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Abstract
Two-dimensional soft materials such as flexible membranes offer an ideal testing
ground for fundamental concepts involving order (symmetry), low-energy excita-
tions, topological defects, and fluctuations. This thesis studies the interplay be-
tween geometry, topology, and elasticity in two-dimensional soft materials. Gaus-
sian (intrinsic) curvature of membranes acts as a source of topological defects in
orientational order [1, 2]. Conversely, topological defects tend to bend flat, de-
formable ordered membranes to reduce in-plane stresses. Positive and negative
disclinations (vortices) prefer locally positive and negative Gaussian curvatures
respectively. The interplay between Gaussian curvature and topological defects
is strikingly illustrated by the Poincaré-Hopf index theorem. According to this
theorem, a sphere with in-plane orientational order must have an isolated discli-
nation or isolated disclinations with total index 2.

This thesis is structured as follows. In the first chapter we present a brief
review of the elasticity theory of orientationally ordered fluid membranes, and
the topology of disclinations in such membranes. This is followed by a brief dis-
cussion of the phenomenology of polymer crystallisation. The rest of the thesis
is separated into two parts. In the first part (Chapters 2, 3, 4) we address the
stability of singular, topological wall defects on spheres, catenoids, and helicoids.
In the second part (Chapters 5, 6) we discuss the role of topological defects in de-
termining the observed morphologies of polymer crystallites. The work presented
in these parts is summarised below.

Part-I: Stability of singular, topological wall disclinations on

curved membranes.

In chapter 2, we study the topological, singular wall defects (of total index 2) on
orientationally ordered spherical vesicles. Unlike soliton-type wall configurations,
these wall defects are singular lines. However, wall defects are topologically un-
stable on two-dimensional surfaces [3]. Within the mean-field approximation, we
show that singular, topological wall defects can be stabilized on a sphere because
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of its Gaussian (intrinsic) curvature and not because of boundary conditions, ex-
ternally imposed fields, or divergences in certain elastic constants. They are stable
close to the order-disorder transition, over a finite range of a dimensionless pa-
rameter η. The parameter η is the ratio of basic free energy scales corresponding
to the destruction of order in the defect cores to that of the elastic deformation
outside the core. We attribute their stability to free-energetic considerations,
which override those of topological stability. Remarkably, we find that for n-atic
order, the lowest elastic free-energy configuration has 2n walls of index 1/n each,
located such that the integral of Gaussian curvature of the sphere between any
two successive walls is 2π/n (division of Gaussian curvature).

We also study the stability of wall disclinations on catenoidal and helicoidal
surfaces, which are negative Gaussian curvature surfaces. They are minimal sur-
faces that are isometric to each other; one can bend a catenoid into a portion
of a helicoid without stretching. Although these surfaces are not subject to the
Poincaré-Hopf theorem, we find that the ground state configuration possesses
disclinations with total index -2. Similar to spherical membranes, wall disclina-
tions (of total index -2) on catenoids and helicoids are stable near the orientational
order-disorder transition over a finite range of η. Chapter 3 focuses on point and
wall disclinations and their interactions on catenoidal membranes of infinite ex-
tent (finite neck radius and infinite height). Furthermore, we investigate finite
height effects on the stability of wall disclinations. We predict transitions be-
tween different defect configurations to defect-free configurations as a function
of η. In Chapter 4, we discuss the isometric transformation between helicoid
and catenoid. Using this transformation, we show that results for cateonoidal
membranes are easily mapped to helicoidal membranes. Thus, the results such as
stability of wall disclinations, energetic of points, wall disclinations, and division
of Gaussian curvature by the walls on the catenoid are applicable to the helicoid.

Part-II: Sector-, and tent morphologies of polymer crystal-

lites.

Polymer crystals (solution-grown, as well as melt-grown) are significantly dif-
ferent from atomic and molecular crystals because of their connectivity. This
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is because polymers have long, interpenetrating chains. Interestingly, observed
morphologies of polymer crystallites are lamellar. These display spherulitic, sec-
tored, tent-like, or scroll structures. Microscopic formation of lamellae is well
explained by the adjacent re-entry model — parts of polymer chains form rigid
stem-like structures attached to adjacent stems by folds in the polymer chains
[4]. These stems offer crystalline order by arranging on a lattice. Depending
on growth conditions stems can align either along the lamellar normal, or at an
angle with respect to it. Even though macroscopic structures such as tents are
observed experimentally, there is no clear, theoretical understanding of their sta-
bility. In our work, we use concepts borrowed from liquid-crystal physics, and
the physics of crystalline membranes to study the sector-, and especially the tent
morphologies. To our knowledge, this is the first attempt at a detailed theoretical
modelling that addresses the stability of the tent morphology.

In chapter 5, we briefly review the model discussed in [5], and present an
improved calculation to study the range of stability of the sector morphology. The
sectored morphology has intersecting wall defects (“solitons”) in the fold-field,
with a disclination at the point of intersection of the walls (at the centre of the
sector). Strong anisotropy in line tension entraps a disclination, and stabilises
the sector morphology. Chapter 6 focuses on the stability of the tent morphol-
ogy. We show that tents are buckled sectors. Bucking involves the bending of
polymer lamellae. We discuss two possible modes by which polymer lamellae
can bend. We construct “phase diagrams” in parameter space, indicating the
ranges of stability of the sector- and tent configurations over a range of dimen-
sionless, phenomenalogical parameters involving bending rigidity, and (isotropic-,
and anisotropic) line tensions of polymer lamellae.
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(Thesis Supervisor)
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(Thesis Co-supervisor)
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Chapter 1

Introduction

1.1 Soft matter

Soft matter physics is a particular branch of solid-state physics that studies easily
deformable systems. The word “soft” implies that minimal mechanical stresses
or even the thermal fluctuations (or entropic forces) are enough to deform those
systems [6, 7, 8, 9, 10]. Soft matter physics covers various exotic systems such
as liquid crystals, lipid membranes, polymers, colloids, gels, foams, emulsions,
granular particles, and some biological systems. The standard and exciting fea-
ture in all these materials is that corresponding elastic moduli are very small.
For example, the shear modulus of the blue phase liquid crystal is of the order
100 Pa, which is 109 times lesser than that of aluminum metal [6]. The energy
scales of soft materials are comparable to thermal energy so, the quantum ef-
fects are negligible. Thus, most of the soft materials are studied with classical
phenomenological theories [3, 6, 7].

The internal structures and morphologies of these soft phases and materials
are quite fascinating. For example, self assembly of lipids (amphiphilic molecules)
in aqueous solution results micelles, mono-layers, bi-layers, vesicles, and cylindri-
cal micelles depending on the amphipilic concentration and molecular packing
parameter [11, 12]. In this thesis we focus on two-dimensional morphologies
with in-plane order. Examples of two-dimensional soft materials are nematic
films and vesicles, smectics (Sm − A, Sm − C, Sm − F ) [13], membranes,
lamellar phases of lipid bilayers (Lα, Lβ, L

′
β ; lyotropic analog of smectics) [14],

elastomer sheets [15], etc. They offer an ideal testing ground for fundamental
concepts involving order (symmetry), low-energy excitations, topological defects,
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and thermal fluctuations. Other fascinating systems that we explore in this thesis
(Part-II) are morphologies of polymer crystallites. Interestingly these morpholo-
gies are lamellar in nature. Thus we consider them as effectively two dimensional
surfaces with in-plane crystalline order and orientational order (See Chapter 5
for more details).

The basic theme of this thesis is to study the interplay between geometry,
topology, and elasticity in two-dimensional soft materials with in-plane orienta-
tional order. In this chapter, we discuss some examples of in-plane order and
corresponding topological defects (in Sec. 1.2), followed by geometry of a two
dimensional membrane, or surface (in Sec. 1.3).

(a) (b)

Figure 1.1: Schematics of in-plane orientational orders. (a) Vector order (n = 1)
(b) Nematic order (n = 2): The nematic phase is a liquid crystalline phase
with head-tail symmetry consisting of anisotropic molecules with no positional
ordering. It has orientational (two-fold) order and breaks the rotational symmetry
of the fluid phase. (See the Sec. 1.2 )

1.2 Order and Topological defects

To describe tangent plane (or, in-plane) n-atic orientational order in a flat surface,
we introduce a unit vector m̂(x, y) = cosα(x, y) x̂+ sinα(x, y) ŷ, or a complex
order parameter ψ = ψ(x, y) = |ψ(x, y)| exp[i α(x, y)] [16]. Here the coarse
grained [3] angle α is measured modulo 2π/n with respect to (x̂ , ŷ). The in-
plane vector- and nematic order are represented by n = 1 and n = 2 respectively
(See Fig. 1.1).
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(a) +1 disclination (b) +1 disclination (c) −1 disclination

(d) +2 disclination (e) −2 disclination

Figure 1.2: Topological defects in vector order: Dots in the figures represent the
core regions. The black curve in (a) is an anti-clock wise contour to characterise
the defect.

The in-plane orientational order in the ordered phase breaks the rotational
symmetry (continuous symmetry) of the phase. In the ordered phase, there exist
topological defects, which try to restore the symmetry in the ordered phase [17].
These defects are topologically stable, i.e., in-order to remove these defects, we
need to take them to infinity or make cuts in the ordered phase. In the soft matter
context, they are often called as disclinations. Examples of point-disclinations in
vector (n = 1) and nematic (n = 2) order are shown Fig. 1.2 and Fig. 1.3
respectively.

A disclination has core region, in which order gets destroyed and melts to
disordered phase, and “charge” associated to it. To characterise point disclina-
tions, we consider an anti-clockwise loop around the core 1.2(a). If the unit
vector m̂ (order parameter ψ) on the loop changes in same sense with the loop
direction, then the disclination is positive. Otherwise it is negative. Number of
rotation of m̂ for one complete loop defines the charge or index of the disclination.
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(a) +1/2 disclination (b) −1/2 disclination

Figure 1.3: Topological defects in nematic order:

Mathematically topological defects are characterised by [3]∮
L

dα = 2πs (1.1)

where L is the anti-clockwise loop enclosing the disclination core and s is the index
of the disclination. For vector order s values are positive or negative integers. We
note that nematic order has up down symmetry that allows s to take positive or
negative half-integer values (See Fig. 1.3).

To characterise defects in crystalline order in a plane, we recall the displace-
ment vector u(x, y) = uxx̂ + uyŷ [18]. In the presence of topological defects,
u becomes multi-valued function. There are two kinds of topological defects in
crystalline order, namely dislocation and disclinations (See Fig. 1.4). Disinclina-
tion in crystalline order arises from the orientational order of the lattice points.
It is obtained by insertion/removal of a wedge with an angle ω. Thus, in the
presence of disclinations coordination number (number of nearest neighbours for
a lattice point) for the disclination core is changed (See Fig. 1.4(a), Fig. 1.4(b)).
The bond angle for the orientation of the lattice points, for small deformations, is
given by Θ = (1/2)(∂xuy−∂yux) [19]. If ω is the angle deficit/gain corresponding
to a disclination, then loop integral of Θ enclosing disclination core is given by∮

L

dΘ = ω (1.2)

where L is the anti-clockwise loop around the disclination.

In two dimensions, dislocations are obtained by addition or removal of lattice
lines in the crystalline order. It is characterised by Burgers vector (b) and defined
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(a) Positive disclination (b) Negative disclination

(c) Dislocation

Figure 1.4: Crystal defects in two-dimensional hexagonal lattice: The coordi-
nation number for hexagonal lattice is is 6. (a) Positive disclination: Five-fold
(black dot) coordination number and angle deficit ω = 2π/6. Black curve indi-
cates the counter-clock wise loop L. (b) Negative disclination: Seven-fold (black
dot) coordination number and ω = −2π/6. Here the negative sign indicates that
a wedge with angle ω is added at the core. (c) Dislocations are pairs of positive
(black dot) and negative (red dot) disclinations. The white arrow represents the
Burgers vector (See the text).

by [3] ∮
L

du = b (1.3)

where L is the anti-clockwise loop containing dislocation core. A dislocation in
two-dimensions consists of a bound pair of positive and negative disclinations
(See Fig. 1.4(c)). In the presence of dislocation, taking an equal number of steps
in four directions to enclose a path around the core will not lead to the starting
point. The direction from starting to end points on the path defines the Burgers
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vector which completes the circuit around the core. For the dislocation shown in
Fig. 1.4(c), the white arrow represents the Burgers vector.

1.3 Curvature of a membrane

Mathematical description of two dimensional surfaces in three dimensions are
very well studied. In this thesis, we use the differential geometry techniques to
study the curves and surfaces in 3-dimensions [20, 21, 22, 23]. Let R(x) be the
parametrisation of a given two dimensional surface embedded in three dimensions
with the internal coordinates x = (x1, x2) (Fig. 1.5). Tangents to the surface,
at any point, are given by tµ = ∂µR with ∂µ = ∂/∂xµ and µ = {1, 2}. The
unit, outward surface normal (N̂ ) and the metric tensor (gµν) are defined by
N̂ (x) = (t1Xt2)/(|t1Xt2|) and gµν = tµ · tν , respectively. Determinant of the
metric tensor defines the metric (g) of the given surface i.e., g = det(gµν). Any
vector V that belongs to the tangent plane of the surface can be expressed as
V = V µ tµ = Vµ t

µ, where Einstein’s notation of summation over repeated indices
is implemented. Hereafter, we follow the same convention. The components Vµ
(V µ) form covariant (contravariant)-vector in the tangent plane.

The curvature information of the surface is given by curvature tensor and it
is defined as Kµν = N̂ · ∂νtµ. Mean (H) and the Gaussian curvature (K) are,
by definition, H = 1

2
tr(Kµ

ν) and K = det(Kµ
ν), respectively. Here, Kµ

ν is the
mixed curvature tensor. Mean curvature is an extrinsic property and depends on
the embedding of the surface and its normal. The Gaussian curvature is intrinsic,
and depends only on the metric (gµν) [20, 21].

Understanding of mean and the Gaussian curvatures are simpler if we make
use of principal curvatures (say, κ1 and κ2) along the principal directions (orthog-
onal to each other) (Fig. 1.6). By definition, principal curvature is reciprocal of
the radius of a circle inscribed along the principal direction. For radii of curva-
tures r1 and r2 curvatures κ1 = 1/r1 and κ2 = 1/r2. Depending on the convention,
principal curvature can be positive or negative. For example, if the center of the
inscribed circle is in the same direction as the unit surface normal (N̂ ), then the
principal curvature is positive. Otherwise, it is negative. In terms of principal
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Figure 1.5: A 2-dimensional surface in 3-dimensions: Vectors t1, t2 and N are
tangents and normal to the surface of parametrisation as R(x1, x2).

(a) Upper hemisphere (b) Lower hemisphere (c) Saddle

Figure 1.6: Curvature of a surface: The surface normal (N ) points upward. Two
black-curves in the figures represent the principal radii (corresponding principal
curvatures κ1, κ2) at the point of intersection. (a) Upper hemisphere: Following
the convention (see text), we get κ1 < 0 and κ2 < 0. Thus mean curvature H < 0
and Gaussian curvature K > 0. (b) Lower hemisphere: Here κ1 > 0 and κ2 > 0.
Therefore H > 0 ; K > 0. (c) Saddle: For this surface, κ1 < 0; κ2 > 0. Saddle is
a minimal surface i.e., κ2 = −κ1 so that H = 0 and K < 0.

curvatures, mean (H) and the Gaussian (K) curvatures are given by

H(x) =
1

2
tr(Kµ

ν) =
1

2
(κ1 + κ2) and,

K(x) = det(Kµ
ν) = κ1κ2.

(1.4)

Notice that mean curvature depends on the convention, and the Gaussian
curvature is independent of the convention.
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1.4 Interplay between shape, order and topologi-

cal defects

The ground-state configuration of a planar membrane with in-plane orientational
order breaks the rotational symmetry. The ordered phase, in its ground-state,
spontaneously picks up one of the states in the ground-state manifold. For the
case of vector order, one of the ground-states is that all vectors are aligned along
x̂-direction (Uniform configuration). Establishment of in-plane order on a curved
membrane (with non zero Gaussian curvature) introduces geometrical frustration
in the order [24]. The uniform ordering may not possible as the Gaussian cur-
vature acts as a source of geometrical frustration. Thus the ground state con-
figuration contains topological defects to counter the frustration caused in the
ordering.

A striking example of geometrical frustration is given by the Poincaré-Hopf
index theorem [25, 26]. The theorem states that a sphere with in-plane orienta-
tional order must have a singular, isolated point disclination of index s = 2, or
isolated disclinations with total index sT = 2. The ground state configurations
(with point-disclinations) for the vector, nematic order, and triangular lattice are
shown in the Fig. 1.7.

Topological defects (disclinations) have in-plane stresses due to misalignment
of ordering away from the core. These stresses increase with system size. When
the disclinations emerge on a flexible membrane, they tend to change the shape of
the membrane by buckling. This is due to the fact that buckling of the membrane
allows disclinations to reduce in-plane stresses [2, 27]. Illustration of buckling of
membranes in the presence of disclinations are shown in Fig. 1.8.

In short, there is a delicate interplay between order, geometry, and topo-
logical defects. It establishes that Gaussian curvature of membranes acts as a
source of defects in the orientational order. Conversely, defects tend to bend flat,
deformable membranes. Positive and negative defects of equal strength prefer
locally positive (sphere-like) and negative (saddle-like) Gaussian curvatures. The
interplay plays key role in this thesis. In addition to the interplay, energetics of
membrane with in-plane orientational is essential to obtain equilibrium shapes.
Below, we discuss the free energy and equilibrium equations for fluid membranes
with in-plane orientational order.
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(a) Antipodal configura-
tion

(b) Tetrahedral configu-
ration

(c) Icosahedral configura-
tion

Figure 1.7: Ground state configurations of in-plane orientational order on
spheres containing point defects: The images in upper row show the equilib-
rium positions of point defects in vector-, nematic-order and hexagonal lattice,
and lower row depicts the corresponding textures. (a) Antipodal configuration
for vector order. Two point disclination of index s = 1 placed at north and south
poles. (b) For nematic order, equilibrium position of four +1/2 disclinations are
vertices of tetrahedron inscribed in a sphere. (c) In hexatic order and also in
hexagonal lattice, the ground state has 12 positive disclinations (five-folded co-
ordination number) located on the vertices of icosahedron inscribed in a sphere.
The color images shows the equilibrium configuration of hexagonal lattice on a
sphere.

1.5 Energetics and Euler-Lagrange equations of

fluid membranes with in-plane order

Typically, the thickness of the membranes is of the order of nanometers, and
the lateral dimensions are up to micro-meters. As the lateral dimensions of the
membrane are much larger than its thickness, we model the membranes as math-
ematical surfaces with “zero” thickness.

Total free elastic energy of a fluid membrane with in-plane orientational order
has contributions from bending (Helfrich free energy), surface tension, and from



10 Chapter 1. Introduction

(a) (b)

(c) (d)

Figure 1.8: Schematics of buckling phenomenon of flexible membranes in pres-
ence of topological defects: Positive disclinations in vector order (sub fig.(a) )
and hexagonal lattice (sub fig.(c) ) buckle to conical shape whose Gaussian cur-
vature is positive. Similarly, negative defects acquire shapes that have negative
Gaussian curvature (sub Figs.(d) and (d) ).

distortions in orientational order (Frank free energy). The Helfrich bending free
energy (FH) of the fluid membrane is [28],

FH =

∫
[
κ

2
( H(x)−H0)

2 + κG K(x) ] dA (1.5)

where, κ and κG are the bending rigidity and Gaussian rigidity, and the area
element dA =

√
g dx1 dx2. The integral is taken over the curved membrane and

H, H0 and K are mean, spontaneous and Gaussian curvatures of the membrane,
respectively. For symmetric membranes H0 = 0.

The expression for surface tension energy (FS) is given by

FS = σ

∫
dA, (1.6)

where σ is the surface tension.
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For a finite membrane with boundary, there is also line tension contribution
in addition to the bulk energy. The free elastic energy from line tension has the
form

Fl = γ

∮
dl, (1.7)

where γ is the line tension and dl is length element on the boundary.

1.5.1 Frank free energy Fα

To arrive at a qualitative expression for Fα, let us recall the two dimensional
continuum xy model on a rigid, flat surface. The order parameter m̂(x, y) =

(cosα(x, y), sinα(x, y)), where α(x, y) is the coarse grained angle that the m̂(x, y)-
vector (indicating 1-atic order) makes with respect to the x- axis (See Fig. 1.9(a)).

The uniform m̂ (i.e., α = const.) is a reference state. Any elastic deformation
in m̂ contributes to the Frank free energy Fα. For two dimensional vector field
such as m̂, there exist two types of independent deformations. They are splay-
(in which divergence of m̂ is non zero) and bend-(in which curl m̂ is non zero)
deformations. Thus, the free elastic energy Fα is given by [29]

Fα =

∫ (
K1

2
(∂ · m̂(x, y))2 +

K2

2
(∂ × m̂(x, y))2

)
dx dy, (1.8)

where ∂ is the ordinary flat-space gradient operator, andK1 andK2 are the splay-
and bend elastic constants respectively. Within the “one-constant approximation”
K1 = K2 = Kα [9], Eq.1.8 reduces to

Fα ≃ Kα

2

∫
|∂α(x, y)|2dx dy (1.9)

because m̂ is a unit vector. This is the commonly used, square-gradient elastic
free energy for the continuum xy model.

We note that the rigid, flat plane allows us to use the global, orthonormal
frame with respect to which the angle α(x, y) can be defined. This is not possible
on deformable, curved surfaces, where it is necessary to set up a local orthonormal
frame (ê− basis) to define α [1]. Unlike in the flat case, on a curved surface the
ê− basis is spatially varying. The relation between orthonormal basis êi(x

µ) and
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(a) (b)

Figure 1.9: Orthonormal frame: (a) For a flat membrane, the angle α is mea-
sured with respect to the x̂−axis (fixed orthonormal frame). (b) On curved
membrane, α is measured with respect to the orthonormal ê− basis. The tips of
the basis vectors can lie anywhere on the unit circle in the tangent plane, imply-
ing O2 symmetry.

tangent basis is given by
êi(x) = Eµ

i (x) tµ(x)

where i = {1, 2} , µ = {1, 2}. Eµ
i are called vierbein or frame field. Henceforth

we preserve the notation that Latin letters {i, j, l..} represent ê-basis, whereas,
Greek letters {µ, ν, λ..} represent t-basis. The unit vector m̂(x) in ê-basis takes
the form

m̂ = mi(x) êi(x)

= cosα(x) ê1(x) + sinα(x) ê2(x).

Since the ê-basis is locally Euclidean, there is no distinction between raising and
lower indices i,e. mi = mi. With the help of ê - basis, the expression for Fα takes
the form [1]

Fα =
1

2
Kα

∫
(∂α−A)2dA (1.10)

with notation (∂α−A)2 ≡ gµν(∂µα− Aµ)(∂να− Aν) and gµν is inverse of gµν .

The spin connection A has information about spatial variation of ê−basis,
and is defined as Aµ = (1/2) (ê1 · ∂µê2 − ê2 · ∂µê1) [1]. It is a gauge field and the
transformation α → α+Ψ implies Aµ → Aµ+∂µΨ such that ∂µα−Aµ is invariant
under O2 freedom of ê−basis. Thus, Eq. 1.10 is also invariant under the O2
symmetry. The covariant derivative Dµ ≡ ∂µα − Aµ measures true deformation
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in m̂ and accounts for the correct free energy cost. We note that the Gaussian
curvature(K) and spin connection terms are related by [1]

K = γµν ∇µ Aν (1.11)

where γµν = ϵµν/
√
g and anti-symmetric tensor ϵµν , by definition, ϵ1 2 = −ϵ2 1; ϵ1 1 =

ϵ2 2 = 0. The symbol ∇µ represents covariant derivative on the surface. Having
obtained the free energy of the membrane, we discuss the equilibrium equations
below.

1.5.2 Euler-Lagrange equations

Minimisation of total elastic free energy (Fel) gives the Euler-Lagrange equations.
Total (bulk) free elastic energy Fel is

Fel = FH + Fα + FS (1.12)

There are two kinds of minimization in the free energy of a fluid membrane
with in-plane orientational order. First, minimization of orientational order field
by keeping the shape of membrane fixed and second, shape variation by keeping
orientational order field unaltered (Lie dragging ).

The α−equation

The α−equation is obtained by varying Fel with respect to α, and it is given by

δFel

δα
= −Kα∇·(∂α−A) = 0 (1.13)

where ∇· represents covariant divergence [20, 21].

We use of Airy stress function formalism to solve the Eq. 1.13 [2]. The stress
function χ is defined as, ∇µχ = γµν(∂να− Aν) such that α−equation (Eq. 1.13)
is satisfied automatically. Uniqueness of stress function χ is achieved with the
compatibility condition

∇2χ(x) = K(x)− S (x) (1.14)

where Laplace-Beltrami operator ∇2 = 1√
g
∂µ(

√
g gµν∂ν). The coarse grained,

continuum disclination density i.e., number of disclinations per unit area on the
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membrane, by definition, is given by [2]

S (x) = γµν ∇µ∂να. (1.15)

If the membrane has N discrete, point disclinations of indices si at position xi

(for i = 1,2...N ), disclination density is given by

S (x) =
2π
√
g

N∑
i

si δ
(2)(x− xi)

where δ(2)(x) is two dimensional Dirac delta function. In terms of stress function
χ, Fα is given by [2]

Fα =
Kα

2

∫
gµν(∂µχ) (∂νχ) dA. (1.16)

We note that the curvature (K) and disclination density (S ) of the mem-
brane surface are connected by compatibility condition (Eq. 1.14) which elucidates
the interplay between shape, order and topological defects.

The shape equation

The shape variation can be along tangents (stretching) and normal(bending) and
given by δR = δRµ

∥ tµ + δR⊥N̂ . Here δRµ
∥ and δR⊥ represent tangential and

normal variations, respectively. However, δR⊥ contributes to the bulk shape
equation, whereas δRµ

∥ to the boundary conditions [31]. The minimization of Fel

with respect to shape is [32]

δFel

δR⊥
=
δFα

δR⊥
+
δFH

δR⊥
= 0 (1.17)

where,
δFα

δR⊥
= Kα (Kµνψµν +H ϕ)

δFH

δR⊥
=
κ

2

[
∇2H + 2(H −H0)(H

2 −K +HH0)
]
− 2σ H

with the definitions ψµν = ∇µ∇νχ − (∇µχ)(∇νχ), ϕ = (∇χ)2 − 2∇2χ and Kµν

is curvature tensor. For minimal symmetric bilayer membranes, mean (H) and
spontaneous curvature (H0) are zero. Thus, the shape equation Eq. 1.17 reduces



1.5. Energetics and Euler-Lagrange equations of fluid membranes with in-plane
order

15

to
Kµνψµν = 0 (1.18)

These equilibrium equations are essential to study the membranes with ori-
entational order and to lay the foundation for the following chapters in this thesis.
The thesis work is divided into two parts. Part-I addresses the stability of sin-
gular, topological wall defects on spheres (Chapters 2), catenoids (Chapters 3),
and helicoids (Chapters 4). In Part-II (Chapters 5, 6) we discuss the role of topo-
logical defects in determining the observed morphologies of polymer crystallites.
These topological defects are point defects with soliton−type wall configurations.
In contrast to Part-I, the soliton-type wall configuration is not a singular defect
line in order parameter field rather a domain wall separating two domains with
continuous, smooth deformations in order parameter field.
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Part I

Stability of singular, topological
wall disclinations on curved

membranes
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Chapter 2

Wall disclinations on spheres

2.1 Introduction

In Part-I of this thesis (Chapters 2, 3, 4), we address the stability of singular,
topological wall defects (line defects in 2-dimensions) on spheres, catenoids, and
helicoids. This work is done with the collaboration of Dr. Jaya Kumar A (IISc,
Bengaluru, India). To begin with we consider a spherical surface with in-plane
orientational order, such as nematic order.

The Poincaré-Hopf index theorem [25, 26] strikingly demonstrates the re-
markable interplay between curvature of a surface, and frustration of orientational
order on it. According to this theorem, a sphere with in-plane orientational order
must have a singular, isolated point disclination of index s = 2, or isolated discli-
nations with total index sT = 2. The study of topological defects in systems of
spherical topology, such as vesicles with in-plane orientational order, is important
for investigating the interplay between geometry, topology, and elasticity, and for
its potential applications in materials science.

Lubensky and Prost [33] have investigated equilibrium positions of point
disclinations on orientationally ordered rigid spheres. Due to repulsive inter-
actions between like disclinations, the shape of deformable spherical vesicles is
altered. Equilibrium shapes of deformable vesicles are discussed in [16]. Thick-
ness effects in spherical nematic shells plays an important role in determining
the nature of defects on the sphere. As the thickness of the shell increases, the
tetrahedral configuration of four half-index disclinations(which is the ground state
for “zero thickness” shells) becomes unstable, and a three- dimensional “escape
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configuration” composed of two pairs of half-hedgehogs becomes energetically fa-
vorable [29].

Disclination cores on spherical particles such as micron-scale colloidal parti-
cles coated with liquid crystals can be functionalised to create “super-atoms” with
directional bonds [34]. This opened up new possibilities such as self-assembly of
super-atoms by linking across functionalised groups (including biomolecules such
as DNA), and the development of atomic chemistry at micron scales. Rigid
spheres have been prepared by molecular coating of ordered, tilted monolayers
on metal nanospheres [35], leading to the antipodal configuration of a source-sink
pair of disclinations of index s = 1 each. These divalent super-atoms sponta-
neously form long one-dimensional chains. Thin nematic shells consisting of a
nematic drop containing a smaller aqueous drop have been obtained in double
emulsions [36]. These can be engineered to imitate sp-, sp2-, and sp3 geometries
of carbon bonds. Deformable vesicles with orientational order can form facets.
These fascinating possibilities have led to rapid advances in theoretical and ex-
perimental studies [29, 37, 38, 39, 40] in this field.

In our work, we study the energetics and stability of topological wall de-
fects (line defects in 2-dimensions) in fluid membranes with n-atic orientational
order. Topological arguments show that singular wall defects in two- and three
dimensional ordered systems are unstable because they can be made to disappear
by making local changes in the orientational order [9, 3]. In three dimensions,
removal of disclinations lines with index s = 1 via “escape" of the nematic di-
rector in the third dimension [9, 10, 3, 41, 42] is well known. However, close
to nematic-smectic transition the bend elastic constant diverges, the escape con-
figuration has a larger free energy than that of the line disclination of index 1,
and the disclination line is stabilised. We show that singular wall defects can
be stabilized on a sphere because of its Gaussian curvature, and not because of
boundary conditions, externally imposed fields, or divergences in certain elastic
constants. They are stable close to the order-disorder transition, over a finite
range of a dimensionless parameter η. The parameter η is the ratio of basic free
energy scales corresponding to the destruction of order in defect cores to that of
elastic deformation outside the core [43].
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2.2 Ginzburg-Landau theory

Our analysis is based on a Ginzburg-Landau type model that extends the Nelson-
Peliti (spin connection) elasticity theory of orientationally ordered fluid mem-
branes [1, 2]. The xy model elastic free energy does not take into account changes
in the magnitude of the orientational order parameter. In the presence of sin-
gular, topological defects, magnitude of the order parameter is not uniform (See
Sec. 1.2). In investigating the energetics and structure of topological defects it is
essential to take gradients in the magnitude of the orientational order parameter
into account. This is best accomplished by using the Ginzburg-Landau theory
for a complex, n-atic order parameter ψ = ψ(x) = |ψ(x)| eiα(x) [16]. Here, the
angle α is measured modulo 2π/n with respect to a local orthonormal frame
(ê1(x), ê2(x)).

The Ginzburg-Landau free energy density of orientationally ordered surfaces
(fGL) is given by [16]

fGL =
r

2
|ψ|2 + u

4
|ψ|4 + k

2
|(∂ − iA)ψ|2, (2.1)

where r = r0(T − Tc), T and Tc are the temperature, and the critical temper-
ature respectively, and u is assumed to be temperature independent. The term
with coefficient k describes the elastic free energy of deformations within the
“one-constant" approximation [9, 10, 3]. The symbol ∂ represents the flat-space
gradient operator, and A(x) is the local gauge field (the spin connection) that
corrects the flat-space gradient by accounting for membrane curvature. In the
term with coefficient k, complex conjugates are contracted using the metric ten-
sor. The free energy FGL =

∫
fGL dA, where the area element dA =

√
g dx1 dx2,

and g is the determinant of the metric tensor gµν . The free energy FGL is analo-
gous to that of the Ginzburg-Landau theory of type-II superconductors [44]. In
superconductors the complex order parameter is coupled to the electromagnetic
vector potential A, whereas in orientationally ordered membranes this coupling
is via the “geometric vector potential” (spin connection).

2.2.1 Equations of equilibrium

The free energy FGL has contributions from establishment of order, and elastic
deformations in the order parameter. The former sets up the magnitude of the
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order parameter and contributes to the condensation free energy density (fC). By
definition, fC is the free energy cost per unit area for destruction of orientational
order. It plays a pivotal role in finding the optimal core-sizes of topological
defects [3]. Within mean field theory the magnitude of order parameter |ψ0| =√

−r/u, and fC = r2/(4u).

For surfaces of fixed shape (and therefore fixed A) that we consider, vari-
ational minimisation of the functional FGL with respect to α(x) and |ψ(x)| leads
to the full set of equations of equilibrium.

δFGL

δα
= −k∇ ·

[
|ψ|2 (∂α−A)

]
= 0. (2.2)

Here ∇ · represents covariant divergence [26]. Within mean-field theory |ψ| is
uniform. Thence Eq. 2.2 reduces to the α− equation (Eq. 1.13) with the modifi-
cation Kα = k |ψ0|2.

δFGL

δ|ψ|
=

[
r + k (∂α−A)2

]
|ψ|+ u |ψ|3 − k ∇2|ψ| = 0, (2.3)

where (∂α−A)2 ≡ gµν (∂µα−Aµ) (∂να−Aν) and the Laplace-Beltrami operator
∇2 ≡ (1/

√
g) ∂µ (

√
g gµν ∂ν). We define Υ = |ψ|/|ψ0| such that Eq. 2.3 takes

the simple form as follows [45]

δFGL

δΥ
=

[
1− ξ2 (∂α−A)2

]
Υ−Υ3 + ξ2 ∇2Υ = 0 (2.4)

where correlation length ξ =
√

−k/r ∼ (∆T )−1/2.

The above equation is essential for studying variation of order parameter
magnitude around the defect core. However, for simplicity, we assume that the
core of size ϑ(ξ) is completely disordered. In other words, |ψ| = 0 in the core
and takes the mean-field value outside the core. In what follows, we study the
stability of wall disclinations using this approximation [3, 33].
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2.3 The elastic free energy

The elastic part of the Ginzburg-Landau free energy density (Eq. 2.1) is

fel =
1

2
Kα (∂α−A)2 =

1

2
Kα (∂µα− Aµ)(∂

µα− Aµ), (2.5)

where Kα = k |ψ0|2 in the mean field approximation. Minimisation of the elas-
tic free energy Fel =

∫
fel dA leads to the α−equation discussed in Chapter-1

(Eq. 1.13). We use the Airy function formalism (See Sec. 1.5.2) to study the en-
ergetics. In terms of the stress function χ, the elastic free energy density (Eq. 2.5)
can be written as

fel =
1

2
Kα (∂χ)

2 =
1

2
Kα (∂µχ)(∂

µχ). (2.6)

Making the simplifying assumption that order is destroyed over the entire
core region, the condensation free energy FC =

∫
fC dA, where the integral

is over the core region [3]. Thus the total free energy density of our model is
FT = Fel + FC.

2.3.1 The Coulomb gas model

For a shape of Gaussian curvature (K(x)), given disclination density (S (x)) the
exact solution to the compatibility condition ( Eq. 1.14) can be obtained from
Green’s function approach. The Green’s function G(x,x′) for the surface satisfies
the Laplace equation

∇2
xG(x,x

′) =
δ(x− x′)

√
g

(2.7)

where δ(x− x′) is the 2-dimensional Dirac delta function.

The exact solution for the stress function χ is given by

χ(x) =

∫
G(x,x′)ρ(x′) dA′ (2.8)

where the source function ρ(x) = K(x) − S (x). Substituting for χ in Eq. 2.6,
and with some algebraic manipulations we get the elastic free energy as

Fel = − 1

2
Kα

x
ρ(x)G(x; x′) ρ(x′) dA dA′, (2.9)
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This form of the elastic free energy is very much useful to investigate the inter-
action potentials of defects on the curved surfaces [19]. The elastic free energy
Eq. 2.9 can be written as Fel = −(1/2) Kα(FKK − 2FKS + FS S ), where

FKK =
x

K(x)G(x; x′)K(x′) dA dA′,

FKS =
x

K(x)G(x; x′)S (x′) dA dA′, and

FS S =
x

S (x)G(x; x′)S (x′) dA dA′.

The interaction potential energy of given defect configuration (S ) is, by defini-
tion,

Fint =
1

2
Kα(2FKS − FS S ). (2.10)

With this background we discuss the procedure followed in calculating the
free energies of point- and wall defects on a sphere of radius a. For vector order
the free energy of the antipodal configuration of (index s = 1) point disclinations
has been obtained for small core-sizes rc, where the dimensionless cutoff ζ =

rc/a≪ 1 [33]. A larger core reduces the elastic free energy Fel, but increases the
condensation free energy. In investigating the energetics and stability of point-
as well as wall defects for n-atic order the determination of optimal core-sizes,
without the restriction ζ ≪ 1, is crucial. In what follows, we minimise the
dimensionless total free energies F̃T = FT/Kα with respect to ζ to obtain the
optimal core size. The minimised total free energy, and optimal core sizes are
functions of a dimensionless parameter η = fCa

2/Kα. Within the mean field
theory, η ∼ (Tc − T ). To compare total free energies and stability ranges of
various disclination configurations, it is convenient to choose the dimensionless
condensation energy 4πη (corresponding to the destruction of order over the entire
sphere) as the common reference of free energy. Thus minimised free energy
F = F̃T − 4πη. In the next Section, we focus on vector order on a sphere.

2.4 Vector order

Parametrisation of a sphere with radius a is R(θ, ϕ) = {a cosϕ sin θ, a sinϕ sin θ,

a cos θ}, 0 ≤ θ < π and 0 ≤ ϕ < 2π. The Gaussian curvature K = 1/a2 and
mean curvature H = −1/a, and the components of the metric tensor are gθθ =

a2, gϕϕ = a2 sin2 θ, gθϕ = gϕθ = 0. The determinant of metric tensor g = a4 sin2θ.
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(a) (b)

Figure 2.1: Vectorial order- Point disclinations: (a) Single point disclination of
index s = 2. (b) Antipodal configuration-Two point disclinations, each of index
s = 1 at the poles.

Let us consider a unit tangent vector field m̂(θ, ϕ) = cosα(θ, ϕ) êθ + sinα(θ, ϕ) êϕ

on a sphere. This choice of coordinate system gives Aθ = 0, Aϕ = − cos θ.

It is widely known that the ground-state texture of rigid spheres with vector
order has two antipodal disclinations of index s = 1 each. We now discuss
the antipodal configuration in section 2.4.1 below, followed by the equatorial
configuration (Sec. 2.4.2), and the two-wall configuration (Sec. 2.4.3)

2.4.1 Antipodal configuration

For the simplest antipodal configuration, α = 0, and streamlines of m̂ follow
longitudes on the sphere (See Fig. 2.1(b)). For more general defect configura-
tions, such as a single s = 2 point disclination, and wall disclinations, we use
stereographic-projection approach to obtain the texture of the α−field. Stereo-
graphic projection is particularly useful in plotting the texture as it eliminates
the coordinate singularities at poles arising from (êθ, êϕ) basis (See Appendix A).

Setting α = 0 in Eq. 2.5 gives the elastic free energy density of antipodal
configuration

f
(ap)
el =

Kα

2a2
cot2 θ, (2.11)
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where the superscript (ap) stands for antipodal point disclinations. It has singu-
larities at θ = 0, π. To calculate the elastic free energy of antipodal point defects,
we use circular cores of core radius rc for both disclinations. The elastic free
energy of the vectorial texture outside the core region is

F
(ap)
el = 2π

∫ π−ζ

ζ

f
(ap)
el a2 sin θ dθ

= 2πKα [log cot(ζ/2)− cos ζ],

(2.12)

where the dimensionless cutoff ζ = rc/a. For small rc this result reduces to
the result of Ref. [33]. We note that F (ap)

el depends solely on ζ, and diverges
logarithmically as ζ → 0.

The condensation free energy is

F
(ap)
C = 2× 2π

∫ ζ

0

fC a2 sin θ dθ

= 4π a2 fC (1− cos ζ).

(2.13)

For ζ << 1, F (ap)
C ∼ 2πrc

2fC. Minimisation of the total free energy FT =

Fel + FC gives the optimum core size for antipodal points (See Fig. 2.2).

ζ(ap) = 2arctan[p(η)/q(η)], (2.14)

where p(η) = [1 + 2η −
√

2η(1 + 2η) ]1/2, and q(η) = [1 + 2η +
√
2η(1 + 2η) ]1/2.

We note that, as η → 0, ζ → π/2 implying that full sphere is disordered.

The minimised total (elastic + condensation), dimensionless free energy of
the antipodal configuration in units of Kα is

F (ap) = 2π[2η −
√
2h(η) + arctanh(

√
2 η/h(η))]− 4πη, (2.15)

where h(η) =
√
η(1 + 2η), and we have taken the dimensionless condensation

free energy 4πη for destruction of order over the entire sphere as the reference.
The plot of F (ap) as a function of η is shown in Fig. 2.3.
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Figure 2.2: Optimised core sizes: The symbols ap, and tp represent the an-
tipodal (index s = 1 each) and tetrahedral (index s = 1/2 each) configurations
of point disclinations; ew, 2w, and 4w refer to the equatorial (index s = 2),
two-wall (index s = 1 each), and four-wall (index s = 1/2 each) configura-
tions respectively. The inset depicts the two core sizes required to minimise
the total free energy for the 4w-configuration. Order is completely destroyed at
ζ = {π/8, π/4, π/2, π/2} for the {4w, 2w, ew, ap}- configurations respectively.
Above ζ = (1/2) arccos(−1/3) ≃ 0.96, cores of neighboring disclinations of the
tp-configuration overlap each other (see the text).

2.4.2 Equatorial wall disclination

We now consider a singular, equatorial wall defect (at θ = π/2), defined by the
disclination density

S (ew) =
S0

2π
√
g
δ(θ − π

2
), (2.16)

where the superscript (ew) stands for equatorial wall and δ(θ) is the Dirac delta
function. Thus

∫ 2π

0
dϕ

∫ π

0
S (ew)√gdθ = S0, where index of the wall s = S0/(2π)

is as yet undetermined. The general solution to the compatibility condition
(Eq. 1.14) is

χ(θ) = −c1 log tan(
θ

2
)− log sin θ + s[Θ(θ − π

2
)− 1] log cot

θ

2
+ c2, (2.17)
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Figure 2.3: Minimised free energy F = FT − 4πη: We set the reference of
the total free energy to the condensation energy 4πη of the entire sphere. The
dots indicate the η-values beyond which wall defects are unstable (ζ(η) = 0), see
Fig. 2.2. The symbols ap, and tp represent the antipodal (index s = 1 each) and
tetrahedral (index s = 1/2 each) configurations of point disclinations; ew, 2w,
and 4w refer to the equatorial (index s = 2), two-wall (index s = 1 each), and
four-wall (index s = 1/2 each) configurations respectively.

where the symbol Θ is the Heaviside theta function, and c1, c2 are constants.
By definition, Θ(x) = 1 if x > 0, and Θ(x) = 0 if x < 0. The Heaviside Θ in
Eq. 2.17 has important consequences for the stability of wall defects, as discussed
below. Setting c2 = 0, we exploit the symmetry χ(θ) = χ(π − θ) to obtain
c1 = −S0/(4π). Note that S0 is as yet undetermined. To ensure that there are
no point disclinations of index s = 1 each (from coordinate singularities) at the
north and south poles, we investigate the behavior of ∂θ χ(θ) at the poles. We
note that limθ→0 ∂θ χ(θ) as well as limθ→π ∂θ χ go to infinity unless S0 = 4π. With
S0 = 4π, both these limits go to zero. This in turn ensures that s = 2, vindicating
the Poincaré-Hopf index theorem [46]. Setting c1 = −S0/(4π) = −1 guarantees
that there are no point disclinations at the north and south poles. The solution
to the compatibility condition is

χ(ew) = 2

[
Θ
(
θ − π

2

)
log cot

θ

2
− log

(√
2 cos

θ

2

)]
. (2.18)
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Figure 2.4: Equatorial wall: (a) Side (θ = π/2, ϕ = π/2 at the center) view
of the index s = 2, equatorial wall. The directed lines are the streamlines of
the vector field. The shaded region represents the disordered core, within which
vector order is completely destroyed, and cannot be assigned a direction. The
full field, as given by Eq. 2.19, (including that shown within the core region)
corresponds to a wall with zero core-size. Rounding off the slope singularity
of the field at the equator, the wall defect of zero core-size transforms into the
antipodal configuration of a pair of index s = 1 point disclinations. (b) Front
view (θ = π/2, ϕ = 0 at the center). (c) Top view, showing that the polar regions
are free of point disclinations.

We have thus constructed a wall defect with index s = 2, as demanded
by the Poincaré-Hopf theorem extended to non-isolated zeros. In terms of α,
measured in the local orthronormal frame (êθ(θ, ϕ), êϕ(θ, ϕ)), the solution Eq. 2.18
is particularly simple (Fig. 2.4):

α(ew) =

−ϕ if θ < π/2

ϕ if π > θ > π/2,
(2.19)
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Notice that
∮ 2π

0
dα(lh) −

∮ 2π

0
dα(uh) = 2π× 2 = 4π, where α(lh) and α(uh) refer

to the lower and the upper hemisphere respectively, with the integrals taken in
the anti-clockwise sense around the outward normal at the respective poles. This
result is easily generalised to walls having other indices.

Use of the cut-offs in finding elastic energy of equatorial wall is essential as
linear elasticity breaks down near the core. Therefore, we choose dimensionless,
one-sided core size ζ such that width of the equatorial wall is 2ζ (in units of
a). Substituting for the exact solution for χ (Eq. 2.18) in free energy density
expression Eq. 2.6, we get the elastic free energy density of the equatorial wall
configuration as follows

f
(ew)
el =

Kα

2a2

[
csc θ{cos θ − 1 + 2Θ(θ − π

2
)}+ 4 δ(θ − π

2
) log tan

θ

2

]2
. (2.20)

We note that the term with Heaviside Θ in Eq. 2.18, when substituted in
fel[χ] Eq. 2.6 leads to a term involving (δ[θ − (π/2)])2 in the integrand. With
ζ = 0 at, or within the limits of integration, the integral is, strictly speaking,
undefined. However it diverges as 1/ζ, in contrast to the logarithmic divergence
encountered in the case of antipodal point disclinations. This can be seen by
putting θ = 0 in δ(θ) = (1/(2π))

∫∞
−∞ eikθdk, and setting the ultraviolet cutoff

to 2π/ζ. We therefore expect the index s = 2 wall to become unstable as ζ
approaches the molecular size, within the coarse-grained elasticity theory that
we have used. This is borne out by the minimisation of the total free energy
discussed below. Away from the core, the elastic free energy of the equatorial
wall is

F
(ew)
el = 2π

∫ π/2−ζ

0

f
(ew)
el

√
g dθ + 2π

∫ π

π/2+ζ

f
(ew)
el

√
g dθ

= 2 πKα [ sin ζ − 4 log sin(
ζ

2
+
π

4
)− 1].

(2.21)

The condensation free energy is given by

F
(ew)
C = 2π

∫ π/2+ζ

π/2−ζ

fC a2 sin θ dθ

= 4πa2 fC sin ζ.

(2.22)
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The core size ζ(ew) that minimises the total free energy F (ew) = F
(ew)
T − 4πη

of the equatorial wall defect is given below, and is plotted in Fig. 2.2 as a function
of η.

ζ(ew) = arctan
1− 2η

2
√
2η

. (2.23)

We find that ζ(ew) = 0 at η = 1/2. Moreover, it crosses zero and is negative above
η = 1/2, which is unphysical. Thus, the singular equatorial wall is stable only for
0 < η < 1/2.

The minimised, dimensionless total free energy of the equatorial wall in units
of Kα, with reference to the dimensionless condensation free energy 4πη (Fig. 2.3)
is

F (ew) = 4π [log(1 + 2η)− 2η]. (2.24)

As in the case of antipodal point disclinations, F (ew) depends only on η. We note
that all the calculations of energetic of point and wall disclinations are based on
the approximation that magnitude of order parameter is zero in the core, and
non zero away from the core. There is step like discontinuity across the core. In
Appendix A, we study the magnitude of order parameter for the equatorial wall
disclination.

For the sake of generality, we study the interaction potential (Eq. 2.10) of a
wall disclination of index s = 2 as a function of its position θ = ω. The corre-
sponding disclination density is S (2w) = 2√

g
δ(θ − ω). The analytical expression

for the interaction potential as defined by Eq. 2.10 is (Fig. 2.5(a))

F (int) = 2π[−1 + log 4− 2 log(sinω)]. (2.25)

2.4.3 Two wall disclinations

The equatorial wall is not necessarily the minimum energy configuration over its
entire range of stability. For vector-, as well as nematic order it can split into
two walls with index s = 1. For generality, we consider two walls with index s1
and s−1 respectively, placed at θ = (ω

(2w)
1 , ω

(2w)
2 = π − ω

(2w)
1 ). The disclination

density is given by

S (2w) =
s1√
g
δ(θ − ω

(2w)
1 ) +

s−1√
g
δ(θ − ω

(2w)
2 ), (2.26)
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(a) (b)

Figure 2.5: Interaction potential energy (dimensionless) F (int) = F(int)/Kα: (a)
For the single wall disclination of index s = 2. Clearly, the equatorial configura-
tion (ω = π/2) has the minimum energy (b) For the two wall configuration with
s = 1 each. The function has minimum at ω = π/3 rad (See Sec. 2.4.3).

Figure 2.6: Two-wall configuration: (a) Side view. The vector field between
the two index s = 1 walls follows the longitudes. The two-wall configuration
degenerates to the antipodal configuration by smoothly sliding the walls towards
the respective poles. (b) Front view. (c) Top view.
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Figure 2.7: Equilibrium position of two wall disclinations: The plot of ω(2w)
1 vs

η. The dot in the plot represents the limit of stability.

where ω(2w)
1 < π/2. The solution to the compatibility condition Eq. 1.14 with the

boundary conditions ( χ(π − θ) = χ(θ), limθ→0 ∂θ χ(θ) is finite ) demands that
s1 = s−1 = 1. Thus, the total index is s = 2, as dictated by the Poincaré-Hopf
index theorem. The exact solution for the χ(2w) is

χ(2w) = log(tan
θ

2
)− log(sin θ) + Θ(θ − ω

(2w)
1 ) log(cot

θ

2
tan

ω
(2w)
1

2
)

+ Θ(θ + ω
(2w)
1 − π) log(cot

θ

2
cot

ω
(2w)
1

2
).

(2.27)

In terms of the α−field, the solution to the compatibility condition(Eq. 1.14)
for the two-wall configuration (Fig. 2.6) is simple;

α(2w) =


−ϕ if 0 ≤ θ < ω

(2w)
1

0 if ω(2w)
1 < θ < ω

(2w)
2

ϕ if ω(2w)
1 < θ < π.

(2.28)

Following the same procedure as the one used above for the equatorial wall,
we find numerically optimal core sizes and minimised total free energy of the
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two-wall configuration (plotted as a function of η in the Fig. 2.2 and Fig. 2.3
respectively). The two-wall configuration is stable only for 0 < η < 0.17. For
optimal positions of two- wall configuration, we find that the angle ω(2w)

1 (η) is
a monotonic increasing function with ω

(2w)
1 (η = 0) = 0.9 ≃ π/4, and ω

(2w)
1 (η =

0.17) = π/3 ≃ 1.05 (See Fig 2.7). As η approaches the limit of stability (cutoff
ζ(2w) → 0), the total (integrated) Gaussian curvature of the spherical region
between the two walls KT → 2π, leaving total Gaussian curvatures tending to π
each for the polar caps. We notice a similar trend for the division of total Gaussian
curvature between successive walls in the index s = 1/2, four-wall configuration
for nematic order. We discuss this division of Gaussian curvature in Sec. 2.6.

The interaction potential energy of two s = 1 wall configuration is

F (int) = 2π[−1 + log 4 + log tan(ω/2)− 2 log sin(ω)]. (2.29)

From Fig. 2.5(b), it is clear that the potential has local minimum at ω =

π/2 (equatorial configuration) and global minimum at ω = π/3 ≃ 1.05 which
corresponds to the division of Gaussian curvature.

2.5 Nematic order

We represent the nematic director field on the sphere by n̂ = cosα êθ +cosα êϕ.
Recall that nematic director has head and tail symmetry, i.e., −n̂ ≡ n̂. Thus,
the angle α is measured modulo π.

2.5.1 Tetrahedral configuration

To begin with, we discuss the the tetrahedral configuration of isolated, disclina-
tions of index s = 1/2. It is known [33] that for small core sizes the ground state
has four disclinations arranged on the vertices of a tetrahedron inscribed in the
sphere. The coordinates of these points on unit sphere, for example, are v1 =

{1/
√
3, 1/

√
3, 1/

√
3}, v2 = {−1/

√
3, −1/

√
3, 1/

√
3}, v3 = {−1/

√
3, 1/

√
3,

−1/
√
3}, and v4 = {1/

√
3, −1/

√
3, −1/

√
3}. The corresponding α−field (in
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isothermal coordinates, see Appendix A) is

α4p(x, y) =
1

2
arctan(

y −
√
3− 1

x−
√
3− 1

) +
1

2
arctan(

y +
√
3 + 1

x+
√
3 + 1

)

+
1

2
arctan(

y −
√
3 + 1

x+
√
3− 1

) +
1

2
arctan(

y +
√
3− 1

x−
√
3 + 1

).

(2.30)

(a) (b)

Figure 2.8: Tetrahedral configuration: Texture of four point disclinations of
index s = 1/2 each placed on the vertices of tetrahedron inscribed in sphere. The
block dots represent the cores. (a) Front view. (b) Side view.

For the tetrahedral configuration, we minimise the total free energy numer-
ically, using equal cutoffs (core size ζ) along the θ- and ϕ directions, to obtain
the optimised core size (Fig. 2.2), and the total free energy (Fig. 2.3). Above
ζ ≃ 0.96 (below η(0.96) ≃ 0.05), cores of neighboring disclinations overlap each
other at nonzero η, and an extension of the Helfrich-Landau mesoscopic approach
of Ref. [47] is better suited to address the problem. However, we pursue the Prost
and Lubensky approach [33].

2.5.2 The four wall configuration

For the sake of generality, we consider four walls of arbitrary indices. The solu-
tion to the compatibility condition with boundary conditions( χ(π − θ) = χ(θ),
limθ→0 ∂θ χ(θ) is finite ) imply that each wall must have index s = 1/2. The
four-wall configuration has the four-wall (of index s = 1/2 each) has two walls
located at θ = (ω

(4w)
1 , ω

(4w)
2 > ω

(4w)
1 ) on the upper hemisphere. The other two

symmetry related walls are located in the lower hemisphere, with the convention
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Figure 2.9: Four-wall configuration: (a) Side view. (b) Back (θ ≃ π/2, ϕ ≃
3π/2) view. (c) Top view. Each wall in this configuration has the index s = 1/2,
with uniform linear disclination density. Therefore the change in the angle per
unit length across each wall is small as compared to that for index s = 1 (and
s = 2) walls. This should be borne in mind, particularly while viewing the back
view (b).

ω
(4w)
3 = π − ω

(4w)
2 , ω

(4w)
4 = π − ω

(4w)
1 . The solution to the compatibility condition

gives

χ(4w) =
1

2
[Θ(θ − ω

(4w)
1 ) log(cot

θ

2
tan

ω
(4w)
1

2
) + Θ(θ − ω

(4w)
2 ) log(cot

θ

2
tan

ω
(4w)
2

2
)

+ Θ(θ − ω
(4w)
3 ) log(cot

θ

2
tan

ω
(4w)
3

2
) + Θ(θ − ω

(4w)
4 ) log(cot

θ

2
tan

ω
(4w)
4

2
)

+ 2 log(csc θ tan
θ

2
)].

(2.31)
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In terms of α−field (Fig. 2.9)

α(4w) =



−ϕ if 0 < θ < ω
(4w)
1

−ϕ/2 if ω(4w)
1 < θ < ω

(4w)
2

0 if ω(4w)
2 < θ < π − ω

(4w)
2

ϕ/2 if π − ω
(4w)
2 < θπ − ω

(4w)
1

ϕ if π − ω
(4w)
1 < θ < π

(2.32)

where the superscript (4w) stands for the four walls configuration.

We find numerically optimal core sizes and minimised total free energy of
the wall-wall configuration (plotted as a function of η in the Fig. 2.2 and Fig. 2.3
respectively). We find that this configuration is stable only for 0 < η < 0.05.
In minimising the total free energy of the pairs of walls we need to use two core
sizes, ζ(4w)

1 and ζ
(4w)
2 , for the walls at ω(4w)

1 and ω
(4w)
2 respectively. We note that

optimised wall positions, i.e., the angles ω(4w)
1 and ω

(4w)
2 are weakly monotonic

increasing functions of η. Close to the limit of stability (η → 0.05), the optimal
positions of the four walls follow the division of Gaussian curvature. That is the
total (integrated) Gaussian curvature of the spherical region between any two
successive walls KT → π = 2π × (index of the wall). In what follows, we extend
this trend to n−atic order.

2.6 n−atic order: Division of Gaussian curvature

by wall defects

We consider n-atic order on a sphere with 2n walls of strength s = 1/n each, and
indicate the positions of symmetry related pairs of walls by (ωk, ω−k = π − ωk),
where k = 1, 2, ..., n. The disclination density of this configuration is

S (θ) =
1

n
√
g

n∑
k=1

[δ(θ − ωk) + δ(θ − ω−k)]. (2.33)

Our aim is to minimise the free energy of such configurations with respect to
the angular positions of the symmetry-related pairs of walls. For core sizes ζ → 0

the condensation energy is negligibly small, clearly implicating the elastic free
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energy as the root cause of the phenomenon of division of Gaussian curvature.
To evaluate the elastic free energy of the wall configurations we use the Coulomb
gas form of the elastic free energy. Substituting for the ϕ−independent Green’s
function G(θ; θ′) ( Eq. A.14, for further details See Appendix A ) and for S (θ)

in Coulomb’s free energy expression Eq. 2.9, we find that FKK = constant. Thus,
FKK does not contribute to the minimisation. Thus, the interaction potential
energy (Fint) plays major role in the minimisation. Minimisation of elastic free
energy with respect to the angular positions ωi leads to

dFel

dωi

= Kα (J1 + J2) = 0 where,

J1 =
dFKS

dωi

=
1

n
√
g

n∑
k=1

[∫
dθ

√
g K{ d

dωi

G(θ, ωk) +
d

dωi

G(θ, π − ωk)}
]

J2 = −1

2

dFS S

dωi

= − 1

n2

n∑
k=1

n∑
l=1

[
d

dωi

G(ωk, ωl) +
d

dωi

G(ωk, π − ωl)

]
.

After some algebraic manipulations, we get J1 = 0. Therefore only the
J2 or FS S term is important in determining ωi. The set of angular positions that
minimise the elastic free energy is given by

2 cosωi =
2n− 2i+ 1

n
, (2.34)

and the integrated Gaussian curvature between the symmetry-related walls at ωi

and (π − ωi) is

Ki = 2π

∫ π−ωi

ωi

dθ
√
g K = 2π(2 cosωi)

=
2π

n
(2n− 2i+ 1).
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This directly leads to the result that the integrated Gaussian curvature be-
tween any two successive walls

KT(i, i+ 1) = 2π

∫ ωi+1

ωi

K
√
g dθ = 2π/n, (2.35)

where i = {1, 2, ..., 2n − 1} labels the walls in the order of increasing θ. Thus,
the lowest elastic free-energy configuration for n-atic order has 2n walls of index
s = 1/n each, located such that the integral of Gaussian curvature of the sphere
between any two successive walls is 2π/n.

2.7 Instability of a circular planar wall disclina-

tion

In the preceding sections, we show the stability of circular wall disclinations
on a sphere. It is interesting to study the stability analysis of a circular wall
disclination on a plane. In this next section, we show that wall-disclinations are
not stable on a plane, and thus, the Gaussian curvature is essential for stability
of wall disclinations. We begin by considering a planar, singular, circular wall
disclination in a plane. By definition, the disclination density of circular wall
defect of index s centered at r = r0 in xy−plane is

S =
s
√
g
δ(r − r0), (2.36)

where δ(r) is the Dirac delta function. Thus
∫∞
0
dr

∫ 2π

0
S

√
gdϕ = 2πs.

For a plane K = 0. With this we look for the ϕ− independent stress function
that satisfies the compatibility condition (Eq. 1.14). Substituting for the Laplace
operator in polar form, the compatibility condition reads as

d2 χ

dr2
+

1

r

d χ

dr
= −s

r
δ(r − r0). (2.37)

The general solution for χ(r) is

χ(r) = c2 + c1 log(
r

r0
)− sΘ(r − r0) log(

r

r0
) (2.38)
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where Θ(r) is Heaviside theta function. We set the overall additive constant
c2 = 0. We note that circular polar coordinates have a coordinate singularity at
the origin (r = 0). This coordinate singularity acts as a point disclination (the
polar angle ϕ is multivalued at r = 0). We eliminate this spurious singularity by
setting limr→0(dχ/d r) = 0. With this condition we get c1 = 0.

Thus the α−field for the circular wall disclination centered at r = r0 is

α(ϕ) = −ϕ+ sΘ(r − r0) + s r δ(r − r0) log(
r

r0
). (2.39)

Note that at r = r0, α is singular. Away from r0, the α is given by (See Fig. 2.10)

α(ϕ) =

−ϕ+ const if r < r0

(s− 1)ϕ+ const if r > r0
(2.40)

(a) (b)

Figure 2.10: Texture of planar circular wall: (a) Index of the wall s = 1.
Outside ring, i.e., r > r0 the texture matches with that of point disclination of
index 1. (b) Texture for index s = −1. The texture outside the ring is same as
point disclination of index s = −1. In these figures,the shaded region depicts the
core centered at r0. Note that by shrinking the ring to a point transforms a wall
disclination to point disclination with same index.

We note that
∮ 2π

0
dα> −

∮ 2π

0
dα< = 2π s, where α< and α> refer to r < r0

and r > r0, with the integrals taken in the anticlockwise sense around the core.
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The free elastic energy density of the circular wall configuration is

fel =

0 if r < r0

Kα s2

2 r2
if r > r0

(2.41)

The singularity at r = r0 in Eq. 2.41 is eliminated by the use of cutoff to calculate
total elastic free energy Fel. This is as follows

Fel = 2π

∫ r0−w

0

fel dr + 2π

∫ R

r0+w

fel dr

= Kα π s
2 log(

R

r0 + w
).

(2.42)

where w is half-width of the core and R is the radius of the circular region. The
corresponding condensation energy of the wall is

FC = 2π

∫ r0+w

r0−w

fC r dr

= 4πfC r0w.

(2.43)

Total free energy (in Kα units) is

F =
Fel + FC

Kα

= π

[
s2 log(

R

r0 + w
) + 4

r0w

ξ2

]
.

(2.44)

where the correlation length ξ =
√
Kα/fC.

Upon minimisation of F w.r.t. w, we obtain minimised core width w =
s2ξ2

4r0
− r0. We note that for the stability of wall disclination, w > 0. This happens

if r0 < sξ/2. Otherwise w becomes negative which is unphysical. Therefore
the circular wall is stable if its radius is less than the correlation length (s ξ).
However, for a planar point disclination of index s, the core size is of the order of
(s ξ) [3]. It means that the stability condition for the circular wall demands the
radius of the wall be less than the core size of a point disclination of the same
index. Thus the planar, circular wall disclination is unstable to the formation of
a point disclination with the same index.
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Unlike in the case of sphere, wall disclinations are unstable on a plane. We
emphasise that the non-zero Gaussian curvature of the sphere stabilises the wall
disclinations.

2.8 Discussion and conclusions

In this work we have used a simplified version of the Ginzburg-Landau theory to
predict the existence of stable topological wall defects (near the order-disorder
transition) on spheres with n-atic order. Wall defects are stable in the range
0 < η < 0.5. We use mean field theory to examine the extent to which wall
defects are realizable in experiments. This involves estimating the radius a, the
thickness h, and the temperature range ∆T = Tc − T over which stable wall
defects are observable.

We recall that the scale of η in Fig. 2.3, Fig. 2.2 is linear in ∆T . For the
sake of concreteness we consider the experiments of Ref. [35], where molecules of
the self assembled monolayer (thickness h of order molecular size) on the sphere
are tilted with respect to the local normal to the sphere. The projection of tilted
molecules onto the local tangent plane to the sphere imparts vectorial order to it.
Within mean field theory the correlation length diverges as ξ = ξ0(∆T/Tc)

−1/2.
The bare correlation length ξ0 is of order 2 nm (molecular dimensions), and
Kα ≃ kB ∆T , leading to fC ≃ kB∆T/ξ

2. Substituting for ξ in η, we get ∆T ≃
Tc(ξ0/a)

2η. For Tc ≃ 300K, spheres with a = 5nm, and a = 10nm (used in
Ref. [35]),η = 0.1 corresponds to ∆T ≃ 4.8K and ∆T ≃ 1.2K, respectively,
thus establishing the temperature scale. For a = 35nm, η = 0.1, corresponds to
∆T ≃ 0.1K. For a = 35nm the equatorial wall is stable between η ≃ 0.16(≡
∆T = 0.16K) and η ≃ 0.5(≡ ∆T = 0.5K); it is likely to be the simplest one
to observe. Evidently, for large core sizes, point as well as wall defects will not
have a “valence” = 1, as is the case for the antipodal disclinations of Ref. [35].
However, nano-particles with small radii of order 35 nm are faceted [48] and
cannot be reliably approximated as spheres. Thus the observation of wall defects
(as against antipodal point disclinations) using nano-particles may not yet be
possible using available experimental techniques.

In our analysis we have ignored the effects of thermal fluctuations. Fluctu-
ation effects will be important close to Tc. However, spheres are closed surfaces,
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and the system size is very small, thus diminishing the effects of fluctuations.
The nature of order-disorder transition on orientationally ordered spheres is not
clear and needs to be investigated. In particular, the transition may not be of the
Kosterlitz-Thouless type (see, e.g., Ref. [3]). Close to Tc, interacting wall defects
rather than point defects will dominate the transition. It would be of interest
to extend the theory to include a detailed analysis of fluctuation effects, the ef-
fects of anisotropy of elastic constants and study the shape changes of deformable
vesicles, induced by wall defects.
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Chapter 3

Point- and wall disclinations on
catenoids

3.1 Introduction

The preceding chapter is devoted to the study of the stability of point and wall
disclinations (with total index s = 2 ) on rigid spheres, in consequence of the
Poincaré-Hopf index theorem. For spheres, the Gaussian curvature K is uniform
and positive. It is natural to extend our investigation of the stability of wall
disclinations to surfaces with K < 0. In Chapters 3 and 4, we consider catenoids
and helicoids as example surfaces (Fig. 3.1). They are minimal surfaces i.e., their
mean-curvature H = 0, and Gaussian curvature are negative.

Unlike spheres, catenoids and helicoids are open surfaces. Thus there is
no topological imperative to have disclinations with a specified total index on
catenoids and helicoids endowed with orientational order. This chapter is dedi-
cated to the study of the stability of point- and wall disclinations on catenoids.
We discuss the stability of point disclinations in vector-, nematic-, tetratic- and
hexatic order on catenoids. We extend the investigation of stability of wall discli-
nations, and find that they are stable near the order disorder transition over a
finite range of a dimensionless parameter η. The parameter η is the ratio of en-
ergy scales corresponding to the destruction of order in defect core and elastic
deformation outside the core. To begin with we introduce the geometrical in-
formation of a catenoid that is essential for the investigation, and discuss vector
order on a catenoid.
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3.2 Vector order

We consider a catenoid with parameterization R(ϕ, z) = {a cosh(z/a) cosϕ,

a cosh(z/a) sinϕ, z}, where −∞ < z < ∞ and 0 ≤ ϕ < 2π. Here a is the neck
radius of the catenoid. The Gaussian and mean curvature of the catenoid, respec-
tively, are K = −(1/a2) sech2(z/a) and H = 0. The components of the metric
tensor are gϕϕ = a2 cosh2(z/a), gzz = cosh2(z/a), gϕz = gzϕ = 0, and the deter-
minant of metric tensor g = a2 cosh4(z/a). Since the tangent vectors tϕ(ϕ, z)

and tz(ϕ, z) are orthogonal, it is natural to choose ê1(ϕ, z) = t̂ϕ(ϕ, z) and
ê2(ϕ, z) = t̂z(ϕ z). In this coordinate system the components of spin connection
terms are A = (Aϕ, Az) = (tanh(z/a) , 0). Thus, any unit tangent vector field on
the catenoidal surface can be expressed as m̂(ϕ, z) = cosα(ϕ, z) êϕ+sinα(ϕ, z) êz.
With this background we discuss point- and wall disclinations in vector-, and ne-
matic order on a catenoid.

(a) (b)

Figure 3.1: (a) Catenoid with disclination-free configuration. (b) Helicoid with
disclination-free configuration.

3.2.1 Disclination-free configuration

The simplest disclination-free configuration that satisfies the Euler-Lagrange equa-
tion 1.13 is α = π/2 (Fig. 3.1(a)). For a catenoid with total height 2l (z = −l
to z = l) the elastic free energy of this configuration is

F
(0)
el = 2πKα

[
l

a
− tanh(

l

a
)

]
, (3.1)

where the superscript (0) represents the disclination-free configuration.
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Because of large splay deformation far away from the neck (See Fig. 3.1), F (0)
el

diverges linearly as l → ∞. Thus the disclination-free configuration is untenable
for an infinite catenoid.

3.2.2 Point disclinations

Noticing that the total (integrated) Gaussian curvature of a catenoid of infinite
extent is Kt =

∫ 2π

0
dϕ

∫∞
−∞K

√
gdz = −4π, we consider point disclination(s) of

total index s = −2 on an infinite catenoid. If Kt ̸= −4π, the elastic free energy
of a catenoid with infinite extent diverges as is the case with the disclination-free
configuration discussed above.

(a) (b)

Figure 3.2: Two point disclinations of index s = −1 : (a) Side view (z = 0, ϕ =
3π/2) of two point disclinations of index s = −1. (b) Front view (z = 0, ϕ = 0)
of two point disclinations of index s = −1. The black dot in (a) depicts the core
region of the point disclination.

It is known that two point disclinations of index s = −1 each, located dia-
metrically opposite on the neck (z = 0; and ϕ = {π/2, 3π/2} for example) have
lowest elastic free energy for vectorial order [49]. The α field for this configuration
is (See Fig. 3.2)

α(2p)(ϕ, z) = − arctan [cotϕ coth(z/a)] , (3.2)

where the superscript (2p) refers to the two point disclinations. The expres-
sion above is obtained by considering level sets of the catenoid (intersection of
the catenoid with y = const. planes), and is a solution to the Euler-Lagrange
equation 1.13. We note that α− field for the same configuration obtained from
isothermal coordinates have more elastic deformations (See Appendix B). From
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Eq. 2.5 the elastic free energy density of two point disclinations is

f
(2p)
el =

Kα sin2(ϕ) sech4(z/a)

a2 [cosh(2z/a) + cos(2ϕ)]
(3.3)

which has singular behavior at z = 0 and ϕ = {π/2, 3π/2}. For simplicity, we
take two different cutoffs corresponding to z and ϕ directions for each core. Let
2ξz and 2ξϕ be the core sizes along z and ϕ directions. The free elastic energy
away from the core regions is

F
(2p)
el =

∫ ∞

−∞
dz

[∫ π/2−∆ϕ

0

dϕ
√
gf

(2p)
el +

∫ 3π/2+∆ϕ

π/2−∆ϕ

dϕ
√
gf

(2p)
el +

∫ 2π

3π/2−∆ϕ

dϕ
√
gf

(2p)
el

]

+

∫ ∞

∆z

dz

[∫ π/2+∆ϕ

π/2−∆ϕ

dϕ
√
gf

(2p)
el +

∫ 3π/2+∆ϕ

3π/2−∆ϕ

dϕ
√
gf

(2p)
el

]

+

∫ −∆z

−∞
dz

[∫ π/2+∆ϕ

π/2−∆ϕ

dϕ
√
gf

(2p)
el +

∫ 3π/2+∆ϕ

3π/2−∆ϕ

dϕ
√
gf

(2p)
el

]
(3.4)

where the cutoffs ∆z, ∆ϕ and core sizes are related by ∆z = a arcsinh[ξz/a] and
∆ϕ = (ξϕ/a) sech[z/a]. The condensation energy is given by

F
(2p)
C = 2fC

∫ ∆z

−∆z

dz

∫ π/2+∆ϕ

π/2−∆ϕ

dϕ
√
g

= 8fC ξzξϕ.

(3.5)

We define the dimensionless total free energy F (2p) = F
(2p)
T /Kα, where the

total free energy F (2p)
T = F

(2p)
el +F

(2p)
C . We note that F (2p) is a function of dimen-

sionless core sizes ζz = ξz/a, ζϕ = ξϕ/a, and that the dimensionless parameter
η = (a2fC)/Kα. Within the mean field theory, η ∼ (Tc − T ).

Numerically obtained core sizes ζ(2p)z , ζ
(2p)
ϕ , and the minimised total free

energy F (2p) are plotted in Fig. 3.3, and Fig. 3.4 as functions of η. As η → 0,
ζ
(2p)
z → ∞, and ζ(2p)ϕ → π/2. This indicates that orientational order is destroyed

over the entire catenoid. Unlike the disclination-free configuration, the total free
energy of two point disclinations on an infinite catenoid is finite.
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Figure 3.3: Optimal core sizes: The notations (2p), (1w), (2w), (4p) and (4w)
represent the two point (index s = −1 each)-, single wall (index s = −2)-, two
wall (index s = −1 each)-, four point (index s = −1/2 each)-and four wall (index
s = −1/2 each)-configurations, respectively. The subscripts z , ϕ represent the
core sizes along those directions. The inset depicts the two core sizes required to
minimise the total free energy for the 4w configuration. For 4p configuration, the
optimal cores along ϕ direction overlap up to η ≃ 0.02 and indicating the single
wall configuration at neck (See the text.).

3.2.3 Wall disclinations

To investigate the stability of wall disclinations on catenoids, we follow the same
procedure as used for spherical membranes. In summary we solve for the stress
function χ for given a disclination density. As the starting point, we consider
a disclination wall of total strength s0 at the neck (z = 0), with disclination
density

S (1w) =
s0√
g
δ(z), (3.6)

where the superscript (1w) stands for a single wall. Thus
∫ 2π

0
dϕ

∫∞
−∞ S (1w)√g dz =

2π s0, where s0 is yet to be determined. With this disclination density, the ϕ-
independent stress function χ(1w)(z) is obtained by solving for the compatibility
condition (Eq. 1.14). The general solution, apart from an additive constant, is
given by

χ(1w)(z) = c z − s0
a
z Θ(z)− log[cosh(

z

a
)], (3.7)
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where c is a constant, and Θ(z) is unit step function defined as, Θ(z) = 1 for
z > 0 and Θ(z) = 0 for z < 0.

Figure 3.4: Minimised free energy F : The dots indicate the η-values beyond
which wall defects are unstable (ζ(η) = 0), see Fig. 3.3. The notations (2p), (1w),
(2w), (4p) and (4w) represent the two point (index s = −1 each)-, single wall
(index s = −2)-, two wall (index s = −1 each)-, four point (index s = −1/2
each)-and four wall (index s = −1/2 each)-configurations, respectively.

We seek the solution to the compatibility condition (Eq. 1.14) with the
boundary conditions

χ(−z) = χ(z), and ∂zχ→ 0 as z → ∞. (3.8)

With these boundary conditions, we get c = −1/a and s0 = −2.

χ(1w)(z) = − log[cosh(
z

a
)] +

|z|
a
. (3.9)

The Euler characteristic of a catenoid is zero, and the Poincaré-Hopf index
theorem is not applicable. Thus the result s0 = −2 is a consequence of free
energetic considerations alone. The solution 3.9 is particularly simplified in terms
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of the α− field (See Fig. 3.5)

α(1w)(ϕ, z) =

ϕ if z > 0

−ϕ if z < 0
(3.10)

Figure 3.5: Wall configuration in vector order: (a) Front view of single wall
disclination of index s = −2. (b) Side view of single wall disclination of index s =
−2. (c) Front view, (d) Side view of two wall disclinations of index s = −1 each.
The shaded regions in above figures illustrate cores of the wall disclination(s).

It is easy to check that
∮
dα

(1w)
(lh) −

∮
dα

(1w)
(uh) = −4π, where α(1w)

(lh) and α(1w)
(uh) refer

to the lower half (z < 0) and the upper half (z > 0) of the catenoid respectively,
with the integrals taken in the anticlockwise sense around outward normal to the
surface. Thus, the index of the single wall is −4π/(2π) = −2. This result is easily
generalised to walls having other indices.
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Substituting the exact solution for χ (Eq. 3.9) in the free elastic energy
density (Eq. 2.6), we get the elastic free energy density of the wall as

f
(1w)
el =

Kα

2a2
sech(

z

a
)2 [1− 2Θ(z)− 2zδ(z) + tanh(

z

a
)]2. (3.11)

The presence of δ(z) is crucial for discussing the energetics and thereby the
stability of the wall disclination. Let 2ξ be the wall width measured on the surface
of the catenoid, then the cutoff in z−integral ∆z = a arcsinh(ξ/a). For a catenoid
of height 2l the elastic free energy of this configuration is

F
(1w)
el = 2× 2π

∫ l

∆z

f
(1w)
el

√
g dz

= 2πKα { ζ√
1 + ζ2

− arcsinh(ζ) + log(
1 + ζ2

ζ +
√

1 + ζ2
)

+ L − log[cosh(L)]− tanh(L)},

(3.12)

where the dimensionless core size ζ = ξ/a and the dimensionless length L = l/a.
In the limit l → ∞, F (1w)

el reduces to

F
(1w)
el =2πKα [

ζ√
1 + ζ2

− arcsinh(ζ) + log(
1 + ζ2

ζ +
√

1 + ζ2
) + log(4)− 1].

(3.13)

The condensation energy of the core is

F
(1w)
C = 2π fC

∫ ∆z

−∆z

√
g dz

= πa2fC {2 arcsinh(ζ) + sinh[2 arcsinh(ζ)]}.
(3.14)

We numerically minimise the dimensionless total free energy F (1w) =

F
(1w)
T /Kα, where F

(1w)
T = F

(1w)
el + F

(1w)
C , to get the optimised core size ζ(1w)

(Fig. 3.3), and minimised total energy F (1w) (Fig. 3.4) as functions of η. Recall,
η ∼ (Tc − T ). We find that at η = 0.5 the minimised core size ζ(1w) is zero and
becomes negative for η > 0.5, which is unphysical. Within the coarse grained
theory, ζ(1w) = 0 implies that the cutoff is order of molecular length-scale. Thus,
it sets the limit of stability of the wall disclination. For 0 < η < 0.5 the single wall
disclination is stable, and has lower free energy than that for the configuration of
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two point disclinations (Fig. 3.4).

The study of the single wall disclination (of index s = −2) at the neck so far is
the starting point to investigate the stability of the wall disclinations on catenoid.
We chose the position of the single wall at the neck owing to the symmetry of the
catenoid. In general, we can place the wall anywhere on the surface of catenoid.
However, the potential energy due to the interaction between curvature and the
wall disclination decides the optimal position. We show below that the neck is
indeed optimal position for the single wall configuration of index s = −2.

For the sake of generality, we study interaction potential of a single wall
disclination of index s0 at position z = d. The corresponding disclination density
is given by

S (1w) =
s0√
g
δ(z − d). (3.15)

Note that the Green’s function on catenoid plays the important role in calcu-
lating the interaction energy of wall-defect configurations. Given the azimuthal
symmetry of the configuration, we seek the ϕ-independent Green’s function, with
the conditions G(z; z′) = G(z′; z), and G(−z;−z′) = G(z; z′). The solution is

G(z; z′) =
|z − z′|
4πa

, (3.16)

Substituting the Green’s function G(z; z′) and S (1w) in interaction poten-
tial energy (Eq. 2.10), we get the interaction potential energy of the single wall
disclination as a function of its position d. The analytic expression is given below
and plotted in Fig. 3.6

F
(1w)
int

Kα

= −2π s0 log[2 cosh(
d

a
)]. (3.17)

From the Fig.3.6 it is clear that the interaction potential energy for positive
wall disclinations (s0 > 0) is minimum at ±∞. Therefore positive wall discli-
nations are expelled from the neck (d = 0) region of the catenoid. For negative
wall disclinations (s0 < 0), interaction potential energy is minimum at the neck
(d = 0) and they are attracted to the neck region where the Gaussian curvature
effects are predominant. However, the finite distortion energy constraint implies
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that index of the wall s0 = −2. Thus, the single wall of index s = −2 placed at
the neck is the minimum energy configuration.

Figure 3.6: Interaction potential energy (dimensionless) F (int) = F(int)/Kα for
the single wall disclination of index s0. The curve above d/a-axis is for s0 < 0,
indicating that negative disclinations are attracted towards the neck region. The
behavior of positive disclinations ( s0 > 0) is shown in the curve which is below
d/a-axis. Positive disclinations are expelled from the neck region.

The ground state configuration for vector order can have more than one
wall disclination. Therefore we consider two walls of index s1 and s−1 placed
symmetrically at z = ±d on the catenoid. The disclination density for this
configuration is

S (2w) =
s1√
g
δ(z − d) +

s−1√
g
δ(z + d). (3.18)

The solution to the compatibility condition (Eq. 1.14) subject to the boundary
conditions (Eq. 3.8) yields that s1 = s−1 = −1, and the total disclination index
sT = −2. The corresponding α−field, apart from an additive constant, is given
by (Fig. 3.5),

α(2w)(ϕ , z) =


ϕ if z > d

0 if −d < z < d

−ϕ if z < −d

(3.19)

where superscript (2w) stands for two wall configuration. In calculating elastic
energy (F (2w)

el ), we consider the same core size (ξ) on both sides of the walls. The
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condensation energy of the walls is

F
(2w)
C = 2× 2π fC

∫ d+∆z

d−∆z

√
g dz

= 2π a2 fC

[
2∆z

a
+ cosh (

2d

a
) sinh(

2∆z

a
)

] (3.20)

where ∆z = a arcsinh[(ξ/a) sech(d/a)].

(a) (b)

Figure 3.7: (a) Equilibrium position of two-wall configuration: The plot of d/a
vs η. At η ≃ 0.1, d(2w) ≃ 0.55 a. (b) The interaction potential energy of the two
wall disclinations of index −1 each placed symmetrically at z = ±d. The function
has minimum at d ≃ 0.55 a which implies the division of Gaussian curvature (See
text below.).

The optimised dimensionless core size ζ(2w) = ξ/a and dimensionless position
D(2w) = d/a are obtained, numerically, by minimising F (2w) . The plot of ζ(2w)

(Fig. 3.3) shows that the two-wall configuration is stable up to η ≃ 0.1. The
equilibrium positions of the walls are also functions of η, and close to the limit of
stability (η → 0.1), the walls are located such that the total (integrated) Gaussian
curvature between them KT → −2π, D(2w) ≃ 0.55. Within the range of stability
the total free energy of the two-wall configuration (F (2w)) is less than that of
single wall configuration (Fig. 3.4). Thus, for 0 < η < 0.1, and the two-wall
configuration is the ground state.

The interaction energy of two wall-disclinations of index s = −1 each, placed
at z = ±d is given by (Fig.3.7(b))

F
(2w)
int

Kα

= 4π log[2 cosh(
d

a
)]− 2π

d

a
. (3.21)
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The function has minimum at d ≃ 0.55 a, which implies the division of Gaussian
curvature−the total (integrated) Gaussian curvature between the two walls is
KT = −2π = 2π × (index of the wall). In what follows, we explore the division
of Gaussian curvature for nematic order, and extend it to n−atic order. In the
next section, we discuss the nematic order.

3.3 Nematic order

We choose the nematic director field on catenoid as n̂ = cosα êϕ + sinα êz, with
−n̂ ≡ n̂. The symmetry of the nematic director allows the disclination indices
to have half-integer values. This reduces the elastic free energy further [3].

3.3.1 Four point disclinations

We consider four index s = −1/2 point disclinations on a catenoid, so that
the total index is sT = −2. We study the interaction potential among these
disclination in two different configurations. (i). Alternating configuration
(A-I) in which two s = −1/2 disclinations are placed in the z = d plane with
angular separation of π (e.g., ϕ = {3π/4, 7π/4} ), and the remaining two s =

−1/2 disclinations are located in the z = −d plane (with angular separation of
π, e.g., ϕ = {π/4, 5π/4} ) such that position of disclination is rotated by π/2

with respect to the position of disclination in z = d plane (Fig. 3.8(a)). (ii).
Atop configuration (A-II) in which two s = −1/2 disclinations are placed
in the z = d plane with angular separation of π (e.g., ϕ = {π/4, 5π/4} ), and
remaining two s = −1/2 disclinations are located in the z = −d plane (with
angular separation of π, e.g., ϕ = {π/4, 5π/4} ) such that position of disclinations
is directly beneath the position of disclinations in z = d plane (Fig. 3.8(b)).

The interaction potential plots of both configurations as a function of po-
sition is given in Fig 3.9(a). It is clear that configuration-I with d = 0 (the
neck) has the minimum energy. To check whether it is a global minimum, we
consider all four disclinations placed on the neck with angular position {π/4, ω+
π/4, 5π/4 and 5π/4 + ω}. Numerically it is obtained that equilibrium positions
of the disclinations (global minimum) are such that they sit on the neck with an
angular separation of π/2 between two adjacent disclinations (Fig 3.9(b)). This
result is in agreement with [49]. The corresponding α-field is given below and
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(a) Alternating configuration (A-I) (b) Atop configuration (A-II)

Figure 3.8: Arrangement of four point disclinations of index s = −1/2 each.
The blue dots in the figures represent the position of disclinations.

(a) (b)

Figure 3.9: Interaction potential plots of four s = −1/2 point defects: (a) Black
color curve is for the alternating configuration (A-I) and blue color curve is for the
atop configuration (A-II). (b) Four disclinations placed on the neck with angular
position {π/4, ω + π/4, 5π/4 and 5π/4 + ω}. Interaction potential as function of
ω is plotted and it has minimum at ω = π/2.

shown in Fig. 3.10.

α(4p) =
1

2
arctan[tan(ϕ+π/4) coth (

z

a
)]− 1

2
arctan[cot(ϕ+π/4) coth (

z

a
)]. (3.22)

To obtain the optimal core sizes we use two different core sizes ζ(4p)z and
ζ
(4p)
ϕ along z− and ϕ−directions respectively. Here, the superscript (4p) stands

for the four point disclinations configuration. The minimised total free energy
F (4p) is plotted as function of η and shown in Fig. 3.4. We notice that (Fig. 3.3),
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Figure 3.10: Defects in nematic order:(a) Side view of four point disclinations
of index s = −1/2 each. (b) Front view of four point disclinations. (c) Front
view of four wall disclinations of index s = −1/2 each. (d) Side view of four wall
disclinations. The shaded regions in above figures illustrate the cores.

the optimised core sizes along ϕ-direction (ζ(4p)ϕ ) overlap up to η ≃ 0.02. This
vindicates the instability of point disclinations configuration. In this range of η,
the four point disclinations configuration resembles the single wall disclination.

3.3.2 Four-wall configuration

We place four wall- configuration of s = −1/2 each, symmetrically about the z
axis at the positions z = ±d1,±d2. The solution to the compatibility condition
(Eq. 1.14) is given by

χ(4w) =
1

2a
[(z − d1)Θ(z − d1) + (z + d1)Θ(z + d1) + (z − d2)Θ(z − d2)

+ (z + d2)Θ(z + d2)− 2(z + a log cosh
z

a
)].

(3.23)
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In terms of α−field (Fig.3.10)

α(4w)(ϕ , z) =



ϕ if z > d2

ϕ/2 if d2 > z > d1

0 if d1 > z > −d1
−ϕ/2 if −d1 > z > −d2
−ϕ if z < −d2

(3.24)

where the superscript (4w) stands for the four-wall configuration. For the deter-
mination of optimal core sizes, we use two different core sizes ζ(4w)

1 and ζ(4w)
2 for

the pairs of symmetry related walls located at z = d1 and z = d2.

We numerically minimise the total dimensionless free energy F (4w) with re-
spect to the core sizes (ζ(4w)

1 , ζ(4w)
1 ) and the positions (±d1, ±d2), as functions

of η. Plots of the minimised free energy, and the optimal core sizes are shown
in Fig. 3.4 and Fig. 3.3 respectively. We find that the four wall configuration is
unstable for η > 0.014. Within it’s stability range, the four-wall configuration has
the lowest free energy. The optimised positions (D(4w)

1 = d1/a,D
(4w)
2 = d2/a) are

functions of η. Close to the stability range (η > 0.014), the optimised positions
have values such that the integrated Gaussian curvature between any two succes-
sive walls (KT) is −π. This trend similar to that of the two walls configuration.
Here, D(4w)

1 ≃ 0.25, D
(4w)
2 ≃ 0.97. We note that this behaviour holds for n-atic

order.

3.4 Point disclinations in tetratic- and hexatic or-

der

The symmetry of tetratic and hexatic order allows the disclinations with indices
that are integer multiplies of ±1/4 and ±1/6 respectively. In tetratic order,
we consider eight s = −1/4 disclinations on the catenoid. In this section we
consider three simple configurations. In Configuration-I, we place four s =

−1/4 disclinations are placed in the z = d plane with angular separation of
π/2, and four s = −1/4 disclinations are located in the z = −d plane (with
angular separation of π/2) such that the position of disclination is rotated by
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π/4 with respect to the position of disclination in z = d plane. For example
the coordinates are { z = d ; ϕ = jπ/8, j = {1, 3, 9 & 11} }, and { z = −d
; ϕ = kπ/8, k = {5, 7, 13 & 15} } (Fig. 3.11(a)). Configuration-II has four
−1/4 disclinations are placed in the z = d plane with angular separation of π/2,
and four s = −1/4 disclinations are located in the z = −d plane (with angular
separation of π/2) such that position of disclinations is beneath the position of
disclinations in z = d plane, eg, { z = ±d ; ϕ = jπ/8, j = {1, 3, 9 & 11}
} (Fig. 3.11(b)). Configuration-III has two disclinations are placed in the
z = −3d plane with angular position ϕ = 0, π, two at { z = −d; ϕ = π/3, 4π/3 },
two at { z = d; ϕ = 2π/3, 5π/3 }, and two at { z = 3d; ϕ = 0, π } (Fig. 3.11(c)).

(a) Configuration-I (b) Configuration-II (c) Configuration-III

Figure 3.11: Arrangement of eight point disclinations of index −1/4 each. The
blue dots in all the figures represent the position of disclinations.

For tetratic order, numerically obtained plots of interaction energy (2.10) vs
position of disclinations for the three configurations are shown in Fig.3.12. We
find that the interaction is minimum for non zero d. Configuration-III has a local
minimum in the potential plots at d ≃ 0.2, but it is not the global minimum. At
d ≃ 0.45a Configurations-I and II have minimum potential energy. Interestingly,
this value is closer to that of two wall disclination (d(2w) ≃ 0.55a). Configuration-I
with d ≃ 0.45a has lowest free among the three configurations.

For hexatic order, Configuration-I has six s = −1/6 disclinations placed
in the z = d plane with angular separation of π/3, and six s = −1/6 disclinations
are located in the z = −d plane (with angular separation of π/3) such that
the position of disclinations is rotated by π/6 with respect to the position of
disclinations in the z = d plane ( eg, { z = d ; ϕ = jπ/12, j = {1, 5, 9, 13, 17 & 21}
} , { z = −d ; ϕ = kπ/12, k = {3, 7, 11, 15, 19 & 23} }). In Configuration-II, six
s = −1/6 disclinations are placed in the z = d plane with angular separation of
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Figure 3.12: Interaction potential plots of tetratic order : Eight point disclina-
tions of s = −1/4 each. Black, blue and orange curves represent the configuration-
I (C-I) , configuration-II (C-II), and configuration-III (C-III) respectively. Note
that blue and black curves coincide for d > 0.5. The image on the left side
shows the zoomed version of the three plots. It indicates that configuration-I
with d ≃ 0.45a has the minimum interaction energy among the three.

π/3, and six s = −1/6 disclinations are located in the z = −d plane (with angular
separation of π/3) such that position of disclinations is beneath the position of
disclinations in z = d plane ( eg, { z = ±d ; ϕ = jπ/12, j = {1, 5, 9, 13, 17 & 21}
} ). We ignore Configuration-III for the energetic considerations. As the
disclinations in C-III are more distributed, the interaction among them is not
predominant as compared to C-I and C-III. The interaction potential plots for
C-I and C-II are given in Fig. 3.13. It is clear that configuration-I with d ≃ 0.5a

is the lowest energy state and configuration-II has a local minimum at d ≃ 0.5a.
We note that equilibrium positions of point disclinations in tetratic and hexatic
order is close to that of two wall disclinations (d ≃ 0.55a).

3.5 n−atic order: Division of total Gaussian cur-

vature by wall disclinations

In this section we generalise the calculations of the division of total Gaussian
curvature to n−atic order. It is clear that, for n-atic order on catenoid, the lowest
allowed disclination index is s = −1/n. We consider 2n walls of index s = −1/n

each, and indicate the positions of symmetry related pairs of walls by (dk, d−k =
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Figure 3.13: Plots of interaction potential for hexatic order : Twelve point
disclinations of s = −1/6 each. Blue and black curves represent Configuration-I
(C-I) and Configuration-II (C-II) respectively. It indicates that Configuration-I
with d ≃ 0.5a has the minimum interaction energy among the three.

−dk), where k = 1, 2, ..., n. The disclination density of this configuration is

S (z) = − 1

n
√
g

n∑
k=1

[δ(z − dk) + δ(z − d−k)]. (3.25)

To get optimal position of the walls, we use the Coulomb gas free en-
ergy (Eq. 2.9). After substituting for Green’s function (Eq. 3.16) in Eq. 2.9,
minimisation of elastic free energy with respect to the positions di leads to∫ di
−di

dz
√
g K(z) = −(2i− 1)/n (See Appendix B for more details). Therefore,

the integrated Gaussian curvature between the symmetry-related walls at di and
at −di (Ki) is

Ki = 2π

∫ −di

di

dz
√
g K(z)

= −2π

n
(2i− 1).

After some algebraic manipulations we get the integrated Gaussian curvature
between any two successive walls

KT(i, i+ 1) = 2π

∫ di+1

di

K(z)
√
gdz = −2π/n, (3.26)
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where i = {1, 2, ..., 2n − 1}. Thus for n-atic order, the lowest elastic free-energy
configuration has 2n walls of index −1/n each, located such that the integral of
Gaussian curvature of the catenoid between any two successive walls is −2π/n.

Figure 3.14: Minimised free energy F of finite sized catenoid: Total height in
(units of the neck radius a) of the catenoid is 2L. The dots indicate η-values
beyond which wall defects are unstable (ζ(η) = 0). (a) L = 0.5 , (b) L = 1, (c)
L = 1.5 and (d) L = 2.

3.6 Finite sized catenoid

The results on stability of wall disclinations, and on the division of Gaussian
curvature discussed above are valid for infinite catenoids (infinite l, finite a). In
experiments, only catenoids with finite l can be studied. For finite height of the
catenoid, there are two circular boundaries. In this section we consider catenoids
with finite l and a, and investigate the stability of two point disclinations (s = −1

each), single wall (s = −2) and two wall-configuration (s = −1 each). We now
minimise the total free energy F with free boundary conditions on the circular
boundaries by keeping a upper limit for the core size along z-direction. The plots
of minimised F as a function of η are shown in Fig.3.14 for the dimensionless
height L = 0.5, 1, 1.5 and 2.
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We note that for L < 0.5, there is a transition from disorder phase to
disclination-free configuration as a function of η. The critical value η∗, at which
this transition occurs, depends on the L. For L = 0.5, η∗ ≃ 0.03. We observe
that in the range 0.5 < L < 0.78, the two-wall configuration is stable and it is
an intermediate configuration in the transition from disorder to disclination free
configuration. The upper limit L = 0.78 is obtained by comparing the elastic free
energy (Fα) of the two-wall configuration to that of disclination-free configura-
tion. The single wall disclination is stable in the range 0.78 < L < 1.23, and the
transition as a function of η is as follows : disorder → two-wall → single wall →
disclination-free configuration. The limit L = 1.23 is obtained by comparing the
elastic free energy Fα of the single wall configuration to that of disclination-free
configuration.

3.7 Results and discussion

This chapter shows that wall disclinations are stable on the surface of a catenoid
close to order-disorder transition. Similar to spherical surfaces, the wall disclina-
tions divide the Gaussian curvature equally (the division of Gaussian curvature).
For a finite-sized catenoid, we predict a transition from uniform to wall discli-
nations configuration as a function of the height of the catenoid. There is a
transition from two-wall configuration to single wall configuration as a function
of temperature for catenoids of fixed height. It is interesting to test our predic-
tions for finite-sized catenoids. The height scales are large enough such that one
may avoid the faceting problem that occurs for deformable spherical surfaces.



65

Chapter 4

Point- and wall disclinations on
Helicoids

4.1 Introduction

In this chapter, we discuss the point and wall disclinations on helicoids, another
example of minimal surfaces. When helical spring is immersed in soap solution,
the soap film acquires the helicoid shape. Helicoids and catenoids are members
of the same associate family of minimal surfaces, hence, one can bend a catenoid
into a portion of a helicoid without stretching [20]. Mathematically, there is
a distance-preserving transformation between the catenoid and portion of the
helicoid (locally isometric). Thus, our results for cateonoidal membranes are
mapped to helicoidal membranes.

To begin with, we discuss the geometry of helicoid and establish the α−field
for point disclinations. The isometric mapping of helicoid to catenoid is studied
in the Sec. 4.3.

4.2 Point disclinations

We parametrise a right handed helicoid as R(ϕ, r) = {r cosϕ, r sinϕ, b ϕ} where
−∞ < r < ∞ and 0 ≤ ϕ < 2π. Here 2πb is pitch of the helicoid. The
components of the metric tensor are gϕϕ = (b2 + r2), grr = 1, gϕr = grr = 0, and
the determinant of metric tensor g = (b2+r2). The Gaussian and mean curvature
are, respectively, K = −b2/(b2 + r2)2, and H = 0.
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We choose ê1(ϕ, r) = t̂ϕ(ϕ, r) and ê2(ϕ, r) = t̂r(ϕ, r) to express any tangent
vector m̂(ϕ, r) on the helicoid as m̂(ϕ, r) = cosα(ϕ, r) êϕ+sinα(ϕ, r) êr. In this
coordinate system the components of spin connection terms are A = (Aϕ, Ar) =(
0, r/

√
b2 + r2

)
.

Figure 4.1: The disclination-free configuration

For the disclination free configuration, α = const. The corresponding texture
is shown in Fig. 4.1. With free boundary conditions, the elastic free energy of the
helicoid of width 2w is

Fel = πKα

[
log(

√
w2 + b2 + w√
w2 + b2 − w

)− 2w√
w2 + b2

]
. (4.1)

Note that Fel diverges logarithmically as w → ∞. Thus the disclination-free
configuration is untenable for a helicoid with infinite extent (fixed b and w → ∞).
Since

∫ 2π

0
dϕ

∫∞
−∞K

√
gdr = − 4π, we consider point disclinations of total index

s = −2 on an infinite helicoid. The α−field for a pair of two s = −1 disclinations
at r = 0 and ϕ = {π/2, 3π/2} is

α
(2p)
h (ϕ, r) = arctan(

r tanϕ√
r2 + b2

), (4.2)

where the superscript (2p) refers to two point disclinations. This expression is
obtained by the intersection of the helicoidal surface with x = const planes (level
sets), and satisfies the α−equation of the equilibrium (Eq. 1.13). The streamlines
for this configuration are depicted in Fig. 4.2(a). From Eq. 2.5, the elastic free
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energy density of this configuration is

f
(2p)
el (ϕ, r) =

Kα b
4 sin2 ϕ

(b2 + r2)2 (b2 + 2r2 + b2 cos 2ϕ)
. (4.3)

(a) (b)

Figure 4.2: (a) Streamlines of two s = −1 point disclinations on the axis of
a helicoid (r = 0 ; ϕ = π/2, 3π/2). (b) The plot of Fel (in Kα units) vs w/b :
Orange color curve is for uniform configuration. Blue- and black curves represent
the elastic free energy of two point disclinations with core sizes (or, cutoffs) 0.05b
and 0.1b, respectively.

It is evident that at r = 0 and ϕ = {π/2, 3π/2}, the elastic free energy
density f (2p)

el has singularities. We use equal cutoffs in r− and ϕ−directions for
calculating the elastic free energy (Fα). Fig. 4.2(b) shows the plot of elastic free
energy (in the units of Kα) of two point disclination configuration for fixed core
area around point disclinations. For example, for the blue curve the cutoff in
the r−direction is 0.05b, and for the ϕ−direction it is 0.05 rad(See, Fig. 4.2(b)).
We note that for fixed core area, the elastic free energy for the (2p) saturates for
large w.

For nematic order, we consider four s = −1/2 point disclinations in two
configurations. Alternating configuration (A-I), the disclinations are placed
at r = −ρ ;ϕ = {π/4, 5π/4} and r = ρ ; ϕ = {3π/4, 7π/4} (Fig. 4.3(a)). Atop
configuration (A-II) has disclinations placed at r = ± ρ ; ϕ = {π/4, 5π/4
(Fig. 4.3(b)). The interaction potential energy plots of the two configurations are
given in Fig. 4.4(a). We note that A-II has a local minimum around ρ ≃ 0.5 b,
however, A-I with ρ = 0 has the lower energy. The corresponding α−field is (See
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(a) Alternating configuration (A-I) (b) Atop configuration (A-II)

Figure 4.3: Arrangement of four point disclinations of index s = −1/2 each.
The blue dots in the figures represent the position of disclinations.

Fig. 4.4(b))

α
(4p)
h (ϕ, r) =

1

2
[arccot(

r tan (ϕ+ π/4)√
r2 + b2

)− arccot(
r cot (ϕ+ π/4)√

r2 + b2
)] (4.4)

where the superscript (4p) indicates four point disclinations.

To study the point disclinations in tetratic order, we use two configurations
in which eight s = −1/4 disclinations are arranged as follows: Configuration-I
has disclinations at r = ρ ; ϕ = kπ/8 where {k = 1, 3, 9 and 11} , and r = −ρ ;
ϕ = jπ/8 where {j = 5, 7, 13 and 15}. In Configuration-II they are placed at
r = ±ρ ; ϕ = kπ/8, where {k = 1, 3, 9 and 11}. Interaction potential energy plots
of these two configurations are shown in Fig. 4.5. Note that Configuration-I with
ρ ≃ 0.475 b has minimum interaction energy.

For hexatic order, we consider two configurations in which twelve s = −1/6

disclinations are arranged as follows: Configuration-I has disclinations at r =

ρ ; ϕ = kπ/12 where j = {1, 5, 9, 13, 17 and 21} , r = −ρ ; ϕ = jπ/12 where
j = {3, 7, 11, 15, 19 and 23}. In Configuration-II, they are placed at r = ±ρ
; j = {1, 5, 9, 13, 17 and 21}. Interaction potential energy plots of these two
configurations are shown in Fig. 4.6. Note that Configuration-I with ρ ≃ 0.5 b
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(a) (b)

Figure 4.4: (a) Interaction potential energy plots of point disclination in ne-
matic order: Blue and black curves are for Alternating (A-I) and Atop (A-II)
configurations. (b) Streamlines of four point disclinations placed on the axis of
the helicoid (ρ = 0;ϕ = π/4, 3π/4, 5π/4 and 7π/4).

Figure 4.5: Interaction potential energy plots of tetratic order : Blue and black
color curves represent the Configuration-I (C-I) and Configuration-II (C-II) re-
spectively. It indicates that configuration-I with ρ ≃ 0.475 b has the minimum
interaction energy.

has minimum interaction energy.

4.3 Wall disclinations

In Chapters 2 and 3, we established a general procedure to get α−field for wall
disclinations (solve for the compatibility condition). In this section we make
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Figure 4.6: Interaction potential plots for hexatic order : Twelve point discli-
nations of −1/4 each. Blue and black color curves represent the configuration-I
(C-I) and configuration-II (C-II) respectively. It indicates that configuration-I
with ρ ≃ 0.5 b has the minimum interaction energy.

use of isometric mapping between a helicoid and a catenoid to study the wall
disclinations on helicoids. The isometric transformation of a helicoid of one pitch
( pitch length 2πb) to catenoid (of neck radius a) and is given by [20, 21]

b→ a

r → a sinh(
z

a
)

ϕ→ ϕ

(4.5)

The parametrisation of helicoid after the transformation is

R(ϕ, z) = { a sinh (z/a) cosϕ, a sinh (z/a) sinϕ, aϕ} (4.6)

In this parametrisation, the metric (gµν), mean (H) and Gaussian (K) curvatures
take the same form as that for catenoid (See Appendix B).
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To understand the transformation effects on α−field, we consider two point
disclinations of index s = −1. Under the isometric mapping, α(2p)

h transforms to

α
(2p)
h (ϕ, z) = arctan(tanϕ tanh (z/a))

=

π/2− arctan(cotϕ coth (z/a)), if cotϕ coth (z/a) > 0

−π/2− arctan(cotϕ coth (z/a)), if cotϕ coth (z/a) < 0

= ±π
2
+ α(2p)

(4.7)

where α(2p) = − arctan(cotϕ coth (z/a)) is the α−field for two s = −1 point
disclinations on catenoid (see Eq. 3.2). Thus α− field acquires constant angle
which manifests conformal nature of the mapping.

Recall that the optimal positions of point disclinations for tetratic order on
catenoid is Configuration-I with d ≃ 0.45 a. With the transformation we get
ρ = b sinh(0.45) = 0.465 b, which is close to the value from the potential plots of
tetratic order on helicoid with Configuration-I (ρ ≃ 0.475 b, see Fig. 4.5).

For more general cases, we consider new parametrisation (Eq. 4.6) of helicoid
that is isometric to catenoid. We take orthonormal coordinates ê1(ϕ, z) = t̂ϕ(ϕ z)

and ê2(ϕ, z) = t̂z(ϕ, z). The spin connection is A = (Aϕ, Az) = (tanh(z/a) , 0).
Thus a tangent vector m̂(ϕ, z) on helicoid is m̂(ϕ, z) = cosα(ϕ, z) êϕ+sinα(ϕ, z) êz.
As the mapping is isometric and conformal, we take α−field of different config-
urations on catenoid and use them directly onto helicoid. For example, α(2p)

represents orientational field for two s = −1 disclinations at z = 0(ρ = 0) and
ϕ = {π/2, 3π/2} on a helicoid. Similarly, Eq.3.10 represents α−field for the sin-
gle wall (at z = 0) of index s = −2 (Fig. 4.7(a)). The two wall-, four wall-
configurations on a helicoid is depicted in Fig. 4.7.

4.4 Stability analysis of point- and wall disclina-

tions

Preceding sections discuss the interaction potentials for point and wall discli-
nations. In what follows, we take into account of core energy calculations and
minimise the total free energy. To address the stability analysis of point disclina-
tions and equilibrium core sizes on helicoid, we use the isometric transformation
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(a) Single wall (b) Two walls (c) Four walls

Figure 4.7: Streamlines of wall disclination(s) on a helicoid:(a) Single wall discli-
nation with index s = −2 placed on the axis of helicoid. (b) Two wall disclinations
of index s = −1 each. (c) Four wall disclinations of index s = −1/2 each. The
shaded regions in these figures depict core regions.

between helicoids and catenoids. Note that the metric, spin connection term and
α−field is the same as that for a catenoid (See Appendix B). Therefore free energy
expressions, core calculations are identical to that of catenoid configuration. As
the results for catenoid are discussed in the previous chapter, the transformation
ensures that helicoid results are mapped to catenoid.

We begin by considering half width of helicoid w = a sinh[l/a], where l

is the half height of the catenoid to which the helicoid is mapped. With this
transformation free elastic energy of disclination-free configuration turns to

F
(0)
el = 2πKα

[
l

a
− tanh(

l

a
)

]
(4.8)

Note that the expression is the same as that of catenoid (See Eq. 3.1).

The α(2p) represents orientational field for two s = −1 disclinations at z =

0(ρ = 0) and ϕ = {π/2, 3π/2} on helicoid. The free elastic energy density is

f
(2p)
el =

Kα sin2(ϕ) sech4(z/a)

a2 [cosh(2z/a) + cos(2ϕ)]
(4.9)

which exactly matches with that of catenoid. We also use the same parameter
η as in the case of catenoid. By taking core sizes ζ(2p)z , ζ(2p)ϕ that are identical
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to catenoid, we numerically obtain optimal core sizes around point disclinations
(Fig 3.3). Similarly, optimal core sizes for four point disclinations (ζ(4p)z , ζ(4p)ϕ )
placed at z = 0 and ϕ = kπ/4 where k = {1, 3, 5 and 7} are given in Fig 3.3. The
minimised free energy plots are shown in Fig. 3.4

For wall disclinations, equilibrium positions are obtained by division of Gaus-
sian curvature rule. The optimal cores and minimised free energy of single wall
(1w), two walls (2w) and four walls (4w) configurations is shown in Fig 3.3 and
Fig 3.4 respectively. We note that the wall disclinations are stable near order
disorder transition. The finite size effects of helicoid follow catenoid results. For
finite sized helicoid of radius r, the transformation r = a sinh(L) mimics the
finite sized catenoid results. Our predictions can be tested experimentally.

To summarise, Part-I studies the stability of wall disclinations on spheres,
catenoids, and helicoids. Non zero Gaussian curvature is an essential feature for
the stability of wall disclinations. We attribute their stability to free-energetic
considerations, which override those of topological stability. We note that our
model is based on mean-field theory and neglects thermal fluctuations. However,
fluctuations play a vital role near the order-disorder transition, where the wall
disclinations are stabilised. Investigating the stability of wall disclinations in
the presence of thermal fluctuations and the role of wall disclinations in defect
mediated Kosterlitz-Thouless (KT) transitions are interesting challenges. These
could be possible direction for future work.
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Part II

Sector-, and tent morphologies of
polymer crystallites
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Chapter 5

The sector morphology of polymer
crystallites

5.1 Introduction

Part-II of this thesis (Chapters 5, 6) discusses the role of topological defects in
determining the observed sector- and tent-morphologies of polymer crystallites.
This is a collaborative work with Prof. M. Muthukumar (University of Mas-
sachusetts Amhrest, USA) and Dr. Jaya Kumar A (IISc, Bengaluru, India). In
this chapter we review and improve the calculations of the model proposed by
Jayakumar et al. for the stability of sector morphology [5]. This chapter is the
foundation for the study of tent morphology in which stability analysis of sectors
plays a vital role. In what follows, we begin by giving introduction to polymer
crystallites.

Polymer crystals are fascinating because these are formed by long, entangled,
and interpenetrating chains. There is a topological frustration that the polymer
chains need to overcome for settling into crystalline order. The frustration arises
from the highly entangled collection of interpenetrating, connected chains with
long-ranged spatial and dynamic correlations before crystallisation begins. The
chains have large free energy barriers to reorganise polymer conformations into
the ordered states [50]. Interestingly, polymer crystallisation suppresses the topo-
logical frustration [51, 52]. Because of the connectedness, polymer crystals are
different from regular atomic and molecular crystals. In contrast to regular crys-
tals in three-dimensions, polymer crystals do go not grow to an infinite extent in
all three-dimensions. Due to free energetic considerations, polymer crystals are
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formed as lamellae [53, 54]. The free energy minimum corresponding to finite
lamellar thickness maximises configurational entropy. This is because there are
numerous ways of distributing a given chain length into many loops.

Observed morphologies of polymer crystallites show spherulitic, and twisted
spherulitic structures composed of helicoids, tent-like structures and scroll struc-
tures [4]. The schematics of these structures are shown in Fig. 5.1. An exciting
feature of these structures is that they are lamellar in nature. The typical thick-
ness of a single lamella is in order of 10 nanometers and lateral dimensions of
about micrometers or above. Among various models, the adjacent-reentry fold
model (proposed by Keller [55]) is widely accepted to explain the structure of
lamella through polymer chains [The Faraday Division, Royal Society of Chem-
istry, London, 1979]. According to this model, parts of polymer chains form rigid
stem-like structures attached to adjacent stems by flexible folds in the polymer.
These stems offer crystalline order by arranging on a lattice (See Fig. 5.2). De-
pending on growth conditions, stems can align either along the lamellar normal
or at an angle with respect to it. The lamella also comprises flexible chains like
cilia and hair-like microscopic structures (See Fig. 5.2). It is the configurational
entropy of the cilia structures that stabilises finite lamellar thickness.

A review of experimental and theoretical advances in polymer crystals is
given in the articles by Lotz and Cheng [4], and by Crist and M.Schultz [56].
The review discusses the study of growth, branching and twisting of polymer
crystals. Interestingly, polarised optical microscopic images with periodic bands
of many achiral polymers such as polyethylene (PE) show that they crystalise
into chiral structures. These chiral structures are arising from the twisting of
the lamellae making up the spherulites. A theoretical study of chiral symmetry
breaking of achiral polymers with a new approach involving topological defects
is developed by Yashodhan Hatwalne and Muthukumar [57]. This new approach
is the starting point for the work done Part-II of the thesis. Our work focuses
on the morphologies of single lamellar crystallites obtained from solution-grown
and melt-grown conditions. Below we give experimental facts and observations
of polymer single crystallites.
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(a) Spherulite

(b) Twisted spherulite (c) Scrolls

Figure 5.1: Morphologies of polymer crystallites. (a). Spherulite: Schematic
representation of spherulite obtained by radially growing polymer lamellae. The
first magnified image illustrates the lamellar structure and second magnified im-
age shows the crystalline arrangement. Image credits: Dingler et.al, Macromol.
Rapid Commun.2019. (b). Twisted spherulite: Polymer lamellae twisted in the
form of helicoids. (c) Scroll: Lamellae are rolled over. Images (b) and (c) are
borrowed from Ref [4].

5.2 Experimental observations of polymer single

crystallites

Crystallisation from a solution containing sufficiently long and unentangled flex-
ible polymer molecules are observed to form diverse morphologies such as flat
sectors, hollow tents, disks, onion-like scrolls, and twisted morphologies [58, 59,
60, 61]. Transmission electron micrography (TEM) images of solution-grown sin-
gle crystals are shown in Fig. 5.3. The size, shape, and regularity of sectors
depend on growth conditions such as solvent, temperature, growth rate, and so-
lution concentrations, etc. For examples, flat lozenge-shaped lamellae are formed
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(a) (b)

Figure 5.2: Adjacent re-entry model: (a) Schematic representation of adjacent
re-entrant folds. The free polymer chains resemble cilia, microscopic hairlike
vibrating structures (b) Schematic of lamellar stack with adjacent re-entrant folds.
Images are taken from the internet.

(a) (b) (c)

Figure 5.3: TEM images of solution-grown single crystals: (a) Lozenge shape
sector: Linear polyethylene crystal decorated with polyethylene vapour. (b)
Hexagonal sector: Polyoxymethylene single crystal decorated with polyethylene
vapour. Images (a) and (b) are borrowed from Wittmann and Lotz (1985). (c)
Poly(ϵ-caprolactone) crystal grown from a n-hexanol solution at 40C. (Image is
taken from Nunez and Gedde (2005))

when polyethylene is crystallized from a mixture of tetrachloroethylene and p-
xylene [52] and flat hexagonal-shaped lamellae are formed when polyoxymethy-
lene is crystallized from bromobenzene [60]. Schematics of the lozenge and hexag-
onal morphology are depicted in Fig. 5.4. An example for temperature depen-
dence is when polyethylene is crystallized from p-xylene at 700C, lozenge-shaped
lamella (with four sectors with [110] growth planes) forms and at 860C, hexagonal-
shaped lamella (with six sectors, four with [110] planes and two with [100] planes)
forms. It is also known that {100} sectors have a lower melting temperature than
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the {110} sectors.

Generally, polymer crystallites have different point group symmetries and
preferred tilt and fold angles (See Fig. 5.5). In addition to this structural com-
plexity, a finite lamella with a boundary has anisotropic line tension [9, 62]. Even
though macroscopic structures such as sectors and tents are observed experimen-
tally, there was no clear understanding of their stability till the work by Jaya
Kumar et al. In this chapter, we improve the calculation presented in Jaya Ku-
mar et al work. We use concepts borrowed from liquid-crystal physics and the
physics of crystalline membranes to study the sector- and the tent morphologies.
We note that our model focuses on structural, and topological aspects of the
observed configurations, but does not address the detailed experimental condi-
tions such as particular solvents, growth rate, and temperature etc. We treat
the problem of the structure of polymer configurations assuming mechanical and
thermodynamical equilibrium. In what follows we discuss the model for sector
morphology.

5.3 A model for the sector morphology

(a) (b)

Figure 5.4: Schematic illustration of folds at the surface of polymer lamella in
sector configuration: (a) Lozenge shaped sector: It has four {110} sectors. (b)
Hexagonal sector: It has four {110} sectors and two {100} sectors. Here vectors
a, b are the crystal axes.
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For concreteness, and simplicity we begin by considering polyethylene (PE)
crystallite as an example. The chemical formula for polyethylene monomer is
C2H4. In the crystalline state, PE lamella is in base-centred orthorhombic sym-
metry. The stems are tilted with respect to lamella normal by about 30 degrees
(See Fig. 5.5(a)). We note that the stems are in the trans-configuration, and
the folds are in the gauche-configurations (See Fig. 5.5(b)). In general, a single
polymer crystal has in-plane

• crystalline order from polymer stems,

• tilt order of polymer stem, and

• orientational order from the fold field.

In what follows that we discuss the elasticity theories of crystalline order and
stem field, and present a phenomenological model for folds.

(a) (b)

Figure 5.5: (a). Schematic illustration of unit cell of a crystalline polyethylene
lamella. The unit cell has symmetry of base-centered orthorhombic. Here a, b
and c represent the the crystal axes and lamella is xy-plane with lamellar normal
is along the z axis. Note that the c axis of the unit cell is tilted with respect to the
z axis. Blue and red colored shaded strips represent oriented stems formed by the
all-trans configurations. Folds are not shown. Image is taken from Ref [5]. (b)
Cartoon showing trans-gauche configurations of polyethylene and fold formation.
Image is taken from S.P.Schmm et al., macromolecules, (1994).
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5.3.1 Crystalline order: Hookian elasticity

To simplify the problem, we treat polymer lamella as a thin crystalline plate, or
membrane that uses continuum elastic theory (plate theory) [18]. Deformations
in crystalline order of a flat lamella in x y−plane are described by two-dimensional
displacement vector u(x, y) = {ux(x, y), uy(x, y)}. The Hookian elastic free
energy of the lamella depends on the symmetry of the point group that the
underlying crystalline lattice possesses. For example, the orthorhombic symmetry
of PE has nine independent elastic constants. For the sake of simplicity, we
consider homogeneous and isotropic crystalline order, which has two independent
elastic constants. The Hookian elastic free energy is given by

Fu =
Y

2 (1 + ν)

∫ (
uij

2 +
ν

1− ν
uii

2

)
dx dy (5.1)

where Y and ν are two-dimensional Young’s modulus and Poisson’s ratio, and
{i, j} = {1, 2} such that x1 = x and x2 = y. Hereafter we follow Einstein’s
summation convention, i.e., repeated indices are summed over. The strain tensor,
by definition, is

uij =
1

2

(
∂ui
∂xj

+
∂ui
∂xj

+
∂uk
∂xi

∂uk
∂xj

)
(5.2)

Within the harmonic approximation, the linearised strain tensor is obtained
by neglecting the third term in Eq. 5.2. For stability Y > 0 and −1 < ν < 1

(two-dimensions).

5.3.2 Tilt order of the stems

Mathematically, tilt order ŝ of the polymer stems is given by ŝ = ĉ− (ĉ · n̂) n̂,
where ĉ and n̂ are the axis of the stem and lamellar normal, respectively. For a
flat lamella with unit normal along z−axis, the projected stem field simplifies to
ŝ = {sx, sy} such that sx2+ sy2 = 1. The elastic free energy due to deformations
in the stem field is given by

Fs =

∫ [
K̃1

2
(∂ · ŝ)2 + K̃2

2
(∂ × ŝ)2

]
dx dy (5.3)
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where K̃1 and K̃2 are, respectively, the splay, and bend elastic constants and
∂ = {∂x, ∂y} is the flat gradient operator.

(a) (b)

Figure 5.6: Surface of the PE lamella: (a) Viewed along the c-axis. The two
dashed lines represent the two possible folds. Energetically the thick dashed fold
is favourable. (b) Illustration of lozenge-shaped, sectored lamella. Images are
taken from Ref. [5]

5.3.3 Fold field

We note that orientation of folds depends on the symmetry of underlying crys-
talline order of the polymer lamella. For PE there are two possible fold directions
(See Fig. 5.6(a)). Folds along these two directions have different energy. More-
over, in the ground state configuration folds at the two fold surfaces are uniformly
aligned. Thus, the ground state of a lamella has up-down symmetry. The fold
direction is described by apolar vector field n̂f with −n̂f ≡ n̂f symmetry. For a
flat lamella fold field is given by n̂f (x, y) = {cosα(x, y), sinα(x, y)}, where ori-
entational field α(x, y) is the angle made by n̂f with respect to x−axis. Because
of up-down symmetry, α is measured modulo π.

Unlike square, or perfect hexagonal shapes, the side lengths of each sector
can, in general be different. Typically, sectors come in lozenge and hexagonal
shapes depending on underlying crystalline order and growth conditions. A car-
toon of lozenge shaped sector obtained by folds with the lowest free energy is
shown in Fig. 5.6(b). In our model, we consider square-shaped sectors for the
sake of simplicity. A square shape can be obtained if the two possible direc-
tions for the PE folds shown in Fig. 5.6 have the same energy. To do this, we
choose a potential that stabilises square sectors. The macroscopic details of folds
and shapes of the lamella are captured in the potential field. The potential that
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stabilises the square sector is

Vα(x, y) =
h4
4

∫
cos [4α(x, y)] dx dy (5.4)

where h4 is strength of the potential.

This potential has four equal minima at α = π/4, 3π/4, 5π/4 and 7π/4 such
that there are four equivalent ground states. Each ground state corresponds to a
domain in the sector, and from one domain to another, the folds deform smoothly.
In general, folds can deviate from the preferred direction causing deformations
in the fold field. We use the standard, isotropic, two-dimensional nematic free
energy to model the energetics of fold deformations. The corresponding free
energy is given by

Fα =

∫ (
K1

2
(∂ · n̂f (x, y))

2 +
K2

2
(∂ × n̂f (x, y))

2

)
dx dy, (5.5)

where K1 and K2 are, respectively, the splay, and bend elastic constants for fold
field. In one constant approximation, the free energy reduces to

Fα =
Kα

2

∫
|∂α(x, y)|2 dx dy (5.6)

where Kα is elastic constant.

It is important to note that there is a coupling between crystalline order
(uij) and fold field (n̂f ) as shear deformations in crystalline order can change
in fold orientation. Moreover, this coupling should be invariant under up-down
symmetry (i.e., −n̂f ≡ n̂f ). Keeping these considerations, the simplest coupling
between uij and n̂f is [uij − (1/2)δijukk]nf inf j [63]. Note that this coupling is
non-linear because it involves two n̂f fields and one u field.

To be consistent with the harmonic approximation, we consider de Gennes
type coupling used in nematic elastomers [15]. We use this coupling in the context
of crystalline and fold field (α−field) of polymer crystals. Rotations in crystalline
lattice are given by Θ = (1/2)(∂xuy−∂yux) [19]. It is a z component of (1/2)∇×u.
For rigid rotations, changes in α should match with Θ ie., δΘ = δα. The elastic



86 Chapter 5. The sector morphology of polymer crystallites

free energy from non-uniform rotations in Θ and α field takes the form

FΘα =
KΘα

2

∫
(δΘ− δα)2 dx dy (5.7)

where KΘα is a coupling constant. Note that FΘα is minimum for δΘ = δα. This
coupling ensures δΘ ≈ δα for the crystalline lamella. Therefore, disclinations
in the fold field would induce disclinations in crystalline order and vice versa.
It is important to note that the elastic free energy of an isolated disclination
in a flat crystalline membrane diverges as the square of the system size [27].
In contrast, the elastic free energy of an isolated disclination in nematic order
diverges logarithmically with the system size [2]. In what follows we ignore the
coupling because of the prohibitively high elastic free energy cost for disclinations
in crystalline order [5].

5.3.4 Surface- and line tension energies

In addition to elastic free energies and the potential energy, a polymer lamella in
a solution or a melt has surface tension energy given by

Fσ = 2 σ̃

∫
dx dy (5.8)

where σ̃ is the surface tension. The factor 2 indicates contribution from the upper
and lower surfaces of the lamella. For simplicity, we use the notation σ = 2 σ̃ to
represent total surface tension.

A sectored lamella is finite and has boundaries. Therefore, the isotropic line
tension free energy is given by

Eiso = γ

∮
dl (5.9)

where γ is isotropic line tension, and dl is the length element on the boundary.
The lamella is decorated with folds; it has orientational order, which gives an
anisotropic contribution. The anisotropic line tension generally prefers a par-
ticular angle between the outward normal to the boundary and the field [62].
We model the anisotropic line tension as the symmetry- allowed Rapini-Papoular
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form [62].

Ean = −γan
∮ [

n̂f · (cosα0 n̂b + sinα0 t̂b)
]2

dl (5.10)

where α0 is the preferred fold angle with boundary normal n̂b; and t̂b is tangent
to the boundary. To ensure −n̂f ≡ n̂f symmetry, the term inside integral is
squared. For the square sector we choose α0 = π/2 ; i.e. at the boundary, the
fold field is aligned parallel to tangent t̂b. With this choice, the anisotropic line
tension is given by

Ean = −γan
∮

(n̂f · t̂b)2 dl

= −γan
∮

cos2 (α− αb) dl

≡ γan

∮
sin2 (α− αb) dl

(5.11)

where αb is the angle made by the tangent to the boundary with respect to
x−axis. With this background, we discuss below the equilibrium equation that
stabilises the square sectored polymer lamella.

5.4 Equilibrium equation: An exact solution

Minimisation of total elastic free energy FT (see below) with respect to α gives
equilibrium fold texture. The total free energy of the lamella, ignoring the cou-
pling between Θ and α, is given by

FT = Fu + Fs + Fα + Vα + Fσ. (5.12)

The equilibrium equation corresponding to α−field takes the form

δFT

δα
= −Kα ∇2

xyα− h4 sin(4α) = 0 (5.13)

where the two-dimensional Laplacian operator ∇2
xy = ∂2x + ∂2y . Note that the

equation is a non-linear partial differentiation equation in α because of the sin(4α)
term. Such type of equations are known as sine-Gordon equations [3]. The one-
dimensional solution to sine-Gordon equation gives a wall or soliton solution.
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Figure 5.7: Square sector: Texture of fold field obtained from the exact solution
αs(x, y). Two shaded lines represent the soliton type walls of wall width w. The
fold field follow stream lines of +1 disclination and the disclination core is located
at the center of the square.

For the square sector, the exact solution to Eq. 5.13 is [5]

αs(x, y) = arctan

[
tanh(y/w)

tanh(x/w)

]
− π

2
, (5.14)

where the length scale w =
√
Kα/h4. Subtraction of π/2 in the solution en-

sures that the boundary condition that fold field n̂f is parallel to tangent to the
boundary (t̂b). The streamlines of fold field in the square sector are depicted in
Fig. 5.7. We note that the streamlines form a +1 disclination in fold field with
two intersecting walls, of wall width w each, along x− and y− axes, the point of
intersection being the core of the disclination.

Having obtained the exact solution for square sector, we investigate the sta-
bility analysis by comparing the free energetics of the square sector to the uniform
fold configuration.
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5.5 Energetics

We now discuss the energetics of a square sector and a square polymer lamella
of uniform fold field (See Fig. 5.8(a)). Side length of both squares are set to be
equal, say l, such that surface and isotropic line tensions for both configurations
are the same. In calculating the total free energy, we assume that crystalline and
tilt orders are identical in both sector- and uniform configurations. Therefore
only the fold energetics plays important role in the stability analysis.

(a) (b)

Figure 5.8: (a) Uniform fold field: Squared shaped lamella with side length (in
w units) L. (b) Sector: Square shaped sector with side length (in w) units L.
Shape of the core is symmetrical to the sector and has side length (in w) ζ.

A square lamella with uniform fold field

We begin by considering an uniform fold field in square shaped lamella with side
length l (See Fig. 5.8(a).). For this case α = π/4, and satisfies the equilibrium
equation 5.13. Since the fold field is uniform, Fα = 0. Contribution from the
potential is given by

V (Uni)
α = −h4

4
l2 (5.15)
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where the superscript (Uni) indicates the uniform configuration. The surface,
isotropic and anisotropic tensions take the form

Fσ = σ l2,

Eiso = 4 γiso l,

E(Uni)
an = 2 γan l.

(5.16)

We note that surface and line tensions are the same for the square sector of side
length l, thus we omit the superscript (Uni). The factor 4 in Eiso is due to four
sides of the boundary, and for E(Uni)

an only two sides of the boundary follow the
boundary condition leaving out free energy cost for the remaining two sides.

For mathematical simplifications, we define dimensionless fold free energy
E = (Fα + Vα + Ean)/Kα. The dimensionless fold free energy for the uniform
configuration is given by

E (Uni) = 2ΓL− L2

4

≡ E (Uni)(Γ, L)

(5.17)

where, dimensionless side length L = l/w and parameter Γ = (γanw)/Kα. Recall
that wall width w =

√
Kα/h4.

A square sectored lamella

In this section, we consider a square sectored lamella with side length l (same as
for the uniform case) in x y−plane such that the walls coincide with the coordinate
axes (See Fig. 5.7). We bear in mind that the fold field has a point disclination
at the center i.e., the origin. Thus, we need to use cut offs for calculating Fα and
Vα to avoid the singularities arising from the core of the disclination. Following
the symmetry of the square shaped lamella, we choose a square shaped core with
side length ξ (See Fig. 5.8(b)). Therefore the core area is ξ2.

Upon substituting the exact solution for α (Eq. 5.14) in Fα with appropriate
core gives the elastic free energy cost due to deformations in the fold field. How-
ever, the integrals are not analytically tractable. We use a numerical approach
with the transformations x→ w x′ and y → w y′ such that the integrals become
dimensionless. The free energy due to deformations in fold field, in the units of
Kα, is then given by
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F
(Sec)
α

Kα

= 4× 1

2
[

∫ ζ/
√
2

0

dx′
∫ −x′+L/

√
2

−x′+ζ/
√
2

dy′ |∂αs(x
′, y′)|2

+

∫ L/
√
2

ζ/
√
2

dx′
∫ −x′+L/

√
2

0

dy′ |∂αs(x
′, y′)|2]

(5.18)

where the superscript (Sec) indicates the sector configuration, the dimensionless
core size ζ = ξ/w, and dimensionless side length L = l/w. The factor of 4 in the
expression above covers the full area of the square. Following the same procedure,
we obtain the potential energy (in Kα units) takes the form

V
(Sec)
α

Kα

= 4× 1

4
[

∫ ζ/
√
2

0

dx′
∫ −x′+L/

√
2

−x′+ζ/
√
2

dy′ cos(4αs(x
′, y′))

+

∫ L/
√
2

ζ/
√
2

dx′
∫ −x′+L/

√
2

0

dy′ cos(4αs(x
′, y′))]

(5.19)

The anisotropic line tension contribution, in Kα units, is given by

E
(Sec)
an

Kα

= 4 Γ

∫ L/
√
2

0

dx′ sin2[αs(x
′,−x′ + L√

2
)− 3π

4
]. (5.20)

We note that the factor 4 is for four sides of the boundary and that αb = 3π/4 in
the first quadrant. The total, dimensionless fold free energy of the square sector
is given by

E (Sec) =
F

(Sec)
α

Kα

+
V

(Sec)
α

Kα

+
E

(Sec)
an

Kα

≡ E (Sec)(ζ,Γ, L)

(5.21)

With this background, we discuss the stability analysis in the next section.

5.6 Stability analysis: A phase diagram

To investigate the stability of the square sector, we compare its free energy to
that of the uniform fold configuration. We consider ∆E = E (Uni) − E (Sec) which
is a function of ζ, Γ and L. Note that ∆E > 0 =⇒ the sector configuration is
energetically stable, ∆E < 0 =⇒ the uniform configuration is stable and ∆E =

0 =⇒ phase boundary that separates the two configurations. To implement
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Figure 5.9: Phase diagram of sector and uniform configurations: The curve
is a phase boundary between between square sector and uniform configurations.
Region below/ above the curve is the stability range for uniform/ sector config-
uration.

this procedure, we numerically calculate ∆E for fixed ζ, and the given set of
parameters {Γ, L}.

The typical core size is order of the thickness of the polymer lamella. In
comparison to wall width w, the core size ξ ≈ 0.01 w. Therefore we take di-
mensionless core size ζ = 0.01, and numerically obtain a “phase diagram” that
indicates the stability of the squared sector as a function of {Γ, L}. The plot is
shown in the Fig. 5.9. We note that the square sector is stable for large Γ and
L. The larger the Γ value, the stronger the anisotropic line tension that traps
the disclination in the fold field. Hence the stability of sector configuration. For
given Γ, there exists a critical length (L∗) above which the sector configuration
is stable.

5.7 Results and discussion

In this chapter we have discussed the model presented in Ref. [5] to study stabil-
ity of the sector morphology and have improved the calculations for energetics,
especially the core energetics. This calculation was not clear in Ref. [5]. With the
modified calculations, the phase diagram plot of sector and uniform configurations
is qualitatively similar to that of Ref. [5]. The results obtained in this chapter are
important in studying the uniform, the sector, and the tent configurations (See
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Chapter 6). We show that sectors are formed due to trapping of disclination in
fold field by strong anisotropic line tension parameter Γ (dimensionless). We find
that square sectors are stable for large Γ when compared to an identical square
shaped uniform fold field configuration.

This model can be extended to study other morphologies such as rhombi,
hexagonal sectors and tents. In the next chapter we address the stability of
square shaped tent morphology.
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Chapter 6

Tent morphology of polymer
crystallites

6.1 Introduction

Single crystalline lamellae are observed to form hollow tent-like structures un-
der certain growth conditions [64]. Atomic force microscopy (AFM) images of
polyethylene single crystals grown from dilute xylene solution are given Fig. 6.1.
In this chapter, we present a model to study the stability of tent(hollow pyrami-
dal) morphology polymer crystalline. This model is an extension of the model
of the sectored morphology discussed in the previous chapter. We note that the
sectored morphology of polymer crystallites has a disclination at the centre. As
discussed in Chapter 1, the disclination is capable of buckling the crystalline sec-
tor, with the disclination point at its apex. The buckling phenomenon in the
presence of topological defects in crystalline membrane is discussed by Sueng
and Nelson [27], and in hexatic membrane is explained by Deem and Nelson [2].
In addition to the central, point disclination, the sectored morphology also has
soliton-type walls along the diagonals of the square. The crystalline membrane
can also buckle along the walls [65]. Therefore we treat the tent configurations
as buckled sector configurations(Fig. 6.2). Within the frame work of the model,
we study the stability analysis of tent morphology in comparison with flat uni-
form and flat sectored morphology. Similar to the previous chapter, we obtain
a “phase diagram” indicating the stability of flat uniform, flat-sectored, and tent
configuration over the suitable parameters.
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(a) (b) (c)

Figure 6.1: AFM images of solution-grown single crystals: (a) Convex hollow
pyramidal type. (b) Concave hollow pyramidal type. (c) Chair type. (Image is
taken from Toda group,2003 [64])

6.2 The model

We now consider the buckling of the flat sector morphology to study the stability
of the tent morphology. We know that buckling involves bending of polymer
crystalline lamellae. The free energy cost for bending of the polymer lamellae is
given by the Helfrich term [28]

FH =
κ

2

∫
H2 dA (6.1)

where κ is bending rigidity of the lamella and H is the mean curvature of the
buckled surface with the area element dA.

The free energy contributions from the Hookian elasticity (Fu), the stem field
(Fs), the fold field (Fα) and the fold potential (Vα) are (See the previous chapter)

Fu =
Y

2 (1 + ν)

∫ (
uij

2 +
ν

1− ν
uii

2

)
dA,

Fs =

∫ [
K̃1

2
(∇ · ŝ)2 + K̃2

2
(∇× ŝ)2

]
dA,

Fα =
1

2
Kα

∫
gµν(∂µα− Aµ)(∂να− Aν) dA,

Vα =
h4
4

∫
cos (4α) dA,

(6.2)

where Aµ is the spin connection term for the buckled surface with metric tensor
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(a) (b)

Figure 6.2: (a) Cartoon of tent configuration depicting essential features. (b)
Illustration of buckling of a sector into tent configuration.

gµν . Here gµν is the inverse of gµν and ∇ is the covariant derivative. The elastic
constants Y , ν, K̃1, K̃2, Kα and h4 retain the same definitions as those in the
sector morphology. We note that the coupling between crystalline order and fold
field is ignored for the considerations of energetics, as mentioned in the previous
chapter.

In addition to these bulk free energy terms, there is an important coupling
between polymer stems and curvature due to bending of polymer lamella. The
bending of polymer crystalline lamella can be achieved in two possible mechanisms
(See Fig. 6.3). In the first mechanism, splay-like bending, the polymer stems
undergo splay deformation in order to bend the lamella; whereas in the second
mechanism, slide-like bending, the polymer stems are rearranged to be along
the vertical direction via sliding mechanism without having splay deformation.
The coupling between polymer stem field (ŝ) and curvature can be captured in
McKintosh-Lubensky like term [66, 67]. The free energy term due to coupling
between ŝ and curvature is given by

FsH = C

∫
(∇ · ŝ) H dA (6.3)
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Figure 6.3: Schematics of bending of the polymer crystalline lamella. Two
types of bending: (i) Splay-like bending in which polymer stems undergo splay
deformation. (ii) Slide-like bending in which the stems point along the vertical
direction via sliding mechanism.

where C is the coupling constant. We note that the transformation: normal (N̂ )
→ −N̂ implies ŝ → −ŝ and H → −H such that the term (∇ · ŝ) H remains
invariant (bi-layer symmetry).

The total bulk free energy (F ) of a buckled polymer crystalline lamella is

F = Fu + Fs + FH + FsH + Fα + Vα. (6.4)

A finite sized surface has boundaries (edges) and corresponding line tension con-
tributions to the free energy are given by

Eiso = γ

∮
dl,

Ean = γan

∮
sin2 (α− αb) dl,

(6.5)

where γ and γan are isotropic and anisotropic line tensions respectively, and αb is
the angle made by tangent to the boundary. In anisotropic line tension, we assume
the boundary condition that the preferred fold configuration (n̂f ) is parallel to
the tangent to the boundary (See the previous chapter for more details).

With this background we discuss the Euler-Lagrange equations of equilibrium
for the buckled polymer lamellae.
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6.3 Equilibrium equations

To obtain Euler-Lagrange equations of equilibrium, we minimise the total free
energy (F ) with respect to stem field (ŝ) and fold field (α). The minimisation
with respect to ŝ gives

δF

δŝ
= −∇

(
K̃1(∇ · ŝ) + C H

)
− K̃2 ∇×∇× ŝ = 0 (6.6)

Above vector equation is complicated and difficult to solve in general. To
simplify the problem, we consider the curl free stem configuration; that is ∇×ŝ =

0. With this consideration Eq. 6.6 reduces to K̃1(∇ · ŝ) + C H = Constant.
Without loss of generality we take Constant = 0. Thus the simplified equilibrium
equation takes the form

∇ · ŝ = − C

K̃1

H. (6.7)

To eliminate the explicit dependence of the stem field, we substitute the
condition Eq. 6.7 in total free energy expression(Eq. 6.4). Upon substitution we
get

Fs + FsH + FH =
1

2

(
κ− C2

K̃1

)∫
H2dA. (6.8)

Thus modified total free energy (F ) is given by

F = Fu + Fα + Vα +
1

2
κef

∫
H2dA, (6.9)

where the effective bending rigidity κef = κ− (C2/K̃1). We note that the effect
of coupling between polymer stems and curvature reduces the bending rigidity.

The α-equation corresponding to the equilibrium fold field on the surface is
given by

δF

δα
= −Kα∇·(∂α−A)− h4 sin(4α) = 0 (6.10)

where ∇· represents covariant divergence.
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(a) (b)

Figure 6.4: (a) A square pyramid (tent) surface: A plot of the height function
h(x, y). The black vertical and the blue lines represent axis and faces of the tent
surface respectively. (b) Schematics of apex angle(2β): By definition, the angle
between axis and face of the tent is β. The asymptotic slope of the tent face
(blue line) is tan(π/2 + β).

6.4 Tent surface as an ansatz for shape equation

In order to discuss the equilibrium shape, we consider the paramertisation of
the surface (Monge-representation) as R(x, y) = {x, y, h(x, y)}, where h(x, y)

is the height function. With this representation we get the metric g = 1 +

(∇xyh)
2, where (∇xyh)

2 = (∂xh)
2 + (∂yh)

2. Within the Monge approximation,
i.e., (∂xh)2, (∂yh)2, (∇xyh)

2 << 1, we get the spin connection

Ai =
1

2
ϵjk∂k [(∂ih)(∂jh)] (6.11)

where {i, j, k} = {x, y} and anti-symmetric tensor ϵxx = ϵyy = 0. The mean
curvature simplifies to

H =
1

2
∇2

xyh (6.12)

where the flat Laplacian ∇2
xyh = ∂2xh+ ∂2yh.

The general procedure for obtaining the equilibrium shape is to minimise the
free energy (F ) with respect to h. However, the shape equation will be non-linear
and highly difficult to solve. Therefore to simplify the problem, we surmise the
height function, based on symmetries of the flat squared sector, as that of square
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Figure 6.5: Cartoon of buckling of polymer lamella with tilted stem into tent
configuration.

pyramid (tent configuration). The corresponding height function is given by (See
Fig. 6.4(a))

h(x, y) = −a log
(
cosh [

x

w
] cosh [

y

w
]
)

(6.13)

where parameter a is “slope” of the tent and the wall width of the flat sector
w =

√
(Kα/h4). We note that the projection of edges of the tent are along the

x− and y− axes respectively; and each quadrant represents the projected plane
of the tent face. The asymptotic slope of tent face is lim

x→∞
dh(x, x)/dx = −2a/w.

If the apex angle of the square pyramid (tent) is 2β, the slope is given by (See
Fig. 6.4(b))

− 2a

w
= tan(

π

2
+ β). (6.14)

As we mentioned, the buckling of flat sector into tent configuration involves
the rearrangement of polymer stems. The illustration of polymer stems in tent
configuration is shown in Fig. 6.5. We believe that sliding-like bending of polymer
lamella is favourable. From the geometrical arguments, we can relate the tilt angle
(θ) of stem and and apex angle (2β) of the tent as follows (See Fig. 6.5)

θ + β =
π

2
. (6.15)
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Upon substituting it in the slope formula (Eq. 6.14), we get a relation between
the parameter a and the tilt angle as follows

Aw =
a

w
=

1

2
tan(θ). (6.16)

This condition follows that the tilt angle of polymer stem determines the slope
of tent surface.

For the equilibrium fold configuration on the tent surface h(x, y), we need
to solve the Eq. 6.10 with Monge approximation, i.e., −Kα(∇2

xyα −∇xy ·A) −
h4 sin(4α) = 0. The equation is non-linear in α because of the term sin (4α). We
note the term ∇xy ·A is non-linear in the height field (h) and difficult to solve
the equation analytically. Within the linear regime of the height field, we neglect
the ∇xy · A term. To make the analysis analytically tractable we make use of
the exact solution of fold flied for the flat sector, αs (Eq. 5.7). As αs satisfies the
equation −Kα∇2

xyαs − h4 sin(4αs) = 0, we ignore the contributions coming from
spin connection. This assumption is valid for a << w. Thus we restrict ourselves
to the tent surfaces that are almost flat. The cartoon of αs on tent surface is
shown in Fig. 6.6(a). We note that the disclination core coincides with the tent
apex, each tent face has uniform fold field and the adjacent face is connected by
soliton type wall in fold field.

Having obtained analytical expressions for the height function and the fold
filed for tent configuration, we discuss the energetics below.

6.5 Energetics

We consider a finite sized square pyramid (tent) with base length lT . Therefore,
the boundary of the tent is a square with side length lT . The expression for fold
field α on the tent surface is given by

αs(x, y) = arctan

[
tanh(y/w)

tanh(x/w)

]
− π

2
. (6.17)

We note that αs has a disclination at the center. Thus, we use cut offs for
calculating Fα and Vα to avoid the singularities arising from the disclination.
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(a) (b) (c)

Figure 6.6: Schematics of the fold field: (a) On the tent surface (an exaggerated
height field). Note the tent edges match with soliton-type walls in the fold field.
The base length of the tent, in w units, is LT . The black colored square represents
the core with side length ζ (in w units). (b) For flat sector of side length L (in w
units). (c) For flat uniform configuration.

Following the symmetry of the square sector, we choose a square shaped core
with side length ξ (See Fig. 6.6(a)).

As the integrals in free energy calculations are analytically not solvable, we
use numerical approach with the transformations x → w x′ and y → w y′ such
that the integral becomes dimensionless. The free energy due to deformations in
fold field, in the units of Kα, is given by

F
(Tent)
α

Kα

= 4× 1

2
[

∫ ζ/
√
2

0

dx′
∫ −x′+LT /

√
2

−x′+ζ/
√
2

√
g dy′ |∂αs(x

′, y′)|2

+

∫ LT /
√
2

ζ/
√
2

dx′
∫ −x′+LT /

√
2

0

√
g dy′ |∂αs(x

′, y′)|2]

where dimensionless length LT = lT/w, dimensionless core size ζ = ξ/w, the
metric g = 1 + (∇h)2 = 1 + Aw

2(tanh(x′)2 + tanh(y′)2). In this calculations, we
ignore the coupling between curvature and fold field. The potential and bending
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free energy are given by

V
(Tent)
α

Kα

= 4× 1

4
[

∫ ζ/
√
2

0

dx′
∫ −x′+LT /

√
2

−x′+ζ/
√
2

√
g dy′ cos(4αs(x

′, y′))

+

∫ LT /
√
2

ζ/
√
2

dx′
∫ −x′+LT /

√
2

0

√
g dy′ cos(4αs(x

′, y′))]

FH

Kα

=
κd
2

× 4

∫ LT /
√
2

0

dx′
∫ −x′+LT /

√
2

0

∇2
xyh

√
g dy′,

where dimensionless bending rigidity κd = κef/(4Kα) and mean curvature ∇2
xyh =

−Aw(sech
2(x′) + sech2(y′)).

The line tension contributions are as follows

E
(Tent)
iso

Kα

= 4 Γiso

∫ LT /
√
2

0

dx′,

E
(Tent)
an

Kα

= 4 Γ

∫ LT /
√
2

0

dx′ sin2[αs(x
′,−x′ + LT√

2
)− 3π

4
]

where the dimensionless line tension parameters Γiso = (w γiso)/Kα and Γ =

(w γan)/Kα. The total free energy of the tent configuration in the Kα is given by

E (Tent)
T =

Fα + Vα + FH + Ean + Eiso

Kα

≡ E (Tent)
T (ζ, Aw, LT ,Γiso,Γ, κd).

(6.18)

6.6 Phase diagram of tent, sector and uniform

configurations

In order to study the stability analysis, we compare the total free energies of flat
uniform, flat sector and tent configurations. We choose the surface areas of all
three configurations such that surface tension effects do not play major role in
stability. Let the side length of the flat sector (and uniform configuration) is l.
The surface area of tent Atent =

∫ ∫
dA. Upon equating areas of flat sector and
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tent surface, we get relation between l and lT as

L =
√
Atent

L(Aw, LT )
(6.19)

where L = l/w.

Using this condition, we follow the procedure described in the previous chap-
ter to obtain the total free energies of flat uniform and flat sector configurations.
To make calculations simpler, we use the core size in flat sector to be same as
tent’s case. The total free energy (in Kα) of flat uniform and flat sector morphol-
ogy are given below

E (Uni)
T =

Fα + Vα + Ean + Eiso

Kα

≡ E (Uni)
T (Γiso,Γ, L(Aw, LT ))

E (Sec)
T =

Fα + Vα + Ean + Eiso

Kα

≡ E (Sec)
T (ζ, L(Aw, LT ),Γiso,Γ)

(6.20)

The procedure for obtaining the phase diagram is as follows. We numerically
calculate E (Uni)

T , E (Sec)
T and E (Tent)

T for given core size ζ, Aw for varying values of
κd, LT , Γiso and Γ. For fixed ζ, we find a minimum of E (Uni)

T , E (Sec)
T and E (Tent)

T

such that the lowest energy configuration is chosen. As a concrete example, we
consider polyethylene(PE) crystalline. The tilt angle for PE is θ ≃ π/6, thus,
Aw ≃ (1/2) tan(π/6) = 1/(2

√
3). For better representation we plot the phase

diagram as function of Γiso and LT for various κd andΓ. The plots are given in
Fig. 6.7 for ζ = 0.01 (same core size as the sector).

From the phase diagram (Fig. 6.7), it is clear that the tent configuration is
stable for small bending rigidity (κd), large line tension (Γiso,Γ) values and sizes
(LT ). The sector configuration is favorable for large κd and LT , and moderate
values of {Γiso,Γ}. The results can be understood easily as the line tension
parameters increase, trapping of disclination in the fold field becomes stronger
which stabilises the sector formation. The lower bending rigidity is favorable for
the sector polymer to buckle into tent configuration. We note that, depending on
the parameter values, the tent configuration can be obtained directly from the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.7: The phase diagram: Plots indicating stability range of the tent, the
flat sector and the flat uniform.

flat uniform configuration without forming sector configuration (See Fig. 6.7(c),
Fig. 6.7(g)). However, the sector configuration is stabilised for a different set of
parameters and becomes an intermediate configuration in the transition from flat
uniform to tent configuration(See Fig. 6.7(f), Fig. 6.7(i)).

6.7 Results and discussion

In this chapter we have discussed the simple model to study the stability of tent
morphology. The model uses concepts from liquid crystal physics and topolog-
ical defects. The central scheme of this model is that the sectors are formed
due to trapping of a disclination in the fold field and the tent configurations are
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buckled sectors. Stronger anisotropic line tension in the fold field traps a disclina-
tion more easily, and lower bending rigidity prefers the buckling of the lamellae.
Within the frame work of the model, we find the solution to the tent surface with
the prediction of the “slope formula” (6.14). We have shown that bending of a
lamellae involves coupling between the tilt of the polymer stems and curvature
of the lamellae that effectively reduces the bending rigidity. We also numerically
calculated the phase diagram for polyethylene crystal that shows the stability of
the tent, flat sector and flat uniform configurations. These results can be tested
experimentally.

Our work can be extended to study other morphologies such as scrolls. The
scroll configuration is a rolled lamella sheet in cylindrical shape. The formation of
scrolls is fascinating and the study of their stability is one of our future directions
for research.
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Appendix A

Isothermal coordinates

A.1 Isothermal coordinates

A mapping is said to be isothermal if a portion of a surface is mapped onto a
portion of plane. Let {x(u, v), y(u, v)} be the isothermal coordinates on a surface
R(u, v) where {u, v} are the internal coordinates. By definition, the metric (ds)
on the surface with isothermal coordinates is given by

ds2 = w(x, y) [dx2 + dy2], w(x, y) > 0 (A.1)

where, the weight function w(x, y) is metric of the surface. In this new coordinate
system, the Gaussian curvature(K) of the surface reads as ( Liouville’s equation)

K = − 1

2w(x, y)
∇2

xy logw(x, y) (A.2)

where, Laplacian operator ∇2
xy = ∂2x + ∂2y .

The isothermal coordinates are locally Euclidean and conformal, i.e., an-
gle preserving mapping. Thus, any vector field m̂(u, v) in the tangent plane of
the surface is uniquely mapped on to the xy−plane. The corresponding field
(m̂′(x, y)) is given by

m̂′(x, y) = cosα′(x, y) x̂ + sinα′(x, y) ŷ (A.3)
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where the angle α′(x, y)-field with N disclinations of index qk each placed at
(xk, yk) is defined as,

α′(x, y) =
N∑
k

qk Im[log(x+ iy − xk − iyk)] + const.

=
N∑
k

qk arctan(
y − yk

x− xk
) + const.

(A.4)

The α′ is solution to the Laplace equation, i.e.,

∇2
xyα

′(x, y) = 0 (A.5)

Above equation is planar α−equation (Eq. 1.13) mentioned in the previous
chapter. With this background we recall the isothermal coordinates for known
surfaces such as sphere, catenoid and helicoid.

A.1.1 Stereographic Projection of a sphere

Stereographic projection is the standard method of generating isothermal coor-
dinates for a sphere. The parametrization of the sphere with radius a is given
by R(θ, ϕ) = {a cosϕ sin θ, a sinϕ sin θ, a cos θ}, 0 ≤ θ < π and 0 ≤ ϕ < 2π. The
metric ds2 = a2dθ2 + a2 sin2 θ dϕ2, and the Gaussian curvature K = 1/a2.

Let us consider a unit tangent vector field m̂(θ, ϕ) = cosα(θ, ϕ) êθ+sinα(θ, ϕ)

êϕ. The Poincaré-Hopf index theorem suggests that m̂ must have topological de-
fect(s) of total index “ + 2”. One of the configuration with two “ + 1” defects
at poles is obtained by α(θ, ϕ) = 0(See, Fig. 2.1(b)). We now discuss the stereo-
graphic projection approach to get more general m̂ field.

A point P (θ, ϕ) on the sphere is mapped to some point on the plane Q =

{x, y, a} such that south pole (S), (P ) and (Q) are collinear. Note that, in this
projection, north pole (N) maps to {0, 0, a} and south pole (S) maps to infinity.
Mathematically, the mapping and inverse mapping are given by

{x, y} = {2a tan(θ
2
) cosϕ, 2a tan(

θ

2
) sinϕ}

{θ, ϕ} = {2 arctan(
√
x2 + y2

2a
), arctan(

y

x
)}

(A.6)
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In terms of {x, y} coordinates, the parametrisation and metric of the sphere
take the form

R(x, y) = { 4a2x

x2 + y2 + 4a2
,

4a2y

x2 + y2 + 4a2
, −a x

2 + y2 − 4a2

x2 + y2 + 4a2
}

ds2 =
16a4

(x2 + y2 + 4a2)2
(dx2 + dy2)

(A.7)

Here the weight function w(x, y) = 16a4

(x2+y2+4a2)2
is positive and, from the

Eq. A.2 we get K = 1/a2.

We now use the Eq. A.4 to generate defects configurations such as “+2”
disclinations at north pole, two “+1” disclinations on the equator and, at south
and north poles. For example, α′ field for “+2” disclination at north pole ({θ =

0}, or {x = y = 0}) and for two antipodal “+1” disclinations on the equator
({θ = π/2; ϕ = π/2 , 3π/2} or {x = 0; y = ±2}) are

α′(x, y) = 2 arctan(
y

x
)

α′(x, y) = arctan(
y − 2

x
) + arctan(

y + 2

x
)

(A.8)

Notice that entire xy−plane is required to represent the full sphere. We
overcome this difficulty by mapping upper hemisphere with Eq. A.6, Eq. A.7 and
lower hemisphere with stereographic projection-II( in this convention, {x, y,−R}
is the projected plane and the north pole is mapped to infinity).

Using the Eq. A.6, we map the α′ to α field measured in {êθ, êϕ} basis. The
relation goes as follows

α(θ, ϕ) = α′ − ϕ (A.9)

We recall that êθ, êϕ are singular at poles and the effect is manifested in
m̂(θ, ϕ). Even though m̂ has defect(s) of total index “+2” away from the poles,
deceivingly, there are defects of index zero at north and south poles This artefact
is avoided by choosing stereographic projection which depicts true textures on
sphere.
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A.2 Green’s function for sphere

The Green’s function G(θ, ϕ; θ′, ϕ′) for a spherical surface of radius a satisfies the
equation

∇2
θ,ϕG(θ, ϕ; θ

′, ϕ′) =
δ(θ − θ′) δ(ϕ− ϕ′)

√
g

− 1

4π a2
(A.10)

Note that above equation is different from 2.7 with an additional term 1/(4π a2).
This is because the surface area of a sphere is finite (4πa2). The solution to the
equation A.10 is [29]

G(θ, ϕ; θ′, ϕ′) =
1

4π
log

[
1− Cβ(θ, ϕ; θ

′, ϕ′)

2

]
, (A.11)

where
Cβ(θ, ϕ; θ

′, ϕ′) = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′). (A.12)

For the azimuthal symmetry (no ϕ-dependence), the Green’s function satis-
fies the Laplace equation

sin θ ∂2θG(θ; θ
′) + cos θ ∂θG(θ; θ

′) +
sin θ

4π
=
δ(θ, θ′)

2π
, (A.13)

with the conditions G(θ; θ′) = G(θ′; θ), and G(π − θ; π − θ′) = G(θ; θ′). The
solution of the above equation is

G(θ; θ′) =
1

8π
[log(sin θ sin θ′)+(Θ(θ′−θ)−Θ(θ−θ′)) log(cot θ

2
tan

θ′

2
)], (A.14)

A.3 Magnitude of order parameter

As we mentioned, all the calculations of energetic of point and wall disclinations
are based on the approximation that magnitude of order parameter is zero in the
core, and non zero away from the core. There is step like discontinuity across the
core. In this section, we study the magnitude of order parameter for the equatorial
wall disclination. Given the α-field for the equatorial wall(2.19), we numerically
solve the Eq.2.4 with the boundary conditions ρ → 0 at the core (θ = π/2) and
ρ → 1 far away from the core (say, θ = 0, π). Note that the solution depends
on the dimensionless parameter ξ/a. Recall that ξ is the correlation length. The
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plot of the solutions for different ξ/a values are given in Fig. A.1

Figure A.1: Magnitude of order parameter around equatorial wall disclination:
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Appendix B

Catenoid and helicoid isometry

B.1 Isothermal coordinates on catenoid and heli-

coid

Parametrisation of catenoid is R(ϕ, z) = {a cosh (z/a) cosϕ, a cosh (z/a) sinϕ, z},
where −∞ < z <∞ and 0 ≤ ϕ < 2π. The metric on catenoid takes the form

ds2 = cosh2(z/a)(a2 dϕ2 + dz2) (B.1)

Isothermal coordinates (x, y) on the catenoid are

{x, y} = {a exp(z
a
) cosϕ, a exp(

z

a
) sinϕ}

{z, ϕ} = {a
2
log(

x2 + y2

a2
), arctan(

y

x
)}

(B.2)

In terms of {x, y} coordinates, the parametrisation and metric of catenoid
are

R(x, y) = {x(a
2 + x2 + y2)

2(x2 + y2)
,
y(a2 + x2 + y2)

2(x2 + y2)
,
a

2
log[

x2 + y2

a2
]}

ds2 =
(a2 + x2 + y2)2

4(x2 + y2)2
( dx2 + dy2)

(B.3)

We now use the Eq. A.4 to generate defects configurations. For example, the
α′−field for two s = −1 disclinations located diametrically opposite on the neck
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({z = 0; ϕ = π/2 , 3π/2} or {x = 0; y = ±a}) is

α′(x, y)(2p) = − arctan(
y − a

x
)− arctan(

y + a

x
) (B.4)

In terms of {ϕ, z}, α−field is given by

α(ϕ, z) = arctan(e−z secϕ− tanϕ)− arctan(e−z secϕ+ tanϕ) (B.5)

which has different expression from the α−field obtained by intersection method(Eq. 3.2).
However, the main difference is in deformation of the texture. We note that α′(2p)

has more deformation in the texture.

B.2 Division of total Gaussian curvature

Minimisation of elastic free energy (Fel) with respect to the positions di of the
wall leads to

dFel

ddi
= Kα(J1 + J2) = 0

where,

J1 =
dFKS

ddi

= −4π2

n

n∑
k=1

[

∫
dz

√
g K(z){ d

ddi
G(z, dk) +

d

ddi
G(z,−dk)}]

= −4π2

n

∫ di

−di

dz
√
g K(z).

J2 = −1

2

dFS S

ddi

= −4π2

n2

n∑
k=1

n∑
l=1

[
d

ddi
G(dk, dl) +

d

ddi
G(dk,−dl)]

= −4π2

n2
(2i− 1).

The minimisation of Fel implies that
∫ di
−di

dz
√
g K(z) = −(2i− 1)/n.
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B.3 Helicoid : Isomorphism to catenoid

Helicoid parametrisation is given by R(ρ, ϕ) = {ρ cosϕ, ρ sinϕ, b ϕ} where −∞ <

ρ <∞ and 0 ≤ ϕ < 2π. The metric

ds2 = dρ2 + (b2 + ρ2) dϕ2 (B.6)

As we mentioned earlier, catenoid and helicoid belong to the same associate
family of minimal surfaces and they are isometric to each other. By definition, two
surfaces S and S∗ are isometric to each other if there exists a mapping u such that
the coefficients of metric tensors of S and S∗ are the same. i.e., g∗µν(u) = gµν(u).
In other words, one can bend S∗ into a portion of S without stretching such that
distance between any two points on the surface is preserved. It is important to
note that isometric mapping is automatically conformal.

The transformation
b→ a

ρ→ a sinh(
z

a
)

ϕ→ ϕ

(B.7)

is locally isometric and maps a helicoid of one pitch length to catenoid. The
parametrisation and metric of helicoid after the transformation is

R(ϕ, z) = { a sinh (z/a) cosϕ, a sinh (z/a) sinϕ, aϕ}

ds2 = cosh2(z/a) (dz2 + a2 dϕ2)
(B.8)

With the new parametrisation, the components of the metric tensor are gϕϕ =

a2 cosh2(z/a), gzz = cosh2(z/a), gϕz = gzϕ = 0 and the determinant of metric
tensor g = a2 cosh4(z/a). The Gaussian and mean curvature of the catenoid,
respectively, are K = −1/a2 sech2(z/a) and H = 0. Note that they are exactly
same as catenoid.
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