 P

(j)(k, α)v
(j)
k < 1/µ(j) <
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∞. Thus, there exists parameters [M(j, k, α)], [V (j, k, α)] and [l
(j)
α ] such that

R(j, k, α) =
V (j, k, α)

M(j, k, α)

(
1 +

∑Ns
k′=1

P (j)(k′,α)v
(j)

k′
M(j,k′,α)

) (3.15)

Therefore, [v
(j)
k ]j,k satisfy (3.10) and (3.11), i.e. [v

(j)
k ]j,k ∈ A.

Thus, the set of all concentration profiles defined by (3.13)-(3.14) as a function of
all possible values of the parameters (R,L, σ, µ) is identical to the set defined by
(3.10)-(3.11) as function of (M,V, L, σ, µ). This is a crucial insight, since it allows
us to search the entire parameter space using (3.13)-(3.14), where the concentration
is known explicitly in terms of (R,L, σ, µ).

3.3.2 Representative glycan steady state concentration pro-

files of the model

We now compute some representative steady state glycan profiles using (3.13)-(3.14)
and additionally making the following simplifying assumptions to the general model:

• We ignore the k dependence in R

• We assume that shape function is a scalar (a length), i.e. l(j)α = `
(j)
α . It further

simplifies the algebra to assume that the length of the substrates are integer
multiples of a basic unit (which we take to be 1), i.e. `k = k. The norm that
appears in (3.7) is taken to be the absolute value difference |lk − l(j)α |.

• We drop the dependence of the specificity on α and j, and take it to be a
scalar σ.

These assumptions greatly simplify the algebraic and numerical complexity while
still keeping the important features of the model. In Figure 3.3, we plot the glycan
profiles, ck vs. k, for a system of one enzyme, one compartment and two enzymes,
two compartments. The profiles are calculated for various values of the parameters
enzyme rate, R and enzyme specificity, σ, while keeping enzyme length, l(j)α , and
transport rate, µ, fixed. The results in the plots lead us to the following general
observations:
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(a) (b)

(c) (d)

Figure 3.3. Glycan profile {ck : k = 1, . . . , Ns} as a function of specificity σ ((a)
and (c)), and reaction rates R ((b) and (d)).
(a): NE = NC = 1, (R = 50, µ = 1, l = 10). ck decreases exponentially with
k for very low and very high σ; however, the decay rate is lower at low σ. For
intermediate values of σ, the distribution has exactly two peaks, one of which is
at k = 0, and eventually decays exponentially. The width of the distribution is a
decreasing function of σ.
(b): NE = NC = 1, (σ = 0.1, µ = 1, l = 10). At low R, ck is concentrated at low k.
The proportion of higher index glycans in an increasing function of R.
(c): NE = NC = 2, (R = 40, µ = 1, [l

(1)
1 , l

(1)
2 , l

(2)
1 , l

(2)
2 ] = [10, 30, 50, 70]). As σ

increases, the distribution becomes more complex – from a single peaked distribution
at low σ to a maximum of four-peaked distribution at high σ. The peaks gets
sharper, and more well defined as σ increases.
(d): NE = NC = 2, (R = 40, µ = 1, [l

(1)
1 , l

(1)
2 , l

(2)
1 , l

(2)
2 ] = [10, 30, 50, 70]). As in the

plots in (b), increasing R shifts the peaks towards higher index glycans and the
proportion of higher index glycan increases.
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1. Very low specificity enzymes cannot generate complex glycan distributions.
Keeping everything else fixed, intermediate or high specificity enzymes can
generate glycan distributions of higher complexity by increasing NE or NC

(Figures 3.3(a),(c)).

2. Decreasing the specificity σ or increasing the rates R increases the proportion
of higher index glycans. Keeping everything else fixed, changes in the rate R
have a stronger impact on the relative weights of the higher index glycans to
lower index glycans. The relative weight of the higher index glycans increases
with increasing NE and NC (Figures 3.3(b)-(d)).

3. Keeping everything else fixed, decreasing enzyme specificity increases the spread
of the distribution around the peaks. (Figures 3.3(a),(c)).

In the following section we do an analytical calculation, in the limit of large number
of glycan species, Ns, to give more intuition about the kinds of glycan profiles that
can be generated by the model and the effect of various parameters of the model on
the glycan profile.

3.3.3 Analytical calculation in large Ns limit

It is possible to obtain analytical expressions for the steady state glycan distribution
in the limit Ns � 1 when the glycan index k can be approximated by a continuous
variable. In this case, (3.10)-(3.11) can be cast as differential equations,

dc
(1)
k

dk
≈ c

(1)
k − c

(1)
k−1

=

(∑NE
α=1 R(1, k − 1, α) exp(−σ|k − 1− l(1)

α |)
µ(1) +

∑NE
α=1R(1, k, α) exp(−σ|k − l(1)

α |)
− 1

)
c

(1)
k−1

≈ −

(
µ(1) + d

dk

∑NE
α=1 R(1, k, α) exp(−σ|k − l(1)

α |)
µ(1) +

∑NE
α=1R(1, k, α) exp(−σ|k − l(1)

α |)

)
c

(1)
k ,

(3.16)
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and

dc
(j)
k

dk
≈ c

(j)
k − c

(j)
k−1

=
µ(j−1)

µ(j) +
∑NE

α=1R(j, k, α) exp(−σ|k − l(j)α |)
c

(j−1)
k

−

(
µ(j) + d

dk

∑NE
α=1R(j, k, α) exp(−σ|k − l(j)α |)

µ(j) +
∑NE

α=1R(j, k, α) exp(−σ|k − l(j)α |)

)
c

(j)
k

(3.17)

for j = 2, . . . , NC . In (3.16) and (3.17),

d

dk

NE∑
α=1

R(j, k, α) exp(−σ|k − l(j)α |)

=

NE∑
α=1

R(j, k, α)σ exp(−σ|k − l(j)α |)(1− 2I(k ≥ lα)) + R′(j, k, α) exp(−σ|k − l(j)α |)

(3.18)

where the indicator function I(·) is equal to 1 if the argument is true, and zero
otherwise and R′(j, k, α) is the derivative of R(j, k, α) with respect to k.

Define a vector function C(k) ∈ RN
c of the continuous variable k by C(k) =

[c
(1)
k , c

(2)
k , . . . c

(NC)
k ]. Then (3.16) and (3.17) can be written as:

dC(k)

dk
= M(k)C(k) (3.19)

where the matrix M(k) is given by

M(k) =



A(1)(k) 0 0 0 . . . 0

B(2)(k) A(2)(k) 0 0 . . . 0

0 B(3)(k) A(3)(k) 0 . . . 0
...

...
...

...
...

0 . . . 0 B(NC)(k) A(NC)(k)


(3.20)
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with

A(j)(k) = −
µ(j) + d

dk

∑NE
α=1 R(j, k, α) exp(−σ|k − l(j)α |)

µ(j) +
∑NE

α=1R(j, k, α) exp(−σ|k − l(j)α |)

B(j)(k) =
µ(j−1)

µ(j) +
∑NE

α=1 R(j, k, α) exp(−σ|k − l(j)α |)

The functions A(j)(k) and B(j)(k) involve absolute value and indicator functions;
therefore, the differential equation has to be solved in a piecewise manner assuming
continuity of solution C(k).

The general solution of (3.19)

C(k) = C0 exp (Ω(k)) (3.21)

is written in terms of the Magnus Function Ω(k) =
∑∞

n=1 Ω(n, k), obtained from the
Baker-Campbell-Hausdorff formula [24],

Ω(1, k) =

∫ k

0

M(k1)dk1

Ω(2, k) =
1

2

∫ k

0

dk1

∫ k1

0

dk2 [M(k1),M(k2)]

Ω(3, k) =
1

6

∫ k

0

dk1

∫ k1

0

dk2

∫ k2

0

dk3 [M(k1), [M(k2),M(k3)]] + [M(k3), [M(k2),M(k1)]]

. . . . . .

where [M(k1),M(k2)] := M(k1)M(k2) −M(k2)M(k1) is the commutator, and the
higher order terms in . . . contain higher order nested commutators. In Appendix A,
we establish conditions under which the series

∑∞
n=1 Ω(n, k) that defines solution

C(k) to the differential equation (3.19) converges. Now we solve (3.19) for some
special cases.

While in principle we can obtain the glycan profile for any NE and NC with
arbitrary accuracy, assuming R(j, k, α) = R

(j)
α , we provide explicit formulae for a

few representative cases : (i) (NE = 1, NC = 1) and (ii) (NE = 1, NC = 2).
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(i) NE = 1, NC = 1: The solution of the differential equation is given by

c(k) =

 c0e
−k
(
µ+R exp(−σ(l−k))
µ+R exp(−σl)

)(1/σ)−1

k ≤ l

c(l)e−(k−l)
(

µ+R
µ+R exp(−σ(k−l))

)(1/σ)+1

k > l
(3.22)

A representative concentration profile is plotted in Figure 3.4(a). The concentration
profile consists of two distinct components: an initial exponential decay, and then
an exponential rise and fall concentrated around l. The relative weight of these two
components is controlled by the sensitivity σ and the rate R. Such explicit formulae
can be obtained for any NE > 1, as long as NC = 1.
(ii) NE = 1, NC = 2: The concentration profile c(2) in cisterna 2 can be ob-

tained from the following calculation. Let l(j) denote the “length” of the enzyme in
cisterna j = 1, 2. For k ≤ min{l(1), l(2)}

c(2)(k) = c0µ
(1)e−k

(µ(2) +R(2) exp(−σ(l(2) − k))

µ(1) +R(1)e−σl(1)

)(1/σ)−1

∫ k

0

(µ(1) +R(1) exp(−σ(l(1) − k)))(1/σ)−1

(µ(2) +R(2) exp(−σ(l(2) − k)))1/σ
dk

+ c(2)(0)e−k

(
µ(2) +R(2)e−σ(l(2)−k)

µ(2) +R(2)e−σl(2)

)(1/σ)−1

Next, consider the case where l(1) ≤ l(2). Then, for l(1) < k ≤ l(2)

c(2)(k) = c(1)(l(1))µ(1)e−(k−l(1))(µ(1) +R(1))(1/σ)+1(µ(2) +R(2) exp(−σ(l(2) − k)))(1/σ)−1∫ k

l(1)

(µ(2) +R(2) exp(−σ(l(2) − k)))−1/σ

(µ(1) +R(1) exp(−σ(k − l(1))))(1/σ)+1
dk

+ c(2)(l(1))e−(k−l(1))

(
µ(2) +R(2)e−σ(l(2)−k)

µ(2) +R(2)e−σ(l(2)−l(1))

)(1/σ)−1

(3.23)
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and for l(1) ≤ l(2) < k,

c(2)(k) = c(1)(l(1))µ(1)e−(k−l(1))
(

µ(1) +R(1)

µ(2) +R(2) exp(−σ(k − l(2)))

)(1/σ)+1

∫ k

l(2)

(µ(2) +R(2) exp(−σ(k − l(2))))1/σ

(µ(1) +R(1) exp(−σ(k − l(1))))(1/σ)+1
dk

+ c(2)(l(2))e−(k−l(2))
(

µ(2) +R(2)

µ(2) +R(2)e−σ(k−l(2))

)(1/σ)+1

(3.24)

Next, the case where l(1) ≥ l(2). For l(2) < k ≤ l(1),

c(2)(k) = c0µ
(1)e−k

(µ(1) +R(1)e−σl
(1)

)1−(1/σ)

(µ(2) +R(2) exp(−σ(k − l(2))))(1/σ)+1∫ k

l(2)

(µ(1) +R(1) exp(−σ(l(1) − k)))(1/σ)−1

(µ(2) +R(2) exp(−σ(k − l(2))))−1/σ
dk

+ c(2)(l(2))el
(2)−k

(
µ(2) +R(2)

µ(2) +R(2)e−σ(k−l(2))

)(1/σ)+1

(3.25)

For (2) ≤ l(1) < k,

c(2)(k) = c(1)(l(1))µ(1)e−(k−l(1))
(

µ(1) +R(1)

µ(2) +R(2) exp(−σ(k − l(2)))

)(1/σ)+1

∫ k

l(2)

(µ(2) +R(2) exp(−σ(k − l(2))))1/σ

(µ(1) +R(1) exp(−σ(k − l(1))))(1/σ)+1
dk

+ c(2)(l(1))e−(k−l(1))

(
µ(2) +R(2)e−σ(l(1)−l(2))

µ(2) +R(2)e−σ(k−l(2))

)(1/σ)+1

(3.26)

The integrals in (3.23) to (3.26) can evaluated numerically. The result of the nu-
merical computation is shown in Fig. 3.4.

3.4 Extensions of the Glycan synthesis model

• Retrograde transport: The transport network that we used was uni-directional
but in reality there is backward transport of cargo, called retrograde transport,
in the Golgi. We can allow retrograde transport in our model. This increases
the complexity of the model considerably and also has some interesting impli-
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(a) (b)

Figure 3.4. Glycan concentration profile calculated from the model using (a)
formula (3.22) for NE = NC = 1 and (b) formulae (3.23)-(3.26) for NE = 1, NC = 2.

cations. Cargo specificity of the transport in general and retrograde transport
in particular. How do the number of peaks in the steady state distribution
change on the inclusion of retrograde transport. Combination with capping
can be interesting. Error correction and glycan profile sculpting in time vary-
ing environment

• Branching, Pruning and Capping: Adding features like branching, prun-
ing and capping to the reaction network and observing the effect of these on
the steady state glycan profile.

• Extended enzyme distortion model: The distortion model we are using
for calculating the binding probabilities of substrates with enzymes allows
every enzyme α to in principle catalyze any reaction in any cisterna. This
allowed for the ideal enzyme length l(j)α in (3.7) to vary across the cisternae in
an unconstrained manner, leading to simplification in the calculation. This is
unrealistic and a more reasonable model for the ideal enzyme length is given
by

`(j)
α = `(0)

α + δ`(j)
α , δ`(j)

α ∈ [−`(j)
b , `

(j)
b ],

i.e., the nominal length `(0)
α can be distorted in a cisterna by a correction δ`(j)

α

but within a specified bound `
(j)
b that is not subject to optimization. One

can render some enzymes inactive in certain cisternae by choosing appropriate
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values of `(0)
α and δ`(j)

α . We will see the effect of this extension in Sect. 4.2.1.

3.5 Conclusion

In this chapter we provided a fairly general basic model of glycan synthesis machinery
which captures many of its salient features. The elements of this model are - the
reaction network, the transport network, a model of enzyme kinetics and chemically
distinct compartments of the Golgi complex. This framework allows us to create a
family of models of which we describe in detail one of the simplest. In this model,
we take a linear reaction network with uni-directional transport (from the ER to
PM). The enzyme kinetics is based on the induced fit model of interaction with
a deformable enzyme and fixed substrate. The deformability of the enzyme is a
parameter which is related to the substrate specificity of the enzyme.

The steady state glycan concentration profile of this model depends on the enzyme
parameters - the enzyme rate and enzyme specificty, the transport parameters - the
transport rate and chemical environment of the Golgi cisternae. These parameters
affect the glycan profile differently - e.g the enzyme specificity controls the typical
width of the peaks in the glycan profile.

In the next chapter, we will use this synthesis model to generate glycan pro-
files similar to those found in real cells and analyze the trade-offs between various
components of the synthesis machinery.

We plan to extend the synthesis model in future to include more features of the
glycan synthesis like retrograde transport, capping and pruning enzymes.
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Chapter 4

Cellular trade-offs in high fidelity glycan en-
coding

We demonstrated, in Chapter 2 of the thesis, that complex oragnism have complex
glycan distribution, and in Chapter 3 we provided a basic mathematical model of
glycosylation. In this chapter, we combine these two together to ask what constraints
does the requirement of producing a complex distribution with high fidelity put on
the Golgi synthesis machinery. We start with defining fidelity of synthesis in the
current context and then discuss the optimization for maximizing fidelity. We follow
it up with the results of the optimization showing trade-offs between the fidelity of
synthesis, complexity of the glycan profile, number and specificity of enzymes and the
number of compartments. We later discuss how does the requirement of producing
a diverse repertoire of glycans affect the synthesis machinery.

4.1 Fidelity of synthesis

As discussed in the Chapter 2, glycans are the markers of cell type identity and
niche, and distinct cell types (in distinct niche) have distinct glycan profile. We say
that there is a “target” glycan profile associated with a cell type which the synthesis
machinery of a cell of that cell type should achieve. There will be some variation in
the glycan profiles of cells of the same cell type as a result of various kinds of noise
in the synthesis machinery and cell to cell variations. Therefore the “target" glycan
profile of a cell type is the average profile over many cells of the same cell type.

We obtain the target glycan distribution from glycan profiles for real cells us-
ing Mass Spectrometry coupled with determination of molecular structure (MSMS)
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measurements [6] on a sample prepared from many cells of the same cell type. The
raw MSMS data, however, is not suitable as a target distribution. This is because
it is very noisy, with chemical noise in the sample and Poisson noise associated with
detecting discrete events being the most relevant [7] as described in Sect. ??. This
means that many of the small peaks in the raw data are not part of the signal, and
one has to “smoothen” the distribution to remove the impact of noise.

We use MSMS data from human T-cells [6] for our analysis. As discussed in
Sect. 2.4, the Gaussian mixture models (GMM) are often used to approximate dis-
tributions with a mixed number of modes or peaks [2], or in our setting, a given
fixed complexity. Here, we use a variation of the Gaussian mixture models (see
Sect. 2.4 for details) to create a hierarchy of increasingly complex distributions to
approximate the MSMS raw data. Thus, the 3-GMM and 20-GMM approximations
represent the low and high complexity benchmarks, respectively. In Sect. 2.4, we
show that the likelihood for the glycan distribution of the human T-cell saturates
at 20 peaks. Thus, statistically the human T-cell glycan distribution is accurately
approximated by 20 peaks.
This hierarchy allows us to study the trade-off between the complexity of the

target distribution and the complexity of the synthesis model needed to generate
the distribution as follows. Let T(i) denote the i-component GMM approximation
for the human T-cell MSMS data. We sample this target distribution at indices
k = 1, . . . , Ns, that represent the glycan indices, and then renormalize to obtain
the discrete distribution {T (i)

k , k = 1, . . . , Ns}. To highlight the role of target dis-
tribution complexity, we focus on the 3-GMM T (3) (low complexity) and 20-GMM
approximation T (20) (high complexity) in the describing our results.

Now we define the fidelity of synthesis using the “target" distribution obtained
from MSMS data of real cells. Let c∗ denote the “target” concentration distribution,
normalized the distribution so that

∑Ns
k=1 c

∗
k = 1, for a particular cell type, i.e. the

goal of the sequential synthesis mechanism described in Sect. 3.3 is to approximate
c∗. Let c̄ denote the normalized steady state glycan concentration distribution
displayed on the PM. Then (3.14) implies that c̄k = µ(NC)c

(NC)
k , k = 1, . . . , Ns. We

measure the fidelity F (c∗‖c̄) between the c∗ and c̄ by the ratio of the Kullback-
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Leibler divergence D(c∗‖c) [1, 2] to the entropy H(c∗)

F (c∗‖c̄) :=
D(c∗‖c̄)

H(c∗)
=

∑Ns
k=1 c

∗
k ln
(
c∗k
c̄k

)
=
∑Ns

k=1 c
∗
k ln
(

c∗k

c
(NC )

k µ(NC )

)
∑Ns

k=1 c
∗
k ln(1/c∗k)

(4.1)

The reason why we divide the KL-divergence by the entropy of the target distribution
is to enable comparison of the fidelity of the mechanism across target distributions
of different complexity. Note that high fidelity corresponds to low values of F (c∗‖c̄),
vice versa.

Thus, the problem of designing a sequential synthesis mechanism that approxi-
mates c∗ for a given enzyme specificity σ, number of enzymes NE, and number of
cisternae NC is given by

Optimization A : D̄(σ, NE, NC , c
∗) := min

µ, R, L
F (c∗‖c̄) (4.2)

s.t. µmin ≤ µ(j) ≤ µmax

Rmin ≤ R(j, α) ≤ Rmax

1 ≤ l(j)α ≤ Ns

where we emphasize that the optimum fidelity D̄(σ, NE, NC , c
∗) is a function of

(σ,NE, NC , c
∗). The physical bounds on the reaction and transport rates -

(Rmin, Rmax, µmin, µmax) are estimated from the literature on glycosylation enzymes
and Golgi transport times (See Appendix C for details). Note that there is separation
of time scales implicit in Optimization A – the chemical kinetics of the production
of glycans and their display on the PM happens over cellular time scales, while the
issues of trade-offs and changes of parameters are related to evolutionary timescales.
In Appendix B, we describe the variant of the Sequential Quadratic Programming
(SQP) [3], that we use to numerically solve the optimization problem.

The dimension of the optimization search space is extremely large ≈ O(Ns×NE×
NC). To make the optimization search more manageable, we make the following
simplifying assumptions on the synthesis model described in Sect. 3.3:

1. We ignore the k-dependence of the vectors (M,V), or alternatively of R.
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2. The enzyme-substrate binding probability P (j)(k, α) is still dependent on the
substrate k. We assume that shape function is a scalar (a length), i.e. l(j)α =

`
(j)
α . It further simplifies the algebra to assume that the length of the substrates
are integer multiples of a basic unit (which we take to be 1), i.e. `k = k.
The norm that appears in (3.7) is taken to be the absolute value difference
|lk − l

(j)
α |. Other metrics, such as |lk − l

(j)
α |2, corresponding to the elastic

distortion model [4], do not pose any computational difficulties, and we see
that the results of our optimization remain qualitatively unchanged.

3. We drop the dependence of the specificity on α and j, and take it to be a
scalar σ. We will explore the effects of enzyme and compartment dependent
enzyme specficity in the next chapter.

These restrictions significantly reduce the dimension of the optimization search,
making the problem tractable while still retaining the essential features of the model.
In Sect. 3.3.3 we show that (3.10)-(3.11) can be solved analytically in the limit
Ns � 1, since the glycan index k can be approximated by a continuous variable,
and the recursion relations for the steady state glycan concentrations (3.10)-(3.11)
can be cast as a matrix differential equation. This allows us to obtain an explicit
expression for the steady state concentration in terms of the parameters (R,L). This
helps us obtain some useful heuristics (Sect. 3.3.3) on how to tune the parameters,
e.g.NE, NC , σ, and others, in order to generate glycan distributions c of a given
complexity. These heuristics inform our more detailed optimization using “realistic”
target distributions.
The calculations in Sect. 3.3.3 imply, as one might expect, that the synthesis model

needs to be more elaborate, i.e., needs a larger number of cisternae NC or a larger
number of enzymes NE, in order to produce a more complex glycan distribution. For
a real cell type in a niche, the specific elaboration of the synthesis machinery, would
depend on a variety of control costs associated with increasing NE and NC . While an
increase in the number of enzymes would involve genetic and transcriptional costs,
the costs involved in increasing the number of cisternae could be rather subtle.
Notwithstanding the relative control costs of increasing NE and NC , it is clear

from the special case, that increasing the number of cisternae achieves the goal of
obtaining an accurate representation of the target distribution. Suppose the target
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distribution c∗k = δ(k −M) for a fixed M � 1, i.e. c∗k = 1 when k = M , and 0

otherwise, and that the NE enzymes that catalyse the reactions are highly specific.
In this limit, Optimization A reduces to a simple enumeration exercise [5]: clearly,
one needs NE = M enzymes, one for each k = 1, . . . ,M reactions, in order to
generate PcM . For a single Golgi cisterna with a finite cisternal residence time
(finite µ), the chemical synthesis network will generate a significant steady state
concentration of lower index glycans Pck with k < M , contributing to a low fidelity.
To obtain high fidelity, one needs multiple Golgi cisternae with a specific enzyme
partitioning (E1, E2, . . . , EM) with Ej enzymes in cisterna j = 1, . . . , Nc. This
argument can be generalized to the case where the target distribution is a finite sum
of delta-functions. The more general case, where the enzymes are allowed to have
variable specificity, needs a more detailed study, to which we turn to next.

4.2 Trade-offs between fidelity, number and speci-

ficity of enzyme, and number of compartments

We summarize the main results that follow from an optimization of the parameters
of the glycan synthesis machinery to a given target distribution in Figs. 4.1-4.2.

1. The optimal fidelity D̄(σ,NE, NC , c
∗) is a convex function of σ for fixed values

for other parameters (see Fig. 4.1), i.e. it first decreases with σ and then
increases beyond a critical value of σmin.

The fidelity D̄(σ,NE, NC , c
∗) is decreasing in NC and NE for fixed values of the

other parameters, and increasing in the complexity of c∗ for fixed (σ,NC). The
marginal contribution of NC and NE in improving fidelity D̄ is approximately
equal (see Figs. 4.2a, 4.2b). We discuss the origin of this symmetry later in
this section.

The lower complexity distributions can be synthesized with high fidelity with
small (NE, NC), whereas higher complexity distributions require significantly
larger (NE, NC) (see Figs. 4.2a, 4.2b). For a typical mammalian cell, the num-
ber of enzymes in the N-glycosylation pathway are in the range NE = 10 −
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(a) Less complex target, 3-GMM ap-
proximation

(b) More complex target, 20-GMM ap-
proximation

(c) Less complex target, 3-GMM ap-
proximation

(d) More complex target, 20-GMM ap-
proximation

Figure 4.1. Trade-offs amongst the glycan synthesis parameters, enzyme speci-
ficity σ, cisternal number NC and enzyme number NE, to achieve a complex target
distribution c∗). (a)-(b) Normalised Kullback-Leibler distance D̄(σ,NE, NC , c

∗) as
function of σ and NC (for fixed NE = 3), (c)-(d) D̄(σ,NE, NC , c

∗) as function of σ
and NE (for fixed NC = 3), with the target distribution c∗ set to the 3-GMM (less
complex) and 20-GMM (more complex) approximations for the human T-cell MSMS
data. D̄(σ,NE, NC , c

∗) is a convex function of σ for each (NE, NC , c
∗), decreasing

in NC , NE for each (σ, c∗), increasing in the complexity of c∗ for fixed (σ,NE, NC).
The specificity σmin(c∗, NE, NC) = argminσ{D̄(σ,NE, NC , c

∗)} that minimises the
error for given (NE, NC , c

∗) is an increasing function of NC , NE and the complexity
of the target distribution c∗.
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20 [8, 9, 10, 11], Fig. 4.2b would then suggest that the optimal cisternal number
would range from NC = 3− 8 [12].

2. The optimal enzyme specificity σmin(c∗, NC) = argminσ{D̄(σ, N̄E, NC , c
∗)},

that minimises the error as function of (NC , c
∗) with NE fixed at N̄E, is an

increasing function of NC and the complexity of the target distribution c∗

(Figs. 4.1a, 4.1b, 4.2c, 4.2d). This is consistent with the results in Appendix 3.3.3
where we established that the width of the synthesized distribution is inversely
dependent on the specificity σ: since a GMM approximation with fewer peaks
has wider peaks, σmin is low, and vice versa. Similar results hold when NC is
fixed at N̄C , and NE is varied (see Figs. 4.1c, 4.1d, 4.2c, 4.2d).

Our results are consistent with those in [13]. They optimize incoming glycan ra-
tio, transport rate and effective reaction rates in order to synthesize a narrow target
distribution centred around a desired glycan. The ability to produce specific glycans
without much heterogeneity is an important goal in pharmaceutical industry. They
define heterogeneity as the total number of glycans synthesized, and show that in-
creasing the number of compartments NC decreases heterogeneity, and increases the
concentration of the specific glycan. They also show that the effect of compartments
in reducing heterogeneity cannot be compensated by changing the transport rate.
Our results are entirely consistent with theirs - we have shown that D̄ decreases as
we increase NC . Thus, if the target distribution has a single sharp peak, increasing
NC will reduce the heterogeneity in the distribution.

4.2.1 Symmetry of the NE, NC space

We insert an important cautionary note here. It would seem that the results in
Fig. 4.2 imply that there is an approximate NE − NC symmetry in the model, i.e.
increasing either NE or NC affects the fidelity, optimal enzyme specificity and the
sensitivity in approximately the same way. This would be an erroneous inference,
and is a consequence of the distortion model we have used for calculating the binding
probabilities of substrates with enzymes. The root cause for this apparent symmetry
is that we have allowed for all enzymes to catalyse reactions in all cisternae (albeit
with different efficiencies). This symmetry is violated by simply restricting the
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(a) Fidelity for less complex target, c∗ = 3-
GMM
approximation

(b) Fidelity for more complex target c∗ = 20-
GMM approximation

(c) Optimal enzyme specificity for less complex
target, c∗ = 3-GMM approximation

(d) Optimal enzyme specificity for more com-
plex target c∗ = 20-GMM approximation

Figure 4.2. Fidelity of glycan distribution and optimal enzyme properties to
achieve a complex target distribution. The target c∗ is taken from 3-GMM (less
complex) and 20-GMM (more complex) approximations of the human T-cell MSMS
data. (a)-(b) Optimum fidelity minσ{D̄(σ,NC , NE, c

∗)} as a function of (NE, NC).
More complex distributions require either a larger NE or NC . The marginal impact
of increasing NE and NC on the fidelity D̄ is approximately equal. (c)-(d) Enzyme
specificity σmin that achieves minσ{D̄(σ,NC , NE, c

∗)} as a function of (NE, NC).
σmin increases with increasing NE or NC . To synthesize the more complex 20 GMM
approximation with high fidelity requires enzymes with higher specificity σmin com-
pared to those needed to synthesize the broader, less complex 3-GMM approxima-
tion.
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(a) lb/NS = 0.01 (b) lb/NS = 0.1 (c) lb/NS = 0.5

Figure 4.3. Optimum fidelity D̄KL as a function of (NE, NC) for different values
of `b/Ns, where `b bounds the deformation in the ideal length `

(0)
α of an enzyme

α = 1, . . . , NE. Small values of `b restricts all enzymes from working in all cisternae
and all substrates, where large value of `b removes this constraint.

activity of the enzymes to be dependent on the cisternae. We describe a simple
realisation of this below.

The distortion model we are using for calculating the binding probabilities of
substrates with enzymes allows every enzyme α to in principle catalyse any reaction
in any cisterna. This allowed for the ideal enzyme length l(j)α in Equation 3.7 to vary
across the cisternae in an unconstrained manner, leading to simplification in the
calculation. We now find that by changing this aspect of the model, the apparent
symmetry between NE−NC is lifted. A more reasonable model for the ideal enzyme
length is given by

`(j)
α = `(0)

α + δ`(j)
α , δ`(j)

α ∈ [−`(j)
b , `

(j)
b ],

i.e., the nominal length `(0)
α can be distorted in a cisterna by a correction δ`(j)

α but
within a specified bound `

(j)
b that is not subject to optimization. One can render

some enzymes inactive in certain cisternae by choosing appropriate values of `(0)
α and

δ`
(j)
α . For small values for the bound `b, e.g lb/Ns ≤ 0.2 (here Ns − 1 is the number

of enzymatic reactions), the decrease in D̄ on increasing NC is small compared to
increasing NE (see Fig. 4.3). On the other hand for large `b, e.g. lb/NS ≥ 0.3, there
is an approximate symmetry between NE and NC (see Fig. 4.3). Here we have taken
the bounds to be compartment independent, i.e. `(j)

b = `b.
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4.2.2 Optimal partitioning of enzymes in cisternae

Having studied the optimum NE, NC , σ to attain a given target distribution with
high fidelity, we ask what is the optimal partitioning of the NE enzymes in these
NC cisternae? Answering this within the context of our chemical reaction model
(Sect. 3.3) requires some care, since it incorporates the following enzymatic features:
(a) enzymes with a finite specificity σ can catalyse several reactions, although with
an efficiency that varies with both the substrate index k and cisternal index j,
and (b) every enzyme appears in each cisternae; however their reaction efficiencies
depend on the enzyme levels, the enzymatic reaction rates and the enzyme matching
function L, all of which depend on the cisternal index j.

Therefore, instead of focusing on the cisternal partitioning of enzymes, we identify
the chemical reactions that occur with high propensity in each cisternae. For this
we use the effective reaction rate Reff (j, k) for Pck → Pck+1 in the j-th cisterna
which can be written as

Reff (j, k) =

NE∑
α=1

R(j)
α P (j)(k, α). (4.3)

According to our model presented in Sect. 3.3, the list of reactions with high
effective reaction rates in each cisterna, corresponds to a cisternal partitioning of
the perfect enzymes.

Figure 4.4 (a) (i) shows the heat map of the effective reaction rates in each cis-
terna for the optimal NE, NC , σ that minimises the normalised KL-distance to the
20 GMM target distribution T(20) (see Fig. 4.4 (a) (ii)). The optimized glycan profile
displayed in Fig. 4.4 (a) (iii) is very close to the target. An interesting observation
from Fig. 4.4 (a) (i) is that the same reaction can occur in multiple cisternae.

Keeping everything else fixed at the optimal value, we ask whether simply repar-
titioning the optimal enzymes amongst the cisternae, alters the displayed glycan
distribution. In Fig. 4.4 (b) (i), we have exchanged the enzymes of the fourth and
second cisterna. The glycan profile after enzyme partitioning (see Fig. 4.4 (b) ((iii))
is now completely altered (compare Fig. 4.4 (b) (ii) with Fig. 4.4 (b) (iii)). Thus, one
can generate different glycan profiles by repartitioning enzymes amongst the same
number of cisternae [5].
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(a)

(b)

Figure 4.4. Optimal enzyme partitioning in cisternae. (a) Heat map of the effective
reaction rates in each cisterna (representing the optimal enzyme partitioning) and
the steady state concentration in the last compartment (c(NC)) for the 20-GMM
target distribution. Here NE = 5, NC = 7, normalised D(T(20)‖c(NC))/H(T(20)) =
0.11. (b) Effective Reaction rates after swapping the optimal enzymes of the fourth
and second cisternae. The displayed glycan profile is considerably altered from the
original profile.
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4.3 Robustness of the optimal solution

Here we analyze the change in fidelity on small perturbations in R, µ, L and σ

around the optimal solution. This allows us to determine where the cell needs
to develop a tighter control mechanism (stiff directions) and where it has more
leeway around the optimal values (sloppy directions). We do this by analyzing the
eigenvalues and eigenvectors of the Hessian around the optimal point. We find that
small perturbations around the optimal values in σ, change the glycan profile a
lot more compared to perturbations in the other parameters and this stiffness in σ
generally decreases on increasing NE, NC (Fig. 4.5a-4.5c). Small perturbations in µ
and some L directions around the optimum also significantly alter the glycan profile
and the stiffness increases on increasing NC , NE, eventually becoming comparable
to σ. The glycan profile is robust to perturbations in most R and some L directions
(Fig. 4.5b). The total average stiffness of the optimization parameters, defined by
the mean of all eigenvalues of the hessian, decreases on increasingNE, NC (Fig. 4.5d).
We now describe the procedure in detail, starting with calculating the Hessian:

H(i, j) =
∂2

∂Xi∂Xj

F

∣∣∣∣
Xmin

(4.4)

Here X = [µ,R,L, σ] denotes the entire set of optimization variables (note that
the enteries in X are normalized by their respective range and do not carry physical
dimensions). We calculated the eigenvalues, denoted by λi, and eigenvectors, de-
noted by Vi of the Hessian matrix to identify the stiff and sloppy directions [14, 15]
in the optimization space. The eigenvectors of the Hessian matrix can be grouped
in R,L,µ and σ directions by looking for the most dominant component in the
eigenvector. We find that most of the eigenvectors have significant entries along the
direction of only one of the optimization variables µ,R,L, σ , e.g.. in Fig. 4.5a,
the eigenvectors 21 − 36 have significant entries only in the L directions. There
is however a small number of eigenvectors that have entries over more than one
optimization direction, e.g., the eigenvector with σ dominant direction has some µ
component as well (Fig. 4.5a).
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(a) (b)

(c) (d)

Figure 4.5. (a) Eigenvectors of the Hessian matrix ∂2

∂Xi∂Xj
F
∣∣∣
Xmin

for (NE, NC) =

(4, 4). The x-axis indexes the NC + 2NENC + 1 = 37 eigenvectors, the y-axis
indexes the NC + 2NENC + 1 components of the eigenvectors, and the grayscale
denotes the absolute value of the component in the range [0, 1]. The componenets
are grouped according to (µ,R,L, σ) and the eigenvectors are ordered according to
the most dominant component in the eigenvector(µ (orange), R (blue), L (green),
σ (purple)). There is some mixing of the different components (R and µ or σ and
µ) but this is usually small. (b) The distribution of eigenvalues λi of the Hessian
matrix ∂2

∂Xi∂Xj
F
∣∣∣
Xmin

. Each stripe represents an eigenvalue and the location of the
stripe on the x-axis represents whether the dominant component of the associated
eigenvector belongs to µ, R, L or σ direction. (c) The average stiffness along µ,
R, L or σ directions, defined by the log of average of eigenvalues corresponding to
the eigenvectors in the respective group, as a function of NC for fixed NE = 4. (d)
Total average stiffness 〈λ〉 = log

( ∑
λi

NC+2NENC+1

)
as a function of NE, NC .
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Stiff and sloppy directions:
We find that the eigenvalues of the eigenvectors dominated by σ and some µ,

L directions are orders of magnitude higher than for those dominated by the R
directions (See Fig. 4.5b). This suggests D̄ has a valley-like structure around the
optimal, with R and some L being the flat or sloppy directions.

The fact that enzyme specificity σ and some of the L directions are stiff should
not be surprising, since the typical width and position of peaks in the synthesized
distribution is primarily controlled by σ and L. We have already shown that D̄ is
a sharp convex function of σ for low values of (NE, NC) (see Fig. 3 of the paper),
which gradually flattens out as we increase (NE, NC).
The fact that transport rate µ is a stiff direction is surprising! The stiffness in µ

is due to the fact that the optimal µ is always at the lower bound, and with even
slight increase in µ, the transport becomes too fast for the reactions to be able to
produce the intermediate products. For the (R,L)-dominated eigenvectors, there
are bands of sloppy direction and stiff directions. We define the average stiffness
in µ,R,L and σ by a weighted average of eigenvalues, where the weight is given by
the strength of the corresponding components of the eigenvector.

〈λ〉µ = ln
(∑

iw
(µ)
i λi

)
, 〈λ〉R = ln

(∑
iw

(R)
i λi

)
,

〈λ〉L = ln
(∑

iw
(L)
i λi

)
, 〈λ〉σ = ln

(∑
iw

(σ)
i λi

)
Here w(µ)

i =
∑

j∈µ |Vi,j|/
∑

j |Vi,j|, w
(R)
i =

∑
j∈R |Vi,j|/

∑
j |Vi,j|, w

(L)
i =

∑
j∈L |Vi,j|/

∑
j |Vi,j|

and w(µ)
i =

∑
j∈σ |Vi,j|/

∑
j |Vi,j|.

Fig 4.5c shows 〈λ〉µ, 〈λ〉R, 〈λ〉L and 〈λ〉σ as a function of NC for fixed NE = 4.
The average stiffness in R directions, 〈λ〉R, is considerably lower than the average
stiffness in σ, µ and L directions. σ is the stiffest direction but the stiffness decreases
on increasing the NC . Interestingly, the stiffness along L directions increases on
increasing NC .
We now define the total average stiffness 〈λ〉 = log(

∑
λi

NC+2NENC+1
), i.e. log of the

sum of the eigenvalues divided by the dimension of the optimization problem, in
the space of NE, NC . We find that the average stiffness is higher for low values
of (NE, NC) as compared to higher values of (NE, NC), with a few exceptions; and
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eventually, the average stiffness settles to a fixed low value (Fig. 4.5d)

4.4 Non-convexity of the optimization

The synthesis model is highly degenerate, in the sense that many combinations of
parameters give rise to the same glycan profile. This makes the optimization non
convex as there are many equally good minima. These degeneracies are both discrete
and continuous. The continuous degeneracies correspond to regions in reaction rate
(R) -transport rate (µ) space moving along which does not change the concentration
profile. The discrete degeneracies are disconnected regions in the parameter space
which correspond to the same glycan profile. The number of discrete degeneracies
increases exponentially with increase in (NE, NC). We also find that the fraction of
initial conditions converging to a solution close to the global minima increases on
increasing (NE, NC).

Validation of the numerical optimization scheme.

In order to test whether our numerical optimization procedure is able to converge
to the global minimum we run the following test. We generate 100 random values
of (µ,R,L, σ) within their respective ranges for a problem instance with (NE =

2, NC = 2). The sampled value for (µ,R,L, σ) is used to generate concentration
profiles that are then used as the target distribution for the optimization. Since the
target distribution is achievable, the optimal value of the constrained Optimization B
for these sampled targets is D̄ = 0. We solve the constrained Optimization B using
our numerical scheme. The average optimal value D̄ across all sampled values was
9.1835e-07, 30 out of 100 values were exactly zero, and the highest D̄ was 1.1761e-05.
Therefore, the optimization scheme was able to recover the concentration profiles
almost exactly. Next, we ask whether the optimization problem recovers the value
of (µ,R,L, σ) that was used to create the particular target distribution. We were
able to recover σ exactly, except in cases where the concentration profile was almost
a delta function at the first glycan (see Fig. 4.6). This is because σ decides the
typical width of the empirical distribution, and hence the optimal σ is determined
by the typical width of the target distribution, except in the pathological case of
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a concentration profile that is almost a delta function at the first glycan – such
a concentration profile can be made produced for any value σ by simply making
transport µ very fast as compared to the reaction rates.

We note that the optimization in (µ,R,L) is not convex, and leads to many
equally good minimas corresponding to different values of (µ,R,L). The resulting
redundancies in the model and their importance are discussed next.

Degeneracy in the model

Recall that in equation 4.3 , we defined

Reff (j, k) =

∑
αR

(j)
α exp(−σ|k − l(j)α |)

µ(j)

In terms of these renormalised rates, the steady glycan concentration can be written
as

c̄
(j)
k =

Reff (j, k)c̄
(j)
k−1 + c̄j−1

k

1 +Reff (j, k)
, (4.5)

i.e. the concentration is only a function of Reff (k, j). Thus, any combination of
(µ,R,L, σ) that maps to the same value of Reff will result in the same concen-
tration profile, and will be indistinguishable from the perspective of the objective
function. Additionally, the mapping from Reff to the concentration profile c̄ also
has degeneracy. We show these redundancies in the schematic below, which shows
a systematic reduction in dimension to 1 (scalar) which is the quantity we optimize,

R, L, µ, σ −→ Reff −→ c̄ −→ F

NC + 2NENC + 1 NC(NS − 1) NS − 1 1

Since F (cT ||c̄) = 0 if, and only if, cT = c̄, it follows that the last mapping does
not have redundancy. Some of the sources of degeneracies in the mapping from
(µ,R,L, σ) to Reff are as follows:

1. For fixed (σ,L), setting R(j)
α ← γR

(j)
α and µj ← γ−1µj leaves Reff invariant.

2. Permutations in the α index leaves Reff invariant. Thus, there are at least
(NE!)NC distinct minima that map to the same value of Reff , and therefore,
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the same concentration c̄.

Additionally, there are degeneracies coming from the optimization which depend on
the target distribution cT . Having discussed the sources of degeneracies of the
optimized solution, we now discuss the distribution of the optimized solutions.

Distribution of minima:
To study the behaviour of the optimization algorithm for different initial points, we

numerically investigate the distribution of function values at different local minima.
Since the dimension of the optimization problem is NC +2NENC +1, which is large,
we divide the optimization space into a grid of I = n

(NC+2NENC+1)
p points. We did

this numerical experiment for (NE, NC) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. The value of
np = 3 for (NE, NC) = (2, 2) and np = 4 for the rest. The target distribution for all
the cases is a single Gaussian with mean 20, standard deviation 5, with support on
1 ≤ k ≤ 20. The results of this numerical experiment are summarized in Fig. 4.7
and Table 4.1, from which we deduce the following:

1. A large fraction of the initial starting points converge to a set of degenerate
minima with objective function value exactly equal to the global minimum.
These minima are a result of the degeneracies of the optimization problem.

2. There are other local minima with objective value very close to (but not equal)
to the global minimum.
Most initial points converge to one of these two sets of minima.

3. Finally, there are a small set of local minima with significantly higher objective
values. These correspond to minima with σ = 0. The fraction of initial points
that converge to such minima reduces as the dimension of the optimization
space increases.

4.4.1 Implications for robustness to parametric noise

Since the synthesized glycan distribution displayed by the cell marks its identity,
it must be robust to noise intrinsic to the synthesis machinery. The degeneracy
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Figure 4.6. Recovering the σ values for different target distribution. Note that
barring 4 data points, all other optimized σ values (red dots) exactly overlap with
the corresponding target σ (diamonds).

(a) NE = 1, NC = 1 (b) NE = 2, NC = 1

(c) NE = 1, NC = 2 (d) NE = 2, NC = 2

Figure 4.7. D̄ for various initial conditions, sorted in increasing order for clarity.
This clearly shows the fraction of initial conditions for which the optimised D̄ is
small (see Table 4.1).
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NE NC min D̄KL max D̄KL Fraction of initial conditions within
D̄KL ≤ 0.0228

1 1 0.0228 0.44 0.56
2 1 0.0081 0.44 0.73
1 2 0.0051 0.29 0.70
2 2 1.17e-4 0.29 0.84

Table 4.1. Distribution of local minima

of solutions and sloppy directions in the fidelity landscape makes the glycan dis-
tribution robust to intrinsic noise in the synthesis and cell to cell variations in the
kinetic parameters. We find that the number of degeneracies increases on increas-
ing (NE, NC), and the average stiffness of the optimized parameters decreases on
increasing (NE, NC) making the synthesis more robust to parameter fluctuations.
Further, while the parameter space is high dimensional, the dimension of control-
lable parameters (measured by the stiff directions) is low dimensional. We find this
dimensional reduction a compelling idea which can be explored further.

4.5 Diversity

So far we have studied how the complexity of the target glycan distribution places
constraints on the evolution of Golgi cisternal number and enzyme specificity. We
now take up another issue, namely, how the physical properties of the Golgi cister-
nae, namely cisternal number and inter-cisternal transport rate, may drive diversity
of glycans [16, 17]. There is substantial correlative evidence to support the idea
that cell types that carry out extensive glycan processing employ larger numbers
of Golgi cisternae. For example, the salivary Brunner’s gland cells secrete mucous
that contains heavily O-glycosylated mucin as its major component [18]. The Golgi
complex in these specialized cells contain 9 − 11 cisternae per stack. Additionally,
several organisms such as plants and algae secrete a rather diverse repertoire of
large, complex glycosylated proteins, for a variety of functions [19, 20, 21, 22, 23,
24, 25, 26, 27, 28]. These organisms possess enlarged Golgi complexes with multiple
cisternae per stack [29, 30, 31, 32, 33].

We define diversity as the total number of glycan species produced above a spec-
ified threshold abundance cth. This last condition is necessary because very small
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(a) (b)

Figure 4.8. Strategies for achieving high glycan diversity. Diversity versus NC and
transport rate µ at various values of specificity σ for fixed NE = 3. (a) Diversity vs.
NC at optimal transport rate µ. Diversity initially increases with NC , but eventually
levels off. The levelling off starts at a higher NC when σ is increased. These curves
are bounded by the σ = 0 curve. (b) Diversity vs. cisternal residence time (µ−1)
in units of the reaction time (R−1

min) at various value of σ, for fixed NC = 4 and
NE = 10.

peaks will not be distinguishable in the presence of noise. In computing the diversity
from our chemical synthesis model, we have chosen the threshold to be cth = 1/Ns,
where Ns is the total number of glycan species. We have checked that the qualitative
results do not depend on this choice (see Fig. 4.9 ).

We use the sigmoid function (1+e−x/τ )−1 as a differentiable approximation to the
Heaviside function Θ(x), define the following optimization to maximize diversity for
a given set of parameter values, NE, NC , σ:

Diversity(σ,NC , NE) :=maxµ,R,L
∑Ns

i=1

(
1 + e−Ns(ci−cth)

)−1

s.t. Rmin ≤ R
(j)
α ≤ Rmax,

µmin ≤ µ(j) ≤ µmax,

where, as before, (µmax, µmin) = (1, 0.01)/min, and (Rmax, Rmin) = (20, 0.018)/min,
and cth = 1/Ns is the threshold. See Appendix C for details on the parameter esti-
mation.

The results displayed in Fig. 4.8 (a), show that for a fixed specificity σ, the di-
versity at first increases with the number of cisternae NC , and then saturates at a
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(a) cth = 1
Ns

(b) cth = 1
2Ns

(c) cth = 1
4Ns

Figure 4.9. Diversity vs. NC for different values of σ keeping NE = 1 fixed, for
three different values of the threshold, cth = 1

Ns
, 1

2Ns
, 1

4Ns
. Changing the value of

the threshold cth, only changes the saturation value of the diversity curve.

value that depends on σ. For very high specificity enzymes, one can achieve very
high diversity by appropriately increasing NC . This establishes the link between
glycan diversity and cisternal number. However, this link is correlational at best,
since there are many ways to achieve high glycan diversity – notably by increasing
the number of enzymes.

On the other hand, one of the goals of glycoengineering is to produce a partic-
ular glycan profile with low heterogeneity [5, 13]. For low specificity enzymes, the
diversity remains unchanged upon increasing the cisternal residence time. For en-
zymes with high specificity, the diversity typically shows a non-monotonic variation
with the cisternal residence time. At small cisternal residence time, the diversity
decreases from the peak because of early exit of incomplete oligomers. At large
cisternal residence time the diversity again decreases as more reactions are taken
to completion. Note that the peak is generally very flat, this is consistent with the
results in [13]. To get a sharper peak, as advocated for instance by [5], one might
need to increase the number of high specificity enzymes NE further.

4.6 Conclusions

In summary,

• We say that every cell type is associated with a “target" glycan distribution
which is complex for complex multicellular organisms.

• The glycan synthesis machinery tries to achieve a glycan profile close to the
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“target" glycan profile for that cell type. This puts constraints on the glycan
synthesis machinery.

• We find that increasing number of glycosylation enzyme and number of Golgi
compartments increases the fidelity of synthesis for a complex “target" profile.
Increasing the number of enzymes requires an elaborate gentic cost; increasing
the number of Golgi compartments maybe cheaper for the cell

• There is an optimal enzyme specificity for achieving a particular “target”, which
says that glycosylation enzymes should show a degree of substrate promiscuity.

• The syntheis model is degenerate and has parameters which do not need tight
control. This makes the glycan distribution robust to variations in the param-
eters in cells of the same cell type.

A major implication of this work is that the control of Golgi cisternal number must
involve a coupling between the non-equilibrium self assembly of Golgi cisternae with
the enzyme reactions kinetics happening inside the cisternae [? ? ].
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Chapter 5

Thermodynamic control of the enzyme speci-
ficity

In the previous chapter, we have shown that enzyme specificity is an important pa-
rameter that controls the glycan distribution of the cell. We had taken the enzyme
specificity to be a scalar that is independent of the enzyme or the compartment for
the previous calculation. Indeed, the enzyme specificity towards substrates of fixed
shapes in a induced fit model of enzyme substrate interaction is a coarse grained
property dependent on the molecular structure and folding of the enzyme [1, 2].
Here, we study one possible mechanism of putting a thermodynamic control on the
enzyme specificity which can make the enzyme specificity dependent on the com-
partment and the consequent energy-accuracy trade-offs. In a broader biological
context, the ability of mimicking changes in a molecular property, which is genet-
ically controlled and changes over evolutionary timescales, by processes which can
cause changes over a much shorter timescales may be evolutionarily important to the
organism by making them more adaptable to sudden changes in the environment [3].

We start with showing that compartment dependent enzyme specificity increases
the fidelity of synthesis for the same number of enzymes, number of compartments.
We generalize the induced fit enzyme-substrate interaction model that we used in
Chapter 3 to include an external non-equilibrium drive. We then show that this
generic non-equilibrium drive can increase the effective enzyme promiscuity. Finally,
we calculate the energetic cost of implementing this drive by calculating the entropy
production by the system.
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5.1 Enzyme and compartment dependent enzyme speci-

ficity

In Chapter 4, we had used the following distortion relation to model the induced fit
binding of an enzyme α with a substrate k in a compartment j

P (j)(α, k) = exp(−σ|l(j)α − lk|) (5.1)

where σ represents the enzyme specificity, l(j)α denotes the ideal enzyme length and
lk denotes the substrate length. σ was assumed to be a scalar quantity independent
of the enzyme or the compartment. In this section, we relax this assumption by
making enzyme specificity dependent on both the enzyme and the compartment.
In our enzyme model the enzyme specificity was related to the enzyme elasticity
which is a coarse grained molecular property of the enzyme, and therefore it should
be dependent on the enzyme. The compartment dependence of enzyme specificity
requires some external mechanism that can change the specificity. We will explore
the detailed mechanisms in the following sections. Here we show that making enzyme
specificity enzyme and compartment dependent results in better (lower) fidelity
of synthesis for the same number of enzymes and compartments. The distortion
relation for enzyme and compartment dependent enzyme specificity can be written
as

P (j)(α, k) = exp(σ(j)
α |l(j)α − lk|) (5.2)

The steady state glycan concentrations are still given by (3.13)-(3.14) of Chapter 3
with P (j)(α, k) now given by (5.2). The optimization of fidelity of synthesis can now
be written as follows

Optimization : D̄(NE, NC , c
∗) := min

σ, µ, R, L
F (c∗‖c̄) (5.3)

s.t. σ(j)
α ≥ 0

µmin ≤ µ(j) ≤ µmax

Rmin ≤ R(j, α) ≤ Rmax

1 ≤ l(j)α ≤ Ns
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(a) (b) (c)

Figure 5.1. Synthesis error (fidelity) in the space of NE, NC in the case of (a)
enzyme and compartment independent enzyme specificity, (b) enzyme dependent
but compartment independent enzyme specificity, (c) enzyme and compartment de-
pendent enzyme specificity. The system in which enzyme specificity depends on the
enzyme or/and compartment does better than the system in which enzyme speci-
ficity in independent of enzymes and compartments.

Here, F (c∗‖c̄) = DKL(c∗‖c̄)/H(c∗), measures the fidelity of synthesis same as
(4.1) in Chapter 4. The bound of rates are taken from literature detailed in Ap-
pendix C. The optimization is performed by same algorithm as detailed in Chapter
4. The results of this optimization (see Figure 5.1 and 5.2) show that better fi-
delity can be achieved for the same value of NE, NC if enzyme specificity has a
compartment or/and enzyme dependence. Compartment dependent enzyme speci-
ficity further increases the power of compartments making an increase in the number
of compartments more effective way of achieving better synthesis fidelity (See Fig-
ure 5.2). Another interesting find of this optimization is that, in the case of enzyme
and compartment dependent specificity, the optimal partitioning of enzymes, in the
sense of Reff defined in (4.3), is the one in which the enzymes in the first compart-
ment are much more promiscuous than the enzymes in the rest of the compartments
(See Figure 5.3).

These results provide one incentive for the cell to control enzyme specificity by
some mechanism separately in each of the compartments. In the rest of this chapter,
we propose one such mechanism involving a mechanical non-equilibrium drive to
change the enzyme specificity and calculate the thermodynamic cost of setting it
up.
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(a) (b)

(c)

Figure 5.2. Effect of compartment dependent enzyme specificity on the fidelity
of synthesis. (a) Fidelity in the space of NE, NC in the case of compartment in-
dependent enzyme specificity (b) Fidelity in the space of NE, NC in the case of
compartment dependent enzyme specificity (c) Fidelity as a function of NC for fixed
NE = 2. The figures show that the system with compartment dependent enzyme
specificity achieves better(lower) synthesis fidelity.
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(a)

(b)

Figure 5.3. Reff (j, k) in the space of compartment, j, and reaction index, k, for
a system of NE = 5, NC = 5 in case of (a) enzyme and compartment indepen-
dent specificity, (b) enzyme and compartment dependent specificity. Note that the
enzymes in the first compartment are a lot more promiscuous and the optimized
glycan profile is closer to the target profile in the case of enzyme and compartment
dependent enzyme specificity.
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5.2 An elastic model for induced fit enzyme sun-

strate binding

We model the enzyme substrate binding by induced fit, similar to [4, 5], of a flexible
enzyme and fixed substrate, like in the previous chapters, but now in presence of
a thermal bath and a non equilibrium drive. The model is schematically displayed
in Figure 5.4. The shape of the enzyme in the model is a dynamical quantity
which is affected by (i) elastic deformation of the enzyme [6] modeled by an over-
damped spring, (ii) thermal noise of the bath and, (iii) the non equilibrium external
mechanical drive. In this model, binding between the enzyme and substrate occurs
when the shape of the enzyme is close to the shape of the substrate for an extended
period of time, τb (See Figure 5.4). We assume that the binding energy and typical
binding time, τb, of all the substrates is the same and substrates are discriminated
only on the basis of mismatch in shape between the enzyme and the substrate. This
is not a very strong restriction because (i) it has been observed that the binding
energy affects only the unbinding rate of the enzyme [7], and (ii) in our model of
glycosylation, glycans are polymers of the same monomers, therefore discrimination
between different glycans is likely to be because of different shapes rather than
chemical binding energy.

In the interest of clarity, we describe the model for enzyme substrate binding for
a one dimensional enzyme in a thermal bath with NS different one dimensional sub-
strates of length l1, . . . lNS . The model can easily be extended to higher dimensions.
The dynamics of the enzyme length, l, is described by the following equation

dl(l)

dt
= −K

γ
(l(t)− l0) +

fd(t)

γ
+
D

γ
η(t) (5.4)

where l0 represents the resting length of the enzyme, K represents the elastic con-
stant of the enzyme, γ is the dissipation constant, fd is the external mechanical
drive, D is the diffusion constant and η(t) is Gaussian white noise with 〈η(t)〉 = 0

and 〈η(t)η(t′)〉 = δt,t′ . Here we have assumed the enzyme to be over-damped, the
first term is the elastic force, the second term is the force due to an external driving
protocol and the third term is the noisy force arising due to the random collisions of
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(a)

(b)

Figure 5.4. (a) The enzyme substrate binding model based on induced fit of a
flexible enzyme and a fixed substrate in a thermal bath. The shape (length in
1D) of the binding site of an enzyme, denoted by l, is assumed to be deformable.
The dynamics of l is given by an elastic part, K, a damping part, γ, noise from
the thermal bath, and the external oscillatory mechanical drive, fd. The shape of
substrate k is denoted by lk and the resting shape of enzyme α in compartment j
is given by lαj . (b) Binding of substrates to enzyme occurs when the shape of the
enzyme is close to the shape of the substrate, lk− ε ≤ l(t′) ≤ lk + ε, for an extended
period of time, t ≤ t′ ≤ t+ τb. The shaded region in the figure represents a binding
event.
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particles in the thermal bath. A similar equation in higher dimensions can be writ-
ten for the “shape" of the elastic enzyme. The equivalent Fokker-Planck equation
describing the probabilities of length of the enzyme, l(t), can be written as follows.

∂p(l, t)

∂t
= − ∂

∂l
J(l, t) = − ∂

∂l

[
(−K

γ
(l − l0) +

fd(t)

γ
)p(l, t)− D

γ

∂

∂l
p(l, t)

]
(5.5)

where J is the probability current.
Given this description of the elastic enzyme in a thermal bath, we now describe

one way of formalizing the notion of probability of binding between the enzyme and
the substrate as described in the Figure 5.4. A binding event between the enzyme
and a substrate k occurs at time t if the length of the enzyme, l(t), stays around the
substrate length, lk, for an extended period of time, τb; i.e. lk− ε ≤ l(t′) ≤ lk + ε for
t− τb ≤ t′ ≤ t. The probability of this happening can be calculated by the following

P (k, t) =
t∏

ti=t−τb

∫ lk+ε

lk−ε
p(l, ti)dl (5.6)

where we have discretized the time window, (t − τb, t) into Nd points separated by
∆t = τb/Nd. We now do the calculation in the limit τb = 0, we will subsequently
relax this assumption and see the effect of a finite non-zero τb. In this case the
steady state binding probability can then be written as:

P (k, t) =

∫ lk+ε

lk−ε
p(l, t)dl (5.7)

We now show that in equilibrium (absence of external drive, fd(t) = 0), the current
description of binding probabilities is equivalent to our earlier model for the binding
probabilities in (5.1). We solve the following equation to obtain the equilibrium
(J = 0) solution of (5.5) in absence of external force

K

γ
(l − l0)p(l, t) +

D

γ

∂

∂l
p(l, t) = 0

in one dimension in the region l ∈ (0,∞) with boundary conditions p(0, t) =
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p(∞, t) = 0. The steady state equilibrium (J = 0) solution is given by

pss(l) =
1

N
exp(− K

2D
(l − l0)2)

The binding probabilities from (5.7) can be written in terms of this steady state
probability leading to the following expression for binding probabilities.

P (k) =
1

N
exp

(
− K

2D
(lk − l0)2

)
(5.8)

which is similar to the distortion function (5.1) used in Chapter 3 but with the
distance between the two lengths defined by the L2 norm rather than the L1 norm.
As described earlier in Chapter 3, this change of distance metric from L1 norm
to L2 norm does not affect the qualitative results of Chapter 3 and 4. The ratio,
K/2D, in the current description plays the same role as enzyme specificity, σ, of
the earlier description. The enzyme elastic constant, K, is a molecular property
of the enzyme [1] and the the diffusion constant, D, is related to the physiological
temperature of the bath in the compartment. In the next section we show that the
enzyme specificity can be lowered by a generic periodic non-equilibrium drive. This
provide a mechanism for mimicking promiscuous enzymes without the requiring a
change in the molecular property of the enzymes, and making the enzyme specificity
compartment dependent.

5.3 Effect of an oscillatory mechanical drive on en-

zyme specificity

Here we analyze the effect of an external oscillatory mechanical drive that changes
the resting length of the enzyme on the specificity of the enzyme. The origin of this
oscillatory drive could be due to changes in the membrane properties of the Golgi
cisternae, since glycosylation enzymes are embedded in the membrane of the Golgi
cisternae [8]. Indeed, it has been shown that membrane structure and composition
affect the activities of membrane proteins [9], e.g. lipid bilayer of different thickness
deforms membrane proteins differently to ensure good hydrophobic matching to the
surrounding lipid bilayer [9]. In this scenario the dynamics of enzyme length (or

118



5. Thermodynamic control of the enzyme specificity

“shape"), l, can be described by the following Langevin equation:

dl(t)

dt
= −K

γ
(l(t)− l0(1 + r cos(ωt))) +

D

γ
η(t) (5.9)

Here, the external drive is given by fd(t) = −K
γ
l0r cos(ωt) where r ∈ [0, 1) is the

strength of the drive, and ω is the frequency. The corresponding Fokker-Planck
equation can be written as

∂p(l, t)

∂t
= − ∂

∂l

[
−K
γ
{l − l0(1 + r cos(ωt))} p(l, t)− D

γ

∂

∂l
p(l, t)

]
(5.10)

We solve this equation with the following initial condition

p(l, 0) = δ(l − l0) (5.11)

in the region l > 0 with periodic boundary conditions. We make the following
variable changes

x = l − l0 µ =
K

γ
A = −K

γ
l0r D =

D

γ
(5.12)

The equation in terms of the new variables can be written as

∂p(x, t)

∂t
= − ∂

∂x

[
−(µx+ A cos(ωt))p(x, t)−D ∂

∂x
p(x, t)

]
(5.13)

with initial condition
p(x, 0) = δ(x) (5.14)

In order to solve this equation analytically, we assume l0 >> 1L where L is a
unit of length to measure the enzyme length. This assumption makes the region of
integration, x ∈ (−∞,∞) and the boundary conditions p(−∞, t) = p(∞, t) = 0.
We first take the Fourier transform of (5.11) in space and then solve the resulting
first order Fourier partial differential equation (pde) using method of characteristics.
We define the fourier transform as:

p̃(k, t) =

∫ ∞
−∞

p(x, t) exp(ikl)dx
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The Fourier transform of (5.13) is given by

∂p̃(k, t)

∂t
= −kµ∂p̃(k, t)

∂k
− (ikA cos(ωt) + k2D)p̃(k, t)

This is a first order linear pde that can be solved by the method of characteristic. The
characteristic equations for this pde can be obtained from the following Lagrange-
Charpit equations

dt

1
=
dk

µk
= − dp̃

ikA cos(ωt+ k2D)p̃(k, t)

resulting in the following two odes

dk

dt
= µk =⇒ k = C1 exp(µt) (5.15)

dp̃

dk
= −iA cos(ωt) + kD

µ
p̃ =⇒ p̃ = C2 exp(−iAk cos(ωt)

µ
− k2D

2µ
) (5.16)

where C1 and C2 are integration constants for the characteristic curve and are related
to each other by an unknown function f

C2 = f(C1) = f(k exp(−µt)) (5.17)

We determine the function f using the initial condition p̃(k, 0) = 1 obtained by
taking the fourier transform of the initial condition in (5.11). The resulting f is
given by

f(x) = exp(
iAx

µ
+
x2D

2µ
) (5.18)

p̃(k, t) can now be obtained by putting the value of C2 from equations (5.17) and
(5.18) in (5.16).

p̃(k, t) = exp

[
−iAk

µ
(cos(ωt)− exp(−µt))− k2D

2µ
(1− exp(−2µt))

]
Finally, we take the inverse Fourier transform of p̃(k, t) to obatin p(x, t)

p(x, t) =

√
µ

2πD(1− exp(−µt))
exp

[
−
µ(x+ A

µ
(cosωt− exp(−µt)))2

2D(1− exp(−2µt))

]
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We can now transform this equation back to the original variables to obtain the
probability density of enzyme length, l

p(l, t) =

√
µ

2πD(1− exp(−µt))
exp

[
−µ(l − l0(1 + r cosωt)− exp(−µt)))2

2D(1− exp(−2µt))

]
(5.19)

Figure 5.5 shows the probability density, p(l, t), in the space of the enzyme length,
l, and time, t, for two cases: Figure 5.5(a) shows p(l, t) in the case of no external
drive, r = 0 and Figure 5.5(b) shows p(l, t) in the case of an oscillatory external
drive with amplitude r = 0.1. Width of the distribution in both the cases is decided
by the ratio of elastic constant to the diffusion constant K/2D which we have taken
to be 0.25L2, where L is the unit of the enzyme length. The amplitude of oscillation
is decided by the drive amplitude, r, and the frequemcy is decided by the drive
frequency, ω. At long time, t >> 1/µ, the probability density becomes time periodic,
pss(l, t) ≈ pss(l, t+ 2π/ω) and can be written as

pss(l, t) =

√
K

2πD
exp

[
− K

2D
(l − l0(1− r cosωt))2

]
The time averaged probability over a time period (T = 2π/ω) is defined as

p̄ss(l) =
1

T

∫ T

0

pss(l, t)dt =
1

T

√
K

2πD

∫ T

0

exp

[
− K

2D
(l − l0(1− r cosωt))2

]
dt

We can further write down the enzyme substrate binding probability from (5.7)
using p̄ss(l) as

P (k) =
1

N

∫ T

0

exp

[
− K

2D
(lk − l0(1− r cosωt))2

]
dt (5.20)

The integral in the equation for p̄ss(l) and P (k) is a gaussian in l and lk respectively
with mean l0 and a width that depends on r. We plot this in Figure 5.6 for different
values of the drive amplitude, r (See Figure 5.2(a)), and for different values of the
drive frequency, ω (See Figure 5.2(b)). The width of the distribution increases on
increasing r making the enzyme becomes more promiscuous. In contrast, changing
the drive frequency has no effect on the enzyme promiscuity for the case of instant
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(a) (b)

Figure 5.5. The probability density, p(l, t), of enzyme length, l, at time, t. (a)
p(l, t) in the case of no external drive, r = 0. (b) p(l, t) in the case of an oscillatory
external drive with amplitude, r = 0.1. Width of the distribution in both the cases
is decided by the ratio of elastic constant to the diffusion constant K/2D which
here is ..., the amplitude of oscillation is decided by the drive amplitude, r, and the
frequency is decided by the drive frequency, ω.

binding of substrate to the enzyme (τb = 0). The case of finite binding time τb might
give a dependence on ω. We will explore this further in future.

This calculation shows that the enzyme specificity can be modulated by a non-
equilibrium drive without requiring changes in the molecular structure of the en-
zyme. For membrane enzymes, like the glycosylation enzymes [8], this drive can be
implemented by changing the membrane properties like membrane tension [9]. The
implementation of this drive will inevitably cost energy which we can calculate by
the total entropy produced by the system.

The entropy production in the system is based on the trajectory thermodynam-
ics [10] where thermodynamic quantities are consistently associated with a trajec-
tory of the system. Here trajectory corresponds to the “shape” or length of the
enzyme as a function of time and we ignore the chemical interactions between the
substrate and the enzyme in calculation of the entropy production. The entropy of
a trajectory(l(t)) is defined as

s(t) = − log(p(l(t), t)) (5.21)
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(a) (b)

Figure 5.6. The long time probability density, pss(l, t), of enzyme length aver-
aged over a time period, 2π/ω, denoted by p̄ss(l) vs the enzyme length l (a) p̄ss(l)
for different values of the drive amplitude, r. (b) p̄ss(l) vs l for different values
of drive frequency, ω. The enzyme becomes more promiscuous on increasing the
drive amplitude whereas changing the drive frequency has no effect on the enzyme
promiscuity.

The heat dissipated in the bath by the system associated with increase in entropy
of the bath

δsm[l(t)] = q[l(t)]/T (5.22)

where q[l(t)] is defined as q[l(t)] =
∫ t

0
dτF (l, τ)l̇ = −

∫ t
0
dτµ(l − l0(1 + r cosωτ))l̇.

The average total entropy production can be written as

Ṡ(t) =

∫
l

dl(ṡm(t) + s(t))p(l, t)

=

∫
l

dl
j(l, t)2

Dp(l, t)
=
〈(ν(l, t)2〉

D
≥ 0 (5.23)

where ν(l, t) = j(l, t)/p(l, t). The current for our enzyme system j(l, t) can be
calculated by solving the Fokker Planck equation in (5.5) for a finite region, (l ∈
[Lmin, Lmax]), with periodic boundary conditions, (p(Lmin, t) = p(Lmax, t)).

5.4 Future work

In future, we will explore other generic ways of driving the system of enzyme and
substrate out of equilibrium. One particularly interesting idea is to manipulate the
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statistics of work done by biasing the trajectories towards consuming more energy
like done in [11]. Effectively using multiplicative noise instead of white noise.

We also plan to explore the biological consequences of the ability to increase
the enzyme promiscuity without changing the molecular structure of the enzyme in
a broader context. We will do this by looking at the evolutionary advantages of
such a system in a fast changing environment and how this makes the system more
adaptable [3, 12].

5.5 Conclusion

• We started with showing that the compartment dependent enzyme specificity
results in increased fidelity of synthesis of glycans.

• We extended the enzyme substrate binding model that we used in previous
chapters model the enzyme shape as an over-damped elastic spring in presence
of thermal bath and external mechanical drive.

• In equilibrium (no external drive), this new model returns the same binding
probability distortion relation that we previously used in Chapter 3 and 4.

• In presence of an oscillatory mechanical drive that changes the resting length
of the spring, the effective specificity of the enzymes decreases i.e., the enzymes
becomes more promiscuous.

• We calculate the energetic cost of increasing the promiscuity of the enzyme by
a mechanical oscillatory drive by calculating the total entropy production by
the system.
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Chapter 6

Overview and tasks for the future

In this thesis we look at the process of synthesis of glycans, called glycosylation, in
the Golgi complex from the perspective of information theory and explore the how
does the glycan function constrains the glycan synthesis machinery consisting of the
Golgi complex and glycosylation enzymes.

In the introduction we give a brief overview of information theory and discuss
how it can be a useful framework to analyze biological systems. We briefly out-
line the thermodynamics of out of equilibrium meso-scale systems and describe the
phenomenology of glycans, glycosylation and the Golgi complex. In Chapter 2 we
explore the notion of complexity for glycan distributions on the cell surface in the
context of identification of a cell type in a ‘niche’. We find that for reliable iden-
tification of many cell types and niches the glycan distribution on the cell surface
should be ‘detailed’ with a lot of peaks. We then look at real glycan data of various
organisms like humans, hydra, and quantify the ‘complexity’ or ‘detail’ in the glycan
profile. We find that complex multicellular organism have complex glycan profiles.

In Chapter 3 we give a basic mathematical model of glycosylation consisting
of Golgi compartments, glycosylation enzymes, linear reaction network and unidi-
rectional transport. In Chapter 4 we study the constraints put on the synthesis
machinery by the requirement of creating ‘complex’ glycan distributions. We find
that high fidelity synthesis of complex glycan distributions requires a large number
of Golgi compartments and glycosylation enzymes. Since increasing the number of
enzymes requires an elaborate genetic mechanism this calculation provides a func-
tional motivation for a multi cisternal system. We also find that the glycosylation
enzymes have an optimal enzyme specificity, i.e they should not be too specific and
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have some promiscuity. The geometry of the fidelity landscape in the multidimen-
sional space of the number and specificity of enzymes, inter-cisternal transfer rates,
and number of cisternae provides a measure for robustness and identifies stiff and
sloppy directions. In Chapter 5 we start with showing that compartment dependent
enzyme specificity can improve the fidelity of synthesis. We then discuss a possible
mechanism to have thermodynamic control on the enzyme specificity.

This thesis provides a novel way of looking at the process of Glycosylation and
provides an arguement for the need of multi-compartment Golgi complex. This work
implies that there should be a coupling between the glycosylation enzyme kinetics
and the mechanism of non-equilibrium self assembly of the Golgi complex.

Possible future directions coming out of the thesis:

• Recycling as a cellular strategy for error correction in glycans and adaptation
to niche: The surface glycan distribution synthesized by the Golgi machinery is
further sculpted by the environment by differential internalization rates based
on interaction with the extracellular matrix (ECM). We can write a mechanical
model for the interaction between the glycans and the ECM. The introduc-
tion of this recycling of the glycans may help in adaptation of the cell to a
fast changing environment. The slow response over evolutionary timescales
by changing the synthesis machinery and the fast response by recycling and
sculpting the synthesized distribution.

• The synthesis model can be extended to include more chemical features of
glycosylation like pruning and capping enzymes, and branching in the reac-
tion network. These extension can have interesting effects on the fidelity of
synthesis due to the possibility of error correction by these enzymes.

• Extension of the information bottleneck framework to include the effect of
host-pathogen interactions on the complexity of glycan profiles.
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Chapter A

Convergence of the Magnus sereis

Here, we establish conditions under which the series
∑∞

n=1 Ω(n, k) that defines so-
lution C(k) to the differential equation (3.19) converges.
The commutator

[M(k1),M(k2)] =



0 0 0 0 . . . 0

a21 0 0 0 . . . 0

a31 a32 0 0 . . . 0

0 a42 a43 0 . . . 0
...

...
...

...
...

0 . . . an,n−2 an,n−1 0


where

ai,i−1 = A(i−1)(k2)B(i)(k1) + A(i)(k1)B(i)(k2)− A(i−1)(k1)B(i)(k2) + A(i)(k2)B(i)(k1)

ai,i−2 = B(i−1)(k2)B(i)(k1)−B(i−1)(k1)B(i)(k2)

The general form of Ω(n, k) is given by [? ]

Ω(n, k) =
zn
n!

∫ k

0

dk1

∫ k1

0

dk2 . . .

∫ kn−2

0

dkn−1

∫ kn−1

0

dkn
∑
l

WlM(kpl1)M(kpl2) . . .M(kpln)

(A.1)

where (p
(l)
1 , p

(l)
2 . . . p

(l)
n ) is a permutation of (1, 2, 3, . . . n), Wl ∈ {−1, 1}, and zn ∈

1, . . .n.
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Let Ā = maxk,l,m |Ml,m(k)|. Define

M̄ =



Ā 0 0 0 . . . 0

Ā Ā 0 0 . . . 0

0 Ā Ā 0 . . . 0
...

...
...

...
0 . . . 0 Ā Ā


We can bound all the matrix elements of Ω(n, k) in the following way

Ωlm(n, k) ≤ znM̄
n
l,m

∫ k

0

dk1

∫ k1

0

dk2 . . .

∫ kn−1

0

dkn

= znM̄
n
∣∣∣
lm

kn

n!
(A.2)

The matrix

M̄n =



a11 0 0 0 . . . 0

a21 a22 0 0 . . . 0

a31 a32 a33 0 . . . 0

a41 a42 a43 a44 . . . 0
...

...
...

...
...

an1 . . . an,n−2 an,n−1 ann


where alm = Slm(n)Ān for appropriately defined polynomials Sl,m(n). Thus, it
follows that Ωlm ≤ znSlm(n)(A∗)n k

n

n!
and Ωl,m(k) ≤

∑∞
n=1 znSl,m(n)(A∗)n k

n

n!
. Conse-

quently, the series will converge if Āk < 1, i.e. k ≤ 1
Ā
. Assuming µ(j) = µ ∀j, we

can bound Ā as

Ā ≤ maxj,k

(
µ+σ

∑NE
α=1R(j,k,α) exp(−σ|k−l(j)α |)

µ+
∑NE
α=1R(j,k,α) exp(−σ|k−l(j)α |)

+
∑NE
α=1R

′(j,k,α) exp(−σ|k−l(j)α |)
µ+
∑NE
α=1R(j,k,α) exp(−σ|k−l(j)α |)

)
(A.3)

Since the parameters µ, σ, R(j, k, α), l
(j)
α and NE are finite and positive, and

R′(j, k, α) is finite, Ā has a finite upper bound, implying k is always greater than
zero, and the series has finite radius of convergence.
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Chapter B

Numerical scheme for performing the opti-
mization

We solve Optimization C using the numerical scheme detailed below. The opti-
mization problem consists of minimising a non-convex objective with linear box
constraints. We use the MATLAB FMINCON function to solve this optimization.
We use Sequential Quadratic Programming (SQP), a gradient based iterative op-
timization scheme for solving optimizations with non-linear differentiable objective
and constraints. Since our problem is non-convex and SQP only gives local minima,
we initialise the algorithm with many random initial points. We use SOBOLSET
function of MATLAB to generate space filling pseudo random numbers. We have
taken 1000 initialisations for each NE, NC and σ value. We have taken 50 equally
spaced points between 0 and 1 to explore the σ-space for Fig. 4.1. Some minor
fluctuations in D due to non-convexity of the objective function in the final results
were smoothed out by taking the convex hull of the D vs. σ graph. The results
for σmin(NE, NC) and D(σmin, NE, NC) (Fig. 4.2) were obtained by adding σ to the
optimization vector and then performing the optimization.

A similar numerical scheme was used to optimize diversity.
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Chapter C

Parameter estimation

The typical transport time of glycoproteins across the Golgi complex is estimated
to be in the range 15-20 mins. [1], which corresponds to the transport rate µ =

0.18/min. We bound the transport rate for our optimization between 0.01/min and
1/min.
Next, we estimate the range of values for the chemical reaction rates. The injection

rate q is in the range 100 − 1500 pmol/106 cell 24 h [1, 2]. For our calculation we
set q = 387.30 pmol/106 cells 24 hr = 0.27 pmol/106 cells min, where 387.30 is the
geometric mean of 100 and 1500. We set the range for the enzymatic rate R to be

Rmin = min
α

{
V

(α)
max/ν

K
(α)
M + 1

ν
q
µ

}
≤ R ≤ Rmax = max

α

{
V

(α)
max/ν

K
(α)
M

}
.

where K(α)
M and V (α)

max denote the Michaelis constants and Vmax of the α-th enzyme.
The conversion from 1 pmoles/106 cells to concentration can be obtained by taking
cisternal volume (ν) to be 2.5µm3 [1, 2]. This gives

1 pmoles/106 cells =
10−12moles

106 × 2.5× 10−18 × 103litre
= 400µM. (C.1)

In Table C.1 we report the parameters for the 8 enzymes taken from Table 3 in [1].
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From these parameters it follows that

Rmin = min
α

{ V
(α)

max/ν

K
(α)
M + 1

ν
q
µ

}
=

V
(7)

max/ν

K
(7)
M + 1

ν
q
µ

=
.16× 400µM/min

3400µM + 149.4µM
= 0.018min−1

Rmax = max
α

{V (α)
max/ν

K
(α)
M

}
=

V
(1)

max/ν

K
(1)
M

=
5× 400µM/min

100µM
= 20min−1

α K
(α)
M V

(α)
max

(µmol) (pmol/106 cell-min)

1 100 5
2 260 7.5
3 200 5
4 100 5
5 190 2.33
6 130 .16
7 3400 .16
8 4000 9.66

Table C.1. Enzyme parameters taken from Table 3 in [1] that we use to calculate
the bounds on the reaction rate R. HereK(α)

M and V (α)
max denote the Michaelis constant

and Vmax of the α-th enzyme.
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