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Synopsis

The study of the physics of controllable and isolated systems with long range binary interactions is

of great importance for understanding complex systems and their interactions with environments,

in the quantum regime. Hybrid ion-atom systems have allowed the studies of the nature of binary

interactions in dilute systems in regimes where semi-classical formalism is adequate to explain

the results [1-4]. Despite the challenge of using ions, which apply repulsive forces on each other

and are highly sensitive to any electromagnetic fields, in the presence of cold atoms, stabilization,

thermalization and cooling has been shown [5-11]. This process of cooling has been shown to not

work until the ions attain temperatures as low as the ultracold atoms, due to limitations arising

from the mechanism of trapping the ions. However, both theoretical studies computing observ-

able phenomena at ultracold temperatures and experimental efforts to enable measurement of

these phenomena are being actively pursued.

At ultracold temperatures, quantum nature of interactions dominate the properties of scattering

of ions in a cloud of cold-atoms. As the ion-atom collision energies are lowered, only one or

few partial waves would be sufficient to describe the phenomenon. At these temperatures, the

nature of scattering or diffusion would be very different from the classical counterpart of such a

system. The physics of ultracold collisions is further enriched when the colliding partners have

an identity interchange symmetry. This symmetry, allows for a resonant charge exchange (RCE)

channel in addition to the direct elastic (DE) channel in ion-atom collisions [12]. While separate

evaluation and measurement of collision cross section in each channel is possible with some high

energy approximations, the collision in any specific instance is indistinguishable between the DE

and RCE channels, due to symmetry.
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Choice of the System

The estimate for how low a temperature is required to see the fully distinct quantum scattering is

the s-wave limit, which is the temperature below which the scattering cross section is dominated

by just one (l = 0) partial wave. In other words, the s-wave limit is the temperature equivalent of

the angular momentum barrier energy height of the l = s1 partial wave. For ion-atom collisions,

this energy barrier height is inversely proportional to square of the reduced mass. The realiza-

tion of an ultra-cold ion-atom mixture in the s-wave collision limit has been a major direction in

Atomic Physics since the late 2000’s. Given the challenge in cooling ions to temperatures where

quantum effects dominate its interactions with the atom, it is important to identify a system with

a high s-wave limit so that experiments in the quantum collision regime are feasible. Lithium,

which is light and can be laser cooled is a popular choice as the atom for this reason. However, the

ion of lithium cannot be laser cooled and thus ion-atom experiments probing effects of identity

interchange symmetry at ultracold temperatures have not been possible so far despite great inter-

est. We emphasize on this symmetry and even propose exploiting this symmetry to attain lower

ion temperatures in a homo-nuclear atomic cloud, thus our choice for the ion also is lithium. Since

we forego any ability to optically image ions, we have used a destructive detection scheme for the

ions as will be described below.

Collision cross sections

The scattering potential for ion-atom collision is the molecular ion potential energy curve (PEC)

for the electronic states with asymptotic equivalence to the internal states of the ion and the atom.

Computation of the precise PECs and their manipulation to obtain scattering potentials is briefly

described. For low energy elastic collisions, the participating PECs are the ground and the first

excited states. The total elastic cross section is evaluated via full quantum treatment for homo-

nuclear, ion-atom collisions without any high energy approximations. We show the disagree-

ments with both semi-classical calculations and approximate quantum calculations. Further, the

collision rates and diffusion cross sections which determine the charge mobility and transport are
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presented.

Atom-Cavity Coupling
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Figure 1: As a function of size of MOT with respect to the cavity waist, the ratio of atoms coupled
to the 00, 10, 20 and 30 modes is plotted in Red, Orange, Green and Blue respectively. Inset shows
the result close to the size of the MOT which was used.

As a possible strategy to detect a small number of dark ions, we nevertheless explored possibility

of optical detection. It is realized that it is necessary to work with small ion numbers to observe

these phenomena. A cavity based detection technique was explored for detecting interaction of

ions with cold atoms. Although a cavity is shown to be a tool to detect the change in number of

trapped cold atoms, it was found that it lacks the necessary sensitivity to measure the effects of

small number of ions [7]. We have expanded on earlier investigations to then explore the pos-

sibility of detection via higher order cavity modes, so that spatial information can be obtained.

Cold atoms in a magneto-optical trap (MOT) have been coupled to a medium finesse cavity to

perform this experiment. We have established atom-cavity coupling as a tool to determine the

density distributions and thus any changes to the location and density profiles of cold atoms, see

figure 1 [13]. However such effects are not expected to be pronounced in interaction with small

ion numbers and thus we choose not to integrate a cavity with this system.
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Experimental Design

Figure 2: 1. Phosphor screen, 2. Micro channel plate, 3. coil for lensing ion extraction trajectories,
4. Feed through to grid and deflection plates, 5. Ion trap Radio frequency electrodes, 6. MOT coils,
7. Helmholtz coils, 8. Ion trap end caps, 9. Feed through to Li and Ca dispensers.
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Given the difficulties in the cavity based experiment for sensitive ion-atom interaction detection,

we designed a new experiment to enable the measurement of atom-ion interactions. We use a

micro channel plate for studying ion diffusion with enhanced position resolution. The robust and

reliable simulations to validate the physics and numerical estimation which resulted in identifi-

cation of parameter space to work in have been successful. We have examined a few possible

alternatives, performed simulations and zeroed down on this particular scheme. The experiment

corresponding to the calculations has been completely designed and built to measure the charge

diffusion of a very cold ion in a cloud of low temperature atoms, see figure 2. In the experiment

we have the possibility of working with the ions of Ca and Li. Few preliminary experiments to

identify working aspects and ways to integrate the mentioned methods will be presented.

Charge Hopping

At very low temperatures, collisions are not the only means for charge transport in an ultracold

gas cloud. The position uncertainty ascribed by quantum mechanics, given by the thermal de

Broglie wavelength along with the identity exchange symmetry leads to a spontaneous relocation

of the charge. We describe this phenomenon of charge hopping homo-nuclear cold atomic clouds

[14]. We calculate the hop rates relevant for experimentally realizable conditions and identify

parameter space for hop rate to be higher than collision rates. In such situations, we show that

localized cloud of atoms can cause the charge to be contained within it, forming a trap for the ions

due to density gradient of the atomic cloud. The ability of such a system to tolerate static stray

fields is shown. In regimes where transport is dominated by hopping, the mobility and possible

emergent symmetry are discussed.

Emergent Symmetry

From the scattering potentials, collision rates and hop rates calculation discussed above, we deter-

mine the ion-atom interactions in the low temperature limit. The ion-ion interactions for a static

ion number is repulsive 1/r, while the ion-atom hopping interaction is dominated by the exchange
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interaction and the delocalizations. Assuming a homogenous and isotropic density distribution

of randomized atoms, we track the evolution of a small number of initially localized ions. Simu-

lations using a model show localization and thermalization of ions in a cloud of ultra-cold atoms.

Given the strong tendency to thermalize, we propose this system as a direct strategy to cool the

ions to temperatures which common methods for trapping and cooling ions, cannot attain due

to constrains from the trapping mechanisms. Since the RCE collisions have been seen to be more

effective than the DE collisions, in removing energy from the ions it is expected to be favourable.

Simulations have also shown that the localized ions form steady state symmetric structures ir-

respective of their relative positions at the time of creation. Effect of a finite magnetic field to

increase the localization and possibility of realizing lower dimensions has been investigated. The

cross sections evaluated for lithium ion-atom collisions are used and the competing effect of direct

elastic collisions is discussed.

Conclusions

In conclusion, this thesis describes the physical phenomena relevant to ultracold ion-atom scat-

tering and all other significant charge transport processes that can be realized at low tempera-

tures. The rich physics of systems with identity exchange where the individual components can

be trapped probed and detected, and the nature of interactions be tuned by parameters has been

explained. The different identified processes and phenomenon have been described and attempts

have been made to observe them with a carefully designed experimental setup. The discussion

and future directions with a number of interesting observable phenomena are presented.
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5.1 Panel (a) illustrates the condition where λT � L, where charge hopping is very

unlikely as the atom and ion are well separated and although cold and delocal-

ized, present a very small probability for charge hopping. Panel (b) illustrates the

case when λT ≤ L where the delocalized ion and atom start overlapping and the

charge hop becomes probable. The blue and red dot represents the instantaneous

positions of the ion and atom at the time of charge hop, while their average sepa-

ration is L. The bottom frame shows the post hop atom and ion. In panel (c) the

sequential charge hops in a cloud of atoms is illustrated. In this situation charge

hop with many nearby atoms is probable leading to charge transport. In successive

frames in (c), the atoms are depicted in relative motion and therefore show small

displacement and reordering. The symbols are self explanatory and are used in the

mathematical development below. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Panel (a) shows the average hop rate between an ion-atom pair of 7Li as a func-

tion of their mean separation, L, plotted for different temperatures, T . The top

ticks mark the L for which the condition L = λT is satisfied. In the inset, average

hop rates for a fixed separation L= 1µm (green solid curve), L = 0.5 µm (blue dot-

dashed curve), L= 0.2µm (red dashed curve) and the limiting case, L≈ 0 (black

dotted curve) are plotted as a function of T with the vertical grid-lines marking the

L = λT condition. This illustrates that the temperature range where hop rates are

significant and the range where the low temperature limit holds revealing that hop

rates diminish for L > λT . Panel (b) shows the same plots for 6Li+-6Li system. . . . 73
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5.3 Figure illustrates the comparison of collision rates normalized by atom density kcoll,

total hop rates per atom density for continuous atom density distribution, v̄contot and

the total hop rates per atom density for discrete atom density distribution, v̄tot for

both 7Li+-7Li and 6Li+-6Li systems, evaluated for atom densities n1 = 1019 m−3,

n2 = 1018 m−3 and n3 = 1017 m−3 as a function of temperature T are shown. This

illustrates the large temperature where the hop rates exceed the collision rates. The

corresponding free space degenerate gas transition temperatures are shown by the

vertical bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Panel (a) shows the diffusion coefficients for the, collision mediated ion transport

Dcoll, hop mediated charge transport for continuous density distribution of atoms

Dcon
h and the hop mediated charge transport for discrete density distribution of

atoms Dh for 7Li-7Li system as function of temperature T . In both panels, n1 =

1019m−3 and n2 = 1018m−3. Panel (b) shows the same plots for 6Li+-6Li system.

This shows that a temperatures of few µK and densities higher than 1018 m−3 will

be needed to observe the dominance of hop mediated diffusion over collisional

diffusion, which is a much smaller parameter space than the one in which hop rates

are higher than collision rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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5.5 The diffusion coefficients of a single ion starting at the centre of a Gaussian distri-

bution of atoms of peak density n0 = 1019 m−3 and σ = 100µm is shown in panel

(a). The collisional diffusion (large dashed, green) moves the ion away from the

trap centre monotonically. The hopping diffusion coefficient (small dashed, blue)

first causes the ion to move outward for rI < 1.24σ, and inwards for rI ≥ 1.24σ.

The net diffusion coefficient of the ion (thick yellow) is a result of the combination

of these two distinct processes. It make two intercepts at zero diffusion coefficient,

one at 1.25σ and the other at 2.48σ. A thermal ion starting at rI < 2.48σ will move

to stabilize at ≈ 1.25σ and an ion beyond 2.48σ will escape. This shows that there

is a shell of diffusive stability for a ion. Panel (b) is a contour plot of the total dif-

fusion coefficient in a plane and the red arrows show the direction and magnitude

of average diffusion at each point in the plane. Here, the shell of stable equilibrium

is shown by the black circle and the orange circle shows the radius beyond which

inward diffusion is not likely. This shows that the presence of the hopping mecha-

nism results in ion trapping by a gradient atom distribution and charge localization

to a spherical shell. This provides a very clear experimental signature of charge

hopping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Figure illustrates the Monte-Carlo hopping trajectory calculations for 100 instances

of an ion starting at the origin. The statistical average values of rI over all trajecto-

ries, are represented by filled blue circles, and the error bars denoting one standard

deviation. It is clear that the ion localizes at rI ≈ 1.25σG, for long hold times. The

dashed red curve is the ballistic trajectory with average thermal velocity, the thick

yellow curve is the theoretical mean trajectory rI(t) incorporating both collisional

and hopping diffusion and the thin green curve is the theoretical mean trajectory

rI(t) with just the collisional diffusion coefficient. The insets show these curves in

their small and large hold time limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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5.7 For a 7Li+-7Li system with different conditions mentioned in the panels, the col-

lisional diffusion coefficient (brown), hopping based diffusion coefficient (dashed

blue) and their sum (thick yellow) are plotted. In the insets, the corresponding the-

oretical mean trajectories due to these diffusion coefficients are shown in similarly

styled curves along with the ballistic trajectory with mean velocity (dotted red). It

is clear that 7Li system offers a few more temperature and atom number density

choices to observe charge trapping due to hopping in a spherical shell. Larger the

gap between the green and red vertical lines, the more stable the radial charge con-

finement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.8 For a 7Li+-7Li system under conditions mentioned in the panels, the mean of 100

simulated trajectories with charge hopping is plotted as blue circles and the error

bars represent the standard deviation. The dotted red curve is the ballistic trajec-

tory with average thermal velocity, the thick yellow curve is the theoretical mean

trajectory with the sum of collisional and hopping diffusion coefficients, the dashed

dark blue curve is the average theoretical trajectory with just charge hopping and

the thin brown curve is the upper limit to ion mobility allowed by just collisions.

The insets show the same curves in their small hold time limits. . . . . . . . . . . . . 86

5.9 For a 6Li+-6Li system with different conditions mentioned in the panels, the col-

lisional diffusion coefficient (brown), hopping based diffusion coefficient (dashed

blue) and their sum (thick yellow) are plotted. In the insets, the corresponding the-

oretical mean trajectories due to these diffusion coefficients are shown in similarly

styled curves along with the ballistic trajectory with mean velocity (dotted red). . . . 87
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5.10 For a 6Li+-6Li system under conditions mentioned in the panels, the average of

100 simulated trajectories with charge hopping is plotted as blue circles and the

error bars represent the standard deviation. The dotted red curve is the ballistic

trajectory with average thermal velocity and the thick yellow curve is the theoretical

mean trajectory with the sum of collisional and hopping diffusion coefficients. In

panel (a), the thin brown curve represents the mean trajectory with just collisional

diffusion. Whereas in panel (b), the brown curve is the thin brown curve is the

upper limit to ion mobility allowed by just collisions. The physical meaning of

the result of same equation (the brown curves), changes as the thermal velocities

become lower than the corresponding collisional mobility limit. The insets show

the same curves in their small hold time limits. . . . . . . . . . . . . . . . . . . . . . . 88

5.11 The panels show the ballistic trajectory (red, dotted) of a single ion starting at the

origin at t = 0, the Monte-Carlo hopping trajectory calculations for 100 instances

(light blue) and the survival probability (purple) of the ion within 3σ of the Gaus-

sian atomic distribution discussed in figure 5.5. The three panels show these for

different values of a constant electric field Es imposed on the system. This is the

experimentally realistic case, and once again illustrates that the prolonged survival

of the ion within the atomic ensemble is the testable signature of charge hopping

due to exchange symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Electrode potential configuration for normal operation of (a) a 4-pole trap, (b) a 6-

pole trap, (c) an 8-pole trap and (d) a 12-pole trap, where V (t) = V0 sinωt. We keep

the parameters r0 and a fixed for all the trap configurations. Note that the 12-pole

trap in (d) is also equivalent to the superposition of three quadrupole traps. . . . . . 94
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6.2 The time domain collision between a trapped and compensated stationary ion, ini-

tially located at the center of a quadrupole (a) and octupole (b) trap, with a station-

ary atom in its vicinity is shown. The calculation is two-dimensional. As a result of

the mutual attraction of the trapped ion with the atom, in the presence of the trap-

ping field, post collision, both the ion and the atom gain kinetic energy. The amount

of kinetic energy gained in the collision in (a,b) is illustrated in (c,d), respectively. . . 97

6.3 The change in the energy of the Ca ion-atom system, initially at rest, with the ion
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6.4 The real space trajectories for the mentioned initial position (r=0.1r_0, θ = 0, π/4kandπ/2k

respectively) of creation of ion in 4 and 6 pole trap configurations is shown. . . . . . 106

6.5 The real space trajectories for the mentioned initial position (r=0.1r_0, θ = 0, π/4kandπ/2k

respectively) of creation of ion in 8 and 12 pole trap configurations is shown. . . . . 107

6.6 Probability distribution of finding the ion at a radial distance r from the center of

the trap in 2-dimensional 4 and 6 pole traps, for an ion created at r(0) = 0.1r0 and

angular coordinate θ. The inset2s show the phase space trajectories associated with

the respective trapping configurations and the computed value of ν, specific to each
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6.7 Probability distribution of finding the ion at a radial distance r from the center of

the trap in 2-dimensional 8 and 12 pole traps. The insets show the phase space tra-

jectories associated with the respective trapping configurations and the computed

value of ν, specific to each case, is shown in the panels. . . . . . . . . . . . . . . . . . 109
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6.9 The temperature of an ion held in ideal 4-pole and 8-pole trapping potentials are
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6.11 Alternate trap configurations for using an 8-pole or 12-pole setup as a modified

quadrupole are shown. Panel (a) is an 8-pole structure with alternate electrodes
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an effective quadrupole trap with an 8-pole setup, where successive electrodes are

at a phase difference of Pi/2. Finally, panel (d) shows a 12-pole structure, with a
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7.1 The illustration of position sensitive ion destruction is shown. For different posi-

tions of the ion at the center of the trapping region, the position of hit on the micro

channel detector plane varies accordingly. The readout of the position of hit on the

detector plate can be mapped to the ion position, prior to extraction. . . . . . . . . . 120

7.2 The schematic of the full vacuum setup showing the components exterior to the

vacuum chamber is shown. The mounting sites of vacuum pump, Li dispensers,

all the magnetic coils, and the MCP detector is shown to clarify the geometry of

various ports discussed in the main text. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Schematic showing the mounting for axial coils, MOT coils, detector tube within

the space constraints of the setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4 This is an illustration of the geometric constraints relating the beam diameters taken

here as 16.4 mm, the outer diameter of the end caps dout and the end-cap to end-cap

distance lmin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5 This is a design render of the functional elements of the Paul trap with optimized

dimensions for the purpose of our hybrid ion-atom experiments. The various parts

have been labelled and the electrode voltages to be applied in the normal operation

are mentioned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.6 A rendered image of the assembled ion detector with 2 MCPs in Chevron configura-

tion and P43 phosphor screen mounted on a CF100 flange with CF63 glass window

to image the phosphor screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
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7.7 Circuit diagram for appending the detector power supply to provide electronic sig-

nal for ion time of arrival measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.8 schematic showing the designed elements of the hybrid ion-atom trap, the assem-

bled ion detector along with the components for ion extraction. . . . . . . . . . . . . 133

7.9 The full mounting assembly of the ion trap to the main chamber is shown. The ion

trap electrodes are held by the two central Macor plates, which also insulate all of

the electrodes from each other. The wider mounting rods connect to the rear side

of the end caps (see Figure B.2 in Appendix B) through the Macor plates. These

mounting rods are held without touching the mounting plates by use of another set

of similar design Macor plates, behind the mounting plates. Finally the whole as-

sembly mounts to the grooves on the chamber with the help of the groove grabbers

attached to the mounting plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.10 A photograph showing the schematic of the home-built laser mounts for high tem-

perature ECDL application. The components are labelled and the mechanical draw-

ings for the parts are provided in Appendix B. . . . . . . . . . . . . . . . . . . . . . . 138

7.11 Figure shows the saturation absorption spectrum for 7Li obtained using home-built

lasers. The setup involves a hollow cathode lamp which results a different spectrum

from the ones obtained using heat pipes. We do not see any pronounced ground

state cross over peaks. The excited state hyperfine levels are unresolved. . . . . . . . 139

7.12 The atomic levels relevant for 7Li MOT are shown with the various level seperations

labelled and the measured values of cooling and repumper MOT laser beams, on

our wavemeter are also given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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Chapter 1

Introduction

1.1 Background

Over the last few decades, propelled by the developments in lasers and their manipulation of cold,

dilute gases of atoms [1–6] as well as ions [7–12], exciting new possibilities have emerged. The pre-

cision with which single atoms and ions can be trapped and addressed is such that quantum states

and their superpositions are accessible in the optical domain where both the motional and internal

states can be controlled [13–19]. Atoms and ions offer a unique advantage when quantum systems

are concerned, since they are identical by their very nature and so no investment in preparation of

the basics system is required.

The advantage that a dilute gas of atoms or ions offers, is that it comprises identical quantum

systems. While the study of individual quantum systems is well advanced both theoretically and

experimentally, interacting quantum systems serve up a number of challenges to our understand-

ing. Even simply stated problems which concern interacting quantum systems (such as atoms,

which are individually well understood) throw up surprises and require vigorous theoretical and

experimental investigation. This is where trapped, cold and state prepared atoms and ions come

into their own, since they are individually identical and they can be identically manipulated [13,

14, 20–23]. In such a tailored system of identical particles, quantum effects which result from their
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interactions can be measured and studied in detail. The ability to produced tailored ensembles in

such systems, allows precise measurements of interactions between the constituents.

Of the variety of species which can be laser cooled, Group I atoms (alkali) are most amenable

for laser cooling and have resulted in a variety of experimental and theoretical studies [24–26].

For atomic ions, the species most amenable for laser cooling are singly charged ions of Group

II elements (alkaline earth). In both cases, the atom/ion presents itself with one electron in the

outermost shell, a configuration which is found to be generically, the simplest to effectively laser

cool. Recent experimental investigations, led by the advances in trapping, cooling, manipulation

and readout of single atoms and ions have pushed the boundaries of control and precision [13, 16–

18, 20–22, 27–31]. This provides new insight into the quantum theory of matter and matter-light

interactions, which is crucial for the progress of many areas of physics as well as future quantum

technologies.

Many successes have resulted in the field of cold and ultracold matter, ever since the develop-

ment of methods to cool and trap neutral atoms with laser light [6, 24, 32]. These discoveries

led to the first observation of Bose-Einstein condensation in dilute atomic gases in 1995 by Eric

A. Cornell, Wolfgang Ketterle, and Carl E. Wieman [9, 33] and the study of ultracold collisions

[34]. Furthermore, experiments using optical lattices [35], with perfect periodic potential for the

atoms with variable geometry and dimensionality, connect quantum optics and atomic physics

with condensed-matter and solid state physics [35–39], along with their implementation for quan-

tum information processing [40–42], and metrology [43, 44].

Historically ions were cooled and trapped before atoms and laser cooling was demonstrated on

trapped ions long before atoms were lasers cooled [1, 3, 7]. Initial studies with trapped ions were

focused on mass spectrometry, ion-neutral chemistry and metrology, and with the advent of laser

cooling it developed into ion clocks [43, 45–47] and crystals of trapped ions were synthesized [10,

20, 48–51]. In the early to mid nineties, the Cirac-Zoller proposal [52] for quantum computing with

trapped ions resulted in the rapid growth of ion trap experiments with laser cooling and over the

years these systems are the most evolved precision quantum computing and quantum simulation

platforms [22, 30, 31, 42, 53–57].
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Laser cooled and trapped atoms, though a step behind chronologically, grew with startling speed

once the initial laser cooled atoms were observed. In no time, experiments with optical lattices

were performed and within the decade, cold dilute gas Bose Einstein Condensate was realized

[33, 58]. The milestones are too numerous to enumerate, but this was followed by quantum de-

generacy for Fermi gases [59], the control of interactions using Feshbach processes [60–62] and

its consequent science, the BEC-BCS crossover [63–66], optical lattice based quantum simulators,

quantum metrology and computing platforms [35, 39, 40, 67–69].

Ultracold atoms, which are highly controllable and scalable, typically are limited to short-range

van der Waals interactions [36]. Interactions among ultracold atoms can be described in terms of a

scattering length, that is tunable typically via magnetically scanning across Feshbach resonances.

Enhanced dipole-dipole interactions can be introduced, by means of Rydberg excitations [23, 70],

or confinement-induced resonances [71].

Investigation of longer range interactions in the quantum domain have been opened with the

realization of more complex systems such as ultracold molecules [72–74]. Combining trapped ul-

tracold atoms and ion(s) with spatial overlap allows for the study of well characterised ion-atom

interactions (≈ 1/r4). Hybrid ion-atom experiments have an advantage of both subsystems being

independently controllable and addressable for position and/or state readout. The long coher-

ence times in scalable and reproducible atomic systems, along with intermediate-range and tun-

able ion-atom interactions show new emerging features. To fully benefit from such advantages,

however, it is essential to understand the fundamental collisional properties and other charge

transport phenomena of ions in ultracold atoms, since they determine the prospects for decoher-

ence and atom/ion number losses in ultracold ensembles.

1.2 Motivation: a complete understanding of ion-atom interaction

In a dilute thermal gases, the chemical and transport phenomena like reaction rates, diffusion,

viscosity, etc., depend primarily on binary interactions. Experiments with cold trapped ions and

atoms, provide the ability to measure their respective loss rates, positions, other measurables, and
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thereby obtain a quantitative measurement of the interactions [14, 75–79]. A single ion can also be

employed as a probe to investigate local properties of an atomic cloud.

At high temperatures the interaction of ion(s) with atoms is limited to collisions, which are consis-

tent with the classical description of point particles with an attractive force (∝ 1/r5) corresponding

to the ion-atom interaction potential (∝ 1/r4). As we lower temperatures, the number of colli-

sional channels that remain probable get limited due to reduction of collision energy. At even

lower temperatures, the classical and even the semiclassical approximations breakdown and the

partial wave scattering solution is required. Therefore at ultracold temperatures, the quantum

nature of collisions will manifest in the measurable charge transport.

In a system with like ion and atom, which is referred to as a daughter-parent ion-atom pair, the

interaction is complicated by the involvement of the interchange symmetry. For example, a parent

atom (A) losing an electron to a positively charged daughter ion (A+) becomes an elastic process,

with no change in energy. This charge exchange symmetry in an ion-atom system [80] is analogous

to spin exchange symmetry [19, 81] in like atom-atom systems (where the two like atoms are in

different spin states and same electronic states) or excitation exchange symmetry in like atoms in

different electronic states [82]. The models used by most researchers nowadays for computing

effects of collisional interactions and compare with experimental results, include the effect of the

exchange symmetry. However, while the theory of atom-ion collisions is well established for high

collision energies [70, 83], the theoretical descriptions used in the ultracold domain still exhibits

inconsistencies.

Ultracold dilute gases are characterized by large thermal de Broglie wavelengths, which is the ex-

tent of delocalization of each particles. As a result of which, there can be a finite overlap of parti-

cles’ positions. This can lead to a new kind of exchange symmetry mediated ion-atom interaction,

which we call "charge hopping mechanism" which is operational only at ultralow temperatures

as opposed to the collisional interactions. The transport due to charge hopping is analogous to

charge conductivity and the collisional ion transport is analogous to the much slower electron

mobility in conductors [84–86].

Ions are much more susceptible to small electric fields, than neutral atoms, which poses a chal-
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lenge with respect to the lowest temperatures at which ion-atom systems can be operated. The

challenges of measuring these intriguing phenomena in experiments have to be overcome by

identifying the better suited experimental scheme and parameters of choice. As ultracold tem-

peratures are not approachable with more than a few ions, experimental schemes which offer the

resolution to measure the effect of a very small number of ions in an ensemble of atoms have to be

identified.

1.3 Objectives

The present thesis aims to create a platform for experimental study of ultracold ion-atom interac-

tions. In order to do this, we have already given an overview of the state of the art in atom-ion

hybrid trap physics at the time of starting the thesis. Clearly both trapped atoms and trapped

ions need to be worked with. We start by making a MOT of cold atoms and measuring the spa-

tial properties of the MOT using atom-cavity strong coupling. This would provide the basis for

extending the use of an optical cavity as a non-destructive probe for ion-atom interactions.

Earlier, several experiments had been done in our group to understand ion-atom interaction at

higher ion temperatures [14, 75–78, 87–89] where we show stability and cooling of ions due to in-

teraction with ultracold atoms. However, this ion cooling is not expected to persist up to ultracold

ion temperatures in presence of the ion trap fields [90]. For this new experiment we would like to

evaluate the prospects of studying the effects of ultracold ion-atom interactions. We then explore

how to mitigate the heating by asking the question: is there a better design for the ion trap than

the linear quadrupole design? In order to study atom-ion interactions, we then work towards a

consistent scheme of measuring charge transport, using position sensitive destructive ion detec-

tion, through which the ion-atom scattering and overall interaction can be obtained at ultracold

temperatures. The theoretical description of scattering and charge hop process needed to be con-

sistent with the experimental domain and design optimization has been presented. Preliminary

results with the new experiment built to address the problems outlined above are then presented.

The main sections of this thesis are:
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• To study collective strong coupling of ultracold atoms to an optical Fabry-Pérot cavity. To

develop an optical cavity as a diagnostic tool for atom number distributions. To evaluate the

prospects of resolving the effect of interactions of few ions with the atoms in cavity based

measurements.

• To revisit the theory for like (homonuclear) ion-atom scattering at ultralow energies and

obtain the theoretical estimates for measurable quantities. To obtain bounds on the scattering

cross sections to estimate the result of possible inaccuracy in the best scattering potentials

we used.

• To provide a formalism for the charge hopping process in experimentally realizable condi-

tions. Using this to obtain the charge diffusion due to charge hopping and simulate for the

resulting charge transport. To use numerical simulations of transport to identify the signa-

tures of the experimental evidence for charge hopping process.

• To design an ion trap which is optimized to assist in the various possible experimental routes

to achieve the necessary conditions, as suggested by the above theoretical estimations.

• To design, build, assemble the experiment in which measuring charge transport, using po-

sition sensitive destructive ion detection, can be done with the resolution to measure the

results as expected above.

1.4 Organization of the thesis

In the second chapter, we discuss the conceptual background of all the experiments that consti-

tute this thesis. A brief introduction to laser cooling, magneto-optical trap and ion trapping is

provided. At the end, we provide an understanding of combining these traps to make a hybrid

ion-atom trap.

In the third chapter, we describe our endeavors to use mode dependent, collective atom-cavity

coupling to measure atom density profiles, in addition to the total atom numbers. The scope of

this technique as a versatile tool and its limitations are explored.
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In the fourth chapter, the theory for homonuclear ion-atom scattering is worked out from first

principles, being consistent with ultracold temperatures. We detail our method for estimating the

possible range for scattering parameters, subject to possible future improvements of potentials.

The fifth chapter is dedicated for the charge hopping mechanism, its formalism and characteriza-

tion. We simulate the trajectories of an ion, that undergoes stochastic charge hopping in a cloud of

ultracold thermal atoms. We find distinguishable signatures of the charge hopping mechanism in

a practical experiment. This sets the paradigm for the experiment, in the scheme of measurement,

the optimal operating parameters and the expected results.

In the sixth chapter, we compare the trapped ion kinetics in a quadrupole trap to other higher

order linear Paul trap configurations. We present a comprehensive analysis of the merits and

demerits of a higher order multipole trap for different applications.

In the seventh chapter, we elaborately go through the design optimization for all components of

the apparatus, that is built to meet all the criteria set by the results of previous chapters. The

fabrication and assembly of all devices is explained in great detail. The detail of the lasers used

for the experiments and the optical setup are also discussed. Finally we demonstrate the working

of various constituents of the experiment and present some initial results.

We conclude the thesis by summarizing the work and the future prospects of research with homonu-

clear ion-atoms in ultracold regime experiments using such a hybrid apparatus, some of which

will be implemented as continuation of this line of work in our lab.
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Chapter 2

Mechanisms for Trapping Cold Atoms

and Ions

In order to study interactions between individual particles or ensembles of atoms, ions, molecules,

etc., which arise due to the intrinsic properties of such particles, it is necessary to achieve condi-

tions where the effects of thermal motion are minimum. At typical real world temperatures, ther-

mal properties and behaviour of gases is fairly well described by the kinetic theory of gases [91,

92]. Hard sphere treatment of collisions between individual gas particles, subject to the available

degrees of freedom, determine the macroscopic properties of the gas. The specific, fine details of

the interaction between the colliding partners, which is masked by the kinetics at higher energies,

start to play a crucial role at low energies. Further, the role of quantum behaviour, interaction

with fields, and the statistics obeyed by the particles of interest can be studied. To enable just this,

experiments have to be carried out at very low energies.

This is difficult to engineer for pairs of single particles, in part because the retrieval of signals from

single interacting systems is very challenging. Such studies are therefore done with trapped dilute

gas ensembles, which are laser cooled to and trapped at, their limiting temperatures. Such studies

have been enabled by the established techniques of trapping and cooling of atoms and ions [6, 9,

24, 26, 32, 33, 44, 67, 93]. In this chapter, we describe the mechanisms including a brief description

of the theoretical concepts of cooling and trapping atoms, trapping charged particles which are
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crucial for pursuing the experiments in this thesis.

2.1 Laser cooling

Figure 2.1: Schematic figure for laser cooling in 1d using counter propagating red detuned beams
of equal intensity.

Since photons have momentum, a particle which absorbs or emits a photon, undergoes a momen-

tum change equal to the momentum of the photon. When we have a scenario where a particle con-

tinuously absorbs photons from a resonant unidirectional beam and emits photons spontaneously

in random directions, the particle gains momentum in the direction of the beam of photons as the

average momentum change due to all the photon emissions due to spontaneous emission, which

is random in direction, is zero. This is known as radiation force. The trick to achieve cooling using

such forces is to use pairs of counter propagating laser beams, with equal intensity, such that both

beams have a frequency slightly lower than the resonant frequency of the atom/ion that needs

to be cooled. This way, the beam propagating opposite to the direction of motion of the atom-

/ion will be seen closer to atomic resonance by the atom/ion than the beam propagating along

the direction of motion of the atom/ion by it, due to Doppler effect, see figure 2.1. As a result,

the absorption of photons from the counter-propagating beam is more frequent than from the co-

propagating beam and therefore laser beams can be used to provide a velocity dependent force in

order to slow down atoms, ions, etc (laser cooling).

To understand the process of laser cooling, let us consider a simple case of a two level atom in one

dimension moving with an initial velocity ~v. For slowing down the velocity of an atom, the atom
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should absorb a photon with wavevector, ~k opposite in direction to ~v. Also, since the beam has to

be resonant with the atom moving opposite to its direction, the beam’s has to be red detuned with

respect to the resonant frequency of the two level atom. A counter propagating pair of red detuned

laser beams with equal intensity is used, such that an atom moving in either direction always sees

the laser beam with wavevector opposite to its velocity, Doppler shifted closer to resonance than

the laser beam with wavevector along its velocity direction, see figure 2.2.

Figure 2.2: Illustration of the laser cooling frequencies and the Doppler shifts.

The red detuning is kept larger than the Doppler shift due to a velocity ~v. As a result, the atom

preferentially absorbs photons from the opposing beam and its velocity slows down over time.

The spontaneous isotropic emission results in a random walk and cancels out on average over

many cycles. The forces due to the two counter propagating beams ~F+ and ~F− on the atom from

photons of momentum ±h̄~k is given by [32, 67, 94]

~F± = ± h̄Γ

2

I
Isat

1 + I
Isat

+ 4 (δ∓kv)2

Γ2

~k , (2.1)

where I is the laser light intensity in each beam, Isat is the saturation intensity for the transition

given by Isat = πhcΓ/3λ3, c is the speed of light in free space, λ is the wavelength and k is the

magnitude of the wavevector of the detuned laser light, Γ is the natural linewidth of the excited

state of the two level atom and δ is the detuning of the laser from the resonant frequency. The net
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force ~Ftotal = ~F+ + ~F− on the atom is simplified to the first order in ~v to obtain [67]

~Ftotal = −8h̄k2δ

Γ

I
Isat

(1 + I
Isat

+ 4 δ
2

Γ2 )2
~v ≡ −β~v . (2.2)

For small atomic velocities, the force by the laser beams is opposite in direction to and proportional

to the atom velocity, which results in viscous damping of the atoms velocity. This setup of two

counter propagating beams ensures that cooling continues even in the event of reversal of the

atoms velocity due to some stochastic absorption-emission cycles. The root mean square (rms)

momentum gain is not zero, which results in random walk in momentum space, giving a finite

temperature h̄Γ/(2 kB) for the atom and is called the Doppler cooling limit [67, 95].

The above idea can be extended to real experiments in three dimensions by applying 3 sets of

counter propagating, mutually orthogonal, pairs of beams, such that all the six beams of equal

intensity intersect in a volume where laser cooling is functional. This technique, called optical

molasses, can cool the atoms in the intersection of the 3 pairs of beams but the atoms’ diffusive

motion prevents it from remaining perpetually in the intersection region.

Using carefully designed magnetic fields, it is possible to engineer radiation forces which can

achieve some of the desired tasks like (i) to cool atoms from very high initial velocities to the

Doppler cooling limit (Zeeman slower), (ii) to confine the atoms to a small region (trap) along

with cooling them (which is explained below).

2.2 Magneto optical trap

The magneto optical trap (MOT) uses a combination of magnetic field and particular optical fields

to cool and trap the atoms [96]. The MOT requires an inhomogeneous magnetic field which is

produced by a pair of matched coils in anti-Helmholtz configuration. For simplicity, once again

let us consider a two level atom with angular momentum of the ground state Fg = 0 and the

excited state Fe = 1, moving in one dimension (ẑ) with a velocity ~v in the presence of counter

propagating laser beams. In a position dependent magnetic field of magnitude B(z), the atomic
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level degeneracy is lifted by ∆E|F,mF 〉 = µB gF mF B(z) due to linear Zeeman effect and the levels

are labelled by the magnetic quantum number, mF = 0, ±1. Here µB is the Bohr magneton and gF

is the Lande g factor. The dipole allowed transitions can occur from 0↔ 0, ±1 by absorbing a π,

σ± polarized photons respectively.

Figure 2.3: Panel (a) illustrates the lifting of degeneracy for hyperfine levels due to applied gra-
dient magnetic field, the detunings due to Doppler effect and magnetic fields, and the effectively
resonant cooling transitions. The schematic for implementing a MOT is shown in panel (b).

For positions z > 0, the field due to the matched pair of coils in anti-Helmholtz configuration, B(z)

is positive and the energy of the state mF = +1 is shifted higher linearly with z and the energy

of the state mF = -1 is shifted lower with respect to the level, mF = 0 which is not shifted in

energy. Hence an atom in this region with a velocity in +ẑ direction, sees the red detuned light

of the beam with wave vector -~k as more resonant to the closest mF = -1 level than the light

of the beam with wavevector ~k. Therefore the application of σ± polarized lights respectively in

±~k direction will cause the atoms to preferentially absorb from the oppositely propagating laser

beam. The exact opposite is true for an atom in this region moving in -ẑ direction. This gives

rise to a position dependent force which drives the atoms towards the spatial centre. Figure 2.3.a

illustrates the hyperfine levels, the detunings due to Doppler effect and magnetic fields, and the

effectively resonant cooling transitions. The schematic for a MOT is shown in figure 2.3.b. The
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force on the atom from the counter propagating beams can be expressed as [32]

~F± = ± h̄Γ

2

I
Isat

(1 + I
Isat

+ 4
δ∓kv±µ′ dB

dz
z/h̄

Γ2 )
, (2.3)

where µ′ ≡ (geMe−ggMg)µB is called the effective magnetic moment for the transition, where Mg

and Me are the magnetic quantum number of the ground and excited states. The net force is

~F = −β~v − η~r , (2.4)

where η = µ′B0β/h̄k and β is defined in equation 2.2. The position dependence of the force

expressed in equation 2.3, is such that the atom is pushed to the point of zero magnetic field. Thus

atoms get cooled and trapped simultaneously in a MOT.

Figure 2.4: Transverse image of a bright MOT with 85Rb atoms taken using an infrared CMOS
camera.

The MOT has an important feature that the same magnetic field can be used for different atomic

species with their corresponding resonant lasers to simultaneously trap the mixture. This is be-

cause it depends on the magnetic moment of the electron for single electron atoms. Since we deal

mostly with alkali atoms this far, although the MOT concept extends for all atoms [97–101]. Also,
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MOTs can be loaded directly from background gas in the apparatus as long as there is are signif-

icant number of atoms in velocity class that can be captured by it. This feature makes the use of

MOT, as one of the first steps in making more challenging colder or/and denser traps, prominent.

Figure 2.4 shows a picture of 85Rb MOT captured by a CMOS camera. In experiments where large

atom numbers and dense MOTs are desired to start with, a precursor cooling step in the form of a

Zeeman slower or a 2D MOT is used [102, 103].

2.3 Dark-MOT and other traps

In experiments with real atoms, it is necessary to consider more than two levels. Typically, an

atom in excited state due to a photon absorption from the ground state, has a finite probability of

de-exciting into another lower energy state different from the original ground state. When such a

de-excitation happens either via photon emission or via inelastic collisions, the atom is no longer

influenced by the cooling light field. An additional light field known as repumper field will be

needed to bring such atoms back into the cooling cycle. This is done by mixing repumper beam(s)

with either all 6, or a fraction of the cooling beams to keep a MOT operational. Typical decay

rates from the first excited levels to the ground state, used for MOT transition in alkali atoms,

range between 5-6 MHz. This is the most common kind of a MOT, which has a steady state atom

population in each of the involved internal states, excited and ground. Also, since the mechanism

for this trap involves emission of resonant photons, this fluorescence can be used to directly image

the created cold atom ensemble, therefore it is called as a bright-MOT.

The fluorescence from one atom in the MOT, if absorbed by another MOT atom, can perturb the

cooling mechanism. This prospect of re-absorption of an emitted photon poses limitations for

achieving the desired high densities and low temperatures in a bright-MOT. Some variants of the

mechanism of MOT are widely applied to overcome the limitations of a bright-MOT. One such

variant of MOT incorporates a central dark spot in the repumper beams, thereby creating a small

volume at the trap center which is devoid of the radiation pressure from the light field. This

setup allows formation of a cold ensemble of atoms to due to the trap loading and cooling in the

volume other than the dark spot. However, absence of radiation pressure in the actual region to
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which majority of the trapped atoms are confined, allows the achievement of lower temperatures

and/or higher densities. Since most atoms do not participate in the absorption-emission cycle,

this kind of MOT known as a dark-MOT does not fluoresce and has mostly state selected, ground

state atoms.

We have employed a dark-MOT in some of the experiments described in chapter 3, where we

present a method to estimate the density profile of a dark-MOT [77, 104, 105]. Both the bright-MOT

and the dark-MOT are steady state, perpetually operable traps, as they are continuously loading

and shedding atoms. This allows the atom numbers, density, internal state population distribution

and temperatures to attain a steady state. This is unlike a lot of other trap mechanisms in ultracold

physics, which constantly lose atoms, such as a magnetic trap or an optical dipole trap. However,

the atomic levels populated by the atoms in a bright-MOT are different from the one populated

by the atoms in a dark-MOT, which makes the utility of dark-MOT different.

2.4 Paul traps

The motion of a charged particle is highly susceptible to electric and magnetic fields. An electro-

static potential minimum in three dimensional free space is not achievable (Earnshaw’s theorem

[106]). However, an oscillating electric field or a combination of static electric and magnetic fields

can be used to trap the charged particle. Both these methods have their merits and challenges. In

both these kind of traps, the charged particle(s) would be dynamically trapped and undergoes os-

cillatory motion with characteristic trap frequencies. The trap involving dc electric and magnetic

fields is known as the Penning trap [107] and the one which involves an oscillating electric field

is the Paul trap [108]. Early implementation of both these methods emphasized on shaping elec-

trodes to match the desired equipotential surfaces. However, many configurations of Paul traps

have been developed, subsequent to the invention of lasers, the configurations no longer need the

geometric precision to attain the desired measurement precision. The additional integration of

light field, is a necessary inclusion which helps in improving cooling, precision and control [17,

21, 28, 33, 44–46, 93, 108]. Figure 2.5 shows a linear Paul trap configuration which facilitates laser

cooling of the trapped ions.
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Figure 2.5: A schematic of linear Paul trap configurations is shown and the voltages applied on
each electrode are specified.

As large uniform magnetic fields are required for the Penning trap, it is not suitable for certain hy-

brid trap configurations, which use neutral atom traps that need particular magnetic field profiles

(like a MOT). Paul traps are shown to be stable against small magnetic fields, the likes of which are

needed for a MOT [75, 109]. Also, several atypical configurations of Paul traps have been imple-

mented where axial magnetic fields have been additionally introduced to aid the charge particle

trapping in the transverse plane [110–112]. In view of these attributes, we have chosen to work

with Paul traps for our ion-atom experiments described later.

Figure 2.6: The first parameter region for stable trapping of ions in an ideal Paul trap obtained
from simulations is shown.
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In this section we will discuss the theory of ideal Paul trap and the specifics of the design opti-

mization of the implemented trap for our goals will be presented in Chapter 6. The potential for

an ideal 3D Paul trap [12] is given by,

V (x, y, z, t) =

(
U0 + Vrf cos 2πft

2d2

)
(2z2 − x2 − y2). (2.5)

Figure 2.7: A typical ion trajectory in a linear quadrupole Paul trap is shown to exemplify the
constituent macro and micromotion.

Here U0 is the dc potential, Vrf is the magnitude of the oscillating potential at radio frequency (RF)

f , d is a length scale signifying the extent of the trap, ẑ is the axial direction in which DC field,

via endcap electrodes is used to provide confinement and x̂, ŷ represent the transverse directions

in which RF trapping is implemented. Using this potential, the equations of motion for the ion(s)

are,
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d2x

dt2
+ [ax − 2qx cos 2πft]x = 0 , (2.6)

d2y

dt2
+ [ay − 2qy cos 2πft]y = 0 , (2.7)

d2z

dt2
+ [az − 2qz cos 2πft]z = 0 , (2.8)

where ax = ay = −az/2 = −4QU0

mid2(2πf)2
and qx = qy = −qz/2 =

2QVrf
mid2(2πf)2

are dimensionless

parameters, mi is the mass of the ion and Q is the charge of the ion. Parameters aj and qj for

j ≡ (x, y, z) are used to define the stability parameter region of the trap and only a small range of

the combination of aj and qj provide stable trapping [11, 12], the first region of stability is shown

in figure 2.6. Figure 2.7 shows the typical motion of an ion trapped in an ion trap, along each of

the axes. It can be seen from the figure that there are two types of oscillatory motion in the ions

trajectory, one is the low frequency harmonic motion, and the other is the fast oscillator motion on

top of this harmonic motion. The harmonic part is called the secular motion or macromotion, and

the high frequency part is called micromotion. The micromotion results from the response of the

ion to the RF frequency, applied to the transverse electrodes, and its amplitude is proportional to

the distance from the trap center, as this is the response of the ion to the ac electric field applied

to the trap electrodes. In the limit a, q � 1, the motion of the ion simplifies to x(t) = G(1 −

0.5qx cos 2πft) cosωxt, where G is a constant and ωx,y/2π = 0.5ζx,yf is the secular frequency. ζj =√
a2
j + 0.5q2

j is called the stability parameter.

2.5 Hybrid traps

It is possible to apply additional cooling techniques laser cooling, sympathetic cooling, etc, to

trapped ions in a Paul trap. As mentioned earlier, the more modern implementations of linear Paul

traps, allow more optical access which comes handy in implementing laser cooling and imaging

of ions. Hybrid traps in which a continuously operated neutral atom trap and an ion trap are

overlapped in the same spatial region are of particular interest for us because we intend to study

ultracold ion-atom interactions. The stability, thermalization and efficient sympathetic cooling of
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ions using ultracold atomic ensembles have been demonstrated earlier [14, 75, 77, 88, 89].

Ion traps designed using a hybrid of Paul and Penning trap designs are also known as hybrid

traps, and we have made provision to implement some such arrangements in our experiment.

The suitable electrode potentials of the linear Paul trap can create effective field free environments

at the center at times when the Paul trap is not in operation. We present our arguments for making

the choices design implementations in our experiment, which was built with the target to study

ultracold ion atom scattering, in chapter 6.

2.6 Optical cavities coupled with ultracold atoms/ions

A Fabry-Pérot (FP) resonator for light, formed by placing two highly reflecting surfaces facing

each other, can be used to dress and enhance certain properties of the light beam within it [113,

114]. Two symmetric convex dielectric mirrors placed at near con-focal configuration is a typical

realization of this device. Electromagnetic fields in such a resonator are constrained by the in-

terference of the input beam and the multiply reflected resonant beam, which forms a standing

wave. When monochromatic light, of a specific frequency, is coupled into a FP cavity, only select

lengths of the cavity will lead to resonant coupling. These select cavity lengths corresponding to

the number of half wavelengths of the light supported within the cavity length. These resonant

modes are known as the longitudinal modes of a FP cavity.

The beam size is minimum at the centre of the cavity and it increases on either sides towards

the mirrors and beyond them. The boundary conditions at the surfaces of the mirrors constrain

the beams transverse profile of the light coupled to the FP cavity. The expanding beam size and

the curved mirror surfaces add curvature to the wavefronts of the beam at various positions and

thus, the different resonant transverse beam profiles stipulate a corresponding additional posi-

tion dependent Guoy phase for the beam. The interference condition mentioned above has to

incorporate these additional Guoy phases and thus, each of these resonant transverse beam pro-

files corresponding to the same longitudinal mode, will be supported with slight variation in the

cavity length. These are the transverse electromagnetic (TEM) modes.
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Figure 2.8: The profiles and electromagnetic field functions of the various TEM modes in a cylin-
drically symmetric optical Fabry Pérot cavity, the Laguerre Gauss (LGl m) modes are shown.
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The profiles of the TEM modes supported by a FP cavity will be determined by the symmetry

with which the cavity is built. See figure 2.8 for an illustration of a few TEM modes, of a cavity

with cylindrical symmetry, known as Laguerre Gauss (LGl m) modes with the subscripts l and m

denoting the number of radial and azhimuthal nodes in the transverse mode profile.

The modes with m = 0 are inherently cylindrically symmetric and can be directly observed with

a symmetric cavity. The modes with m 6= 0, on the other hand need a deviation from cylindrical

symmetry to specify the planes of the azhimuthal nodes. In the absence of any such specific aber-

rations, these modes appear as superposition of the mode profile rotated by all possible azimuth

angles, in the transverse plane, which appear as the symmetrized mode profiles shown in the third

column of figure 2.8.

These spatial properties of electromagnetic waves characterized by a FP cavity lead to their usage

as a versatile tool. Light coupled into the cavity could be highly amplified in intensity inside the

cavity volume due to the multiple reflections from the highly reflecting surfaces. This makes cavi-

ties useful when intense fields are needed [104, 115]. The standing wave formed by the field inside

a cavity is used in many experiments to introduce periodic conditions with large field gradients

for trapping atoms, ions or molecules [55, 116, 117]. The coupling of atoms in the cavity volume

to cavity modes unravels many mechanisms of application for probing [41, 53, 118], trapping [27,

117, 119–121], controlling[55, 104, 122, 123] and reading out properties of atoms [77, 105, 124, 125]

inside the cavity.

In chapter 3 of this thesis we will mention details about collective coupling of ultracold atoms to

cavity modes. We present a novel method for comparing the collective coupling to a number of

TEM modes with respective spatial profiles to determine information regarding spatial distribu-

tion of the coupled atoms. In cases where the spatial distribution is well known and cylindrically

symmetric, the spatial distribution of interactions which the atom-cavity coupling is sensitive to,

can be measured. This adds to the versatile utility of a FP cavity in ultracold systems with atoms

and/or ions, the scope and limitations of which are discussed later.
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Chapter 3

Collective Strong Coupling of Atoms to

Cavity

We contemplate the possibility of an optical cavity mediated probe to ultracold ion-atom inter-

actions. Such methods employ a cavity to measure specifics of the ultracold atom ensemble [77]

and thereby infer the characteristics of the ions interacting with the ensemble. This ends up being

a continuous, precise and controllable measurement, while being non-destructive for the ions as

well. We first characterize coupling of ultracold atoms to optical cavity and using this to mea-

sure the atom number and density profile, and then evaluate the prospects of the relevance of this

technique for ultra cold ion-atom experiments with a single or a few ions.

The confinement of light in optical cavities enables a variety of studies and allows a number of

applications [126]. Optical Fabry-Pérot (FP) cavities, coupled with ultracold atoms, have been

used to probe, manipulate, detect and trap atoms or molecules [26, 27, 68, 115, 120–122, 124, 127–

137]. In many hybrid traps which employ an optical cavity [49, 50, 55, 68, 120, 122–124, 135, 138–

144], which require entire ensembles of the trapped species to overlap with the cavity mode, the

cavity mode volume is large. This is particularly true when continuously operable traps like a

MOT are used, and the necessary optical access for laser beams, etc., limits the minimum cavity

length. This results in a large mode volume, making it very challenging to achieve strong cavity

coupling with a single atom or a few atoms, while collective strong coupling is achievable. For
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ultra-cold trapped atoms, the Doppler line broadening due to atomic motion and trapping fields

is narrow enough to allow the ensemble of cold atoms to couple effectively with an optical cavity

of moderate finesse.

In our group, collective strong atom-cavity coupling, with the lowest order transverse mode has

been used for diagnosing the number and temperature of MOT atoms co-centered with the cav-

ity [89, 124] and for measuring ion-atom interactions [77], apart from realizing optical switching

experiments. In addition theoretical and experimental exploration of the utility of a cavity mea-

surement for measuring interactions has been explored [115]. This leads us to ask the question,

about how useful extending cavity based measurements for ion-atom interactions can be, within

the context of this thesis. From the discussion in the previous chapter on the coupling of atoms

to cavities, it became clear that the effects of interactions as conceived in the latter part of the the-

sis is not compatible with the current cavity technology in the laboratory. Nevertheless this is an

exceedingly interesting system for precision measurement of interactions and that is also the mo-

tivation for the present exploration of atom cavity interaction. Here, we have extended the use of

an optical cavity and its higher order modes, for the diagnosis of atom density profiles along with

the number of atoms. We make an estimate for change in collective atom-cavity coupling due to

presence of an ion, and have measured this for multiple ions [115]. The prospect of using this for

measurement of ultracold ion-atom interactions, with a hybrid ion atom trap co-centered with a

cavity is discussed in the last section of this chapter.

3.1 Modes of a Fabry-Pérot cavity

Conditions for constructive superposition of light in a cavity, allow only certain specific modes

of light to be resonant in an optical cavity [142]. There are two kinds of modes in an optical FP

cavity, the longitudinal and the transverse modes. A particular longitudinal mode is defined by

the number of harmonics of light, of the wavelength used, which are contained within the cavity

length. Transverse modes are described by the spatial distribution of electric or magnetic fields of

the beam of light passing through the cavity. Cavities made of curved mirrors, have cylindrical

symmetry, and the theoretical description of cavity modes in such a case is as follows.
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The wave equation which determines the electric field ~E(~r, t) of an electromagnetic wave in free

space is given by

∇2 ~E(~r, t) =
1

c2

∂2

∂t2
~E(~r, t) . (3.1)

For a beam propagating in ~z direction the eigen modes for transverse electric field functions in

cylindrical coordinates (with radial index r, azimuthal index φ and axial index z) can be expressed

as

~E(r, φ, z) ∝ Ψl m(r, φ, z) ε̂ , (3.2)

where ε̂ is the unit vector in the direction of polarization of the propagating beam. Under the

assumption that the extent of the beam in the transverse (r,φ) plane is negligible compared to that

in the direction of propagation ~z, equation 3.1 can be replaced by the paraxial wave equation

(∇2
r,φ

+ 2i kz
∂

∂z
) Ψ(r, φ, z) = 0 . (3.3)

Solving equation 3.3 using the form

Ψ(r, φ, z) = U(r, φ) e−ikzz , (3.4)

we get the Laguerre-Gauss (LGl m) eigen functions [145], Ψl m(r, φ, z) as

Ψl m(r, φ, z) =
ω(0)

ω(z)
(
r
√

2

ω(z)
)|m| e

( −r
2

ω2(z)
) L|m|l (

2r2

ω2(z)
) × ei(kzz−mφ) e

i( kzr
2

2R(z)
)
e−i(2l+|m|+1) tan−1(z/zR) ,

(3.5)

where k is wave number, zR is the Raleigh length, ω(z) is the waist of the Ψl m at z = 0, R(z) is

radius of curvature of the cavity beam wave-front and Lml is the Laguerre polynomial with radial

index l and azimuthal index m, ẑ is parallel to the optic axis of the cavity. The total electric field

in the cavity, in the transverse plane is given by ~Ecav(r, φ, z) = ~E+(r, φ, z) + ~E−(r, φ, z), which is

the sum of the electric fields of the forward and reverse propagating beams in the cavity. These

transverse cavity modes with ~Ecav ∝ [Ψl m(r, φ, z) + Ψl−m(r,−φ,−z)] are called Laguerre-Gauss

(LGl m) modes. The intensity in a transverse plane is proportional to | ~Ecav(r, φ, z)|2, given by.
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| ~Ecav(r, φ, z)|2∝ e
( −2r2

ω2(z)
) × (2 r2)|m|

ω(z)2|m|+2
(L|m|l (

2r2

ω2(z)
))2×

cos2

(
kzz −mφ+

kzr
2

2R(z)
− (2l + |m|+1) tan−1

(
z

zR

))
. (3.6)

The first term on the right hand side of equation 3.6 represents the Gaussian transverse profile of

the paraxial beam, which along with the second term corresponds to the cylindrically symmetric,

Laguerre Gauss functions, based on the Laguerre polynomials and their corresponding beam size

dependant spatial spread. Both radial and axial coordinate are seen in this term as the transverse

extent of the beam depends on z and since the number of azimuthal nodes |m| greatly influences

the extent as well as the profile of each mode in the transverse plane. The third term shows the

effective phase with the first part corresponding to the phase from Gaussian profile and the rest

due to the Laguerre-Gauss mode’s profile.

The solution for resonant cavity field must satisfy the boundary conditions at the cavity mirrors

at z = ± L/2. This condition gives us that all LGl m modes with equal value of 2l + |m| would be

resonant for the same cavity length. Every LGl 0 mode has l radial nodes. When m 6= 0, the total

phase of the electric field is dependent on φ, leading to m angular nodes.

However, if the cavity is perfectly cylindrically symmetric, then no specific directions for the an-

gular nodes can be stable. In this case, the effective LGl m mode will be the superposition of all

Ψl m functions with the angular node in all angles. Thus the LG modes with m 6= 0 have an addi-

tional node at the center, r = 0 along with the l radial nodes at finite radii. The size of this central

node and the radii of the radial nodes will be larger for higher values of m.

In practical cavities, the phase of different modes with the same 2l+|m|would be slightly different

due to aberrations and imperfections, hence they would be resonant at slightly different cavity

lengths [125] making it possible to stabilize any individual mode.
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Figure 3.1: Theoretical mode profile functions and images of transverse LG modes of the empty
cavity, measured by imaging the probe light transmitted through the cavity. The continuous red
curve is for LG0 0 mode, the dashed orange curve is for LG1 0 mode, the dotted green curve is for
LG2 0 mode and the dot-dashed blue curve is for LG3 0 mode.

In our experiment, we adjust the coupling of the input to the cavity to stabilize only m0 modes

by monitoring the image of the cavity transmission intensity profile. We ensure that there is no

central dark spot. This ensures that the cavity modes used in the present experiments have only

the radial index l and the electric field inside the cavity is given byEcav(r, z) ∝ ψl(r, z)ε̂ where

ψl(r, z) is given by equation 3.7,

ψl(r, z) =
ω(0)

ω(z)
e

( −r
2

ω2(z)
) L0

l (
2r2

ω2(z)
) cos( kz +

kr2

2R(z)
− (2l + 1) tan−1(

z

zR
) ). (3.7)

The experimental images with the radial functional form of the intensity of the modes are illus-

trated in figure 3.1.
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3.2 Strong coupling of 2 level atoms

The interaction of the cavity and atomic state results in the lifting of the degeneracy between (a)

the excited atom and the empty cavity mode, and (b) the ground state atom and the occupied cav-

ity mode [146, 147]. The experimental manifestation of this phenomenon is seen as a frequency

splitting about the atomic resonance, in the transmission of a weak probe beam. When the condi-

tion g > κ, γ, is satisfied, this splitting can be resolved in a measurement, and is known as vacuum

Rabi splitting (VRS) [126, 140, 148]. Here, g is the rate at which the cavity mode and the atom ex-

change excitation, κ is the rate at which cavity mode loses photons and γ is the photon loss rate

due to spontaneous emission from the atom coupled to the cavity. This has been observed both

with single atoms [41, 125, 149–152] and with a collection of trapped atoms (or ions) [49, 50, 53,

123, 124, 139, 143, 144, 153] within a high finesse cavity. Collective strong coupling with higher or-

der transverse electromagnetic (TEM) cavity modes in a multimode cavity has been demonstrated

[143] earlier. In this study we use individual higher order LG modes with cylindrical symmetry

within the cavity to make measurements on atom numbers and their density profiles.

The number of atoms that couple with a particular cavity mode is determined by the overlap

integral of the square of mode function with the atomic density distribution. This is a fraction of

the total atom number in the MOT, Nat and the fraction is dependent on the specific LG mode.

The VRS due to collective strong coupling of atoms to LGl 0 mode of a cavity is given by [148, 153]

2h̄gl = µa

√
2h̄ωcNl

ε0Vl
, (3.8)

where Vl is the mode volume and Nl is the number of atoms coupled to the lth LG mode and are

given by

Nl =

∫ ∞
r= 0

∫ L/2

z=−L/2

∫ 2π

φ= 0
ρ(r, φ, z)|ψl(r, z)|2d3r, (3.9)

Vl =

∫ ∞
r= 0

∫ L/2

z=−L/2

∫ 2π

φ= 0
|ψl(r, z)|2d3r. (3.10)
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By solving equation 3.10, mode volumes Vl of all LG modes are obtained to be identically equal to

πω(0)2L/4 where L is the cavity length. Single atom-cavity coupling ḡ is obtained by calculating

gl from equation 3.8 assuming Nl = 1. For our system, we calculate values of ḡ to be 200.8 kHz for

F = 3 to F′ = 4 transition (PLB) and 96.6 kHz for F = 2 to F′ = 3 transition (PLD) as the values of µa

for these two cases are different.
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Figure 3.2: Ratio of atoms coupled to the LGl 0 cavity mode, Nl and the total number of atoms in
the MOT Nat for different sizes of MOT’s co-centered with the cavity. The continuous red curve
is for LG0 0 mode, the dashed orange curve is for LG1 0 mode, the dotted green curve is for LG2 0

mode and the dot-dashed blue curve is for LG3 0 mode. Inset shows zoomed in version of the
same curves around the value of σ/ω0 measured from CCD1 image of the bright-MOT, 2.66±0.06

In the case when the atomic density distribution, ρ is a constant the VRS, ∆ν = 2h̄gl becomes

independent of l, which implies that the coupling to every LG mode is equal [49]. Alternatively,

when ρ is not uniform, VRS for different LG modes will be different. For a non-uniform, but

regular density profile of atoms, such as Gaussian distribution co-centered with the cavity, with

peak density ρ0 and 1/e2 radius σ � L, ρ(r, φ, z) = ρ0 exp[−2(z2+r2)/σ2], using equations 3.7-3.10
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and using ω(z) = ω(0) and r̄ = 2r2/ω(0)2, we get

gl+1

gl
=

√∫∞
0 e−(1+α)r̄ [L0

l+1(r̄)]2dr̄∫∞
0 e−(1+α)r̄ [L0

l (r̄)]
2dr̄

. (3.11)

Both the integrands in equation 3.11 are positive definite, the integral in numerator is always

smaller than that in the denominator, and for α =
ω2
0

4σ2 � 1 i.e., when ω0 � 2σ, g(l+1)/gl ≈ 1, which

is the uniform density of atoms case. A systematic decrease results in the VRS with higher order

modes (with increase in the l index of the LG mode) for a Gaussian distribution when σ ≈ ω0.

So in this case of a Gaussian atomic distribution co-centered with the FP cavity, the change in the

VRS with LGl 0 can be used to measure the atom density distribution in the radial direction. The

VRS with LGl 0 mode is higher than VRS due to LG(l−1) 2 mode, and so on for a Gaussian atomic

density profile.
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Figure 3.3: Theoretical estimation of VRS due to bright MOT as the MOT is shifted radially by
distance a. The continuous red curve is for 00 mode, the dashed orange curve is for 10 mode, the
dotted green curve is for 20 mode and the dot-dashed blue curve is for 30 mode.

For a Gaussian density of atoms shifted radially from the axis of the cavity by a distance a, the

number of atoms coupled to LGl 0 mode can be obtained by substituting the expression,
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ρ′(r, φ, z) = ρ0exp[−((r− a)2 + z2)/σ2] in equation 3.8 and using ā = 2(r− a)2/ω(0)2, which gives

N ′l ∝
∫ ∞

0
e−(αā)e−r̄ [L0

l (r̄)]
2dr̄ . (3.12)

The integrand of equation 3.12 is positive definite and decreases as a increases. In this case the

measured VRS due to the cavity coupled atoms reduces very quickly as the cloud of atoms is

displaced radially from the axis of the cavity. In the case of a single atom in the cavity, Nl =

|Ψl 0(ra, za)|2 where (ra, φa, za) are the coordinates of the atom’s position. [127, 130, 131, 134, 151]

If the atomic ensemble is a uniform sphere of radius rs and density ρs, which is co-centered with

the cavity,

Nl

Nat
=

2πρs
∫ rs

0 r
√

(r2
s − r2) e−r̄ [L0

l (r̄)]
2dr

(4πρsr3
s/3)

, (3.13)

where Nat is the total number of atoms. However when L� rs � ω(0), for small values of l, we

get Nl = Nat.

Thus from the above analysis, we conclude that it can be determined whether the density of atoms

is uniform or a Gaussian distribution in an experiment which measures VRS. If the atomic ensem-

ble is not radially symmetric, i.e. σx 6= σy, though the VRS with different LG modes can be

numerically calculated, the ellipticity in the atomic density profile cannot be retrieved from the

measured values of VRS with different modes. Thus we approximate the density of atoms to a

spherical Gaussian distribution with σ = (σxσyσz)
1/3. For the bright-MOT case presented in this

paper, we take σz = σy as the magnetic field gradient in y and z directions is the same, as are the

laser parameters, and we therefore use σ = (σxσ
2
y)

1/3.

3.3 Experimental details and methods

We prepare a magneto-optical trap (MOT) of 85Rb (rubidium) atoms, which is well overlapped

with the mode of a medium finesse, near con-focal FP cavity. The coupling of both a bright-MOT

and a dark-MOT to the fundamental and higher order Laguerre-Gaussian (LG) mode, is studied
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experimentally. The fluorescence of the bright-MOT is recorded on a calibrated photo multiplier

tube (PMT1) and on a CCD camera, to determine the atom number and density distribution re-

spectively.

The VRS calculated using the experimental density as input and the measured VRS for the dif-

ferent LGl 0 modes are in very good agreement. This validates the VRS measurement for the

determination of the atomic density. On the other hand, the a toms in a dark-MOT are trapped

and shelved in the lowest hyperfine F= 2 level and do not interact with the cooling or repumping

laser beams, see figure 3.5. In this case, the in-situ atomic density cannot be determined via the

above fluorescence measurements but the cavity measurement can be used to estimate the density.

However, this requires the VRS measurement to be performed for different LGl 0 modes.

The atom-cavity coupling is investigated for the cylindrically symmetric Laguerre-Gauss LG0 0,

LG1 0, LG2 0 and LG3 0 modes. As each of these modes has a different spatial distribution, the

density variation of the trapped atoms integrated along the cavity axis can now be explicitly mea-

sured, assuming cylindrical symmetry. The dependence of VRS on the choice of the transverse

mode of the cavity allows and extends the utilization of FP cavities for measurements.

In particular, the ability to estimate in-situ density profile of atoms (or molecules, or ions, in future

experiments) in optically dark and steady state traps, while using minimal probe intensities can

be used advantageously in hybrid trap experiments [41, 77, 135, 154]. In what follows, we first

describe the experimental system and use the system specific numbers and atomic parameters

to model the atom-cavity collective strong coupling as a function of different transverse modes,

present the results of measurements and compare the experimental results with the theoretical

model, which shows very good agreement.

The experiment has a near con-focal FP cavity with mirrors of radius of curvature 50 mm placed

at a distance of L = 45.7 mm, which allows us to create a MOT within the cavity as shown in

figure 3.4. The mode waist ω(0) for LG0 0 mode for the above parameters is 78 µm. The cavity has

a finesse of F ≈ 600 and its length can be tuned across a few free spectral ranges (FSR) with a ring

shaped piezoelectric transducer (PZT) on which, one of the cavity mirrors is mounted, see figure

3.4.
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Figure 3.4: Schematic of experiment. MML is a mode matching lens used for coupling of light to
the FP cavity, F is an optical bandpass filter to block any stray light of frequencies far from ωa, BS
is a beam splitter, PMT1 and PMT2 are photomultiplier tubes and CCD1 and CCD2 are imaging
cameras. The cavity resonant frequency ωc of a particular transverse mode is matched with ωa
by adjusting the cavity length using the annular PZT and the cavity probe laser frequency ωp is
scanned around ωa. Inset: The contour plot for the density distribution of the 85Rb MOT atoms
which fluoresce with natural transition frequency ωa are imaged by CCD1.

Details of the full hybrid trap arrangement can be found in previous experimental work [77, 88,

89, 104, 124, 143, 155]. The PZT allows tuning the resonant frequency of a particular LG mode of

the cavity ωc to the atomic transition frequency ωa. The frequency of the cavity in-coupled probe

light ωp, is scanned across ωa and the transmission signal of the probe light through the cavity is

measured by a photo multiplier tube, PMT2. Although the cavity is not locked, the frequency scan

of the probe frequency is much faster than the drift rate of the cavity, once the cavity resonance

condition is manually set. The drift during one full set of measurement is calculated to be less

than ±1 MHz, which can effect the measured VRS by up to +0.5 MHz. This VRS drift is estimated

using the formalism of J. Gripp et al. [156]. This effect is less than the natural linewidth of atoms

and is smaller than the statistical error bars on measurements.
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Figure 3.5: The relevant 85Rb energy levels and the transitions used in the experiment are illus-
trated. In the figure, CL is the cooling laser, RLB and RLD are the repumping laser for the bright-
MOT and the dark-MOT respectively. The probe lasers for the bright-MOT and the dark-MOT
VRS, PLB and PLD, are scanned across the identified transitions.

The frequencies relevant to the experiment are illustrated in figure 3.5. The PMT measures a

signal in the form of a single transmission peak at ωc, when the cavity is empty while, with the

MOT atoms in the cavity, the transmission is modified to shows two peaks, as shown in figure

3.6, separated by the VRS frequency interval given by 2h̄gl m ∝
√
Nl m, where gl m is the collective

coupling of atoms and Nl m is the number of atoms coupled to the cavity mode LGl m. Below we

measure the VRS for the atomic distribution using the various LGl 0 modes. [49, 93, 118, 124, 143,

147, 153].
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Figure 3.6: a. Empty cavity transmission for LG0 0 cavity mode. b. Transmission through cavity
with co-centered bright-MOT atoms. The continuous blue curve shows VRS for LG0 0 cavity mode
and the dashed pink curve showing VRS for LG3 0 cavity mode. The VRS signal for LG0 0 mode
has larger width and exhibits features of slight non-linearity due to higher peak intensity as a
result of smaller mode cross section.

For a bright-MOT (which has atoms in both the ground and electronically excited state at any in-

stant), the repumping beams are combined with all the 6 cooling beams, and for the dark-MOT

(where the central MOT atoms are not repumped and so are optically pumped into the dark

ground state), 2 hollow repumping beams with a dark spot of diameter 2mm in the center, are

combined with 2 of the horizontal cooling beams [77]. To measure VRS due to bright-MOT atoms,

the cavity probe frequency ωp is scanned across the F= 3 to F′ = 4 atomic transition. On the other
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hand, for measuring VRS due to dark-MOT atoms, ωp is scanned across the F= 2 to F′ = 3 transi-

tion. Different transitions are used to probe the atom-cavity coupling in the bright and dark MOT

cases because the ground state population of the atoms is in different states. gl depends on the

dipole matrix element µa of the probed transition which is different for the bright-MOT and the

dark-MOT cases [157]. The transition dipole moment with isotropic polarization for respective F

and F ′ is the relevant µa and the measured VRS is independent of the polarization of the probe

beam [124]. The characterization of the bright-MOT and the dark-MOT have been described in

earlier work [77, 89, 104]. The VRS measurements with dark-MOT were performed by Dr. Sourav

Dutta.

We have shown in earlier work that VRS measurements are independent of the polarization of

the probe [124]. This is consistent with the present measurement. The in-situ measurement of

the VRS directly for the bright-MOT atoms is complicated by the coupling of MOT light into the

near resonant cavity mode [155]. Therefore, to measure the atom coupling variation with the probe

light of specific spatial modes, we switch off the cooling lasers for 1 ms, keeping re-pumping lasers

on, thereby optically pumping atoms into the F = 3 state and within 0.5 ms scan the probe laser

back and forth across the atom-cavity resonance, long before the atoms leave the trap region. The

ballistic expansion of the atomic cloud during this time has been determined in Ray et. al. [124] to

be less than 1% of our MOT size. As the two VRS peaks occur at different times the effect would

be different on each. However, no corrections for this expansion has been made while presenting

results of this paper because this correction is substantially less than the statistical error of the

measurements. For the dark-MOT, since the atomic fluorescence is severely suppressed, in-situ

measurement of VRS can be done with the dark-MOT [77, 104].

The cavity probe light is taken from the output of a single mode, polarization maintaining fiber

and has a Gaussian intensity profile. This TEM0 0 single mode beam has good mode matching with

the LG0 0 cavity mode, and has poor mode matching with higher order LGl 0 cavity modes. There-

fore higher input probe powers are required for obtaining a measurable VRS signal with higher

order modes. This also limits the number of cavity modes up to which we can measure VRS. For

the experiment the input light power is adjusted such that transmitted light output power through

the empty cavity for different LG modes is constant and is sufficient to measure the VRS. We only
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scan the cavity length holding to the best cylindrically symmetric LG0 0 mode. This ensures that

the conditions for measurement with different modes do not change significantly, we also verify

this by explicitly imaging the cavity output mode.

3.4 Results for VRS with different modes

The collective strong coupling of rubidium (Rb) atoms in a magneto-optical trap (MOT) to the

Laguerre-Gaussian (LG) modes of a Fabry-Pérot cavity is investigated. Bright and dark 85Rb MOT

atoms are prepared at the geometric center of the cavity and the vacuum Rabi splitting (VRS) of

the collectively coupled atom-cavity system is measured for LGl 0 (l = 0,1,2,3) modes.
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Figure 3.7: VRS for different LG modes due to bright-MOT measured on the F = 3 to F′ = 4 tran-
sition. Blue circles are experimental values of measured VRS and the blue error bars are one stan-
dard deviation. The red squares are calculated values of VRS, usingNat measured by PMT1 signal
and σ obtained from the Gaussian fit to CCD1 image of the MOT, for different cavity modes. The
red error bars include estimated errors in calculated VRS due to statistical and least count errors
in measured Nat and σ.

The experimental results for the bright-MOT are shown in figure 3.7. Here we see the VRS signal

measured with a bright-MOT and the effective number of atoms coupled to the cavity mode (Nl)

as a function of changing LG modes. Care has been taken to ensure that the MOT is well centered,

by maximizing the VRS signal with the LG0 0 mode while ensuring the MOT is symmetric. It is

observed that the measured VRS decreases as l index increases, for identical initial MOT atom
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number and MOT density profile. This matches the expected variation for a localized atomic

ensemble with a three dimensional Gaussian distribution of atoms, as expressed in equation 3.11.

Calculated values of densities are expected to be higher than measured values for two reasons.

One, we have neglected MOT expansion before measurement of VRS and two, any finite amount

of probe intensity leads to a reduced measure of VRS [104, 156, 158]. We have taken necessary

measures to minimize these effects by optimizing the probe beam power and the measurement

interval timing.
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Figure 3.8: VRS with a Dark-MOT for different LG modes measured on the F = 2 to F′ = 3 transition.
Blue circles are from experimental measurement of VRS and the blue error bars are one standard
deviation on either sides of the mean value of corresponding measurements.

For the bright-MOT, the best fits for parameter σ = (σxσ
2
y)

1/3 from the MOT image is obtained to

be 209.3 ±3.9µm while the least count error due to the size of pixels in CCD1 is 4.6 µm. The total

number of atoms in the MOT, Nat = (1.16± 0.03)× 106 is obtained from PMT1 signal. This gives

the peak atom density to be ρ0 = (6.43± 0.67)× 1010 cm−3. The VRS calculated for this values of

Nat and σ using equation 3.8 are in good agreement and this can be seen in figure 3.7. The possible

source of systematic errors in measurement of Nat due to cooling laser power fluctuations (± 3%)

is estimated to be less than 3%. However, accounting for a maximum possible error of ±0.5 MHz

in measurement of the detuning of the cooling beams, we get a maximum potential systematic

error of ±8% in the atom number measured through fluorescence. These errors have not been

shown in figure 3.7, where only the statistical errors and least count errors are accounted for in
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the displayed error bars. In principle, measurements can be made with MOT atoms whose center

is displaced from the cavity axis. However, shifting the MOT atoms spatially with respect to the

cavity axis, while maintaining the density profile is challenging. Such a measurement is much

more amenable with dipole trapped atoms within the cavity mode.

In the case of the dark-MOT, atoms are optically pumped out of the cooling cycle, which allows

for an in-situ detection of atoms of a dark-MOT using cavity coupling and VRS. For the dark-

MOT, the VRS for the different LGl 0 modes used shows no statistically significant change, which

is illustrated in figure 3.8. This is in stark contrast with the results for the bright-MOT, where

monotonic decrease is seen in the VRS, with increase in the l index. The constant VRS measured

as a function of the different LG modes is consistent with the constant density of atoms in the

central region of the dark-MOT, within lengths of order of ω0, as discussed earlier.

Although the dark-MOT cannot be imaged in-situ, the 2 hollow repumping beams can be quickly

changed to non-hollow beams and the obtained PMT1 signal can be used to measure the total

number of atoms in the dark-MOT. Applying this method, we obtain the number of atoms in

our dark-MOT to be ≈1.4×106. The measurement in figure 3.8 is a direct in-situ measurement

of dark-MOT atoms coupled to a cavity. The constant atom density is expected as the cooling in

the central region of the dark-MOT stops, and the energy of the atoms is sufficient to distribute

them uniformly in the dark spot region of the MOT. Assuming uniform atomic density ρs, within

a sphere of radius rs and by numerically solving equation 3.13, we calculate the size of dark-MOT,

rs to be 222±7 µm, and the density in the central region of the dark-MOT, ρs to be 3.1± 0.3× 1010

cm−3. The obtained value of rs is ≈ 3 times ω(0) which is larger than the waist of the highest LG

mode used.

3.5 Discussion and applications

The simple theoretical model for this process described earlier and the experimental measure-

ments are found to be in close agreement with each other. We show that the density distributions

of atoms, which are collectively strongly coupled to the cavity mode can be probed by varying
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the cavity spatial mode. The method works for trapped and free flight atoms, as has been demon-

strated. As different transverse modes have different spatial extents and spatial profiles, varying

these directly samples the extended atomic distribution. Further, since the atoms are collectively

strongly coupled to the cavity, the spatial measurement transforms into a frequency measurement,

which is fast and robust in implementation. This is a robust method since sensitivity to the fluctu-

ations in the atom number is suppressed due to the
√
Nc dependence of the VRS. It should be kept

in mind that if the density distribution is regular and cylindrically symmetric, then measurements

with different transverse modes can measure the spatial density profile of the ensemble of atoms.

In principle when the entire distribution is shifted off axis, the density distribution can still be

measured, though conducting such measurements with a MOT is very intricate as the atomic den-

sity profile changes as we shift the MOT. However for dipole trapped atoms, this method would

be effective. In the case when the ellipsoidal density distributions, the method does not apply. The

method can be flexibly adapted to a wide variety of measurements in the future, expanding the

tool-box of available techniques for the measurement of atoms coupled to a cavity.

In systems like a dark-MOT, this method can be used to measure in-situ density profiles which is

challenging to measure in other available methods like absorption imaging where, the resonant

light used can alter the state preparation instantaneously and can perturb the atomic density pro-

file. Since the cavity transmission is suppressed for resonant light due to VRS, the probe does not

interfere with the state preparation of the atomic ensemble. A combination of spatial mode de-

pendent measurement with a number dependent frequency measurement can propel cavity based

measurements into new applications.

In connection to our original quest of using optical cavity as a tool to investigate ultracold ion-

atom interactions, we conclude that this method of probing lacks the necessary resolution. Cavity

based non-destructive measurements to differentiate the effect of small interactions due to low

number of ions may not be feasible. The scope for using higher order modes to our advantage is

limited given that the atom cavity coupling is lower for these modes. The weak interaction with

ground state ions poses difficulties for probing with any 2-photon Raman or electromagnetically

induced transparency (EIT) processes as well, pointing to the need for an alternative destructive

direct detection mechanism for the ions with the present technology.
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Chapter 4

Theory for Ultracold Homonuclear

Ion-Atom Collision and Interaction

In order to devise the experiment for understanding ion-atom interactions in the quantum regime,

it is imperative to understand what the two body ion-atom interaction is theoretically. The inter-

action between the ion and atom is mediated by the molecular ion potential. The bound states

represent the the molecular ion, while the continuum states represent the interaction between the

free ion and atom. Hence the entire interaction between the ion and atom is determined by the

molecular potential and its scattering states, the knowledge of this becomes imperative. In this

chapter we calculate the molecular potential for the Li(Lithium) ion-atom system and the scatter-

ing cross sections for this system as a function of collisional energy.

While previous calculations existed, we chose to perform our own calculations of molecular po-

tentials, since the cross sections determined from the earlier calculations showed large variations

at the very low energies, where quantum effects manifest. This effort also helped us understand

the nuances of these calculations so that we could then appreciate how interactions/collisions oc-

cur at the lowest energies, where quantum effects manifest. Once this is understood, knowledge

of the transport properties of the positive ions in a gaseous medium can also be understood, us-

ing the binary ion-atom interaction as its underpinning. This calculation therefore also forms the

basis for the understanding of many problems in charge dynamics. It is possible to independently
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probe and detect the ion species in many experiments, and this enables the study of the interac-

tions between charged particles and neutral particles. For an atomic ion in a dilute atomic gas, the

ion atom collisions are an available mechanism of interaction at all temperatures. For high energy

collisions, an ion-atom collision involves many partial waves `, and the well defined long-range

nature of their interaction [31, 92] allows a semi-classical description of the collision. Semiclassical

theories for collisions can compute the various possible collision outcomes, both elastic and inelas-

tic, for high temperatures or high collision energies [83, 84, 92]. In this case, the scattering cross

section for each channel is independently obtained and the resulting effects can be quantified.

Assuming that collisions are instantaneous, scattering cross sections signify the probability of oc-

currence of the particular channel of collisions. Any measurable phenomena that depends directly

on the rate of specific collisions, can be obtained from the scattering cross sections. If the collisions

are isotropic, other many body properties like diffusion coefficient, viscosity coefficient, can be ob-

tained as a function of this scattering cross section. However, when the collisions are not isotropic,

the corresponding cross section that determines each of these phenomena will have to be modi-

fied, and are known as diffusion cross section and viscosity cross section respectively [159]. The

formalism for these cross sections and the resultant observable properties is well established for

thermal gases [91].

At low temperatures, as only low energy collisions are allowed, the number of collision outcomes

possible get limited. The short range nature of scattering potential becomes increasingly signif-

icant and full quantum treatment becomes essential and will be discussed in this chapter. The

case of homonuclear ion-atom collisions is enriched by the presence of a symmetry against inter-

change of the ion and the atom. The calculation of collisional properties for Li+-Li system and the

resultant measurable parameters will be presented in later parts of this chapter.

4.1 Cold collisions

Experimental research on ion-atom interactions in dilute, trapped gas systems at ultracold tem-

peratures is rapidly evolving towards detailed investigation of the quantum dynamics of the re-
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sulting outcomes [13, 14, 16, 18, 21, 54, 56, 57, 78, 81, 160–163]. One of the main goals of cooling

an atomic ion using ultracold atomic gas with collisions has been realized in many experimental

configurations [14–16, 56, 161]. An atom and an ion mutually interact at large internuclear dis-

tance, R, through an attractive potential behaving as ∼ −αd/(2R4), where αd, the static dipole

polarizability depends on the internal electronic state of the atom. The origin of this potential is

that the atom, although neutral, gains an induced dipole moment as a result of the electric field

due to the charged ion. This induced dipole is then attracted by the charge. However, at smaller

internuclear separations, the ion-atom potential depends on the interaction of the electronic cores

of the ion and atom. This is given by the corresponding electronic state potential energy curves of

the molecular ion formed by the combination of this ion and atom [19, 21, 57, 90].

Despite continuous progress towards precise control of the trapped ion motion, reaching the ultra-

low relative energy regime (E/kB ≈ 1µK or lower) for ion-atom collisions remains challenging

experimentally. At these energies, only the first few partial waves contribute significantly to the

collision. More importantly, the contribution of these first few partial waves differs significantly

from their semiclassical equivalents obtained using just the well defined long range interaction

potential. Due to the limitations of ion cooling using in the presence of ultracold atoms and trap

imperfections in dynamical trapping, it is experimentally advantageous if the full quantum regime

can be realised at the highest possible temperatures [57, 90].

The centrifugal barrier induced by the angular momentum term for the p-wave (` = 1), which

has a height equal to 1/(2µ2αd) (in atomic units of energy), signifies the ultimate energy limit for

quantum collisions regime. This limit represented as a temperature is known as the s-wave limit,

as only the l = 0 partial wave contributes to the collisions. As the p-wave angular momentum

barrier will be high for low reduced mass, µ, choice of low mass atom and/or ion enables the

possibility to probe the quantum collision regime at relatively higher collision energies. For this

reason, lithium is implemented in several ongoing experiments [13, 17, 22, 164]. Most hybrid ion-

atom trapping experiments use an alkaline-earth ionic species suitable for laser cooling. Although

this aids the realization of low ion-atom collision energies, the choice of a heteronuclear ion-atom

combination excludes the resonant charge exchange (RCE) channel, where an electron of the atom

can be transferred to the ion in an elastic collision [14, 83, 161, 165].
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In previous experiments [14, 77], our group has consistently exploited the RCE in the study of

ion-atom collisions. We therefore focus this study on the scattering properties of Li+-Li in the

quantum regime. We consider the ultracold Li atoms in the ground electronic state and ignore the

hyperfine interaction. This leaves only the elastic collisions possible as there will not be enough

energy in the collisions to change the internal energy state of either of the colliding particles.

4.2 Li molecular ion potential energy curves
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Figure 4.1: Li+2 potential energy curves X2Σ+
g and A2Σ+

u , computed in the present work (MRCI-SD
with aug-cc-pCV5Z basis set), and respectively denoted as XTh1 and ATh1 are shown. The energy
differences ∆E with the curves calculated using the approach of (denoted by XTh2 and ATh2), are
shown in the inset.
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4.2.1 Ab initio Born-Oppenheimer PECs

We compute the ab initio potential energy curves (PECs) of the X2Σ+
g , the electronic ground state,

and the A2Σ+
u , the first electronic excited state, of the Li+2 molecular ion using the MRCI method

and the best available basis sets. The previous high quality calculations, report a significant dis-

crepancy (≈ factor of 2) between the calculations for ag [17], the scattering length for the X2Σ+
g

state, which determines the low-energy ion-atom scattering cross section. These molecular ion ab

initio PECs are smoothly matched to their physical asymptotic forms in the large-R range.

The X2Σ+
g and A2Σ+

u states of Li+2 under the Born-Oppenheimer approximation were calculated

using the MOLPRO package [166]. This approach is variational and ensures convergence towards

the best energies for both states with basis-set size. The PECs obtained with the largest available

basis set, namely augmented Dunning correlation-consistent, polarized valence, 5-zeta basis set

[aug-cc-pCV5Z] were calculated by Dr. Amrendra Pandey, who was a post-doctoral fellow in our

group. The details of this calculation have been described in Pandey et. al [167]. While the PECs

and phase shifts were calculated by Dr. Pandey, the entire problem was evolved and framed, and

the potentials’ asymptotic forms, the scattering formalism and computations were developed and

done by me. Its consequences for the ion-atom collision problem was also studied by me.

The accuracy of the ultralow energy scattering parameters calculated using these PECs depends

majorly on the precision of the PECs near the classical turning point. It has been inferred that

the precision of the ab initio PECs in the small R regimes is questionable although their behaviour

in this range is well captured. We have changed the classical turning point slightly to estimate

the effect of the imprecise PECs. We assert that the maximum possible correction is the differ-

ence between the classical turning point obtained with the largest basis set (aug-cc-pCV5Z) and

the smaller basis set (aug-cc-pCV3Z). We compute the resulting maximum inaccuracy in the scat-

tering parameters calculation. Due to the large discrepancies between ag values reported in the

literature, we determine bounds for ag so that the more precise calculations in the future should

not supersede the conclusions drawn here.
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We then derive the phase-shifts characterizing the 7Li+-7Li collision as functions of the energy.

The resulting scattering lengths ag and au of the X2Σ+
g and A2Σ+

u states, respectively, are both

computed to be positive with ag � au. Our results are consistent with previous studies on the

X2Σ+
g and A2Σ+

u PECs. We observe that the computed phase shifts are not as sensitive to many

computational or second order corrections to the ab initio PECs as they are to the nature of curves in

small-R region, due to the contribution of the core electrons. A convergence criterion is developed

to bound the range of uncertainty within which the values of scattering lengths, ag and au, are

constrained. We then evaluate the total cross sections by computing the phase shifts, and finally

provide recommended values for the cross sections and their bounds for the 7Li+-7Li system.

In order to provide a convergence criterion on potential energies, we compute the ab initio X2Σ+
g

and A2Σ+
u PECs with a series of aug-cc-pCVXZ basis sets (with X ≡ D, T, Q, 5) in the [2 a0 - 50

a0] internuclear distance range, with a 0.2 a0 step. They correlate to the lowest asymptotic limit

Li+(1S0) + Li(2S1/2). We report in table 4.1, the total potential energy at R→ ∞, i.e. dissociation

limit, E∞, and at the equilibrium distance, Re, i.e. Ee, the well depth De = E∞ - Ee, the position of

the repulsive wall Rin at the dissociation limit. The relative change ∆E∞ and ∆Ee of E∞ and Ee

with the increasing size of the basis set are also reported. The convergence of Ee for A2Σ+
u curve

is better than the one for X2Σ+
g as they are computed at large internuclear separations where the

electron correlation is better estimated even with smaller basis sets. The observed bound on the

E∞ indicates that molecular calculations of the Li+2 in the best limits will not result a bigger change

in the well depth, De, of X2Σ+
g than 10 cm−1 (difference between the De’s obtained in X ≡ Q and

X ≡ 5 cases) from the value obtained with aug-cc-pCV5Z basis set. Experimental value of the De,

listed in table 4.2, also supports the above theoretical bound.

The ab initio X2Σ+
g and A2Σ+

u PECs, relative to E∞ are shown in figure 4.1. The inset displays the

difference between these PECs with the ones obtained from the method of based on the represen-

tation of the Li+ cores by an effective core potential (ECP) and a core polarization potential (CPP)

(referred as the Th2 method), thus treating the Li+2 molecule as a one-electron system. The overall

agreement is satisfactory between the two approaches, with the largest difference at 12 a0 of about

1% in energy. Below 6 a0, the difference is much larger, which can be understood as the ECP+CPP

approach restrains the calculation from precisely representing the core-valence correlation at short
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internuclear distances.

4.2.2 Determination of asymptotic extension of PEC’s

The low-energy scattering wavefunctions need to be computed up to the large internuclear dis-

tances, with R� λ, where λ is the de Broglie wavelength of the colliding system (for 7Li+-7Li, 10

a0 < λ < 106 a0 for the collision energies 10−5a.u. > E > 10−15 a.u.). The ab initio PECs, in the

large-R limit, become less accurate as the binding energy is comparable to the error in the absolute

energy. Therefore we must use the asymptotic functional forms, V a
p (R), to extend the PEC’s,

V a
p (R) = V a

ind(R)∓ V a
exch(R); p ≡ {g, u} , (4.1)

where g and u corresponds to X2Σ+
g and A2Σ+

u respectively. The asymptotic induction term,

Va
ind(R), contains the contribution of multipole interactions between Li+ and Li and is expressed

as

V a
ind(R) = −

[
C4

R4
+
C6

R6
+
C8

R8
+ ...

]
, (4.2)

where C4 = αd/2, C6 = αq/2, C8 = αo/2, with αd, αq, and αo being the dipole, quadrupole, and

octupole static polarizabilities of the 7Li ground state atom. αd = 164.161 a.u., αq = 1423.415 a.u.,

and αo = 39653.720 a.u. The van der Waals interaction, varying as 1/R6, which is generally small

for ion-atom cases, along with any other higher order effects, will be accounted for in the modified

C4 finally used in the scattering calculations.

The asymptotic exchange term reads,

V a
exch(R) =

1

2
ARαe−βR

[
1 +

B

R
+

C

R2
+ ...

]
, (4.3)

where the parameters α = 2.1774 a.u., β = 0.6294 a.u., and B = 0.5191 a.u. are simple functions

of the 7Li ionization energy. The A and C parameters are obtained from the fits to the ab initio

exchange energy, given by half of the difference of ab initio A2Σ+
u and X2Σ+

g PEC’s with equation

4.3. The interval 23 a0 < R < 28 a0 is used in the fitting procedure, yielding A = 0.133899 a.u. and
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C = 27.7397 a.u. This interval gives us the fit with the smallest relative residuals. The ab initio

exchange energy intersects Va
exch(R) at R = 25.6 a0, which is selected as the point beyond which

the asymptotic expansions of equations 4.2 and 4.3 are used.

Figure 4.2: The asymptotically extended PECs X2Σ+
g (full red line) and A2Σ+

u (full blue line) of Li+2
are shown. The asymptotic induction and exchange functions, Va

ind(R) and Va
exch(R), the computed

induction and exchange functions, Vc
ind(R) and Vc

exch(R), are plotted for the comparison. The first
derivatives of X2Σ+

g and A2Σ+
u PEC’s, and Vc

ind(R) are drawn in the inset.

Va
exch(R) decays exponentially with R, and so in the large-R limit, only the contribution of Va

ind(R)

remains significant. Around 35 a0, Va
exch(R) becomes smaller than 0.1% of Va

ind(R). Moreover,

the contributions of the C6/R6 and C8/R8 terms become smaller than 1% of the induction energy

beyond 29.5 a0 and 12.5 a0 respectively. E∞ is obtained using a fit on the ab initio induction energy,
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given by average of A2Σ+
u and X2Σ+

g PEC’s, with the form given in the equation 4.2 using C6 as a

free parameter in the range 35-50 a0. For a calculation with aug-cc-pCV5Z basis set, change in the

E∞ for different fit ranges, varying from 25-50 to 35-50 a0, is ∼ 0.02 cm−1. After setting E∞ as the

origin of energies of the PECs, calculation of the extension of the potentials in the large R range is

performed.
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Figure 4.3: Potential energy curves near the repulsive wall (see insets) for X2Σ+
g (a) and A2Σ+

u (b),
computed using basis sets aug-cc-pCVXZ with X ≡ D, T, Q, 5 and corresponding position Rin of
their inner turning point at the dissociation limit E∞ ((c) and (d)). The selected ranges ∆R for the
variation of the repulsive wall of the aug-cc-pCV5Z calculations mimicking possible inaccuracies
for cross section calculations are shown: ∆R = ±rg,u with rg = 0.01 a0 and ru = 0.02 a0 for X2Σ+

g

and A2Σ+
u respectively.

In order to arrive at the large R extension of the potential, we work towards fulfillment of the fol-

lowing goals (i) keeping the PEC’s and their derivatives continuous at R = 25.6 a0, (ii) maintaining
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half the difference of the PEC’s equal to Va
exch(R) for R≥25.6 a0 and, (iii) as R→ ∞ the PEC’s ap-

proach Va
ind(R). First, a R dependent 1/R4 coefficient, C4(R), is calculated using the ab initio PECs,

C6 and C8 terms of Va
ind(R) in the range 20 a0 < R < 50 a0, where the PECs can be well expressed

as combinations of the asymptotic induction and exchange functions. Then, from the computed

C4(R), functional forms of the ∂C4/∂R, and C4(R) are obtained.

The function C4(R) in the large-R limit converges to the constant C4 = αd/2. Also, the computed

induction function, V c
ind(R), with C4(R) and ∂C4/∂R fitted to the ab initio PECs, implicitly includes

the van der Waals dispersion contributions. The asymptotic induction and exchange functions,

Va
ind(R) and Va

exch(R), the computed induction and exchange functions, Vc
ind(R) and Vc

exch(R), given

by ab initio potentials for R≤ 25.6 a0 and by their asymptotic extensions for R > 25.6 a0 along with

the extended potentials, Vc
g(R) and Vc

u(R), corresponding to X2Σ+
g and A2Σ+

u states, and their

derivatives for the internuclear distance range 15-45 a0 are shown in figure 4.2. The difference be-

tween Va
ind(R), which uses a constant C4, and Vc

ind(R), which uses a derived R-dependent function

C4(R), is quite evident in the 18-25 a0 range (see figure 4.2). This procedure fixes in a consistent

way the asymptotic form of the PEC’s for reliable scattering calculations at extremely low energies.

4.2.3 Criterion for bounds on the scattering parameters

The large variation in the previously reported low energy ion-atom cross section values is indica-

tive of it’s strong sensitivity to the ab-initio PEC’s. The low energy scattering solutions are found

to be very sensitive to small changes in the repulsive wall of the molecular ion potential energy

curves. To estimate this dependence a set of PECs for X2Σ+
g and A2Σ+

u are generated to estimate

the uncertainty in the scattering parameters. The primary reason for small-R sensitivity is the

increasing contribution of the core-electrons. For determining a set of PECs, the repulsive wall

position of the X2Σ+
g and A2Σ+

u is used as a parameter for representing the change in the small-R

region, i.e. ∀ R < Re. The variation in the small-R region of the potentials as a function of the cal-

culation accuracy can be estimated by comparing the De from the PECs obtained using different

methods and basis sets (table 4.2), with our values computed with basis sets aug-cc-pCVXZ with

X ≡ D, T, Q, 5 (table 4.1).
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Consequently, the difference between repulsive wall of PECs computed using aug-cc-pCV5Z and

aug-cc-pCVTZ basis sets is taken as the permissible range of change in the wall positions of the

PEC models with ∆R = ±(rg, ru) with rg = 0.01 a0 for X2Σ+
g and ru = 0.02 a0 for A2Σ+

u . The PECs

for cross section bounds are created by linearly scaling the R coordinate of the ab initio curves, ∀ R

< Re, for the required change of ∆R = ±(rg,ru) at the repulsive wall position Rin. The scattering

calculations are performed for the two bounding modifications to both X2Σ+
g and A2Σ+

u curves

with suffixes ":∆R = ±rg/u", and for ab initio curves denoted as ":∆R = 0". In order to apply

our methodology of bounds to scattering parameters, it is essential to perform the calculations in

which all electrons of the molecular system are variationally optimized. Also, in ion-atom systems

where next higher excited molecular ion PECs interact with the ground and first excited state, this

interaction needs to be accounted for example for alkaline earth metal ions like Be, Ca, etc.

4.3 Collision cross sections
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Figure 4.4: Quantum (modulo π) and semi-classical phase shifts as functions of the partial waves
`, for a collision along the X2Σ+

g :∆R = 0 and A2Σ+
u :∆R = 0 curves for the collision energies (a)

10−5 a.u., and (b) 10−6 a.u. The lines joining the points are a guide to the eye.
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Applying standard scattering theory based on the partial wave expansion of the total wave func-

tion in R, the Schrödinger equation for a single partial wave, `, at a collision energy E = h̄2k2/(2µ);

k = 2π/λ is

[
− h̄2

2µ

d2

dR2
+
h̄2

2µ

`(`+ 1)

R2
+ V c

p (R)

]
yE,`p (R) = E yE,`p (R) , (4.4)

where µ is the (7Li+-7Li) Watson’s charge-modified reduced mass, p ≡ g, u. The asymptotic form

of the wave function yE,`p (R) is given by yE,`p (R) ' kR[j`(kR)cos(η`p)−n`(kR)sin(η`p)], where j`(kR)

and n`(kR) are the spherical Bessel functions, and η`p is the quantum phase shift generated by

the scattering potential Vc
p(R). Equation (4.4) is solved numerically, and η`p is extracted at large

distances, namely at R = 10λ as the asymptotic limit for low energies when λ > 100 a0, and at R =

1000 a0 for higher energies when λ < 100 a0.
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Figure 4.5: Quantum phase shift (modulo π) of the X2Σ+
g :∆R = ±rg and X2Σ+

g :∆R = 0 curves as a
function of the collision energy for the partial waves (a) ` = 0, and (b) ` = 1. At low energies, the
change in the phase shifts for different PEC models are significant only for ` = 0.

54



In figure 4.5, the quantum phase shifts η`g for ` = 0, 1 are plotted as a function of the collision

energy for the ab initio PEC and the generated PECs with shifted repulsive walls, X2Σ+
g :∆R = ±rg.

At low energies, the effect is weak for ` > 0 as the centrifugal barrier becomes dominant in the

collision. Note that the s-wave (` = 0) phase shift changes sign when the repulsive wall is slightly

shifted, indicating the presence of a pole where the scattering length diverges. As a result, the

accuracy of the PEC becomes a major factor in determining the collision cross section. This is the

primary motivation for the extreme care taken in determining the scattering potential in section

4.2.1.

Figure 4.6: (a) Sg(E) for the generated X2Σ+
g :∆R = ±rg, and X2Σ+

g :∆R = 0 curves are plotted. (b)
Su(E) for the A2Σ+

u :∆R = ±ru and A2Σ+
u :∆R = 0 are plotted. In (a),(b), the semi-classical cross

section, 2826×E−1/3, is shown.

In figure 4.4, the quantum phase shifts η`p (modulo π) are shown for E = 10−5 a.u. (or ∼ 2 cm−1),

and E = 10−6 a.u. (or ∼ 0.2 cm−1). For large `, when the outer classical turning point at a given

collision energy, is such that Vc
p(R) can be approximated to the leading term −αd/2R4 of Va

ind(R),

one can define the semi-classical phase shift as η`sc ≈ (πµ2αd)/(4h̄
4) × E/`3 [165]. The semi-

classical phase shifts are in agreement with the quantum phase shifts for ` > Lsc, with Lsc = 41
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for E = 10−5 a.u. and Lsc = 19 for E = 10−6 a.u. Around E = 10−8 a.u. (or ∼ 0.002 cm−1), the

contribution to the cross section from partial waves ` > 10 becomes negligible.

Figure 4.7: Sce(E) for the two bounding modifications of PEC’s, X2Σ+
g :∆R = +rg, A2Σ+

u :∆R = +ru
and X2Σ+

g :∆R = -rg, A2Σ+
u :∆R = -ru, are shown along with the Sce for X2Σ+

g :∆R = 0, A2Σ+
u :∆R = 0

curves. Langevin and Langevin/4 are also plotted for comparison.

The scattering between 7Li+-7Li ion-atom system has a symmetry with respect to identity ex-

change between the colliding partners. A scattering event when the initial identities are preserved

is a direct elastic collision, whereas the event when the identities of the ion-atom pair are inter-

changed is termed as resonant charge exchange collision. The scattering amplitudes for A2Σ+
g

and the A2Σ+
u potentials, are defined as fg and fu respectively. The scattering amplitudes for di-

rect elastic and RCE collisions are given by (fg + fu)/2 and fce = (fg - fu)/2 respectively. We define
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Sg(E) and Su(E) in equation 4.5 and Sce(E) in equation 4.6, where dΩ is the differential solid angle,

as

Sp(E) =

∫
|fp|2dΩ =

4π

k2

∞∑
`= 0

(2`+ 1)sin2(η`p) , (4.5)

Sce(E) =

∫
|fce|2dΩ =

π

k2

∞∑
`= 0

(2`+ 1)sin2(η`g − η`u) . (4.6)

The average of Sg(E) and Su(E) has been identified as total cross section and Sce(E) as RCE cross

section when certain high energy approximations are made. Sg(E) and Su(E) for the 7Li+-7Li sys-

tem as functions of the collision energy are shown along with the semi-classical scattering cross

section, σsc(E), obtained using η`sc, in figures 4.6.a and 4.6.b. For 7Li+-7Li, σsc(E) = 2826×E−1/3

a.u. The Langevin expression for 7Li+-7Li, 56.92×E−1/2 a.u., and Langevin/4 are shown along

with Sce(E) in figure 4.7. In all cases, cross sections include the sum of first 100 partial waves. It

can be seen that Sce(E), in this case, predominantly falls in the range defined by Langevin and

Langevin/4. For low energies, Sce(E) varies significantly from the expected semi-classical picture.

For homonuclear systems, in principle, individual scattering channels cannot be measured inde-

pendently and therefore we compute the total cross section σtot(E), given in equation 4.7. The

expression for σtot(E) differs from the one usually employed in the literature; the derivation will

be discussed elsewhere. It has to be emphasized that usage of the expression in equation 4.6, or for

that matter decoupling the direct elastic and RCE channels is incorrect for ultracold temperatures.

The equivalences with the rightly evaluated cross sections in popular literature are accidental for

those particular ion-atom species [83].

σtot(E) =
4π

k2

[
x
[ ∑
even `′s

(2`+ 1)sin2(η`g) +
∑
odd `′s

(2`+ 1)sin2(η`u)
]

+ (1− x)
[ ∑
odd `′s

(2`+ 1)sin2(η`g) +
∑

even `′s

(2`+ 1)sin2(η`u)
]]
, (4.7)
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where x is a function of the nuclear spin I . For a half-integer nuclear spin, x = I/(2I+1). For

7Li, with I = 3/2, x is 3/8. The cross section evaluated using equation 4.7 differs significantly in

the s-wave limits with the value calculated as the average of Sg(E) and Su(E). For 7Li+-7Li, in the

s-wave limit, cross section obtained using σtot(E) decreases by 25% of the average of Sg(E) and

Su(E). The σtot(E) for the 7Li+-7Li is plotted along with the semi-classical scattering cross section,

σsc(E), in figure 4.8. Centrifugal barrier energies of the first few partial waves are also shown.
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Figure 4.8: The total collision cross section, σtot(E), of the 7Li+-7Li system in its first asymptotic
state, which involves the electronic states X2Σ+

g and A2Σ+
u are shown for the modified PECs

X/A:∆R = ±(rg,ru), and X/A:∆R = 0. The semi-classical cross section, 2826×E−1/3 and the cen-
trifugal barrier energies for ` = 1-5 are also shown.

Scattering length au, when compared with the characteristic interaction length scale R?, i.e. po-

sition of the ` = 1 barrier (αd × µ/h̄2)
1/2, which for 7Li+-7Li is 1024 a0, seems typical, while ag is

very large, see table 4.3. Also, Sg(E) and ag are more sensitive to the small-R region of the PEC and

consequently to the core-electron contributions than Su(E) and au. This sensitivity for the g-state
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is amplified for 7Li+-7Li system, which is also noted by Schmid et al. [17], due to proximity of a

scattering pole, i.e. the PEC has either about to acquire or just acquired a very weakly bound state.

X2Σ+
g , A2Σ+

u ∆R = ±rg,u ∆R = 0 Zhang et al. [171] Schmid et al. [17]

ag -6582/3948 20465 14337 7162

au 1432/1227 1325 1262 –

Table 4.3: 7Li+-7Li scattering lengths for the modeled X2Σ+
g :∆R =±rg, X2Σ+

g :∆R = 0 and A2Σ+
u :∆R

= ±ru, A2Σ+
u :∆R = 0 curves are listed. For direct comparison with Zhang et al. [171] and Schmid

et al. [17], the values obtained from X/A:∆R = 0 are appropriate.

The values of De calculated by Zhang et al. [171] and Schmid et al. [17] along with the value calcu-

lated in this work (table 4.2), fall within the experimental accuracy of 10464 ± 6 cm−1. However,

convergence of Ee and E∞, and variational nature of the calculation provide additional certainty

in our case. The constant shift due to relativistic corrections in the total energy does not affect the

scattering calculations. This is because the absolute value of the PEC is not used in the scattering

calculation, but the relative difference between the potential and E∞ is used and therefore constant

shifts do not contribute to the relative difference.

We find that 7Li+-7Li system in the X2Σ+
g state is close to a scattering pole, and therefore extreme

care is required in the computation of low energy scattering parameters. Scattering lengths for

X2Σ+
g :∆R = 0, and A2Σ+

u :∆R = 0 are 20465 a0 and 1325 a0 respectively, (see table 4.3). Scattering

length, ag, reported by Zhang et al. [171] and Schmid et al. [17] are 14337 and 7162 a0 respectively.

Schmid et al. [17] also provides a bound on ag as (107825 a0; 3664 a0) that corresponds to the

potentials scaled by (0.999; 1.001) to the computed PEC.

The possible errors in the cross section are estimated by controlled variations in the small-R region

of the PECs, assessing the change they bring to the phase shifts and cross sections in the low energy

limit. The scattering pole for X2Σ+
g occurs within the determined range of variations as shown in

the figure 4.3, particularly in between the PEC models ∆R = +rg and :∆R = 0 which is also evident

in the phase shift plot, figure 4.5, which prevents us from estimating the upper limit of the total

cross section.
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However, the lower limit of the total cross section is given by the ∆R = -rg,-ru curve. The setting

of this range will guard the values reported here against even more sophisticated calculations in

the future. The calculated value of the total cross sections is shown by the :∆R = 0 curve in figure

4.8. The cross sections are determined for a wide range of collision energy, from 10−5 to 10−15 a.u.,

which covers a large range of temperatures from few Kelvin (k) to few nano-Kelvin (nK).

Sg(E), Su(E), Sce(E), and σtot(E) in the temperature regimes below a few milli-Kelvin (mK), have

contributions only from few partial waves (about 5). In this regime, we observe that the cross

sections deviate from the semi-classical values, and result in the distinctive features that can be

explored in the future experiments. The total cross section for 7Li+-7Li system in the low energy

limit is 1.9×109 a2
0. When the collision energy is larger than a few mK, many partial waves partic-

ipate in the scattering and their contributions sum up to give the semi-classical value.

Figure 4.9: σtot obtained from partial wave method (full quantum treatment), is plotted along with
the high energy approximate σ̃tot, and the semi-classical result for ion-atom collision cross section
for both 7Li+-7Li and 6Li+-6Li systems.
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Our results for 6Li+-6Li system, on the other hand retrieve a narrow possible range for the collision

parameters, see figure 4.9. This is mainly because for this isotope mass, the system is far from

scattering poles. Therefore although, the same PECs with the same inaccuracies are employed for

evaluating the cross sections, the allowed values for scattering length are positive definite and of

the order of the characteristic collision length.

However, the 6Li isotope is a fermion with nuclear spin 1. The right usage of equation 4.7, gives

us a difference of ≈10% in the value of total collision cross section. While the agreement of the

cross sections calculated by the inappropriate approximation (σ̃tot = (Sg + Su)/2), is better for the

6Li isotope, the other popularly misapplied result of diffusion cross section being twice of Sce(E)

is seen to be invalid over a very large range of low energies in this case, see figure 4.10.

Figure 4.10: The comparison of the diffusion cross section obtained from partial wave method
(full quantum treatment), with the twice of Sce as done conventionally for high energy collisions,
Langevin, Langevin/4, and classical high energy expression for exchange form is shown for the
7Li+-7Li system in panel (a), and for the 6Li+-6Li system in panel (b).

The remarkable differences in the shape resonances and features on the cross section curves, for
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the two isotopes must be noted in figure 4.10. In fact the total cross section given by equation 4.7,

is a sum over the contributions from many partial waves (l’s). The contribution of the s-wave (l=0

partial wave), is constant for very low energies and it diminishes quickly as the collision energy

approaches the p-wave (l=1) barrier energy. The contributions to total cross section from partial

waves with nonzero l’s, have a characteristic feature of being maximum for collision energies

between lth wave barrier energy and l+1th wave barrier energy. The width of these resonances

is a topic of interest and further study. When the gap between these resonances is larger than

their widths, the total cross section curve features large dips and peaks, such as the ones in figure

4.10(b). Wider resonances and small gaps between them result in less pronounced shape effects

in the total cross section. For collision energies much less than the l=1 wave barrier, the total

cross section is just the contribution from the l=0 wave, and it is constant and isotropic. The

value of this constant cross section depends on the vibrational structure of the PECs, which is a

natural property of the atom we choose. For higher collision energies, the contribution of many

partial wave contributions gets merged as the resonances are not well separated. In this regime,

the quantum mechanical solutions to cross sections obtained through partial wave analysis show

good behavioral agreement with the Langevin curves. At even higher energies there is excellent

agreement with semi-classical solutions, as expected.

4.4 Experimentally relevant collision parameters

4.4.1 Collision rates

One of the measurable quantity in low energy collision experiments is the collision rate coeffi-

cient, which is defined as the collision rate per atom number density. In some well characterized

experiments, measurement of atom number loss rates can be correlated to an average collision rate

[75, 77, 89]. We have calculated these quantities for our lithium ion-atom systems as a function of

the temperature of the atom cloud. The thermal average collision rates, plotted in figure 4.11 are

evaluated using Maxwell-Boltzmann velocity distributions for the atoms.

Since the average collision rate coefficient is proportional to the cross section and the velocity of
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the particles, we observe that 7Li+-7Li system which has higher low energy cross sections, has a

larger collision rate. In addition, the shape resonances discussed in the previous section result in

local features in the curves.

Figure 4.11: Figure shows the collision rate coefficient for 7Li+-7Li and 6Li+-6Li systems over a
range of temperatures.

4.4.2 Collisions limited ion diffusion

Another experimentally measurable quantity in some scattering systems is the collisional diffu-

sion coefficient,Dcoll. the collision cross section which is relevant to evaluate the diffusion is called

as the diffusion cross section which is different from the total collision cross section, for anisotropic

collisions [83, 159]. The collisional diffusion coefficient is a measure of the limitation posed for the

mobility of the ion in the medium of atoms due to collisions. This sets the maximum speeds al-

lowed for an ion in the atomic cloud. We evaluate this quantity as a function of atom temperature,
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using the thermal averaging method mentioned above and the results are shown in figure 4.12.

Figure 4.12: Figure shows the plot for ion diffusion coefficient due to ion-atom collisions times the
atom number density as a function of temperature.

Diffusion coefficient is inversely proportional to the diffusion cross section, and therefore we see

the reverse trend of the one in collision rates plotted in figure 4.11. This is expected, as the large

number of collisions with atoms, restrict the ion from diffusing quickly in the atom cloud.

4.5 Summary

We calculate the isotope independent Li+-Li potential energy curves for the electronic ground

and first excited states. Scattering phase shifts and total scattering cross section for the 7Li+-7Li

collision are calculated with emphasis on the ultra-low energy domain. The effect of physically

motivated alterations on the calculated potential energy curves is a device used to bound the

accuracy of the low energy scattering parameters for this system. It is found that the scattering

length for the A2Σ+
u state, au = 1325 a0, is positive and has well constrained bounds. For the X2Σ+

g

state, the scattering length, ag = 20465 a0 has large magnitude as it is sensitive to the bounded
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change of the potential, due to the presence of a vibrational state in the vicinity of the dissociation

limit. It is easier to estimate collision cross sections for the 6Li+-6Li system with much better

accuracy. The diffusion cross sections evaluated for this system makes it abundantly clear that

the approximate relation between σD and Sce does not hold even for temperatures as high as 10

Kelvin, thereby invalidating the generalizations prevalent in the literature for cold collisions.
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Chapter 5

Charge Hopping in Ion-Atom Systems

and its Consequences for Charge

Diffusion

Interchange symmetry in particles which can swap identity, by exchanging a constituent sub-

particle between them, plays critical and specific roles across physics. In the previous chapter,

collisional transport properties of ions in an ultracold gas were explored. The full quantum treat-

ment for homonuclear ion-atom scattering which is relevant below temperatures of few milli-

Kelvin (mK) was described. We have demonstrated that the resonant charge exchange and direct

elastic collisions are completely indistinguishable. The resulting effect on the collisional diffusion

of an ion in ultracold atoms was shown. In this chapter, we explore the another kind of interaction

between ions and their neutral parent atoms in the ultralow energy regime, which is not collisional

in nature.

At lower temperatures and increased densities, due to increasing uncertainty in positions, partial

overlap of the position distributions of different particles is achieved. The large spread of atom

and ion thermal de Broglie waves allow electrons to hop from atoms to nearby ions even when

they are not in collisional proximity [165]. At such low temperatures, electron hopping provides
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an efficient charge diffusion in the neutral gas, as the ion-atom system becomes effectively con-

ducting. This can be seen as analogous to hopping conductivity in doped semiconductors, where

electrons hop from impurity atoms [92, 165].

The presence of this interchange symmetry has been shown to have some effect only in collisions

where the ion and atom come close to each other [11, 14, 70, 75, 78, 80, 82, 162, 177]. The charge ex-

change for large ion-atom separations is highly improbable due to large electron binding energies

in atoms. Here we theoretically study the dominance of charge hopping in the diffusion of a sin-

gle ion in an ultracold parent atom gas, at appropriate temperatures and atom number densities.

We compute the charge diffusion in this system for conditions where the collisional and the hop

processes occur independently. The measurable signatures of the charge hopping phenomena in

experiments are identified.

We present a theoretical formalism, consistent with early calculations, motivated by the state of

art experimental ability to probe exotic phenomena of quantum dynamics for ion(s) in ultracold

atoms [21, 31, 92, 165, 178]. This formalism of charge hopping dynamics as a result of ion and

atom delocalization is purely quantum mechanical. We conclude that the experimental conditions

needed to resolve this phenomena are challenging but accessible. Recent technological advances

in the field of ultracold hybrid ion-atom systems [15, 29, 30, 57, 82] permit the study of such

systems with precision and control. We present a first principles theoretical formalism which

describes the consequences of charge hopping in 3 dimensions, motivated by the state of art ex-

periments to probe the quantum dynamics for ion(s) in ultracold atoms [16, 19, 20, 179]. This sets

the agenda for the experiments we have built at the Raman Research Institute.

This mechanism of electron hopping and its consequences for charge transport have been studied

by Robin Côté [165] in 1 dimension, wherein some inconsistent application of concepts relevant

only to collisional charge exchange was done. In this work, the author has outlined the possibil-

ity of seeing charge conductivity due to hopping as opposed to the ion’s diffusive mobility, in an

ultracold gas of atoms. The principle mechanism for such a process is proposed to be led by the

quantum delocalization of ultracold particles. However, this initial study uses the length scale

obtained using charge exchange cross sections (which itself is inconsistent for ultracold systems,
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as argued in chapter 4), as a proxy for distance over which spontaneous exchange is allowed, to

evaluate ballpark hopping based charge conductivity. This evaluation, while seminal, also im-

plements a number of approximations which cannot be guaranteed for many real systems, apart

from assuming thermal gas behaviour irrespective of temperatures and densities. In order to as-

sess whether such a phenomenon of hopping conductivity is experimentally observable, it is im-

portant to go beyond the formalism of Côté [165], and make a complete analysis for real systems,

with consistent approximations. This is described in the rest of the chapter, and its conclusions for

the experiments presented.

We analyze the proposed delocalization led charge hopping, as an independent mechanism, from

first principle in a self consistent way, so that it can be applied to real experimental scenarios.

The results from this analysis point to important and new perspectives in dilute gas ion-atom

physics. Lithium (Li) offers the best atomic choice, as it is easily laser cooled and its light mass

implies that the delocalization for a given temperature is large, than for heavier atoms. This makes

lithium suitable for studying ultracold homonuclear ion-atom interactions, both collisional as well

as charge hopping based. For lithium ion-atom system, we show that charge hopping dominates

over collisions in experimentally accessible regimes, which leads to the trapping of the ion in a 3D

Gaussian distribution of atoms.

5.1 Formalism for charge hopping

Consider a single positive ion (A+), created by threshold ionization from an ultracold, dilute, non-

degenerate atomic gas ensemble of its parent atoms (A). In this case, any atom paired with the ion

has inversion symmetry. The consequence of this symmetry is that the charge can hop between the

components of the pair. This hopping has a probability which depends on the exchange energy of

the ion-atom pair, the velocities of the ion-atom pair (or the temperature for a thermalized pair),

and the distance between their mean positions. We need to use the mean measurable positions for

the particles as we are dealing with delocalized quantum particles. In this situation, the charge

can hop sequentially between atoms in the ensemble of atoms. This allows us to ask the question;

"where will the charge be located if measured after a time t, given its mean position at t = 0?"
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The answer to this question encompasses the stochastic scattering from both collisional diffusion

as well as charge hopping led diffusion. Below we develop the formalism to study this.
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Figure 5.1: Panel (a) illustrates the condition where λT � L, where charge hopping is very un-
likely as the atom and ion are well separated and although cold and delocalized, present a very
small probability for charge hopping. Panel (b) illustrates the case when λT ≤ L where the delo-
calized ion and atom start overlapping and the charge hop becomes probable. The blue and red
dot represents the instantaneous positions of the ion and atom at the time of charge hop, while
their average separation is L. The bottom frame shows the post hop atom and ion. In panel (c) the
sequential charge hops in a cloud of atoms is illustrated. In this situation charge hop with many
nearby atoms is probable leading to charge transport. In successive frames in (c), the atoms are
depicted in relative motion and therefore show small displacement and reordering. The symbols
are self explanatory and are used in the mathematical development below.

5.1.1 Probabilistic instantaneous separation

The thermal de Broglie wavelength for atoms in a thermal ensemble, λA = h/
√

2πmkB TA, is a

measure of the uncertainty in position or delocalization of an atom, where m is the mass and TA
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is the temperature of the atoms, kB is the Boltzmann constant and h is the Planck’s constant. This

delocalization is isotropic and does not change in time for a thermal ensemble. Let us represent

the delocalization of the ion as λI , see figure 5.1 for the depiction of the various length scales,

conventions and parameters. The probability distribution for position of the atom and the ion, pA

and pI , are 3 dimensional Gaussian functions centered at their respective mean positions, ~rA and

~rI with isotropic spread of λA and λI respectively as shown below

pA(~r) = (2πλ2
A)−3/2 exp

[
−|~r − ~rA|

2

2λ2
A

]
, (5.1)

pI(~r) = (2πλ2
I)
−3/2 exp

[
−|~r − ~rI |

2

2λ2
I

]
. (5.2)

While the separation in the mean values of the ion and the atom position distributions is L =

|~rA − ~rI |, the effective instantaneous separation, ρIA could vary from 0 to ∞ as a result of the

Gaussian nature of delocalizations. The probability distribution for the instantaneous separation

between the ion and atom, ρIA is given by combined probability that the instantaneous position

of the ion is ~r and the instantaneous position of the atom is ~r′ such that |~r′ − ~r|= ρIA, given by

PIA(ρIA) =

∞∫
0

pI(~r)

[ ∫
pA(~r − ~ρIA) ρ2

IA dΩ

]
d3r , (5.3)

where ~ρIA of magnitude ρIA is directed along the unit vector Ω̂. Let us write the instantaneous

positions as ~r = (x, y, z), ~r′ = (x′, y′, z′) and define the angles defining the unit vector Ω̂ as θ, φ

such that (x′, y′, z′) = (x− ρIA sin θ cosφ, y − ρIA sin θ sinφ, z − ρIA2 cos θ), we get

PIA(ρIA) =

∞∫∫∫
x,y,z=−∞

dx dy dz pI(x, y, z)

π∫
θ= 0

2π∫
φ= 0

pA(x′, y′, z′) ρ2
IA sin θ dθ dφ . (5.4)

Since this distribution does not depend explicitly on the mean position of the atom and ion, but

depends only on their separation L, we set ~rA = (0, 0, 0) and ~rI = (L, 0, 0) and without loss of
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generality, we get

PIA(ρIA) =

∞∫∫∫
x,y,z=−∞

π∫
θ= 0

2π∫
φ= 0

exp

[
−((x− L)2 + y2 + z2)

2λ2
I

]
exp

[
−x

′2 + y
′2 + z

′2

2λ2
A

]

×
ρ2
IA sin θ

(2πλIλA)3
dx dy dz dθ dφ . (5.5)

This can be rearranged as

PIA(ρIA) =

π∫
θ= 0

2π∫
φ= 0

ρ2
IA sin θ

(2πλIλA)3
× I1 × I2 × I3 dφ dθ , (5.6)

where

I1 =

∞∫
x=−∞

exp

[
−(x− L)2

2λ2
I

− (x− ρIA sin θ cosφ)2

2λ2
A

]
dx , (5.7)

I2 =

∞∫
y=−∞

exp

[
−y2

2λ2
I

− (y − ρIA sin θ sinφ)2

2λ2
A

]
dy , (5.8)

I3 =

∞∫
z=−∞

exp

[
−z2

2λ2
I

− (z − ρIA cos θ)2

2λ2
A

]
dz . (5.9)

Substituting the solution to the integrals I1, I2 and I3 over x, y and z in equation 5.6, we get

PIA(ρIA) =
ρ2
IA√

4πλ3
Iλ

3
A

exp

[
−L2 − ρ2

IA

2λ2
I + 2λ2

A

] π∫
θ= 0

sin θ exp

[
L× ρIA cos θ

λ2
I + λ2

A

]
dθ . (5.10)

Solving the θ integral in equation 5.10 gives equation 5.11, which is the exact probability distribu-

tion of effective inter-particle separation in 3D for isotropic de Broglie wavelengths.

PIA(ρIA) =
2ρIA

L
√

2π(λ2
A + λ2

I)
exp

[
−L2 − ρ2

IA

2λ2
I + 2λ2

A

]
sinh

[
L× ρIA
λ2
I + λ2

A

]
. (5.11)

Integrating this probability distribution given in equation 5.11 over the full range of ρIA gives a re-
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sult of 1, which is a necessary condition for a probability density function. In the low temperature

limit, the condition L� λA, λI is satisfied and therefore we get

lim
L

λA,I
→0

PIA(ρIA) =

√
2 ρ2

IA√
π(λ2

A + λ2
I)

3
exp

[
−ρ2

IA

2λ2
I + 2λ2

A

]
. (5.12)

From equation 5.12, we can see that at ultracold temperatures, PIA is maximum at the instanta-

neous separation of ρIA = 2
√
λ2
I + λ2

A. PIA(rIA) does not vary much with L for L < λA, λI .

5.1.2 Charge hop rate

The charge exchange rate in a binary ion-atom system is a function of the inter-nuclear separation,

R, given [165] by νex(R) = Vex(R)/h = |Vu(R) − Vg(R)|/h, where the two molecular potential

energy curves (PEC’s), Vg and Vu, have opposite symmetry [167]. The average charge hop rate

between an atom and an ion with separation between mean positions L, is given by the charge

exchange rate for a given ρIA weighted by the probability that the instantaneous inter-nuclear

separation is ρIA,

〈νh(L, λA, λI)〉 =

∞∫
ρIA = 0

PIA(ρIA)
Vex(ρIA)

h
dρIA . (5.13)

This integral is evaluated numerically with the lower limit replaced by the repulsive wall position

of the PEC’s and for the upper limit, a sufficiently large distance. We find for the case of Li that

the upper limit can be 200 a0 as the residual integral of Vex is negligible beyond it. The method

for creation of the ion (threshold ionization of an atom in the ultracold ensemble), ensures that the

initial ion delocalization is same as λA. With time, wavepacket expansion for the individual ion

can change the ion’s delocalization and can even make it anisotropic. We assume for the calcu-

lations done in this chapter that the ion remains thermalized with the atomic ensemble and that

frequent charge hops, will set the ion’s delocalization to be same as that of the atoms. Therefore

we assert that, TA = TI = T and λA = λI = λT as we ignore wave packet expansions and velocity

effects. These are valid assumptions, given the hop rates which are obtained, as will be seen later.
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Figure 5.2: Panel (a) shows the average hop rate between an ion-atom pair of 7Li as a function of
their mean separation, L, plotted for different temperatures, T . The top ticks mark the L for which
the condition L = λT is satisfied. In the inset, average hop rates for a fixed separation L= 1µm
(green solid curve), L = 0.5 µm (blue dot-dashed curve), L= 0.2µm (red dashed curve) and the
limiting case, L≈ 0 (black dotted curve) are plotted as a function of T with the vertical grid-lines
marking the L = λT condition. This illustrates that the temperature range where hop rates are
significant and the range where the low temperature limit holds revealing that hop rates diminish
for L > λT . Panel (b) shows the same plots for 6Li+-6Li system.
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The results here are for 7Li+-7Li and 6Li+-6Li systems with the atom in the ground electronic state.

Isotope effects for hopping mechanism are mainly due to mass dependence of λT . The electronic

state of the atom effects charge hop rates significantly as it changes Vex. Figure 5.2 shows that

the average charge hop rates between a pair of ion and atom increases when L decreases, and

saturates below L = λT . The hop rates for different values of L are equal to their L ≈ 0 limits

at very low temperatures, irrespective of the specific value of L, and deviate from the ultracold

limit as λT becomes less than L to show temperature dependent behaviour. Our results show

higher hopping rates for very small L’s at higher temperatures compared to lower temperatures.

This may seem non intuitive, but it is because of the smaller spread of the atom and ion wave

packets, the denominator which is the normalization over the extent of the wave packets reduces.

Although, the hop rates are high, it is not feasible to achieve such proximate mean separations

at high temperatures, also the resulting displacement if the charge due to hopping, would be

insignificant at such high temperatures.

5.2 Charge hopping in a uniform and continuous distribution of atoms

Let us first, for simplicity, assume the atom density to be described by a uniform and continuous

function. In this system, as we increase the atom number density, the ion can have a wavepacket

overlap simultaneously with multiple atoms which are at different mean separations as shown in

figure 5.1.c. We calculate the hop rate driven ion dynamics in this system and compare it with the

collisional transport of the ion in ultracold atoms with uniform density.

Solving for the limiting case where the atomic number density is continuous and homogenous

with magnitude n, the effective total hop rate is given by integrating the pairwise hop rates given

by equation 5.13 over the full volume,

νcontot =

∞∫
L= 0

〈νh(L, T )〉 n 4πL2 dL . (5.14)
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Substituting equation 5.13 in equation 5.14 and applying λA = λI = λT , we get

νcontot =

∞∫
L= 0

dL

∞∫
ρIA = 0

νex(ρIA)P 3D
ρIA

(L, T )n4πL2dρIA . (5.15)

Substituting equation 5.11 in equation 5.15 gives

νcontot =

∞∫
ρIA = 0

4
√
π n ρIA νex(ρIA)

λT

∞∫
L= 0

L sinh

[
L× ρIA

2 lambda2
T

]
exp

[
−L2 − ρ2

IA

4λ2
T

]
dLdρIA . (5.16)

Solving the integral over L gives

νcontot =

∞∫
ρIA = 0

4
√
π n ρIA νex(ρIA)

λT
×
√
π λT ρIA dρIA , (5.17)

which then gives

νcontot = 4π n

∞∫
ρIA = 0

ρ2
IA νex(ρIA) dρIA . (5.18)

From equation 5.18 we see that νcontot is independent of temperature or isotopic mass (λ), but de-

pends only on the choice of the atom and its internal state (νcontot ) and scales linearly with the atomic

density n. In order to estimate whether charge hopping will play a significant role in the dynamics

of the system, this total hop rate must be compared to the rate of ion-atom collisions for identical

parameters. The average collision rate z = n 〈σtot v〉T , where σtot is the total ion atom collision

cross section, v is the relative speed of the particles and 〈〉T represents the thermal average quan-

tity for temperature T , also scales linearly with density. Since both hop rate and collision rate

are directly proportional to n, the density independent functions νcontot = νcontot /n is compared with

kcoll = z/n (also known as collision rate coefficient), see figure 5.3. This figure shows that, for both

the 7Li and 6Li systems, the hop rate dominates the two-body collision ion-atom collision rates,

for the specified parameters range.
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Figure 5.3: Figure illustrates the comparison of collision rates normalized by atom density kcoll,
total hop rates per atom density for continuous atom density distribution, v̄contot and the total hop
rates per atom density for discrete atom density distribution, v̄tot for both 7Li+-7Li and 6Li+-6Li
systems, evaluated for atom densities n1 = 1019 m−3, n2 = 1018 m−3 and n3 = 1017 m−3 as a
function of temperature T are shown. This illustrates the large temperature where the hop rates
exceed the collision rates. The corresponding free space degenerate gas transition temperatures
are shown by the vertical bars.

Although the rates for hopping are much higher for ultralow temperatures and high atom number

densities, whether hopping can be experimentally differentiated can be determined by computing

the diffusion of the ion. By measuring charge diffusion directly in an experiment, it is possible

to differentiate the effects of the new phenomenon of charge hopping from that of the known

collisional phenomenon.

Merely the hop rate being higher than the collision rate is not enough to do so, if the effect pro-

duced by such hop rates remain insignificant. The diffusion coefficient for the charge due to hops

is given byDh =
〈
∆r2

I

〉
/2d∆t, where rI is the magnitude of position of the charge in time interval
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∆t for d dimensional space. For a three dimensional uniform continuous cloud of atoms, consider

a time interval ∆t = 1/νcontot in which one hop happens on an average. The probability that the hop

happens over a distance of L, PL is given by

PL = 〈νh(L, T )〉 n 4πL2 dL . (5.19)

Using
〈
∆r2

〉
=
∞∫
0

L2 PL dL and d = 3, we get

Dcon
h =

∞∫
L= 0

L2

6
〈νh(L, T )〉 n 4π L2 dL . (5.20)

Substituting equation 5.13 in equation 5.20 and solving gives

Dcon
h =

2π

3
n

∞∫
r= 0

ρ2
IA(ρ2

IA + 6λ2
T ) νex(ρIA) dρIA . (5.21)

It can be seen from equation 5.21 that Dcon
h /n is of the form D1 +D2/T where D1 and D2 are con-

stants which depend only on the internal state of the atoms and that Dcon
h is directly proportional

to the atom number density. On the other hand, the collisional diffusion coefficient for an ion in a

thermal gas of atoms, discussed in the previous chapter, is given by [92, 159]

Dcoll =
3
√
π

8n 〈σD〉T

√
kB T

m
. (5.22)

As Dcoll ∝ 1/n and Dcon
h ∝ n, higher atom number densities and low temperatures favour hop

mediated charge diffusion over collisional ionic diffusion, as seen in figure 5.4.
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Figure 5.4: Panel (a) shows the diffusion coefficients for the, collision mediated ion transportDcoll,
hop mediated charge transport for continuous density distribution of atomsDcon

h and the hop me-
diated charge transport for discrete density distribution of atomsDh for 7Li-7Li system as function
of temperature T . In both panels, n1 = 1019m−3 and n2 = 1018m−3. Panel (b) shows the same plots
for 6Li+-6Li system. This shows that a temperatures of few µK and densities higher than 1018 m−3

will be needed to observe the dominance of hop mediated diffusion over collisional diffusion,
which is a much smaller parameter space than the one in which hop rates are higher than collision
rates.

78



5.3 Charge hopping in discrete cloud of atoms

When the atomic number density is taken as a discrete, random, homogenous distribution with

magnitude n, which is more realistic, the volume integrals used above are replaced by summations

over different particles. The mean αth power of the distance to the jth nearest neighbour, given by

(see Appendix. A) 〈
rαj
〉

=
Γ(j + α

3 )

(j − 1)!

(
3

4π n

)α/3
, (5.23)

where α can be any real number, is used to get the average total charge hop rate between an ion

and all the atoms around it,

〈νtot〉 =
∞∑
j= 1

〈νh(〈rj〉 , T )〉 . (5.24)

We define a quantity νtot = 〈νtot〉 /n and numerically evaluate this for relevant densities as a

function of T , which are compared with νcontot and kcoll in figure 5.3 for both 7Li+-7Li and 6Li+-

6Li. The total hop rates for a discrete atom distribution are similar to that for a continuous atom

distribution with the same number density for lower temperatures. At higher temperatures, they

diverge and fall quickly, see figure 5.3. illustrates the range of temperatures and density where

hopping rates are significantly larger than the ion-atom collision rates.

The hop mediated diffusion coefficient for the case of uniform discrete atom cloud case is

Dh =
∞∑
j= 1

〈
r2
j

〉
6
〈νh(〈rj〉 , T )〉 , (5.25)

which is evaluated using equation 5.13 and equation 5.23, for relevant atom number densities as

a function of T and plotted in figure 5.4 along with Dcon
h and Dcoll. Figure 5.4 shows that n >1018

m−3 give larger hop mediated transport than the collisional diffusion at few µK temperature. The

equivalence of Dcon
h and Dh for low temperatures is also seen, which illustrates the validity of the

continuum approximation in the low temperature limit. The results for a continuous distribution

of atoms hold in the ultracold limit for high densities. These give well defined analytical expres-

sions which work out to give the same results as the mean values calculated for a uniform discrete
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distribution. The range of temperature and atom density needed to observe a pronounced hop

diffusion for a cloud of thermal lithium atoms, is restricted but experimentally accessible.

5.4 Charge trapping in density gradient of Gaussian atom distribution

One practical experimental system where these ion diffusion mechanisms can be tested is that of a

localized, 3D Gaussian distribution of atoms, centered at the origin, with number density given by

n = n0 exp
[
−r2

G/2σ
2
]
, as a function of the magnitude of the position ~rG = (xG, yG, zG), where n0

is the peak atom number density. The average charge hop rate in this non-uniform cloud depends

on the position of the ion, ~rI as it depends on the local atomic number density. The rI dependent

hop diffusion coefficient is given by

Dh(rI) =
2π

6

∞∫
rh = 0

π∫
θh = 0

(r2
h + 2rhrI cos θh) 〈νh(rh, T )〉

n0 exp

[
−(r2

I + r2
h + 2rIrh cos θh)

2σ2

]
r2
h sin θh drhdθh

, (5.26)

where the average hop distance, rh, which depends on the local neighborhood at the ion position

~rI , is given by

rh(rI) =
∞∑
j= 1

〈rj(rI)〉 〈νh(〈rj(rI)〉 , T )〉
〈νtot(rI)〉

. (5.27)

In the continuum case, which is consistent with the ultracold limit for this system, taking a number

density of atoms n(rI) = n0 exp−r2
I/(2σ

2), we get

rh(rI) =

∞∫
L= 0

L 4πL2 n(rI) 〈νh(L, T )〉 dL

∞∫
L= 0

4πL2 n(rI) 〈νh(L, T )〉 dL
. (5.28)

Since n0 is in both numerator and denominator, the average hop distance at a given ion position

rh(rI) becomes independent of the magnitude of the atom number density n0, and depends only

on the geometric parameter σ and temperature T . An interesting consequence of the anisotropic
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density gradient is that Dh(rI) given in equation 5.26 can become negative in certain spatial re-

gions. When placed in these regions, the charge moves closer to the center of the atomic cloud

over time due to hopping. The condition for Dh(rI) < 0 is given by

π/2+θc∫
θh = 0

exp

[
−2rI rh cos θh

2σ2

]
sin θh dθh ≤

π∫
π/2+θc

exp

[
−2rI rh cos θh

2σ2

]
sin θh dθh , (5.29)

where θc = sin−1 (rh/2rI), the left hand side of the equation 5.29 is the probability that the mag-

nitude of ion position after charge hopping is greater than that of before hopping, and the right

hand side of the equation 5.29 is the probability that the magnitude of ion position after charge

hopping is lesser than that of before hopping. This gives the condition required for stable, diffu-

sive trapping confining the position magnitude of the charge rI , as

Dh(rI) +Dcoll(rI) ≤ 0 , (5.30)

which is demonstrated in figure 5.5 Simulations for trajectories of the ion undergoing charge hop-

ping in 3D Gaussian atomic cloud with σ = 100µm are performed. Here we ignore collisions with

atoms and allow the ion to move ballistically between hops. The results are shown in figure 5.6

where the comparison with a collision-less ballistic trajectory and collisional diffusion is shown

for each case.

A random list of distances to the nearest atoms from the ion is generated using the conditional

probability distribution P (rj |rj−1) (see Appendix. A), until the change in the total charge hop rate

becomes negligible.

P (rj |rj−1) = 4π n r2
j exp

[
−4πn(r3

j − r3
j−1)

]
. (5.31)

In the interval between two hops, given by a Poisson’s distribution with mean 1/νtot, the ion

is allowed to move ballistically with a velocity taken from Maxwell Boltzmann distribution for

temperature T . A hop is performed by swapping identity of the ion with one of the nearby atoms

from this new location. For this a list of neighbouring atoms is made again and one of them is

picked with weight factor of hop rate to that atom.
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Figure 5.5: The diffusion coefficients of a single ion starting at the centre of a Gaussian distribution
of atoms of peak density n0 = 1019 m−3 and σ = 100µm is shown in panel (a). The collisional dif-
fusion (large dashed, green) moves the ion away from the trap centre monotonically. The hopping
diffusion coefficient (small dashed, blue) first causes the ion to move outward for rI < 1.24σ, and
inwards for rI ≥ 1.24σ. The net diffusion coefficient of the ion (thick yellow) is a result of the
combination of these two distinct processes. It make two intercepts at zero diffusion coefficient,
one at 1.25σ and the other at 2.48σ. A thermal ion starting at rI < 2.48σ will move to stabilize at
≈ 1.25σ and an ion beyond 2.48σ will escape. This shows that there is a shell of diffusive stability
for a ion. Panel (b) is a contour plot of the total diffusion coefficient in a plane and the red arrows
show the direction and magnitude of average diffusion at each point in the plane. Here, the shell
of stable equilibrium is shown by the black circle and the orange circle shows the radius beyond
which inward diffusion is not likely. This shows that the presence of the hopping mechanism re-
sults in ion trapping by a gradient atom distribution and charge localization to a spherical shell.
This provides a very clear experimental signature of charge hopping.
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While the separations used are the same as for uniform density of value ρA(~rI), the density gradi-

ent is simulated by assigning the azimuth angle θ using a distribution given by

Pθ = rI rj sin θ exp[
−(r2

i + r2
j + 2rirj cos θ)

2σ2
] . (5.32)

Figure 5.6: Figure illustrates the Monte-Carlo hopping trajectory calculations for 100 instances of
an ion starting at the origin. The statistical average values of rI over all trajectories, are repre-
sented by filled blue circles, and the error bars denoting one standard deviation. It is clear that the
ion localizes at rI ≈ 1.25σG, for long hold times. The dashed red curve is the ballistic trajectory
with average thermal velocity, the thick yellow curve is the theoretical mean trajectory rI(t) incor-
porating both collisional and hopping diffusion and the thin green curve is the theoretical mean
trajectory rI(t) with just the collisional diffusion coefficient. The insets show these curves in their
small and large hold time limits.

These steps are repeated to form the trajectory up to a large number of hops. 100 such trajectories

are generated and the averages and standard deviations are presented. The same procedure is
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followed for generating trajectories in stray electric fields, except that between hops along with

ballistic motion the ion is accelerated in the direction of the field.

It is clear from figure 5.5.a. that so long as the ion is in the region rI < 2.48σ, it will move

to rI = 1.24σ over time unless the ion’s stochastic motion leads it beyond rI = 2.48σ. Since

collisions further limit the ballistic diffusion, definitive trapping of charge in the density gradients

of ultracold atomic clouds results on a spherical shell of radius 1.24 σ in this case.

The solutions of equation 5.29 and equation 5.30 for rI/σ is independent of σ. Therefore, the ratios

obtained above and weather such stable solutions can be obtained, do not depend of the size of

the Gaussian atomic cloud σ, and vary with T and n0. To our knowledge, this example of trapping

on a density gradient is unique.

We show the results of the diffusion coefficients as a function of radial position, for a few other

values of the parameters, peak number density and temperature, for the 7Li+-7Li system in figure

5.7. The simulation results for trajectories of the 7Li+ ion due to charge hopping in a thermal

ensemble of 7Li atoms is shown in figure 5.8. Some of the equivalent results for the 6Li+-6Li

system, are shown in figures 5.9 and 5.10 respectively.

Figure 5.5.a shows that a charge created at the centre of the atomic distribution diffuses faster than

ballistic thermal velocities initially, consistent with the computed large hop diffusion coefficients

in equations 5.21, 5.25 and figure 5.4. The charge diffusion slows down to below thermal velocities

as the steep density gradient comes into play as per the condition in equation 5.29. Radial diffusion

stops as the ion reaches the regions where the sum of the diffusion coefficients goes to zero, beyond

which the inequality in 5.30 gets satisfied.

We define the term hold time as the time up to which an ion can be found within rI < 3σ due

to diffusion. Experimentally the confinement of charge to within the Gaussian atomic cloud for

longer than collisional hold times is definitive evidence of the charge hop mechanism.
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Figure 5.7: For a 7Li+-7Li system with different conditions mentioned in the panels, the collisional
diffusion coefficient (brown), hopping based diffusion coefficient (dashed blue) and their sum
(thick yellow) are plotted. In the insets, the corresponding theoretical mean trajectories due to
these diffusion coefficients are shown in similarly styled curves along with the ballistic trajectory
with mean velocity (dotted red). It is clear that 7Li system offers a few more temperature and atom
number density choices to observe charge trapping due to hopping in a spherical shell. Larger the
gap between the green and red vertical lines, the more stable the radial charge confinement.
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Figure 5.8: For a 7Li+-7Li system under conditions mentioned in the panels, the mean of 100 sim-
ulated trajectories with charge hopping is plotted as blue circles and the error bars represent the
standard deviation. The dotted red curve is the ballistic trajectory with average thermal velocity,
the thick yellow curve is the theoretical mean trajectory with the sum of collisional and hopping
diffusion coefficients, the dashed dark blue curve is the average theoretical trajectory with just
charge hopping and the thin brown curve is the upper limit to ion mobility allowed by just colli-
sions. The insets show the same curves in their small hold time limits.
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Figure 5.9: For a 6Li+-6Li system with different conditions mentioned in the panels, the collisional
diffusion coefficient (brown), hopping based diffusion coefficient (dashed blue) and their sum
(thick yellow) are plotted. In the insets, the corresponding theoretical mean trajectories due to
these diffusion coefficients are shown in similarly styled curves along with the ballistic trajectory
with mean velocity (dotted red).
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Figure 5.10: For a 6Li+-6Li system under conditions mentioned in the panels, the average of 100
simulated trajectories with charge hopping is plotted as blue circles and the error bars represent
the standard deviation. The dotted red curve is the ballistic trajectory with average thermal ve-
locity and the thick yellow curve is the theoretical mean trajectory with the sum of collisional and
hopping diffusion coefficients. In panel (a), the thin brown curve represents the mean trajectory
with just collisional diffusion. Whereas in panel (b), the brown curve is the thin brown curve is
the upper limit to ion mobility allowed by just collisions. The physical meaning of the result of
same equation (the brown curves), changes as the thermal velocities become lower than the cor-
responding collisional mobility limit. The insets show the same curves in their small hold time
limits.
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We can see from the above results that even the cases where the ion is not perpetually trapped

by the gradient density of atoms, the hold times obtained upon including charge hopping, can be

significantly longer than the expected hold times assuming only collisions at play. These effects

are measurable in real experiments and can provide solid evidence for charge hopping and the

underlying mechanism.

Figure 5.11: The panels show the ballistic trajectory (red, dotted) of a single ion starting at the
origin at t = 0, the Monte-Carlo hopping trajectory calculations for 100 instances (light blue)
and the survival probability (purple) of the ion within 3σ of the Gaussian atomic distribution
discussed in figure 5.5. The three panels show these for different values of a constant electric field
Es imposed on the system. This is the experimentally realistic case, and once again illustrates that
the prolonged survival of the ion within the atomic ensemble is the testable signature of charge
hopping due to exchange symmetry.
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5.5 Effect of a small electric field

In order to further connect with laboratory situations, the effects of a small, constant electric field

on this system is computed. During the ion’s motion between hops, no change in its delocaliza-

tion or charge hop rates is considered. This is reasonable as we evaluate the expected average

expansion of wave packet in between hops to be less than 1%. Figure 5.11 illustrates the survival

probability of a Li ion in a Gaussian ensemble of Li atoms, at 1 µK and n0 = 1019 m−3. The mea-

surement of ion survival time will directly measure the diffusion in a gradient density of atoms.

The large ion hold times validates the prospect of practical implementation of this atomic trap-

ping mechanism for a homonuclear ion. As significantly longer hold times are shown with electric

fields of magnitude higher than the field due to another ion at ≈ 2σ distance (0.036 V/m) and ion

hold time of a few ms is experimentally measurable, this system will also allow the simultaneous

diffusive trapping of more than one ion.

5.6 Discussion

In summary, we studied charge hop mechanism due to exchange symmetry in Li+-Li system.

The calculation is very general and with a few element specific changes, the formalism can be ex-

tended to any homonuclear ion-atom system in the ultracold regime. The probability distribution

calculation for effective separation under Gaussian position uncertainties is general and applies

to all cases with isotropic delocalizations. We ignore 3 body collisions [17, 180], as we estimate

their threshold rates [181] to be at least 2 orders of magnitude lower than the binary collision rates

considered. We have not considered coherent interactions as we have carefully limited the param-

eter space of study to within the non-degenerate gas limit. Effective trapping of the charge with a

Gaussian atomic density profile in experimental conditions and the stability of such a trap against

stray electric fields makes this system very exciting. Zooming out, the problem solved is one of

competing diffusion mechanisms, resulting in a random walk of the charge due to various mech-

anisms. It is shown that the quantum symmetry enabled exchange due to particle delocalization

dominates and is a measurable quantity in upcoming experiments. Details of the dynamics of
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multiple ions, effects of acceleration and wave packet evolution will be explored in the future.

In the presence of excited atoms and negative ions, the hopping rates calculated can be expected

to increase dramatically. In both these cases, the size of the ion/atom will be larger and therefore,

the exchange energy would be relevant up to larger instantaneous ion-atom seperations. This im-

proves the probability of ion-atom overlap significantly and thereby results large charge hopping

rates. In the case of excited atoms, the coefficient A in equation 4.3, would increase proportional

to the principle quantum number of the excited state. This results in large charge hopping rates

and the resulting hopping-led diffusion [165, 182].

Extensions to degenerate gas systems will require the inclusion of the mean field potential and

possible many body quantum effects. The work here reveals the dynamics in the full quantum

regimes, and adds new vistas beyond s-wave regime to ultracold ion-atom physics while enhanc-

ing our understanding of systems with interchange symmetry in general.

In a homonuclear ion-atom system, the uncertainties in their position, given by the thermal de

Broglie wavelengths, λT , lead to a scenario where the effective ion-atom separation has a prob-

ability distribution ranging from 0 to ∞ as shown in section 5.1.1. While the uncertainty in ion-

atom separation is negligible at high temperatures, the effective ion-atom separation can be much

smaller than the mean ion-atom separation, L with significant probability for the case of low tem-

perature when L > λT (low density). The ion-atom interchange symmetry which has limited

effect on the collision cross sections under these conditions, can lead to an additional hopping

mediated charge mobility which becomes significant for low temperatures and high densities.

Further, when L < λT (high density), the instantaneous ion-atom separation can be larger than

the mean separation also with significant probability. In this case the charge hop rates are almost

the same over a range of mean ion-atom separations, see figure 5.2. This leads to spontaneous

charge hopping with beyond nearest neighbor atoms in a dense cold atomic cloud, which is com-

puted in section 5.3, where the resulting mobility’s are discussed. As the hop rates remain similar

with all atoms in the neighborhood of the ion, the charge will drift towards region of higher atomic

density if the ion is in a region with gradient in atomic density. We show effective trapping of the

charge with a Gaussian atomic density profile with experimentally feasible parameters in section
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5.4 and discuss the stability of such trap against stray electric fields in section 5.5.

As computing full quantum dynamics of a large finite interacting hybrid system is extremely

difficult, we compute the dynamics using a charge hop rate, which simulates the phenomenolog-

ical attributes of the quantum system. The complete theoretical formalism and experimentally

relevant analytical calculations and numerical simulations have been presented without any un-

realistic assumptions. With a few element specific changes, the formalism can be extended to any

ion-atom system. The probability distribution calculations for effective separation under Gaus-

sian uncertainties and jth nearest neighbor distance in a uniform density, are general and could

be used across fields of physics. Dynamics of multiple ions and usage of ultracold ion-atom in-

teractions to confine ions and effects of acceleration and wave packet evolution can be explored

further. This combined with the ability to measure these phenomena, which reveal the dynamics

in the full quantum regimes, with experimental control, will broaden the horizons of ultracold ion-

atom physics and also help enhance our understanding of systems with interchange symmetry in

general.
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Chapter 6

Virial Analysis for Linear Multipole Ion

Traps

In order to build the next generation of experiments with hybrid ion-atom traps, it is important

to settle on the design of the ion trap of choice during conception. The ion trap components will

have to be inside the vacuum chambers as the electrodes have to be the closest surfaces from the

ion in order for it to experience undisturbed trapping potentials. This requires us to ask basic

questions about the ion trap design, keeping in mind the conceived experiments and the ion-atom

systems of interest, such that the necessary ultracold atom trap can be implemented at the same

location as the ion trap center. As mentioned earlier in Chapter 2, implementing a continuously

loadable ultracold trap for the atom trap, like a MOT, requires large optical access to the common

trap centre, making linear traps our generic choice within the various Paul trap configurations.

Whether higher order linear multi-pole trap is more favorable than a quadrupole trap, for study-

ing ion-atom interactions, is a question for experiments with trapped ions. Historically, the hybrid

traps used have been quadrupole Paul traps as ion traps, barring rare exceptions. However at this

stage of evolution of the field, when a new experiment is to be constructed, it is important to study

whether the quadrupole Paul trap is the best possible choice, all things considered. In this chapter,

we therefore analyse and evaluate the performance of multipole, linear Paul traps for the purpose

of studying cold ion-atom collisions. A combination of numerical simulations and analysis based

93



on the virial theorem is used to draw conclusions on the differences that result, by considering the

trapping details of several multipole trap types. Starting with an analysis of how a low energy

collision takes place between a fully compensated, ultracold trapped ion and an stationary atom,

we show that a higher order multipole trap is, in principle, advantageous in terms of collisional

heating. The virial analysis of multipole traps then follows, along with the computation of trapped

ion trajectories in the quadrupole, hexapole, octopole and do-decapole radio frequency traps. A

detailed analysis of the motion of trapped ions as a function of the amplitude, phase and stability

of the ion’s motion is used to evaluate the experimental prospects for such traps. The present

analysis is published [183], and has the virtue of providing definitive answers for the merits of the

various configurations, using first principles.

6.1 Scope and utility of linear Paul traps

Figure 6.1: Electrode potential configuration for normal operation of (a) a 4-pole trap, (b) a 6-pole
trap, (c) an 8-pole trap and (d) a 12-pole trap, where V (t) = V0 sinωt. We keep the parameters r0

and a fixed for all the trap configurations. Note that the 12-pole trap in (d) is also equivalent to
the superposition of three quadrupole traps.

94



Linear multipole Paul trap configurations are emerging as a natural choice for a wide range of

charged particle trapping experiments [12–16, 30, 49, 56, 90, 161, 162, 180, 184]. The study of

mixtures of trapped ions and atoms has spawned a variety of hybrid traps [13, 18, 21, 22, 70, 75,

88, 89, 161, 185, 186]. Such traps allow for the simultaneous and overlapped trapping of cold atoms

and cold ions. The objective of such experiments is to study the interactions between the trapped

ions and atoms, typically by collisions. It is therefore necessary to evaluate which trap geometry

is ideal for experimental objectives to be met. The key question of interest here is whether higher

order multi-pole traps (figure 6.1) are more favorable than a quadrupole trap or not, if the objective

is to study the ion-atom collisions at the coldest temperatures. The wider scope of such traps

ranges from single ion-based mass spectroscopy to optical spectroscopy experiments [46, 47, 187–

189], and a few ion-based quantum logic and computation experiments [42, 190], experiments with

coulomb crystals with many ions [8, 15, 28, 41, 118, 180] and single ions or ion clouds interacting

with cold atoms [11, 21, 29, 30, 55, 82, 161, 180, 185].

Optical access for laser beams and absence of strong magnetic fields [11] make linear Paul traps

a favorable choice for these experiments, apart from their relative simplicity of modeling and the

ability to perform numerical and analytical calculations. So while the linear Paul trap can be

used for a large number of experiments with different and ever expanding objectives, here we

examine and evaluate different linear Paul trap electrode configurations, in an effort to decide

which multipole radio frequency (RF) linear electrode configuration is suitable for the study of

ion-atom collisions at the coldest temperatures. One of the outstanding goals for hybrid-trap

experiments is the realization of the s-wave regime for the ion-atom system, when there is a single

trapped ion in a cloud of ultracold atoms [16, 17, 20].

In a Paul trap, the dynamic trapping of an ion due to the RF fields applied to the electrodes results

in ion motion which can be decomposed into two parts. The ion exhibits a forced motion, which

is the instantaneous response of the ion to the time varying RF field (micromotion) and the slower

(macro) secular motion, which is the trajectory of the trapped ion in the effective trapping field

the ion experiences. In this scenario, the lowest energy of a single ion in a quadrupole ion trap

can be confined within a compensated ion trap. Such an ion is insulated from micromotion due

to the RF fields. Since a linear quadrupole ion trap has a nodal line, where the acceleration on the
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ion vanishes, any small deviation of the ion from this spatial location results in an increase in its

motional energy. If we now consider such a specially prepared ultracold ion in collision with an

ultracold atom in its vicinity, the mutual interaction between these two is sufficient to pull the ion

out of the compensated configuration. The resulting collision increases the kinetic energy of the

ion-atom pair compared to the s-wave limit, due to the energy coupled from the trapping field via

the mutual interaction [13, 82, 90].

6.2 Microscopic detail of ultracold ion-atom collision

Let us compare the scenarios of a single zero energy 40Ca+ ion at the center of a quadruple and

an octupole trap colliding with a zero energy 40Ca atom placed proximate to the ion. The 2-

dimensional potential forms of the quadrupole and octopole traps can be found in table 6.1. In

this scenario, the mutual ion-atom interaction potential results in ion displacement from the com-

pensated point and a collision initiates. On being displaced from the center, the ion starts moving

under the influence of its trapping field, and the field does work on the ion in the presence of

the atom, increasing the total energy of the colliding system. To model this collision we set the

time of the first collision to be equal to t = 0, the ion-atom interaction potential is modeled by in-

duced dipole interaction term,−C4/r
4, the collision is always head on and its sense reverses when

ion-atom internuclear separation approaches the repulsive wall of the ion-atom potential energy

curve. This 2-dimensional collision calculation was performed by Anand Prakash and the details

of the calculation can be found elsewhere [183]. The trajectories of the ion-atom pair and the ki-

netic energy of the ion in the respective traps during an instance of such a collision is illustrated in

figure 6.2. The collision is treated classically and all quantum aspects of the collision are ignored.

When the collision initiates, under the influence of the mutual ion-atom attraction, in the presence

of the RF trapping field, RF energy is pumped into the collision partners, increasing the collision

energy as the collision progresses. This is evident for only very low energy collisions, where the

time taken for the collision spans several RF cycles. The collision is complex enough so that there

can be several sequential collisions between the ion-atom pair before they eventually separate.
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Figure 6.2: The time domain collision between a trapped and compensated stationary ion, initially
located at the center of a quadrupole (a) and octupole (b) trap, with a stationary atom in its vicinity
is shown. The calculation is two-dimensional. As a result of the mutual attraction of the trapped
ion with the atom, in the presence of the trapping field, post collision, both the ion and the atom
gain kinetic energy. The amount of kinetic energy gained in the collision in (a,b) is illustrated in
(c,d), respectively.

An example of an ion-atom collision in an RF trap with quadrupole and octopole fields is shown

in figure 6.2. Both traps have an RF of 5 MHz, and their RF voltages are ≈512 V and ≈256 V for

the quadrupole and octopole, respectively. This ensures that the Mathieu qr parameter is matched

for the two traps, which is the appropriate condition to compare different traps for a compensated

ion. The collision parameters are adjusted so that the first collision takes place at time t = 0 and

because of the mutual interaction of the ion and the atom before the collision, the ion shifts from

its compensated position and the resulting post collision energy of the ion increases. In the process

of the collision, the action of the electric field on the colliding partners has made the collision more

energetic than the initial ion and atom energies would suggest. The numerical treatment for this

calculation closely follows that of Cetina et al. [90].

Conventionally, most experimental efforts to study cold ion-atom collisions have favored the
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quadrupole trap [70], barring a few exceptions [45, 191–193]. In contrast, for RF traps with larger

numbers of electrodes, six, eight and twelve, the gradient of electric field in the neighborhood

of the trap center is much smaller than that of the quadrupole. Due to this, as shown in figure

6.3 a similar ion-atom collision in an octopole trap would transfer significantly less energy to the

ion-atom system than in the case of the quadrupole. Although the two traps used in figure 6.2

have the same value of Mathieu parameter qr, the secular frequencies in eight-pole trap are much

smaller than that of four-pole trap. Due to the reduced RF amplitude close to the trap center, as

the order of the poles increase, the energy gained by the ion during collision reduces. It should be

kept in mind that the octupole trap does not have a strong restoring force at its center, resulting

in the drift of the ion to regions of higher fields post collision, where the ion’s micro-motion will

come into play.

Figure 6.3: The change in the energy of the Ca ion-atom system, initially at rest, with the ion
at the trap center post collision is presented. The results for the quadrupole and octopole trap
configurations are shown. The energy gained is plotted against the phase of the electric field at
the time of ion-atom’s closest approach.

The above example illustrates that the higher multipole trap excites less collision induced heating

in a single collision event based on just the collision energy change in figure 6.2, and therefore

working with a higher order multipole trap appears to be advantageous. Thus, figures 6.2 and 6.3
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together provide a quantitative description of ion heating in a collision which has a direct de-

pendence on the form of the external potential in which they collide. The figures summarize the

consequences of the low energy classical ion-atom scattering problem in the presence of a time-

dependent field, which has a dramatic impact on the fate of the collision. While the reduced

one-dimensional problem has been solved by Cetina et al. [90] for the quadrupole potential, this

two dimensional treatment is important, because of the xmyn product terms in the higher order

multipole traps, to illustrate the advantage of the octopole over the quadrupole configuration, in

a quantified manner.

However, when faced with building an experiment, a broader view of the requirements is needed,

in order to determine the choice of permanent geometry of the trap to be built. We therefore take

this analysis of comparative study of the ion trap designs, further to arrive at the good conclusion

of which trap is suited best.

6.3 Ion trap configurations

A linear multi-pole Paul trap has 2k (k, integer) cylindrical electrodes of diameter a, which are

all held parallel to the trap axis z, such that on the transverse plane, the centers of the electrodes

are equidistant points on a circle of radius r0. Hence, such traps are referred to as 2k-pole traps,

the simplest of which is a linear quadrupole trap (k = 2,4-pole trap). In the common modes of

operation, radio frequency electrical fields applied to the electrodes create a trap at the center of

the geometry. This is achieved by applying ac voltages of opposite polarity to alternate electrodes,

which spatially confine charged particles in the transverse direction. For confinement along the

trap axis, another set of electrodes (end caps [75], segmented electrodes [190]) are used, to which dc

voltages are applied in order to obtain the necessary trap depth and curvature along the symmetry

axis of the 2k-pole trap. In what follows, we shall solve the for the ion trajectories two dimensions.

The trapped ion trajectories obey the Mathieu equation, the solution of which can be decomposed

into two parts [164]. The macro-motion is characterized mainly by the pseudo-potential (propor-

tional to r2k−2, where r is the distance from trap center in the transverse plane) seen by the ion,
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which is the time averaged trapping field over the fast RF cycles. The micro-motion of the ion is its

response to the electric field at the instantaneous position of the ion. For most experiments with

ion traps, micro-motion is undesirable as it limits the cooling of the ions, induces decoherence or

limits ion control.

As higher order pseudo-potentials would exhibit a potential of the kind rn, n ≥ 2 is the potential

form at the center of the electrodes, ions in a higher order 2k-pole trap are expected to experience

a lesser electric field on average compared to ions in a four-pole trap. Thus, the magnitude and

effect of micro-motion would decrease with an increase in the order of a 2k-pole trap, which is

one of the motivations for building them. This is illustrated in figure 6.2, where the micromotion

is not visible on the trajectories for the eight-pole trap but distinctly visible on the four-pole trap.

In principle, the number of poles can be very large, though necessary a/r0 ratios for optimum

stability of the trap and geometrical constraints have seen experimental configurations up to 22

poles [194].

For each of the configurations in figure 6.1, we also analyze the dynamics of the ion using the

virial theorem. The success and applicability of the virial approach is established and is found

to be very valuable, as it reduces a complex dynamical non-linear problem with time variation of

the potential and cross terms in the coordinates to one that can be solved almost by inspection.

However, this approach needs to be validated carefully with explicit numerical trajectory calcula-

tions so the conclusions arrived at are shown to be reliable, once and for all. Since in a linear Paul

trap and its extensions discussed above, the configuration comprises the multipoles and two DC

biased, end cap electrodes, in the analysis for the optimal trap below, we confine ourselves to the

plane perpendicular to the axis of the trap as illustrated in figure 6.1. This results in simplification

and still allows for the problem to be analyzed in terms of mean energy.

6.4 Virial theorem for 2k-pole traps

Let ac voltages of V0 sinωt and −V0 sinωt be applied to alternate electrodes of a linear Paul trap,

i.e., V0 is amplitude and ω is the frequency. The 2-D pseudo potential (in the transverse plane)
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experienced by an ion due to the 2k electrodes is given by

V ∗ =
k2q2V 2

0

4mω2r2k
0

r2k−2 , (6.1)

where q is the charge andm is the mass of the ion and r0 is the size of the trap given by the distance

from the center of the trap to the center of any electrode [45]. Stable trapping of ions is achieved

when the amplitude of micro-motion is smaller than the distance from the geometric center, i.e.,

when relative change in the electric field amplitude during a micro-motion cycle is small. An

adiabaticity parameter, η is used to quantify this,

η =
k(k − 1)2qV0

mω2rk
0

rk−2 . (6.2)

When k = 2, η is a constant (i.e., for a four-pole trap) and the well known Mathieu stability criteria

apply [195]. It should be noted that the Mathieu parameter qr in 2-D is the same as η and thus the

four-pole ion trap is stable if η ≤ 0.908. When k > 2, stability of the ion trajectory is probabilistic

and subject to initial conditions of the ion. In higher order traps, it is found that only for η / 0.3 ≡

ηmax, stable ion trajectories exist. This limits the spatial extent to which the ion can span, rmax as

η is a function of r (for k > 2),

rmax =

[
ηmaxmω

2rk0
2k(k − 1)qV0

]1/(k−2)

. (6.3)

Thus, the effective trap depth for a 2k-pole trap is given by V ∗(rmax), which is very different from

that of a four-pole trap. In such a scenario, the average kinetic energy of a trapped ion is described

by

〈Ttot〉 = 〈Ts〉+ 〈Tµ〉 , (6.4)

where 〈Ttot〉 is the total kinetic energy, 〈Ts〉 is the mean secular energy and 〈Tµ〉 the micromotion

energy. The average secular kinetic energy 〈Ts〉 of a particle bound by a potential of form equation

6.1 is given by the virial theorem as

〈Ts〉 = (k − 1) 〈V ∗〉 . (6.5)
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The amplitude of micromotion is proportional to the potential experienced by the ion. The average

kinetic energy in the micromotion thus turns out to be the same as stochastic mean in the secular

trajectory. This is given by the following two equations.

〈Tµ〉 = 〈V ∗〉 (6.6)

〈U〉 = 2 〈V ∗〉 . (6.7)

Therefore, the ratio between average total kinetic energy and average potential energy 〈U〉, of an

ion, defined here as ν, in a 2k-pole trap is

ν =
〈Ttot〉
〈U〉

= k/2 . (6.8)

The immediate consequence of equation 6.8 is that, for the same ion energy, the larger fraction of

the ion energy is kinetic. This implies that, when all other things are equal, the ion in the center

of the higher order trap will be more energetic than its quadrupole counterpart, which in turn

implies that the ion has to be cooled down much further in order to be centered at the trap. This

is detrimental to the execution of the ion-atom collision experiment with higher order multipoles

in the manner discussed in Section 6.2, where the ion has to be positioned at the trap center as

precisely as possible in order for it to be well compensated. So while it is indeed true that there

is an advantage to having an higher order trap, to keep collisional heating in check, there are

problems with initializing the system, flagged by the virial theorem.

6.5 Results

To quantify the results, we study numerically the dynamics of a single ion in various 2k-pole

traps. The simulations have been done for a Calcium ion, 40Ca+ in 2-D. The potentials have been

generated in SIMION software with r0 = 0.707 cm and a = 0.1 cm have been used for the electrode
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sizes. The RF frequency applied, ω is kept constant for all traps at 2π× 5 MHz.

6.5.1 Dynamics of an Ion in a 2k-Pole Trap

An electric potential V (t) = V0Sin(ωt) with opposite polarity was applied to alternate electrodes.

The time dependent potential energy profiles for an ion, U2k(x, y, t) were generated both using the

ideal functional form and using SIMION [196] software and used to solve the equations of motion

for the ion,

m
d2x

dt2
= −q δU2k(x, y, t)

δx
, (6.9)

m
d2y

dt2
= −q δU2k(x, y, t)

δy
. (6.10)

Using the trajectories obtained by solving the above coupled differential equations, we calculated

the ratio of 〈Ttot〉 and 〈U〉 of the ion in the trap. The values of this ratio obtained when computed

for a multiple of the period of the secular motion are shown in Table 6.1. We show, with the

numerical results, that the relation, equation 6.8 derived from virial theorem holds. This is true

even in the presence of damping, the motion of the ion in the trap is still consistent with the

virial theorem. The damping term was added to the equation of motion of the ion, to model laser

cooling.

In order to make the coefficient of the damping term realistic, it was calculated from the scattering

force due to laser beams at saturation intensity. This calculation does not capture the stochastic

nature of laser cooling and hence fails to provide a cooling limit as in the case of real laser cooled

atoms. Using the trajectories of the ion calculated with and without damping, we calculated the

ratio of 〈Ttot〉 and 〈U〉 in the trap. These numbers are given in Table 6.1. It can be seen that the

results of the virial theorem for ion traps hold even with damping or laser cooling.
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The evolution of ion trajectories in the different trap potentials throws up some interesting results.

In ultracold atom physics, it is normal to evolve the ion trajectories from the origin, with an initial

velocity. In addition, for laser cooled ions, the ions accumulate at the bottom of the defined secular

potential. When cooling multiple ions, laser cooling of ions leads to a space charge limited density

distribution of the cooled ions. In quadrupole potentials, these form ion crystals [51] and in higher

order multipole potentials a dense localized distribution of ions is formed, which to the best of our

knowledge has not led to ion crystals being produced [193].

In the case corresponding to the single compensated ion, it is required to first produce this ion.

This will be done by ionizing an atom from a distribution of atoms contained within the trap and

followed by subsequent cooling of the ion. With this motivation we consider the motion of an ion

within the trap volume, for the different multipolar configurations. Unlike previous studies which

deal with phase space and real space trajectories in such traps for an ion created at the trap center

with finite kinetic energy, we simulate trajectories for a realistic case of an ion being created away

from the trap center with zero initial kinetic energy, these trajectories are shown in figures 6.4 and

6.5. For specific initial phase relations, the probability distribution of the ion position with respect

to the radial coordinate is shown in figures 6.6 and 6.7 for the multipole configurations. The insets

at the top of each panel in figures 6.6 and 6.7, show the phase space plot of the ion trajectories

in one direction. For each trajectory, the coefficient ν is calculated over multiple periods of the

secular motion. In each case the virial theorem holds within the numerical error and its value

corresponds closely to the theoretical value of the trapped ion in its secular potential [14, 87]. For

all traps, the radial position distribution for the non-zero initial phase, corresponding to the ion

being confined within a lower and an upper bound in r. The most limiting radial confinement is

seen for an ion created equidistant from the two nearest electrodes. Another observation we make

is that, in this limiting case of the initial phase, the lower bound for r overlaps with the initial

radial position, in this case 0.1r0, for a quadrupole trap and the upper bound for r overlaps with

the initial radial position for a higher order trap. The results for k > 2 in figures 6.6.d-f and 6.7.a-f

show that the nature of the phase space trajectories varies significantly with the initial phase, thus

implying that calculation of statistical averages is further complicated in higher order traps.
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This dependence on the initial phase can be attributed to the presence of xmyn terms in the po-

tential form of higher order traps, leading to the coupling of the motion in the two dimensions.

Despite the separate nature of phase space trajectories, the virial theorem result ν = k/2 is found

to be valid in every individual case. It can be observed consistently in all configurations that,

the case where the ion is created equidistant from the nearest two electrodes, the radial position

coordinate distribution is the narrowest with the least maximum ion velocities. The real space tra-

jectory of an ion in a four-pole trap, shown in figure 6.4.a-c is close to an ellipse in two dimensions

and for the case of the limiting phase, the lower bound of the radial orbit occurs at 0.1r0 and, due

to micromotion, the upper bound of the radial coordinate appears as broadened in the probability

densities shown in figure 6.6.a-c. However, the real space trajectory of an ion in traps with k > 2

spans a circularly symmetric region between two radial bounds, as seen in figure 6.4.d-f and fig-

ure 6.5.a-f. The inner bound occurs at r = 0 for θ = 0 and at a finite radius for non-zero θ, this

manifests as the two radial peaks, which are sharply cut-off, in the density distributions in figure

6.6.d-f and figure 6.7, for higher pole traps, at the turning points. The radial confinement for the

limiting value of θ is narrowest for k = 3 (figure 6.6.d-f) and becomes wider for higher k traps

(figure 6.7).

To address what the chance is, for finding an ion at a particular distance from the trap center, we

calculated two scenarios. In the first, illustrated in figure 6.8a, the probability distribution of the

ion created at a distance of 0.1 r0 from the origin, with zero initial velocity and at different angular

displacements with respect to the electrode axes was computed. As seen from the probability

density plots in figure 6.6, the ion coverage of the trap volume has tremendous variety. It is

therefore important to understand the statistical likelihood of the ion occupying a particular region

of space. This was therefore studied with respect to the angular creation of the ion in the multipole

trap in figure 6.8a and its inset. The most reasonable experimental situation is that there is an

cold atom ensemble located about the ion trap center. If the ion is to be created from such an

ensemble of atoms by threshold ionization, what would the spatial distribution of the ion be?

This is illustrated in figure 6.8b where the probability distribution of the ion created at a distance

generated from a two-dimensional Gaussian distribution of width 0.05r0, with zero initial velocity

is plotted. The spatial density distribution of the ion, over repeated instances, is illustrated in the
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inset. So, figures 6.6 and 6.8 allow us to conclude what the trapped ion distribution would be that

we would have to deal with in an experiment, in particular instances and on average.

Figure 6.8: Panel (a) shows the probability distribution for an ion created at radial distance of 0.1
r0, with random angular coordinate θ for various 2k-pole traps. Panel (b) shows the probability
distribution for an ion created with a Gaussian distribution of width 0.05r0, centered with the ion
trap for various 2k-pole traps. The insets show the corresponding density distribution.

The agreement of the hexapole and the do-decapole electrode configuration with the virial theo-

rem is also shown in table 6.1. All values are as expected, except in the case for do-decapole trap

using SIMION potentials, where the ratio of 〈Ttot〉 /〈U〉 is consistent with that of a quadrupole.

After some investigations, we conclude that this is a finite grid and grid size numerical effect,
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where the pseudo-potential is effectively decomposed into three independent quadrupole poten-

tials, which is what is reflected in the value of the 〈Ttot〉 /〈U〉 ratio in that instance. When the

potentials analytic form is used, the value of ν = 3 results for the same ratio, as per expectations

both with and without damping. It is therefore an instance where one has to be cautious with the

results of explicit numerical calculations. This instance underlines the necessity for cross checking

the qualitative and the explicit calculations against each other. Also, this result shows the possible

issues with a practical do-decapole trap, as it is an idealization to preclude on the basis of a perfect

analytical potential.

6.5.2 Comparison of ion cooling efficiency

Figure 6.9: The temperature of an ion held in ideal 4-pole and 8-pole trapping potentials are shown
with constant damping (blue points) and without damping (red points). The variation of cooling
rates in both trap potentials with the parameter qr can be seen. The damping coefficient is equiv-
alent to the best achievable laser cooling for a 40Ca+ ion, in all panels.

112



The results obtained with constant damping term for each of the configurations discussed above,

allow us to deduce the effectiveness of higher order traps for laser cooling based experiments in

general. The distribution of ion velocity varies significantly with the location of the ion in all linear

Paul traps. Therefore, the phase space volume spanned by the ion shrinks at different rates at dif-

ferent times of the ion trajectory. However, it is consistently found in every macromotion period,

that the relation in equation 6.8 holds for all stable traps. The start and end of macromotion cycles

are identified with a micromotion cycle within which the potential energy of the ion becomes zero,

one additional time, while V (t) 6= 0. We find that the virial relation between potential and kinetic

energies hold even for unstable trajectories, when the ion is yet to exit from the trapping volume.

Figure 6.10: The temperature of an ion held in 4-pole and 8-pole trapping potentials, generated
using SIMION software are shown with constant damping (blue points) and without damping
(red points).

The coefficient of damping used to simulate these set of trajectories mimics the effect of laser cool-

ing of a Ca+ ion. To do this, we evaluate the optimum force imparted due to laser cooling, as given

in chapter 2, and assume constant damping of this magnitude. While this ensures the magnitude
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of the damping term is relevant to the application, the effect of finite momentum kicks experienced

in laser cooling is not incorporated. As a result, we see that the cooling of the ion obtained here

due to damping continues even below the Doppler limit to unrealistic temperatures. However, as

we simulate the trajectories using SIMION potentials, we see that the residual potentials resulting

from imperfections due to discretization, does not allow ion cooling to such low temperatures, see

figures 6.9, 6.10.

From figure 6.9, shows that the cooling rate is better with lower qr for both the traps, and that for

equal qr, higher pole trap provides a better rate of cooling, for ideal potentials. However, if we

take the discretization effects in SIMION potentials as a proxy for imperfections in a practical trap,

we obtain from figure 6.10, that the cooling rate in practical higher order traps decreases as the ion

approaches ultracold temperatures. However, this is likely to be an artifact of the platform rather

than a physical effect.

6.6 Inferences from the computation analysis

We first observe that the agreement of the computed ion motion with the virial theorem holds well,

for all the multipole traps considered here. It is therefore reasonable to conclude that an analysis

based on the proper application of the virial theorem provides a legitimate platform for discus-

sions on what to expect of ion traps, without performing detailed computations. Since we initiate

the ions at a distance from the center with zero energy, we do not have a length scale for each trap

corresponding to the energy of the ions; therefore, we chose to keep the parameter qr fixed when

comparing various multipole traps. From the discussion above, given the same RF frequency and

fixing the operating value of qr = 0.1 for all multipole traps, we see that with increasing k, the

trap depths reduce. This is the consequence of the fact that for a constant qr, V0 ∝ 1/k, so, as the

number of poles increases, the RF voltage required for a stable trajectory decreases. In addition

rmax ∝ [1/k(k − 1)V0](1/(k−2)), which means the radius for which the adiabatic operating condi-

tion of the ion trap persists, shrinking with increasing k. If the ion motion is not described by the

adiabatic condition, then the conventional description of the trapped ion motion breaks down and

the motion becomes sensitive to small changes. This implies that the kinetic energy of the trapped

114



ion has to be lower at the time of production. That is determined by the extent of cooling of the

atoms from which the ion is created, which cannot be reduced arbitrarily. Creating an ion with

external ionization processes needs to be performed with greater care for higher order multipole

traps.

Within the regime of applicability of the virial theorem, 〈Ttot〉 /〈U〉 = k/2 applies, as seen in Table

6.1. When we allow for the presence of stray fields and field inhomogeneities, the requirement of

a minimum trap depth is produced. In this situation, if a certain minimum trap depth is required

to hold the ion, then the kinetic energy is increases as k/2 times the mean trap potential energy.

This can be problematic in the actual realization of a highly controlled multipole trap.

A practical issue for higher order multipole traps is that the secular motion slows down with

respect to the applied RF frequency. It therefore takes the ion much more time to span the full

phase space for the trapping conditions, and this time increases with the number of multipoles.

While this poses a significant computational challenge, it is also detrimental to the time scales of

typical dilute gas experiments. This is because the precision with which the ion’s state can be

known is harder to determine and therefore to set up a controlled ultracold ion-atom experiment

of the kind described in the beginning without the deleterious effect of the RF excitation of the ion

during collision becomes more difficult with larger k.

For the same qr and RF frequency, higher order multi-pole ion traps have significantly lower trap

depths, compared to the corresponding quadrupole trap. When k > 2, the spatial extent of stable

trapping is much smaller than the physical size of the trap, unlike in a quadrupole trap. This

result, when seen in the context of a large number of ions in the trap and relative ion density

in higher order traps, is at its maximum for a finite r, and the density at r = 0, decreases as 2k

increases. This is undesirable for interactions with spatially localized cold atoms.

Another problem of higher order traps is that the pseudo-potential becomes more and more flat

in a higher multi-pole trap, the cooled ion is not spatially confined to the center of the trap. This

is likely to be a problem for experiments where ion localization is required. Another deduction

that can be made from the virial theorem analysis is that the prospects of laser cooled ion crystals

in higher order multipole traps is quite bleak. This is because, for crystals to be created, multiple
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points in space are required where the net force due to laser cooling, external drive fields and

ion-ion repulsion become zero. Only this will allow the ions to be motionless at those locations

and therefore crystallize. However the cooling requirements for the ion in higher order traps, as

discussed above, is much more stringent. This is perhaps why, in higher order multipole traps,

ion crystals have remained elusive, despite advances in laser cooling.

Recent studies with higher order multipole traps have shown that the flat potential is dimpled due

to field imperfections and this results in a potential which has local quadrupole minimas within

the higher order multipole field [193, 194]. In this scenario, the lowest point of the higher order

multipole trap converts into a defined number of quadrupole traps, depending on the order of the

multipole. So, in the case of really efficient cooling, it is quite likely that the ions find themselves

in the dimpled quadrupole potential, which is sensitive to the local field environment. However,

since these local minimas are not at the geometric center of the trap, the utility of these for inter-

actions with a localized atomic ensemble is moot. In this case, when the ion is trapped in the local

quadrupole field, the discussion accompanying figures 6.2 and 6.3 has limited applicability.

Quadrupole traps have some advantages over higher 2k-pole traps like larger trap depths, stabil-

ity, better ion loading probability and deterministic stability. In order to capitalize on the advan-

tages of both kinds of traps when needed, one can use either two concentric traps, one four-pole

and another a higher 2k-pole trap or operate a higher 2k-pole configuration with modified po-

larities on different electrodes to make it an equivalent four-pole trap. Implementation of higher

order linear multipole trap setup can provide versatility for experiments. In figure 6.11, we show

a few examples of alternate operation schemes for obtaining an equivalent quadrupole trap. This

gives the opportunity to switch between a quadrupole and a higher order trap to exploit the best

of both configurations. The large trap depths of the quadrupole trap and better shielding from

stray electric fields can be accessed in the effective quadrupole schemes and relatively low electric

field experienced by ions in higher order traps near the trap center can be accessed in the regular

2k-pole trap scheme, making it a versatile tool. While the configurations shown in figure 6.11b-

d lead to an effective quasi-quadrupole trap, the scheme shown in figure 6.11a leads to a pure

quadrupole trap with the additional grounded electrodes ensuring the points of zero potential,

thereby providing additional stability against stray fields.
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Figure 6.11: Alternate trap configurations for using an 8-pole or 12-pole setup as a modified
quadrupole are shown. Panel (a) is an 8-pole structure with alternate electrodes explicitly
grounded. Panel (b) shows a skewed quadrupole trap. Panel (c) shows an effective quadrupole
trap with an 8-pole setup, where successive electrodes are at a phase difference of Pi/2. Finally,
panel (d) shows a 12-pole structure, with a quadrupole field configuration and multiple shielding
electrodes.

Putting together all the above results, it is not easy to see the practical advantage of using a higher

order multipole trap to confine the ion for ultracold ion-atom physics. This is because such ex-

periments are performed with both positional and state control of the colliding partners and the

spread in position of the ion for a higher order multipole is experimentally hard to overcome. It

is perhaps more advantageous to work with a very weak, well shielded quadrupole trap. The

trap configurations in figure 6.11 are a path to harness the advantages of the quadrupole trap and

the higher order multipole trap. However such a trap configuration may present significant op-

erational challenges. The virial theorem and its explicit verification provides the base for quick

conclusions about energetics, which is very useful for complicated potentials. On the other hand,

if the objective is to study collisions at higher energy between atoms and neutrals in buffer gas

regimes then higher order multipoles can be used very fruitfully for a vast array of experiments,

keeping in mind the arguments made above [191, 197]. With all of these studies behind us,we
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can make an informed decision to build a linear quadrupole ion trap, for investigating interaction

ion-atom systems, as will be detailed in the next chapter.
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Chapter 7

The Experiment for Ion Transport

Studies

The outcome of the work presented in previous chapters lay the requirements and specifications

for the experimental scheme. The planned method for measuring ultracold ion-atom scattering,

must be in line with the theoretical developments and constraints identified in the earlier chapters.

Here we detail the design and construction of the apparatus. The diverse experimental needs for

implementing various schemes for the ion and atom cooling, trapping and detection combined

with geometric constraints arising from the symmetry of the individual traps make this challeng-

ing. In this chapter, we first explain the schemes of measurements and their requirements and

then describe the design and assembly of various components of the apparatus. We provide the

details of the laser systems that have been used and their control. Finally, we will show some

preliminary results obtained showing the successful operation of various constituent sub-systems

of the total apparatus.

7.1 Goals and the approach for measurement

Throughout this thesis we have been consistently developing the theoretical framework, mea-

surable distinct phenomena and optimized designs for the study and measurement of ultracold
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ion-atom interactions, in their quantum regime. We have established the need for working with

small number of ions to assure stability at the desired low temperatures, and the inability to use

non-destructive detection schemes using optical cavities for measuring such small interactions.

The theoretical studies for low energy ion-atom scattering and the hopping based scattering in

earlier chapters point out that direct measurement of ion diffusion in ultracold atoms can verify

the exotic and novel artifacts of these phenomena.

The first of many requirements set by these studies for the apparatus of measurement is of the

vacuum environment needed in the region where ion-atom scattering is carried out. The stabil-

ity of an isolated charged ion at low energies requires that stray collisions with background gas

molecules has to be several orders of magnitude lesser than one, in the time interval between

ion-atom collisions. This requires the ion and the ultracold cloud of atoms to be in extreme high

vacuum (XHV) environment, while allowing for the discharge of atoms that have to be trapped,

ionized, etc.

Figure 7.1: The illustration of position sensitive ion destruction is shown. For different positions
of the ion at the center of the trapping region, the position of hit on the micro channel detector
plane varies accordingly. The readout of the position of hit on the detector plate can be mapped
to the ion position, prior to extraction.

The ion diffusion measurement requires creation of the ion at a specific initial location within the
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atom cloud, and the detail of the position of the ion (charge) after a time t, over which it inter-

acts with the atoms. Position sensitive ion detection for optically dark ions like Li+ can be done

only destructively [198–200], see illustration in figure 7.1. Therefore, the scheme of measurement

involves repetition of the process of creation, evolution for a time t, and final position detection

of the ion. This experimental duty cycle will be repeated several times to obtain the average po-

sition of ion after various hold times t, as the trajectory evolution of the charge is stochastic. The

analysis of these multiple outcomes will result the diffusion phenomena and allow to verify the

results predicted by our hopping simulations like ion confinement to a radial shell. The specifics

of the components of the apparatus which are tuned to make the following measurements will be

shown below.

7.2 Essentials and requisites for DiLi+hium experiment

In order to apply the above methods to study scattering in ultracold ion-atom systems, at their

limiting conditions, the demands on the experimental apparatus are stringent and challenging to

fulfill. As established in previous chapters, the experiment needs to be conducted with a light

and laser coolable atom, which has been identified as lithium, Li. Its homonuclear ion Li+, which

will also be light and cannot be laser cooled, thereby imposes several restrictions on the compo-

nents to be used in the apparatus. We will elaborate on each of these, starting with the vacuum

requirements for stable operation to conduct such studies.

7.2.1 Vacuum constraints

The Vacuum requirements for studying ion-atom scattering are set by the temperatures at which

we need to stabilize the ensemble of atoms and the experiments’ duty cycle interval over which the

incident of ion collision with the background gas must be made negligible. From the simulations

discussed in chapter 5, the hold times needed to distinguish the effects of the proposed hopping

mechanism, against the prevalent collisional diffusion, ranges from 1− 20 ms.

Therefore, we demand that the ion collision rate with background gas must be curtailed to less
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than 1 s−1 for redundancy. The background gas collision (BGC) rate, kBGC for an ion is given by

[201–203]

kBGC =
P e

kB T

√
π αD
µ ε0

, (7.1)

where P is the background gas pressure, e is electron charge, T is the background gas temperature,

αD is the dipole polarizability of the background gas, µ is the reduced mass for the ion-background

gas collision and ε0 is the free space permittivity. We first estimate the pressures needed for a H2

background gas as it is the typical dominant constituent of vacuum systems. By substituting the

lab temperature, 293 Kelvin as the background gas temperature, the reduced mass of 6Li+-H2

for µ and the dipole polarizability of H2 gas, 0.787 × 10−30 m3 [204], in equation 7.1, we get the

maximum limiting pressure to have kBGC < 1, as 2.4× 10−8 mbar.

However, in our experiment, we use a non evaporative getter (NEG) pump to handle the residual

H2 gas in the main chamber. Given the fact that our atom ensemble will be vapour loaded to

begin with, for redundancy, we also model the background gas as Li. So, by substituting the

appropriate reduced mass and the value of αD as that of Lithium, 24.33 × 10−30 m3 [205] for the

above calculation, we get a more stringent pressure limit of 6× 10−9 mbar.

While these limitations are estimated for the necessary hold times with the atoms, the vacuum

must also be sufficient to have a stable Li atom ensemble at ≈ 1µK temperature. For this we have

to be able to perform sub-Doppler and/or optical cooling in the apparatus which require ultra

high vacuum (UHV) environments.

7.3 Vacuum System for UHV

The strategy for achieving the estimated vacuum is to design and build a UHV compatible conflat

(CF) flanged assembly. We primarily use Ionization pumps to achieve the set vacuum and monitor

the pressure using ionization gauge. The choice of the main chamber for carrying out this experi-

ments is chosen to provide ample optical access to its center via multiple optical feedthroughs.
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The main chamber

The core of the apparatus is within a stainless steel (SS304) extended spherical octagon chamber

of outer diameter 8 inch (Kimball physics Inc: MCF800-ExtOct-G2C8). The chamber has 16 CF16

ports, 8 CF 40 ports and 2 CF160 ports, which allows sufficient optical and electrical access. An

ion trap is assembled symmetrically about the chamber diameter that passes through the center

of two of the 8 CF40 ports of the chamber. To one of the port along this longitudinal axis of the ion

trap, the vacuum pumps are connected, and to the opposite port, a provision to connect a Zeeman

slower or a 2D-MOT is provided. We refer to the axis from the Zeeman slower (to be installed

later) side to the pumps side as the x-axis. To one CF40 port in the orthogonal direction to the ion

trap axis, the drift tube which leads to the MCP detector is connected and the opposite port to this

one is used for primary optical imaging. This transverse axis from the optical imaging side to the

MCP side is referred to as the y-axis which fixes the axis passing through the large CF160 ports

from bottom to top as the z-axis. This leaves 4 CF40 ports which will be ideal for MOT laser beams

and the smaller CF16 ports for electrical feedthroughs and extra optical access.

7.3.1 Pumps and plumbing

The chamber, along with the MCP detector side extension, is pumped mainly through a CF40 six

way cross mounted via the CF40 port on the chamber (pump port). The arm opposite the chamber

is connected with short CF40 spacer and then a fused silica optical feedthrough. A heating wire is

wound around the optical feedthrough to avoid deposition of lithium vapour on it, we intend to

use this port for introducing high power optical trap beams and UV beams into our setup.

The remaining 4 orthogonal arms of the six way cross connect to a 40 l/s ionization pump (Agilent

Valcon plus Starcell 9191243), a titanium sublimation pump (Agilent 9160050) contained within a

300 mm long CF40 flanged tube, an ionization gauge (Agilent UHV-24) for measuring the pressure

inside the apparatus and an all metal valve which can connect or disconnect the apparatus with

a turbo molecular pump (Pfeiffer: TMU 071). We have attached a non-evaporative getter (NEG)

pump of capacity 20 l/s (SAES D20) directly to one of the CF16 ports of our chamber, the port
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directly opposite to the one on which lithium dispensers were mounted. The schematic of the full

apparatus is shown in figure 7.2

7.3.2 Magnetic coils and final assembly

Figure 7.2: The schematic of the full vacuum setup showing the components exterior to the vac-
uum chamber is shown. The mounting sites of vacuum pump, Li dispensers, all the magnetic
coils, and the MCP detector is shown to clarify the geometry of various ports discussed in the
main text.
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For the top and bottom ports, we use CF160 optical FTs with Kodial windows. Between the top of

the FT flange and the Kodial window, is a gap of 10.7 mm that is ideal location for the MOT coils.

The MOT coil’s former is con-flat with the top of the CF160flange. Although this arrangement

allows us to keep the MOT coils close to the center, it calls for a cooling mechanism for the coil so

that it does not end up heating the main chamber. So, a water cooling jacket is integrated into the

coil former above the flange. The shape of the water cooling jacket is tapered so that it does not

further limit optical access to the trap center from this port. The water cooling jacket and the other

side of the MOT coil former are used to wind an additional MOT-shim coil which can be used to

offset the fields. The main MOT coil is wound using American wire gauge (AWG) 11 wire that

can carry up to 16 Amperes of current and the shim coils are wound using AWG 16 wire that can

take up to 19 Amperes. A pair of such MOT coils are operated to get the gradient magnetic fields

needed to make a lithium MOT.

We have designed a pair of axial coils that can provide magnetic fields along the ion trap axis,

so that ions confinement in the other two dimensions can be enhanced. These coils have been

designed to provide axial magnetic fields as large as 350 Gauss at the trap center, and can be used

to work with Feshbach resonances in Li. In order to achieve such large fields, we have made the

coils large with a conical shape so that they do not obstruct the MOT laser beams. These coils are

wound on segmented formers, which incorporate a water cooling jacket of their own along with

the outer axial-main and inner axial-shim coils.

Since we plan to introduce a Zeeman slower later into our apparatus, we have incorporated a

gate valve on the CF40 port opposite to the pump port. The pneumatic gate valve (VAT Mini

UHV Gate Valve 01032-CE44) is attached via a custom made extension with CF16 tube and CF40

flanges which go on the main chamber and the valve. The other side of the gate valve is presently

bears a CF40 optical FT with fused silica window as this is directly opposite to the pump side

window through which we plan to introduce high power optical trap lasers and UV light.

On the CF16 tube between the main chamber and the gate valve, we have wound a small coil

which acts as the negative coil for the planned Zeeman slower. Under this coil, the CF16 tube has

grooves that host a heating wire to facilitate vacuum baking. The CF40 flanged CF16 tube along
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with the negative Zeeman slower coil is first mounted on to the gate valve, then the first axial coil

is slipped on to the custom built tube and then the other end of the tube is attached to the main

chamber. The pump side axial coil is also first slipped on to the 6-way cross and then the 6-way

cross is attached to the main chamber.

The chamber is mounted horizontally 30 cm above the optical table on a frame built with extruded

aluminium. The MOT coils are mounted in such a way that the weight of the apparatus is trans-

ferred from the main chamber to the aluminium frame bypassing the flanges of the FTs and the

MOT coils. On the pump side, the ion pump is directly placed on the table and this is sufficient to

support the weight of this part of the apparatus and its overhangs. Additional supports are pro-

vided under the MCP flange and under the gate valve, and the two axial coils are independently

supported so that their weight is not transferred to the tubes.

Figure 7.3: Schematic showing the mounting for axial coils, MOT coils, detector tube within the
space constraints of the setup.

As a consequence of the complicated setup, we need to perform vacuum bake-outs with the coils

mounted. Therefore we wind all coils with double enamel wires that can withstand temperatures

above 200 °C. Also, the exterior ends of the electrical FTs will be inaccessible for soldering, etc.,

after the axial coils and the detector are mounted. Therefore we soldered and crimped all exterior
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pins of the FTs with 2 meter long Teflon insulated cables before mounting the coils. The solder

material and the epoxy used in the coils were chosen to withstand 200 °C. A schematic of all

the coils, FTs and connections is shown in figure 7.3 to illustrate the proximity of the various

components and the complexity involved in building this apparatus.

On the remaining CF16 ports, optical FTs with Kodial glass windows were mounted wherever op-

tical access is permitted and CF16 blank flanges were mounted on ports which would eventually

be blocked by the axial coils. Our MCP detector is rated to withstand temperatures only up to

150 °C and we can not allow contamination of the detector during bake-outs. Therefore we limit

the baking temperatures to 140 °C on the detector side of the setup and maintain a temperature

gradient keeping the pump side of the setup at 110° during vacuum bake-outs. We achieve ultra

high vacuum (UHV) of ≈ 2× 10−10 mbar as measured by our vacuum gauge. We believe that the

vacuum in the main chamber would be as good as measured by the gauge, if not better, due to

presence of the NEG pump that is mounted directly on the main chamber.

7.4 Creation, trapping and detection of ions

The first obvious experimental requirement is to have spatially overlapped ultracold atoms atoms

and ion(s), allowing the species to interact. As we are primarily interested in homo-nuclear ion-

atom systems, the apt method for creation of the ion would be threshold ionization in an ultracold

atomic gas. This ensures that the ion is overlapped with the atoms from the instance of its creation,

along with giving rise to a zero energy ion, to begin with. When the trapped atoms are at the center

of the ion trap, threshold ionization creates the ion(s) close to the ion trap potential minima. We

have built a laser to utilize a non-resonant two photon threshold ionization for MOT Li atoms in

the excited state.

Two photons from a focused laser beam of wavelength ≈ 699 nm will threshold ionize a Li atom

in the excited state (2P3/2:F
′

= I + (3/2)) of their first, closed D2 transition. We made a home

built laser, using the design that will be described later in this chapter, to address this wavelength.

However, initially when the characterization of ion creation, trapping and detection have to be
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benchmarked, we use a broadband LED source of central wavelength 340 nm. This LED beam is

first collimated and then focused to have the high enough intensities at the common center of the

ion trap and the MOT.

To measure the ion diffusion, charge hopping and other effects discussed in chapters 4 and 5,

we need to allow the ion to scatter within the atomic cloud in a field free or a field controlled

environment. Although, this does not require active ion trapping, having an ion trap will provide

some degree of confinement. Also, it may be necessary to implement cooling techniques and

compensate for stray fields.

In this experiment, we need to measure the position of the ion(s) in addition to their survival, we

need to incorporate a micro channel plate (MCP) based detection. An MCP is a position sensitive

ion detector. We propose a process of standardizing the position detection of optically dark Li+

ions, which needs calibration using a coulomb crystal of fluorescing ions. The plan is to first make

a Ca+ ion coulomb crystal with few ions, image it optically in the trap via cameras to precisely

locate the ion position in the trap, before extraction and then map the Ca+ ion positions in the

trap and the positions of ion hits on the MCP. In the next step, we would make hybrid coulomb

crystals of both Ca+ and Li+ ions, where the lithium ions will occupy the central region because of

their lower mass and then map the hybrid crystals. The optical image of this hybrid crystal would

directly give the positions of the outer Ca+ ions, and through numerical analysis the positions of

the Li+ ions in the central dark region can be obtained. We then establish the mapping between

these Li+ ion positions with the corresponding hits on the MCP, which occur at an earlier time than

the Ca+ ions due to their lower mass. This allows us to optically locate the ion position inside the

trap, and make correspondence with the detection on the MCP when the ion is extracted, before

we completely rely on it. Therefore, we have built an ion trap which can simultaneously trap Ca+

and Li+ ions, optimized for lowest Li+ ion temperatures, to facilitate the generation of the desired

mixed species coulomb crystals.

Placing the ultracold atoms at the center of the trap is a prerequisite for threshold ionization and

therefore it is desirable to prepare the cloud of atoms at the geometric center of the ion trap. This

involves co-centering of ion trap and a magneto optical trap (MOT). The laser beams for the MOT
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and optical detection of atoms and ions demand large optical access to the trap center. Therefore,

keeping in mind the virial arguments made in chapter 6, we opt for a linear quadrupole Paul

trap design with thin cylindrical rods as radio frequency (RF electrodes and circular ring end-caps

electrodes (see figure B.2 in Appendix B).

Figure 7.4: This is an illustration of the geometric constraints relating the beam diameters taken
here as 16.4 mm, the outer diameter of the end caps dout and the end-cap to end-cap distance lmin.

The size of the trap is chosen large enough to accommodate the large diameter MOT beams needed

to cool Li atoms. MOT for lithium is challenging due to the not-well-resolved D2 transition, and

added to this the low mass of Li atoms implies higher velocity of atoms prior to cooling, are emit-

ted by the atomic Li gas dispenser. In order to maintain an adequate loading rate into the MOT,

the cooling and repumper beams have to be larger than a centimeter to ensure a large enough

volume of cooling region for the dispensed atoms. The center to center distance between two

RF electrodes is kept as 20 mm. We have allowed the diameter of the electrodes to be as large

as 6 mm, and have calculated 2-dimensional potential arrays using SIMION software [196], for

various electrode sizes ranging from 3-6 mm. Using each of these potentials, we have simulated

2-dimensional trajectories of a 7Li+ ion, for a set of voltages that satisfy the stability criterion. For

the purpose of this calculation, the ions are created at the trap center with velocity equivalent to

100 µK (ballpark Li MOT temperature), and the steady state temperature of the ion in each case is

obtained. We find numerically that, for the above mentioned constraints, the lowest ion tempera-

tures are achieved with electrodes of diameter between 3.5 mm to 4 mm. So, we have used 4 mm
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bare rods made of stainless steel (SS 316L) and which were turned to remove surface undulations

and pits. This resulted in 3.6 mm diameter, unbent cylindrical rods with excellent surface quality,

which were used as our RF trap electrodes.

Once the RF electrode diameter is fixed at 3.6 mm, keeping the electrode to electrode distance

20 mm, we get a clear optical access for up to 16.4 mm diameter MOT beams. In order to allow

orthogonal beams of diameter 16.4 mm, and keep a similar optical access of 16.4 mm through

the end-cap rings, the constraints for the dimensions of the end caps are obtained, see figure 7.4.

While the inner diameter of the end-cap rings, din has to be at least 16.4 mm, the maximum outer

diameter of the end-cap rings, dout is determined by its axial distance from the trap center. The

end-cap to end-cap distance has to be at least lmin = dout + (16.4
√

2). Also, in this design, the

end-caps need 4 circular cutouts to allow the RF electrodes through them without making contact.

Through holes of 4 mm diameter have been made for this purpose (see Figure B.2 in Appendix B).

Figure 7.5: This is a design render of the functional elements of the Paul trap with optimized
dimensions for the purpose of our hybrid ion-atom experiments. The various parts have been
labelled and the electrode voltages to be applied in the normal operation are mentioned.

We have simulated 3-dimensional potential arrays using SIMION software for configurations with

different values of dout, keeping din = 16.4 mm, subject to the constraint discussed above. In each

case, we evaluate the parameter space for simultaneous stable trapping of Ca+ and Li+ ions. The

intention is to select the dimension dout, and thereby the end-cap to end-cap distance, such that

the parameter space with for simultaneous trapping of Ca+ and Li+ ions is large and the resulting

temperatures for the ions in the trap are low. We obtain that end cap size of 32 mm outer diameter
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provide optimum results and therefore fix this length scale, and the resulting end-cap to end-cap

distance becomes 54 mm. The thickness of the end caps is chosen as 8 mm, see figure 7.5 in order

to incorporate all the design requirements of the ion trap mounting which will be discussed below.

In the previous experiments built in our group [75, 89], channel electron multipliers were used to

detect number of ions. These have been shown to reliably detect the number, temperature and

mass of the ions [14, 77, 78, 87, 206]. However, as we have established earlier, measurement of

phenomena related to charge hopping and the resulting diffusion, require the read out of position

of the optically dark ion prior to destructive detection. This is facilitated by the use of MCP based

detectors.

MCP based detectors, which can provide good resolution for position of the ion detection, come

in two basic variations. The first kind provide an electronic readout of the time of arrival of the

detected ion and with a integration of a delay-line, allow the estimation of the location of ion

hit(s) on the detector. This method is popular with experiments where both location of hit as well

as the time of arrival need to be measured, despite its complexity and difficulty to operate. The

second kind of MCP detectors have a phosphor screen on the rear end which produces a glow at

the site of ion hit. The grain size of the phosphor element determines the size of the glowing spot,

which affects the resolution for position of hit determination. The decay time characteristics of the

phosphor element determine resolution for time of arrival and limit the usage of the detector. This

is because, a second ion hit in the same location can not be differentiated if the time difference in

the arrivals is less than the phosphor’s decay time. Phosphor elements with low decay time and

high gain are developed for such applications, which turn out to be very expensive. We have used

a widely available kind of phosphor screen and MCP detector by determining the size that allows

the required resolution of ion position detection.

Our experiment needs to determine the position of a single ion and in a cloud of size ≈ 400µm,

with a resolution of up to 1µm. If we use the widely used variety of phosphor, P43, which has

ample gain and a grain size of ≈ 1µm. The detector size is 40 mm in diameter to provide ample

resolution for position determination. The job of magnifying the region of interest of ≈ 400µm

to the detector size of 40 mm, must be done by the charged particle lenses and the ion extraction
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mechanism. The detector we used is a two stage (Chevron) detector with P43 phosphor screen,

purchased as a (CF100) flange mounted system from Surface Concept - part number MCP-45-60-

P43-CF100, who in turn source the MCPs from Photonis, see schematic in Figure 7.6.

Figure 7.6: A rendered image of the assembled ion detector with 2 MCPs in Chevron configura-
tion and P43 phosphor screen mounted on a CF100 flange with CF63 glass window to image the
phosphor screen.

Figure 7.7: Circuit diagram for appending the detector power supply to provide electronic signal
for ion time of arrival measurement.
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The large decay time of P43 limits the accurate determination of the time of arrival of the ions.

Although Surface Concept does not provide an electronic signal readouts, we have modified the

power supply circuit to obtain an analog output of the phosphor screen signal, the circuit diagram

is shown in figure 7.7.

Figure 7.8: schematic showing the designed elements of the hybrid ion-atom trap, the assembled
ion detector along with the components for ion extraction.

Between the detector and ion trap, a drift tube of 127 mm length is used to increase the time of

flight of the extracted ions, sufficiently to be manipulated by the extraction fields. On the ion

trap side of this drift tube, we place a wire grid to electrically isolate the ion trap region from the

detector side. Within the drift tube, adjacent to the wire grid, we have placed 4 deflection plates,

two for each direction, to tweak the trajectory of the ions and aid in providing the magnification

needed.

Finally, a magnetic coil is mounted around the drift tube to provide the magnification during ion

extraction onto the detector. Figure 7.8 shows the schematic with the designed functional elements

of the hybrid trap, the ion detector and functional components for the ion extraction.
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7.4.1 Ion trap assembly and mounting

Figure 7.9: The full mounting assembly of the ion trap to the main chamber is shown. The ion
trap electrodes are held by the two central Macor plates, which also insulate all of the electrodes
from each other. The wider mounting rods connect to the rear side of the end caps (see Figure B.2
in Appendix B) through the Macor plates. These mounting rods are held without touching the
mounting plates by use of another set of similar design Macor plates, behind the mounting plates.
Finally the whole assembly mounts to the grooves on the chamber with the help of the groove
grabbers attached to the mounting plates.

The central ion trap electrode assembly has 4 stainless steel rods of 3.6 mm diameter held in

a quadruple configuration, with adjacent rods at a center to center distance of 20 mm. The

ion trap electrode rods are electrically isolated as well as mechanically supported by two Ma-

cor(machinable ceramic) plates of 5 mm thickness. The plates are 40 mm in diameter and have a

central hole of 16 mm diameter for optical access to the ion trap center. Circular cut outs of 3.64

mm are provided to allow the RF electrodes to pass through and 5.04 mm holes are made on these

plates (see Figure B.3 in Appendix B) to allow the diagonal mounting rods, which connect and
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thread into the end caps. Both the surfaces of the Macor plates are structured so that the regions

with 3.64 mm holes and the regions with 5.04 mm holes can not be short by deposition of metallic

vapours during the operation of the experiment.

The ion trap electrodes extend beyond the Macor plates, where they have M4 threads and with

the help of a washer and double nuts, they hold the Macor plate flush with the rear surface of

the end-cap electrodes and apply an inward pull on the ion trap assembly. On the end-cap elec-

trodes, 4 mm semi-circular cutouts are provided to allow the RF electrodes (Rods) to pass through

(see figure B.2 in Appendix B) and in the gap between the end cap electrode and the linear rod

electrodes, a thin Macor bush is placed to ensure electric insulation.

The surface of the end caps facing the ion trap center are plane and smooth, but on the opposite

side, there are 4 end tapped holes with M4 of depth 7 mm. Air relief holes are provided at the

ends of these tapped holes towards the larger diameter side of the rings to improve vacuum (see

figure B.2 in Appendix B). 4 stainless steel (SS316L) rods of 5 mm diameter with M4 threads at the

end are threaded into the rear side of each end-cap electrode. These rods pass through the Macor

plate behind the end-caps as described above and connect the ion trap assembly to the mounting

plates (see figure B.3 in Appendix B).

The mounting plates made out of stainless steel (SS316L) are 5 mm thick and have 5.5 mm holes to

allow the 5 mm rods to pass through (see figure B.3 in Appendix B). Behind the mounting plates

another pair of Macor plates, one for each side, are used to tighten the whole assembly via double

nuts to apply an outward push on the trap assembly. The Macor plates behind the mounting

plates insulate the rods from the mounting plate, and are bolted to them using the 4 mm through

holes.

The mounting plates are attached to the chamber wall by means of groove-grabbers (Kimball

Physics: MCF800-GrvGrb-C01). Each plate is attached to a pair of stainless steel (SS) groove-

grabber (top and bottom) by means of gold plated SS screws. The mounting plates also have a

central 20 mm hole to allow optical access to the center of the ion trap in the longitudinal direction

(see figure B.3 in Appendix B). The complete ion trap assembly looks as shown in figure 7.9.
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7.4.2 Ion extraction and detection assembly

The MCP detector, as described earlier is mounted on a CF100 flange with a window, and the de-

tector assembly extends 35 mm beyond the flange. This is attached to a CF100-40 straight reducing

nipple (Kurt J Lesker), through a 40 mm thick SS304 CF100 spacer to accommodate the detector.

The CF100-40 straight reducing nipple has a 127 mm tube of diameter 40 mm that acts as our drift

tube for the ions and its CF40 flange is mounted to the main chamber. As for the magnetic coil

around the drift tube, it was wound around the tube before attaching it to the main chamber. Also,

between the tube and the coil, insulated NiChrome heating wire was wound on the tube which

would be needed to perform vacuum bake-outs.

At the main chamber side of the drift tube, the wire grid and deflection plates are assembled as

a single unit which are mounted to the main chamber using 2 groove-grabbers. This assembly is

done using Macor insulating pieces (see figure B.4 in Appendix B) and SS bolt-plates (see figure

B.6 in Appendix B). The frame for the wire grid is made of 3 mm wide and thick aluminium,

and the wire itself is made of 80 µm diameter tungsten. The wire grid is weaved as vertical and

horizontal lines of 5 mm spacing, and positioned such that the center of the grid, where most of

the ions pass through has no wires. The length of the grid in x-direction is, 54 mm, long enough

to electrically shield the deflection plates, and all the wires up to the electrical feedthoughs (2

CF16 ports) behind it. The deflection plates are 19 mm long and 14 mm wide (see figure B.5 in

Appendix B), bolted to Macor mounts and the end taps are provided with air relief holes. We

designed special jigs made of Nylon and brass, to mount the ion trap assembly and the wire grid

assembly to the chamber, so that axes are well matched. Laser beams along the axes were used as

reference during the processes to ensure proper alignment.

7.4.3 Feedthroughs and electrical connections

There are two 4 pin (Kurt J Lesker, 5 kV, 10 A), CF16 electrical feed-through (FT) directly attached

to the chamber to two CF16 ports adjacent to the MCP detector port. Of the 4 pins on each FT, two

are connected to two nearest deflection plates, one is connected to the grid frame and one to the
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SS piece in the mounting to explicitly ground it during operation.

We use two 4 pin (Kurt J Lesker, 5 kV, 20 A) FTs to provide electrical connections to the 4 ion trap

RF and 2 end-cap electrodes as well as to two ends of a Rb dispenser. The Rb dispenser is included

in the setup to keep an option of using the easily laser coolable atoms for heteronuclear and mixed

species in this setup in the future. These FTs are mounted on 2 CF16 ports on either side of the ion

trap. On 2 CF16 ports diagonally opposite to these, two FTs, one for a pair of Li dispensers and

another for a pair of Ca dispensers, are attached.

The electrodes, grid and deflection plates are connected to the respective FTs using silver wires of

0.4 mm diameter. The specialty of the silver wires are that they are flexible but can not be corroded

by reactive elements like lithium, in addition to excellent UHV and conduction property. The

wires providing connections are bent and placed in the shadow region behind the SS rods in such

a manner that the voltage applied on them are screened from the center of the trap by the trap

electrodes. These silver wires connect to all electrodes between their washer and the nut(s).

A set of specially designed gold plated copper beads are used to attach the silver wires to the cop-

per FT pins. The beads have an off-axis through hole along with two radially threaded M2 holes

on two ends to connect the FT pin in one and the silver wires on the other. It is also slotted axially

to provide air-relief for the end taps through which gold plated SS screws secure the connections.

These slots are also used to attach the dispensers on the other FTs.

We had also gold plated the copper CF gaskets used on the main chamber, the (future) zeeman

slower side and the pump side. The dispensers are mounted on FTs facing away from the MCP

detector port. Detailed mechanical drawings of the internal components of the apparatus are

provided in the appendix.

7.5 Laser systems and control

We have used home built (see figure B.1 in Appendix B) external cavity diode lasers (ECDLs) with

Toptica diode laser controllers for the lithium MOT. Since it is difficult to source high power laser
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diodes at the required wavelengths ≈ 671 nm, we use 660 nm diodes (Thorlabs L660P120) which

give up to 120 mW of optical power. The ECDL design, shown in figure 7.10, permits variation

of the wavelength of the laser by more than 10 nm by changing the temperature of the internal

mount and grating angle. The grating mount allows the angle adjustment needed for this, so that

the stimulation via the external cavity can help in stabilizing a larger range of wavelengths. The

internal mounts which hold the laser diode and the grating are made of brass to accommodate the

temperature changes and the grating mount is designed to allow large mode hop free wavelength

scans up to 10 GHz around any central wavelength between 655-675 nm at the corresponding

temperatures.

Figure 7.10: A photograph showing the schematic of the home-built laser mounts for high temper-
ature ECDL application. The components are labelled and the mechanical drawings for the parts
are provided in Appendix B.

The L660P120 diodes will have to be operated at temperatures of 65-75°C in order to emit the
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required wavelengths. This is beyond their rated range of temperatures. We had heated the diodes

for more than 24 hours at 80°C before using them in our ECDLs. We found that the diodes which

survive this heat treatment will later emit 671 nm wavelength, at manageable temperatures of

≈ 60°C for regular use.

We use holographic gratings rated for UV wavelengths to make the ECDLs. These are less efficient

in creating a first order diffraction beam, leaving more power in the zero order beam which is the

output of the laser. Also, low first order pump powers lead to more stable laser performance. The

base for the laser mount and its casing on all sides are made of aluminium and we paste acoustic

grade Styrofoam sheets on the aluminium casing to thermally and acoustically isolate the laser

housings.

Figure 7.11: Figure shows the saturation absorption spectrum for 7Li obtained using home-built
lasers. The setup involves a hollow cathode lamp which results a different spectrum from the
ones obtained using heat pipes. We do not see any pronounced ground state cross over peaks.
The excited state hyperfine levels are unresolved.

An optical isolator (Thorlabs IOT-5-670-VLP) is used to ensure protection against destabilizing

reflected light. A small fraction of the output beam is directed into a lithium see-through hol-

low cathode lamp (Hamamatsu L2783-38Ne-Li) around which the necessary optical circuit for

saturated absorption spectroscopy (SAS) is setup. Another small fraction of the output beam is

coupled to the wavemeter optical fiber for measurement of the wavelength. By using the SAS
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signal (power vs time) and the wavemeter readout (wavelength vs time), we obtain the saturation

absorption spectrum (power vs wavelength), shown in figure 7.11. The rest of the output beam

is coupled to a polarization maintaining fiber. At the output end of the polarization maintain-

ing fiber, the required amount of power is branched out and the MOT beams are generated with

the respective polarizations. In order to generate ample cooling beam power, we use a tapered

amplifier (Toptica BoosTA Pro 670).

The Toptica DLC110 diode laser controllers can be used to lock the laser wavelengths either to the

obtained SAS signal or to the signal generated using the wavemeter’s PID module. The waveme-

ter model we use is High Finesse WSU2, which is capable of measuring wavelengths of 350-1100

nm with an accuracy of 2 MHz and a precision of few 100 kHz, when continuously calibrated with

a reference laser within ±2 nm from the wavelength to be measured.

Figure 7.12: The atomic levels relevant for 7Li MOT are shown with the various level seperations
labelled and the measured values of cooling and repumper MOT laser beams, on our wavemeter
are also given.
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Figure 7.13: A photograph of the lasers on the optical table, taken in our lab.
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Figure 7.14: A photograph of the experimental chamber and the associate optical circuitry on the
optical table, taken in our lab.
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We do not have any good reference laser sources around the lithium wavelengths, making it im-

possible to rely on the absolute values of wavelengths measured by the wavelength. We choose a

852 nm laser locked on the most resolved and accurately known Cs atomic transition for continu-

ous calibration of the wavemeter. This along with the HCL spectroscopy, gives the Li wavelengths

accurately which are shown in the 7Li atomic levels diagram, in figure 7.12. A photograph of the

lasers on our optical table is shown in figure 7.13 and another photograph of the apparatus on the

other half of the same optical table is shown in figure7.14.

7.6 Characterization and results

For MOT lasers, the detuning from natural transitions must be well known to be able to deter-

mine the number of atoms from the measured fluorescence. We employ the following method for

reliable determination or setting of MOT laser detunings. First, we lock the laser using to the top

of the unresolved peak in the saturated absorption spectroscopy signal and note the wavelength

measured by the calibrated wavemeter, λ1. Then the wavelength of the MOT beam, λ2 is mea-

sured with the same wavemeter calibration. Although the absolute values of λ1 and λ2 are not

accurate, the value of λ12 = λ1 − λ2 will be correct to few 100 kHz.

We model the unresolved SAS peak using known natural linewidths, relative intensities, and some

floating parameters which we fix by fitting to the measured unresolved SAS peak. The energy

separation between the unresolved excited state hyperfine levels is taken from available literature

[207]. From the best fit model, the offset between the underlying natural transitions and the top

of the overall unresolved peak is obtained. The relevant offset is added to λ12 to get the detuning

of the MOT beam(s), which are used to accurately measure the number of trapped atoms in a 7Li

MOT.

We adjust the wavelengths of the cooling and repumper laser beams, and the coil currents to attain

the brightest, symmetric and well behaved MOT at the center of the ion trap electrode geometry.

We ensure this by imaging the center of the main chamber from two orthogonal directions, the pri-

mary imaging port (-y direction) and the gate valve port (-x direction). The fluorescence collected
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from -y port is split into two equal halves and sent to a CMOS camera and a PMT, to measure the

density distribution from the camera image and the total atom number from the PMT signal.

The MOT density distribution is measured to be close to a Gaussian standard deviations σx =

1.04 ± 0.05 mm and σz = 0.95 ± 0.05 mm, see figure 7.15. The total number of atoms in the MOT

is determined to be ≈ 7.8 × 105. Assuming σy = σx, we obtain the peak MOT density to be

≈ 2.4 × 1014 atoms/m3, the MOT loading time is measures to be 7 seconds and the atom loading

rate for the MOT is determined to be ≈ 1.6× 105 atoms per second.

Figure 7.15: Panel (a) and (b) show intensity profiles measured by the CMOS camera pixels in
the two directions x and z, along with the obtained best fits for a Gaussian of widths σx = 1.04
mm and σz = 0.95 mm respectively. Panel (c) is the full gray scale image of the MOT from the
from the camera. Panel (d) shows a photograph of the 7Li MOT fluorescing red light, taken with
a handheld mobile camera through one of the CF16 view ports. Since the wavelength emitted by
lithium is visible red, one can directly see such a MOT without much difficulty.
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Figure 7.16: The top panel shows the image of the electronic readout from the MCP detector
illustrating the pulses obtained for each ion hit and the availability of the ions’ time of arrival
information and ion count. The bottom panel shows a long time integrated image of the phosphor
screen behind the detector, that replicates the MOT atom density profile as it is an overlap of glows
from hits of multiple ions originating from different regions of the MOT.

We ionized theses MOT atoms using a UV led of 340 nm central wavelength. A single photon

of the UV light should be able to ionize an excited Li atom which made available by the cooling

cycle of the MOT. We do not measure any significant change in the MOT atom numbers due to

the additional loss rate introduced by ionization. To confirm the creation of ions, we have used

the MCP detector and the trap electrodes in continuous extraction and detection mode. We see

an easily measurable number of ion hits on the detector. While the phosphor screen image shows
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an overlap of numerous glows, corresponding to many previous ion hits, replicating the MOT

density distribution, the electronic readout clearly provides time of arrival of the ions and allows

to count the number of ions detected in a given interval of time, see figure 7.16.

7.7 Concluding remarks

In this chapter we have discussed in detail, the design and construction of the hybrid trap appara-

tus. With the requirements of the apparatus in mind and the constraints arising from combining

the optical, electric and magnetic fields for trapping, probing and for detection, the whole system

has been devised. This experiment, will enable the study of interaction between multiple species

along with the novel investigations of homonuclear ion-atom systems, that have been studied

throughout this thesis. We have also discussed about the lasers and the optical arrangements

that have been used for the experiments. The preliminary experiments performed in the hybrid

apparatus to establish its functioning have been discussed.

There are a few substitutes to this system which can be thought about. A 2D-MOT instead of a

Zeeman slower may help improve the atom loading rate. This can be implemented on our present

setup with some extension. A thinner main chamber will reduce the complexity of both internal

and external apparatus assembly significantly. All coils can then be placed closer and the direct

contact between the coils and the chamber can be avoided. With some customization, if coils can

be mounted in place after vacuum bake-out, the vacuum assembly can be considerably eased,

better vacuum and reliable operations can be achieved. Modern but expensive technologies such

as NEG coatings, Bitter coils, high power lasers, etc. can be utilized for the best benefit.
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Chapter 8

Summary and Future Prospects

8.1 Summary of results

A versatile and effective platform for experimental study of ultracold ion-atom interactions is

developed. We first considered an optical cavity as a non-destructive probe for ultracold systems

and show prospective implementations to enhance its utility. However the limitations of cavity

based detection, with respect to weak interactions and small number of ions, and the requirements

imposed by the theoretical calculations, demanded an alternate scheme.

To lay down the parameters needed to study the unexplored regimes of interest, theoretical calcu-

lations of ion atom interactions were adapted to our system. We found the widely used theoretical

recipes for ion atom scattering suffered from inconsistencies, particularly when applied to ultra-

cold homonuclear ion-atom systems. This called for a rework of the theoretical framework from

first principles, which has been presented in detail. The possible range for scattering outcomes in

any particular system, can be estimated using the methods we have applied.

The theoretical study is extended to quantify quantum phenomena of charge hopping in thermal

gas regimes. The challenging but achievable demands for measuring such well characterized

phenomena have been established. We then work towards a consistent scheme of measuring

charge transport which links to all aspects of ultracold ion-atom scattering. Design optimization,
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including detail analysis for the choice of the type of trap to use, the detectors, the tricks for

integrating and extracting the most out of them have been presented. All the elements of work,

both theoretical and experimental have been developed with versatile formalism and methods,

and their relevance to a lot of applications and other systems has been explored, some of which

has also been published.

Finally, we demonstrate stable trapping of ultracold lithium atoms in a MOT, using some of our

lab-developed methods and devices. Li+ ions are created and detected, and their time of arrival

and position mapping are shown to be feasible, using the customised readout mechanisms.

8.2 Future prospects

A direct next step in the experiment is to establish a protocol for reliable measurement of the

position of a 7Li+ ion using the time of arrival and position of striking the detector. To calibrate

this protocol for optically dark lithium ions, as we discussed earlier, a calcium ion crystal will

be implemented. Then the transition to an optical dipole trap to get to the desired densities and

temperatures will have to be worked on before being able to measure the ultracold phenomena

that are sought-after.

The usage of axial magnetic fields and studying charge hopping-led confinement of multiple ions

is of specific interest to us. This is expected to show emergence of symmetric configurations for

the confined ions through a random, stochastic quantum mechanism. The theoretical frame work

can be further extended to incorporate hyperfine interactions and study the effects of cooling the

system further into degenerate gas regimes.

148



Appendix A

Near neighbor distances for discrete

distributions

Consider N point particles uniformly distributed in a D dimensional volume, V. The number den-

sity is given by n = N/V and the volume per particle v = V/N. Let us define a characteristic length

rc, which is the radius of a D dimensional hyper-sphere with volume v. Using the known volume

of sphere, VD of radius r in D dimensional Euclidean space, 2

VD(r) =
π
D
2

Γ(D2 + 1)
rD , (A.1)

we get

rc =
(Γ(D2 + 1) × V

N )
1
D

√
π

, (A.2)

where Γ is the gamma function. Let Pk(r) dr denote the probability that the kth nearest neighbour

to a particle is at a distance between r and r+dr. This is the product of the probability that one

particle is in the shell of radius r and thickness dr, the probability that k-1 particles are within

a hyper-sphere of radius r and the probability that the remaining N-k particles are outside the

hyper-sphere of radius r [208],
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Pk(r) dr = N
V ′D(r)dr

V
× N−1Ck−1 ×

(
VD(r)

V

)k−1

×
(

1− VD(r)

V

)N−k
. (A.3)

Substituting V = N VD(rc) and the expression for V′D(r) which is the derivative of VD with r, we

get

Pk(r) =
N−1Ck−1

Nk−1

D

r

(
r

rc

)D×k(
1− 1

N

(
r

rc

)D)N−k
. (A.4)

In the limit N� k, we obtain

Pk(r) =
D rkD−1 exp

(
−( rrc )D

)
(k − 1)! rkDc

(A.5)

and substituting equation A.2 in equation A.5, we can write the probability density for the distance

to the kth nearest neighbour in terms of the number density n. The mean distance to the kth

neighbour 〈rk〉, the mean square distance to the kth nearest neighbour
〈
r2
k

〉
, etc., can be obtained

using Pk(r). The general expression for 〈rαk 〉 is given by

〈rαk 〉 =

∞∫
0

rα Pk(r) dr =
Γ
(
k + α

D

)
(k − 1)!

rc. (A.6)

Let Pk|k−1(r) dr denote the conditional probability for the kth nearest neighbour being at a distance

r, given that the (k-1)th nearest neighbour distance is rk−1. This is the product of the probability

that a particle is found in a shell of radius r and thickness dr and the probability that none of

the remaining N-k particles is found in the excluded volume between the sphere of radius r and

the sphere of radius rk−1. Since the kth nearest neighbour has to be more distant than the (k-1)th

nearest neighbour, this is for r≥rk−1.
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Pk|k−1(r)dr = (N − k + 1)
V ′D(r) dr

V − VD(rk−1)
×
(

V − VD(r)

V − VD(rk−1)

)N−k
: r ≥ rk−1 (A.7)

Using V = N VD(rc), we get

Pk|k−1(r) =
(N − k + 1)D

r
× rD

NrDc − rDk−1

×

(
1−

rD − rDk−1

NrDc − rDk−1

)N−k
: r ≥ rk−1. (A.8)

In the limit N� k, we get obtain the expression

Pk|k−1(r) =
D rD−1

rDc
exp

(
rDk−1 − rD

rDc

)
: r ≥ rk−1. (A.9)
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Appendix B

Mechanical drawings

Figure B.1: Laser mount showing diode and grating mounts.
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Appendix C

Mathematica code for charge hop rates

All numerical codes for arriving at the main results of this thesis have been made available with a

google drive link given below. Any further details can be requested by contacting the author via

email: niranjanmyneni2004@gmail.com.

Here we have provided a one of these numerical codes, which clarifies the methodology which

is conceived and conceptualized by the author in this thesis, for obtaining the charge hopping

rates between an ion and an atom at ultracold temperatures. Also the extension of the hopping

rate between an pair, to obtain charge hopping rates for an ion in a uniform ensemble of ultracold

atoms can be found below. The code provided here has been written for Mathematica 11.0 version

and comments have been placed to make the code self explanatory.

h = 6.62607015 ∗ (10−34);(*Planck’s constant in SI*)

hcut = h/(2π);

Eh = 4.35974465054 ∗ 10−18; (*Hartree/Joule*)

a0 = 5.291772106712 ∗ (10−11); (*Bohr radius in m*)

e = 1.602176620898 ∗ (10−19); (*proton charge in C*)

kB = 1.3806485279 ∗ (10−23); (*Boltzmann constant in SI*)
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m6 = 6.01512279516 ∗ 1.66053904020 ∗ (10−27); (*mass of 6Li*)

m7 = 7.016003436645 ∗ 1.66053904020 ∗ (10−27; (*mass of 7Li*)

x6 = 2/3;x7 = 3/8;

Ta = T ; (*Temp. of atoms*)

Ti = T ; (*Temp. of ion, used to apply a corresponding delocalization (via de Broglie wavelength)*)

λTa6 = Sqrt[h2/(2πm6 kB Ta)];

λTi6 = Sqrt[h2/(2πm6 kB Ti)];

k6 = 2(λTa62 + λTi62);

λTa7 = Sqrt[h2/(2πm7 kB Ta)];(*de Broglie wavelengths*)

λTi7 = Sqrt[h2/(2πm7 kB Ti)];

∆r = .005a0; (*half-step size for integrating probability density*)

k7 = 2(λTa72 + λTi72);

Pria3d6 = (r/Sqrt[π k6L2]) (Exp[−(L− r)2/k6]−Exp[−(L+ r)2/k6]); (*probability density func-

tions for instantaneous ion-atom separation to be ria*)

Pria3d7 = (r/Sqrt[π k7L2]) (Exp[−(L− r)2/k7]− Exp[−(L+ r)2/k7]);

∆Pria3d6 = 1/(2LSqrt[π])((Exp[−((L− ria+ ∆r)2/k6)]− Exp[−((L+ ria−∆r)2/k6)]

− Exp[−((−L+ ria+ ∆r)2/k6)] + Exp[−((L+ ria+ ∆r)2/k6)])Sqrt[k6]

+ LSqrt[π](Erf [Sqrt[(L− ria+ ∆r)2/k6]]− Erf [Sqrt[(−L+ ria+ ∆r)2/k6]]

− Erf [Sqrt[(L+ ria−∆r)2/k6]] + Erf [Sqrt[(L+ ria+ ∆r)2/k6]]));

∆Pria3d7 = 1/(2LSqrt[π])((Exp[−((L− ria+ ∆r)2/k7))− Exp[−((L+ ria−∆r)2/k7)]

− Exp[−((−L+ ria+ ∆r)2/k7)] + Exp[−((L+ ria+ ∆r)2/k7)])Sqrt[k7]

+ LSqrt[π](Erf [Sqrt[(L− ria+ ∆r)2/k7]]− Erf [Sqrt[(−L+ ria+ ∆r)2/k7]]
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− Erf [Sqrt[(L+ ria−∆r)2/k7]] + Erf [Sqrt[(L+ ria+ ∆r)2/k7]]));

(*pobability that instantaneous ion-atom separation is between ria−∆r and ria+∆r, ∆Pria3d =

Integrate[Pria3d, {r, ria−∆r, ria+ ∆r}]*)

V g6 = ReadList[OpenRead[”folderaddress//2Σg.ext”], {Real, Character,Real}];

(*Import PEC data, R is in atomic units*)

V u6 = ReadList[OpenRead[”folderaddress//2Σu.ext”], {Real, Character,Real}];

V g7 = ReadList[OpenRead[”folderaddress//2Σg.ext”], {Real, Character,Real}];

(*Import PEC data, R is in atomic units*)

V u7 = ReadList[OpenRead[”folderaddress//2Σu.ext”], {Real, Character,Real}];

(*Potentials are in units of Hartree *)

vex6 = Table[{V g6[[i, 1]], (V u6[[i, 3]]− V g6[[i, 3]])}, {i, 1, Length[V g6]}];

vex7 = Table[{V g7[[i, 1]], (V u7[[i, 3]]− V g7[[i, 3]])}, {i, 1, Length[V g7]}];

(*table of exchange energies from PEC data*)

Clear[V g6, V u6, V g7, V u7]

(*

Tabk6collT byρ = Table[{T = 10lT , (kB T )−2 Sqrt[16kB T/(πm6)]×

Integrate[Exp[−EE/(kB T )]EE Interpolation[σtot6][EE]

, {EE, ηg6[[−1, 1]]Eh, ηg6[[1, 1]]Eh}]}, {lT,−9,−.2, .1}];

Tabk7collT byρ = Table[{T = 10lT , (kB T )−2 Sqrt[216kB T/(πm7)]×

Integrate[Exp[−EE/(kB T )]EE Interpolation[σtot7][EE]

, {EE, ηg7[[−1, 1]]Eh, ηg7[[1, 1]]Eh}]}, {lT,−9,−.2, .1}];

*)
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Tabν6hopTbyρcont = Table[{T = 10lT , 4πSum[rIA2 vex6[[Round[(rIA− 2a0)/(.01a0) + 1], 2]]×

.01a0, {rIA, 2a0, 1000a0, .01a0}]Eh/h}, {lT,−7,−2, .1}];

Tabν7hopTbyρcont = Table[{T = 10lT , 4πSum[rIA2 vex7[[Round[(rIA− 2a0)/(.01a0) + 1], 2]]×

.01a0, {rIA, 2a0, 1000a0, .01a0}] ∗ Eh/h}, {lT,−7,−2, .1}];

Tabν7T3d19byρ = Table[{T = 10lT , Sum[(L = Gamma[k + 1/3](3/(4π 1019))(1/3)/(k − 1))×

Sum[∆Pria3d7 × vex7[[Round[(ria− 2a0)/(.01a0) + 1], 2]], {ria, 2a0, 50a0, .01a0}]Eh/(Lh 1019)

, {k, 1, If [lT < −5, 500, 200]}]}, {lT, Log10[3.3125hcut2(1019)(2/3)/(m7 kB)],−2, .2}];

Tabν7T3d18byρ = Table[{T = 10lT , Sum[(L = Gamma[k + 1/3](3/(4π 1018))(1/3)/(k − 1))×

Sum[∆Pria3d7 × vex7[[Round[(ria− 2a0)/(.01a0) + 1], 2]], {ria, 2a0, 50a0, .01a0}]Eh/(Lh 1018)

, {k, 1, If [lT < −5, 500, 200]}]}, {lT, Log10[3.3125hcut2(1018)(2/3)/(m7 kB)],−2, .2}];

Tabν7T3d17byρ = Table[{T = 10lT , Sum[(L = Gamma[k + 1/3](3/(4π 1017))(1/3)/(k − 1))×

Sum[∆Pria3d7 × vex7[[Round[(ria− 2a0)/(.01a0) + 1], 2]], {ria, 2a0, 50a0, .01a0}]Eh/(Lh 1017)

, {k, 1, 60}]}, {lT, Log10[3.3125hcut2(1017)(2/3)/(m7 kB)],−2, .2}];

Tabν6T3d19byρ = Table[{T = 10lT , Sum[(L = Gamma[k + 1/3](3/(4π 1019))(1/3)/(k − 1))×

Sum[∆Pria3d6 × vex6[[Round[(ria− 2a0)/(.01a0) + 1], 2]], {ria, 2a0, 50a0, .01a0}]Eh/(Lh 1019)

, {k, 1, If [lT < −5, 500, 200]}]}, {lT, Log10[4.7854hcut2(1019)(2/3)/(m6 kB)],−2, .2}];

Tabν6T3d18byρ = Table[{T = 10lT , Sum[(L = Gamma[k + 1/3](3/(4π 1018))(1/3)/(k − 1))×

Sum[∆Pria3d6 × vex6[[Round[(ria− 2a0)/(.01a0) + 1], 2]], {ria, 2a0, 50a0, .01a0}]Eh/(Lh 1018)

, {k, 1, If [lT < −5, 500, 200]}]}, {lT, Log10[4.7854hcut2(1018)(2/3)/(m6 kB)],−2, .2}];

Tabν6T3d17byρ = Table[{T = 10lT , Sum[(L = Gamma[k + 1/3](3/(4π 1017))(1/3)/(k − 1))×

Sum[∆Pria3d6 × vex6[[Round[(ria− 2a0)/(.01a0) + 1], 2]], {ria, 2a0, 50a0, .01a0}]Eh/(Lh 1017)

, {k, 1, If [lT < −5, 500, 200]}]}, {lT, Log10[4.7854hcut2(1017)(2/3)/(m6 kB)],−2, .2}];

(*These codes result the hop rates used.*)
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The other important codes that can be found in the google drive link provided below include the

following, as separate folders:

• Vacuum Rabi splitting (VRS) with a MOT in cavity code and its implementation with differ-

ent cavity modes.

• ion-atom collision cross sections codes

• ion hopping diffusion simulations

• Ion trap stability codes

• Virial analysis of 2k-pole traps codes

Please visit for accessing additional numerical codes:

https://drive.google.com/drive/folders/1R2c8PW2q9lpNpqlZtdd0Jz7NluHX6q-A?

usp=sharing
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