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Synopsis

The cell membrane is the gateway between the outside and the inside of the cell.

The cell membrane, a multicomponent bilayer, comprising lipids, proteins and sug-

ars, plays an essential role in signalling or transfer of information, sorting or the

processing of information, and endo/exo-cytosis or the transfer of molecules, to-

gether with the transfer of small molecules and ions. These fundamental cellular

processes are crucially dependent on the spatio-temporal organization and control of

membrane molecules. Given the importance of molecular organization in the mem-

brane, not surprisingly, there have been many studies devoted to this, and many

models proposed to describe the organization and regulation of the cell membrane.

Amongst these, the most influential models have been the Fluid Mosaic and the

Lipid Raft models - both these models are grounded in the equilibrium physics of

the lipid membrane and treat the cell membrane, with its constituent lipids and

proteins as an independent organ. However, many recent experiments have estab-

lished that the plasma membrane is intimately coupled to the actomyosin cortex.

This actomyosin cortex is a thin, ≈ 200 nm, fluid layer adjoining the plasma mem-

brane, that largely comprises of actin cytoskeleton and myosin motors. Many cell

membrane molecules can bind, directly or indirectly, to cortical actin. The cell

membrane thus experiences active stresses, both systematic and stochastic, aris-

ing from the nonequilibrium dynamics of actomyosin cortex. These stresses effect

the dynamics of the cell membrane shape and the local clustering and transport of

cell membrane molecules. In other words, the spatio-temporal organizations of cell

membrane molecules are strongly influenced by the intimate coupling to the active

actomyosin cortex (and vice-versa). This leads to the description of the cell surface

as an Active Composite of a multicomponent, asymmetric bilayer juxtaposed with a

thin cortical actomyosin layer - a fundamentally nonequilibrium description of the

cell surface organization that appears to consistently explain many experimental
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Synopsis

results.

This thesis is a theoretical study of the in-plane Transport, Clustering and Chem-

ical Reaction kinetics of cell membrane molecules within a model of the Active

Composite Cell Surface.

Transport kinetics of cell-surface molecules influenced by the actomyosin

cortex

In the active composite model, the coupling of the membrane to actin configura-

tions is expected to affect the dynamics and organization of the membrane compo-

nents. A coarse-grained active hydrodynamics description of the active composite

cell surface [1, 2] successfully explains statistics of density fluctuations and transport

of such actin-binding membrane proteins observed in experiments [3, 4]. Much of

these behaviours were recapitulated in a minimal in vitro system comprising a thin

layer of short actin filaments and Myosin-II minifilaments on a supported bilayer[5].

These experiments have been the primary motivation for the agent-based Brownian

dynamics simulations described in this thesis. These simulations use the minimal

ingredients incorporated in the ıin vitro setup - that of a collection of molecules

which bind/unbind to actin filaments and move in the active medium comprising

actin and myosin in two and quasi-two dimensions.

The results on cluster statistics and transport kinetics, based on simulations and

analytical calculations, are in qualitative agreement with the experiments both in

vivo and in vitro. For instance, the exponential tails appearing in the probability

distribution of the number and the scaling of the variance of the number is precisely

the behaviour seen in earlier in vitro experiments. In addition, calculating the radial

distribution function, we show how activity-induced clustering of passive particles

arises naturally from such a minimal description. We have also found that there is a

crossover from an intermediate time super-diffusive to late time diffusive behaviour

as a consequence of active driving. The transport behaviour shows a striking de-

pendence on temperature and active forcing - at low temperatures, the diffusion

coefficient is insensitive to temperature, and crosses over to a linear temperature

xiii
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dependence at higher temperatures, in qualitative agreement with experiment [4].

Finally, recognizing that the viscosity of the cortical layer is different from that of

the membrane, we show that a friction coefficient mismatch has a strong effect on

the mean number of bound particles and the diffusion coefficient. This opens up the

possibility of local tuning of viscosity mismatch, for instance, by locally recruiting

the so-called “membrane rafts” or liquid-ordered regions on the cell membrane or

by locally regulating the concentrations of actin, myosin or cross-linkers. This could

result in yet another mechanism by which the cell surface might locally control the

clustering and transport of specific membrane proteins.

Membrane-Cortex composite as a random field glass with line-disorder

The diffusion constant of a typical protein in an intact plasma membrane is about

20-fold less than those in an artificial membrane. This was a serious puzzle, till

the development of high-speed cameras for single-molecule tracking showed that the

plasma membrane is partitioned into compartments induced by the cortical actin

meshwork and membrane molecules get temporarily confined in these compartments,

undergoing hop-diffusion [6]. Hop-diffusion of transmembrane proteins that possess

a cytoplasmic domain is thought to result from the direct interaction between the

protein molecules and the actin meshwork. However, the hop-diffusion of upper

leaflet molecules which do not have direct binding to the actin cytoskeleton is far

more puzzling. The Picket-Fence model was proposed to account for hop-diffusion

of these molecules [7]. In the picket-fence model, a fraction of transmembrane pro-

tein (picket) is immobilized by binding to the membrane skeleton (fence) and forms

compartments for other unbound molecules. This serves as an obstacle for lateral

diffusion of membrane molecules.

The successful interpretation of the diffusion coefficient mismatch by the picket-

fence model has motivated us to study the underlying physics of cage-hopping trans-

port in the vicinity of a random field-glass induced by the quenched random dispo-

sition of the cortical actin meshwork. The cortical meshwork adjoining the plasma

membrane provides a quenched random environment with correlated line disorder.

This pins those cell membrane molecules that directly bind to it, giving rise to
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the suggested picket fence. This in turn, provides obstacles to other molecules,

even small molecules such as upper leaflet lipids with no direct interaction with the

cortical meshwork. This is a new model for random pinning and its influence on

molecular transport, quite distinct from the random pinning potentials studied in

the literature, in that the effects of topological confinement are significant. Our

study is again based on a multi-agent Brownian dynamics simulation in quasi-two

dimensions. Activity or dynamical remodelling of the picket-fence can lead to flu-

idisation and hence larger diffusive transport of the cell surface molecules.

Clustering and Chemical kinetics of interacting cell-surface molecules in-

fluenced by the actomyosin cortex

Many cell surface signalling protein receptors form transient clusters or signalling

platforms, sites of efficient chemical reactions. Many studies of cell surface signalling

have demonstrated the role of actin and myosin in the creation, maintenance and

dissolution of these localised platforms. This provides the motivation for the study

of chemical reaction kinetics within the Active Composite model of the cell surface.

We have studied the clustering and chemical kinetics of particles interacting with a

fluid medium comprising actin filaments and myosin minifilaments using an agent-

based Brownian dynamics simulation. As a result of the contractile activity of

myosin minifilaments, the actin filaments are subjected to active forces and torques,

that spontaneously generate flows and defects such as localised asters. This results

in both enhanced active diffusive transport and transient clustering of particles that

bind/unbind to actin. In the context of chemical reactions, both irreversible and

reversible, this leads to a dramatic enhancement of chemical reaction rates (mea-

sured by the gain) compared to thermal equilibrium. Our numerical results can be

understood using a mean-field calculation based on the Smoluchowski’s diffusion-

controlled reaction theory. Both simulations and mean-field theory suggest a op-

timum chemical reaction output as a function of the active driving, which in the

Active Composite picture, is locally regulatable by the cell.
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Chapter 1

Introduction

1.1 Cell surface organization and function

All cells sense the environment and interact with the outside world to serve different

functions. These actions take place on the cell membrane, a multicomponent bilayer

comprising lipids, proteins and sugars. For example, the cell membrane plays an

essential role in the processing and transfer of information [1]. This cell signalling

mechanism makes it possible for cells to respond appropriately to a specific envi-

ronmental stimulus. Cell receive information from the environment and transmit it

into the intracellular space through a sophisticated molecular system on the cell sur-

face. Signalling molecules integrate the information into a directed pathway. Recent

developments in experimental techniques have established that the spatio-temporal

organisation [2, 3, 4] of signalling molecules (receptors) is crucial for the cell to

distinguishing weak signals from a very noisy environmental background with high

precision and sensitivity.

1.1.1 Equilibrium Organization of cell membrane

Given the importance of molecular organisation in the membrane, not surprisingly,

many studies have been done, and models have been proposed to answer how or-

ganisation takes place on the cell surface and how a cell benefits from this. Among

these, the most influential models have been the Fluid mosaic [5] and Lipid Raft [6]

models. The organisation of lipid and proteins in the cell membrane has typically

been described in terms of equilibrium models of lateral organisation of multicom-
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ponent lipids [5, 6, 7, 8, 9]. The multicomponent lipid equilibrium phase diagram in

temperature and composition shows either in the homogeneously mixed regime as

envisaged by the famous Fluid mosaic model or a low-temperature phase segregated

regime where the liquid-ordered phase of lipid (lo-lipid) is separated from the liquid

disordered phase of lipid (ld-lipid) as proposed by the famous Raft model.

Figure 1.1 (a) Ternary phase diagram for DSPC/DOPC/chol at 23 ◦C. Numbers
on the DOPC-DSPC axis correspond to DSPC, numbers on the DSPC-cholesterol
axes to CHOL (Image Courtesy : [10]). (b) Organization of lipid molecules in
the liquid ordered (lo-lipid) and the liquid disordered phase is shown here. Liquid
ordered phase is a mixture of cholesterol (yellow molecule) with a phospholipid
and/or sphingolipids.

In both these models, protein organisation follows lipid organisation. According

to the fluid mosaic model proposed by Singer and Nicolson, the plasma membrane

in a living cell is a two dimensional fluid of lipid in which proteins of various shapes

and sizes are embedded in a mosaic-like fashion. Above the phase segregation tem-

perature, the lipid bilayer exists in a fluid phase, characterised by disordered lipid

chains and high lipid mobility. The presence of cholesterol in rafts leads to a tighter

packing of lipid chains, which results in lower lateral mobility of lipids in the raft

domain below phase segregation temperature. Proteins get segregated according

to their affinity to the component of the raft lipid phase. Thus rafts can act as

a sorting platform which compartmentalises cellular process. However, such lipid

segregation, as seen here in giant plasma membrane vesicles derived from the cell

membrane is only observed at low temperature (23 ◦C - 5 ◦C), much lower than the
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physiological temperature (37 ◦C) [8]. Both of these models treat the cell membrane

as an independent organelle and are based on the equilibrium physics.

1.1.2 Active Organization of cell membrane

Recent experiments have established that the plasma membrane is intimately cou-

pled to the actomyosin cortex [20, 21, 22, 23, 24]. The actomyosin cortex is a 200

nm thin layer [26] comprising of the actin-cytoskeleton and myosin motors, sitting

just beneath the plasma membrane. Recent advances in fluorescence spectroscopy

experiments and high optical resolution microscopy have provided indisputable evi-

dence for nanoclusters of many membrane molecules. Experimental findings based

on fluorescence resonance energy transfer (FRET) analysis [11] on the organisation

of both upper leaflet GPI anchored lipid tethered protein (GPI-AP) and a variety of

trans membrane proteins revealed the existence of a large population of nanoclus-

ters. Later, it has been found by Sharma et al. [12] using a combination of homo and

hetero FRET that GPI-APs co-exists on the cell membrane as a mixture of nearly

30% oligomers composed of mostly four molecules. As argued in Rao et. al.[13] the

concentration-independent steady-state percentage of GPI-APs nanoclusters sug-

gests that this mechanism is out of chemical equilibrium. Later, super-resolution

microscopy techniques such as near field scanning optical microscopy (NSOM) [14]

and photoactivated localisation microscopy (PALM) [15] confirmed the GPI-AP nan-

oclustering. Further evidence for the existence of nanoclusters has been provided by

single-particle tracking (SPT) experiment and fluorescence correlation spectroscopy

(FCS) on nano volumes [16]. Ras family of GTPases [2], T cell receptors and B cell

receptors [17] are also shown to form nanoclusters. Such protein nanoclustering and

their functional implications are a subject of intense investigation.

The ubiquitous presence of protein nanoclusters in the plasma membrane leads

to the crucial question of why nature has chosen this feature. One possible answer

might be that this provides multiple, ligand-binding sites in close proximity [18].

The clustered ligand binding sites increase the ligand rebinding probability. More-

over, the nanoclusters might increase the effective ligand-binding affinity for mul-

tivalent ligands. The nanoclusters in the plasma membrane offer a general way to

digitalised analogue input signals. The nanoclusters provide a discrete switch-like
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output because of their short lifetime. For example, the ligation of the EGF re-

ceptor nanocluster activates K-Ras, which acts as digital signalling molecule to the

downstream kinase signalling cascade [19]. This allows the pathway to be sensitive

to a small amount of activating ligand.

These nanoclusters are very dynamic, and indeed, as one perturbs the myosin

contractility or perturbs the level of cholesterol in the case of GPI anchored protein,

these nanoclusters disappear and gives rise to fragmented monomeric configura-

tion [11, 12, 20]. Interestingly one could restore the nanoclusters by restoring the

amount of actomyosin contractility and cholesterol in the case of GPI anchored pro-

teins. This dramatically indicates that these dynamic nanocluster are contingent

on non-equilibrium forces arising from actomyosin contractility. These observations

provided motivation for the cell surface model as an active composite [21] of a mul-

ticomponent, asymmetric bilayer juxtaposed with a thin cortical actomyosin layer.

This fundamental non-equilibrium description of the cell surface organisation con-

sistently explains many experimental results.

1.2 Active Composite cell surface

Recent experiments have established that the plasma membrane must always be

thought of in the context of the actomyosin cortex, as a composite [13, 20, 21, 22,

23, 24]. Here, we will ignore the molecular details and present a coarse-grained

physical structure of the membrane composite comprising of: i) plasma membrane

and ii) actomyosin cortex. We will emphasise the non-equilibrium nature of the cell

surface, which is taken into account in the active composite model[21, 25] of the cell

surface.

1.2.1 Plasma membrane

The plasma membrane is a thin (5-10 nm) semipermeable lipid layer that separates

the interior of the cell from the outside environment. This continuous, unbroken

fluid sheet not only protect the cell and provides a fixed environment inside the

cell; but also functions as a gateway for the cell. Plasma membrane regulates the
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transport of nutrients, essential manufactured molecules (hormones, enzyme) and

toxic material inside and outside the cell. The plasma membrane plays a crucial

role in the response of the cell to external stimuli. This process is known as signal

transduction. Receptors in the plasma membrane combine with the stimuli (bind-

ing of ligands). Due to an external stimulus may cause the membrane to generate

a signal that stimulates or inhibits internal activities. The principal components

of the plasma membrane are phospholipids, cholesterol, proteins and carbohydrate

groups. The main fabric of the plasma membrane is the phospholipids. The most

celebrated model of plasma membrane organisation is a fluid-mosaic model, pro-

posed by Singer and Nicolson in 1972. The bilayer of a fluid-mosaic membrane is

present in a fluid state, and individual lipid molecules can move laterally within

the plane of the membrane. The structure and arrangement of membrane proteins

in the fluid-mosaic model occur as a mosaic that penetrate the lipid sheet. Most

importantly, the fluid-mosaic model presents cellular membranes as dynamic struc-

tures in which the components are mobile and capable of coming together to engage

in various types of interactions. The mobility of individual lipid molecules within

the bilayer of the plasma membrane can be directly observed under the microscope

by linking the polar heads of the lipids to gold particles or fluorescent compounds.

It is estimated that a phospholipid can diffuse from one end of a bacterium to the

other end in a second or two. In contrast, it takes a phospholipid molecule a matter

of hours to days to move across to the other leaflet.

In artificial lipid bilayers, cholesterol and sphingolipids tend to self-assemble into

microdomains. These patches of cholesterol and sphingolipid are referred to as lipid

rafts. Proteins, such as GPI-anchored protein tend to clustered in these ordered

lipid rafts. Attempts to demonstrate the presence of lipid rafts in living cell by

conventional microscopy have generally been unsuccessful because of their short

live and small size (5 to 25 nm diameter). The organisation of these rafts can be

understood with the help of equilibrium physics of phase segregation. When a system

is quenched from a homogeneous state above phase separation temperature (Tc) into

an unstable state below Tc domains form in the system and evolve with time until the

system reaches the phase separated equilibrium state. These domains coarsen and

grows according to a power law l(t) ∼ tα, where l(t) is the characteristic size of the
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domains. However this phase segregation has been observed in large vesicles formed

from plasma membrane compounds (devoid of actin) at 5 ◦C - 20 ◦C and not at

the physiological temperature 37 ◦C. So these equilibrium models where the protein

organisation follow the lipid organisation are unable to explain the organisation of

proteins in the cell membrane. Recent experiments have established that the plasma

membrane is strongly coupled to the actomyosin cortex. Many plasma membrane

proteins interact with the actomyosin cortex, and their dynamics are affected by

the dynamics of the actomyosin cortex. In this thesis our objective is to study the

dynamics of such proteins.

Figure 1.2 Polymerisation of actin filaments and treadmilling: ATP bound
monomers get attached to the barbed end, and ADP bound monomers getting de-
tached from the pointed end. In steady-state, actin filaments reach a constant length
and a move with respect to the medium in a process called treadmilling. Profilin
enhances the rate of attachment at the plus end while the capping proteins are used
as length regulators (Image Courtesy: [27]).

.

1.2.2 Actomyosin cortex

The actomyosin cortex is a thin layer of the actin cytoskeleton and myosin motors.

Its thickness varies from cell to cell (∼250 nm in HeLa cells [26]). This thin film
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sits just beneath the plasma membrane. The principal constituents of the cortex are

actin, myosin, and lots of actomyosin regulators. First, we will discuss the physical

properties of the building blocks, namely actin, myosin and then the combined

actomyosin.

Actin

Actin filament comprising of actin monomers of size vary from 7 − 10 nm. The

actin filament has a structural polarity due to head to tail assembly of the actin

monomers. The two ends of the actin filament denoted as the minus (or pointed)

and the plus (or barbed) ends. The polymerisation in the barbed is faster than

the pointed end. Due to this asymmetry in polymerisation and depolymerisation

filament move with respect to the medium. This phenomena called treadmilling is

shown in Fig. 1.2.

Figure 1.3 (a) The cytoskeletal actin filament. (b) Actin filament can be considered
as an elastic rod, when the length of the rod is very long compared to the monomeric
dimension a, and that the rigidity is high (lp � a). This elastic curve can be
characterized by the length s along its backbone and a unit tangent vector ~t, defines
the local orientation of the filament.

.

These are inextensible filaments and their length does not change significantly.

Based on the mechanical properties actin filament can be described as semiflexible

polymer. Semiflexible polymers mechanics are governed by the interplay between

entropy and bending elasticity. This inextensible filaments with finite resistance

to bending can be modelled as a worm-like chain (WLC) [28], where overlooking

the chemistry behind the monomers, one can describe the filament as a semiflexible

rod of thickness 2a and parametrised by an arc length s. As one moves along the

filament, the local tangent vector changes. The curvature is simply the rate at which
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the tangent vector changes as one moves along the arc length(s). The bending energy

cost due to this curvature is given by

Hbend =
κ

2

∫
ds
∣∣∣∂~t
∂s

∣∣∣2 (1.1)

The bending modulus κ has units of energy times length. A natural energy scale

due to Brownian fluctuation is kBT , where T is the temperature, and kB is the

Boltzmann’s constant. Thus, one can define a length scale called the persistence

length of the filament as being the ratio of the κ and thermal energy. The persistence

length of lp = κ/kBT is the characterisation of the stiffness of the filament. For actin

filament, the value is around ∼ 10 µm. The contour length of the actin varies in a

range from 200 nm to 5 µm within the cell. This lower limit might appear surprising.

The typical length of the actin filament in cell is smaller than the persistence length.

In electron microscopy, the actin cortex is visualised as densely crosslinked actin

meshwork. The clustering dynamics and statistics of membrane-anchored proteins

(GPI-APs) suggests a presence of active driving by more dynamic actin filament [21]

behind their nanoclustering.

Figure 1.4 (a) Electron micrograph of a fixed and rotary-shadowed filamin-F-actin
network at an actin concentration 1 mg/ml average filament length 15 µm. (b) Con-
focal microscopy image of a fluorescently labeled bundled filamin F-actin network
at high filamin concentrations(Image courtesy [30]).

So, the actin cytoskeleton is simultaneously composed of dynamic actin filaments

and dense, relatively static meshwork.
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Figure 1.5 Schematic for formin nucleated linear actin filament (right) and Arp2/3
nucleated branched actin filament (left). Arp2/3 complex promotes the assembly of
a new filament from the side of a preexisting one at a 70◦ Y-branched angle. Cofilin
participates in active severing of actin filaments.

The actin filament appear both as linear filament and branched filament. The

polar dynamic actin filaments are nucleated by Formin, and the branched actin

filaments are nucleated by ARP complexes. In cells, actin filaments are organised

either in the form of bundles or weblike networks. These different structures are

initiated by the action of distinct nucleating proteins. The long straight filaments

produced by formins make bundles, and the ARP complex makes webs. The mesh

size ξ depends on the density of crosslinkers that binds to the actin. The presence

of these crosslinkers is important in maintaining the contractile stress in this actin

meshwork.

These structures are susceptible to de-polymerisation by cofilin. They serve as a

severing agent i.e, they brake and cuts the filament at designated points. Due to

both the breakages of the filament by cofilin and unbinding of crosslinkers, relax-

ation of stress happens. This turnover happens in a stress-dependent manner. The

nucleation and growth of actin are governed by signalling processes. The turnover

of actin and myosin is very much regulated in the cell when compared to in-vitro

reconstitution experiments.
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Figure 1.6 Actin cross-linking in various forms. (a) Fimbrin produces tight arrays
of filaments by forming tight cross-links between parallel filaments. (b) Filamin
dimers cross-links actin filaments towards formation of actin gels.

Actin cortex as a meshwork

The diffusion constant of molecules in an intact plasma membrane is about 20-fold

less than those in an artificial membrane [31]. Several experiments have demon-

strated that this slowdown in the intact plasma membrane is due to the coupling

between membrane and actin cytoskeleton [31, 32, 33, 36]. The development of

high-speed cameras for single-molecule tracking showed that the plasma membrane

is partitioned into compartments induced by the cortical actin meshwork and mem-

brane molecules get temporarily confined in these compartments, undergoing hop-

diffusion. Hop-diffusion is characterised by a large microscopic diffusion coefficient

(5-10 µm2s−1) at short time ( 0.1 ms) within a compartment and a smaller, macro-

scopic diffusion coefficient (0.2-0.5 µm2s−1) at long times (> 10 ms), which is de-

termined by the confinement time and compartment size. Hop-diffusion of trans-

membrane proteins that possess a cytoplasmic domain is thought to result from the

direct interaction between the protein molecules and the actin meshwork. However,

the hop-diffusion of upper leaflet molecules which do not have any direct or indirect

binding site to the actin cytoskeleton is far more puzzling. The picket-fence model

was proposed to account for hop-diffusion of these molecules. In the picket-fence

model, a fraction of transmembrane protein (picket) is immobilised by binding to the

membrane skeleton (fence) and forms compartments for other unbound molecules.

This serves as an obstacle for lateral diffusion of membrane molecules.
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Myosin

Another essential constituent of the actomyosin cortex is myosin which is a molecular

motor. Myosin plays a vital role in several cellular processes such as cell adhesion,

cell migration, muscle contraction, etc., where force sensing and stress generation

are involved. Myosin has an actin-binding site and ATP binding site in there head,

followed by a long neck. A vast family of myosin is present in the cell, namely

Myosin-I, Myosin-II and so on. They can be classified on the basis of structure,

size, the number of motorheads and their cellular localization. Myo-II has two

motorheads and localizes in the actin cortex, beneath the plasma membrane and in

stress fibres.

(a) (b)

(c)

Figure 1.7 (a) Myosin motors carrying cargo on a actin filament track. (b) Myosin
II molecule composed of two heavy chains and four light chains. The light chains
are two types, and one copy of each present on on each myosin head. (c) Myosin II
forms bundles which is called myosin minifilament(Image Courtesy: [37]).

Its head binds to the actin filament and hydrolyses ATP; using the energy of ATP

hydrolysis, it literally walks on the actin filament. The tail domain assembles myosin

II molecules into bipolar filaments with motorheads on the two ends and the tails

packed in the centre (Fig. 1.7c). These bundles form a myosin minifilament. Each
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bundle has around 30-50 myosin heads. The size of myosin minifilament is around

300 nm.

Combined Actomyosin Unit

We have talked about actin and myosin separately. Now, we will bring them to-

gether and discuss about the active current and stresses generated by the actomyosin

unit. The head of the Myosin-II motor binds to the actin filament and selectively

move towards the plus end of actin filament. This walking of myosin motor can

move actin filament around, when the myosin minifilament is held on the other

side. This gives rise to a current, which is proportional to the orientation of the

actin filament. The bipolar architecture of myosin minifilaments allows it to slide

antiparallel actin filaments with respect to each other. This sliding activity can give

rise to either a contractile or an extensile force, depending on the arrangement of the

actin filaments [38]. Remarkably, in the cell contractile arrengments are seen. The

bias of actin-myosin assembly towards contraction and the mechanism behind the

contractile activity is still a subject of investigation. One answer lies in the buckling

of actin filaments. Actin filaments are semiflexible polymer with persistence length

10 µm. They can resist stretching but readily buckle under the compression force

induced by myosin motors. Computational models show that buckling can cause

a contraction in both bundle and networks [39, 40]. In-vitro experiments support

these predictions [41]. Another proposed mechanism behaind this contraction is

polarity sorting of filament by myosin motor. The directional movement of motors

along actin leads to this polarity sorting. This process shows a contraction of fil-

aments in the absence of buckling. Analytical prediction of polarity sorting of the

filaments [42, 43] has been observed in in-vitro experiments [44] and as well as in

cell [45]. In -vitro expriment shows formation of a radial array of filaments known

as aster, where the plus end of the filaments are inward and myosin motor accumu-

late at the centre [44]. This is a clear signature of polarity sorting. This process

generates flow in the actomyosin cortex and eventually, it contracts.
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Figure 1.8 Active current and active stresses generated by the actomyosin unit.
(a) Contractile and extensile actomyosin configurations due to myosin sliding on a
pair of actin filaments. (b) Polarity sorting capacity of Myosin minifilament leads
actin filaments towards aster formation.

1.3 Active mechanics of the cell surface: Contin-

uum hydrodynamics

The collection of actin filament and myosin-II motors can be thought as an active

fluid. It behaves like a fluid in the dilute or semidilute limit for a small filament

length. This fluid description could be valid when the crosslinker density is low, and

the turnover of crosslinkers is fast. The continuum hydrodynamics description [21,

46] of this active fluid is an extension of nematohydrodynamics [48]. Active matter

consists of active agents, each capable of consuming energy and use that energy to

generate directed motion and stresses. Active matter systems are out of equilibrium,

and the defining difference with the other familiar nonequilibrium system is in the

nature of energy input. The energy input for the active matter system is local, at

the level of each particle, rather than at the system’s boundaries as in a shear flow.
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Active systems exhibit emergent structures with collective behaviour, anomalous

fluctuation statistics, nonequilibrium order-disorder transitions, pattern formation.

Figure 1.9 Schematic of the various orientationally ordered states. Polar active
particles, have a head and a tail and are generally self-propelled along their long
axis. They can order in polar states (left) or nematic states ( center). Head-tail
symmetric apolar active particles can order in nematic states (right).

The elongated self-propelled agents of active matter cooperatively order either

in the polar phase or nematic phase depending on the nature of broken symmetry.

In a polar phase, all the microscopic objects are on average aligned in the same

direction. The polar order is described by a vector order parameter p, known as the

polarization. Nematic ordering can be obtained in two ways, either in systems where

polar self-propelled objects are parallel but with random head-tail orientations or

in systems where the self-propelled particles are themselves head-tail symmetric.

Nematic order is described by a tensor order parameter Q, known as the alignment

tensor. A cartoon of the different cases is shown in Fig. 1.9. We can think the polar

dynamic actin filaments as a polar active matter agent in a solvent. The dynamics

of active polar actin filaments is described by their local density field c(r, t) and

local orientation field n(r, t) defined as [21, 46, 47]:

c(r, t) =
∑
i

δ(r− ri(t))

n(r, t) =
1

c(r, t)

∑
i

ni(t)δ(r− ri(t)) (1.2)

where ri and ni are the position and orientation of the ith filament, respectively.

Myosin can bind and unbind from the actin filament; the bound myosin density

ρ comes into the equation. Finally, the entire actomyosin system is embedded in

the cytoskeletal fluid, high viscous Stokesian fluid with viscosity η. Hydrodynamic
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velocity can be ignored due to the damping coming from the local friction γ = η
ξ2
l
,

through the cytoskeletal meshwork, with mesh size ξl. At time scale shorter than the

filament turnover the actin concentration is conserved quantity and we can write,

∂c

∂t
= −~∇ · Jf

Jf = −Df (c, ρ)~∇c+ vf (c, ρ)cn + cv (1.3)

where filament current Jf can be written as a as the sum of three terms: a diffusive

contribution −Df (c, ρ)~∇c, a advective contribution vf (c, ρ)cn and the advection

with the fluid cv. The diffusion has both thermal and active contribution which

makes Df (ρ = 0) > 0 in absence of myosin (ρ = 0). Minifilament cross-link the

dynamic actin filaments to each other and to the mesh work. The advection term

arise from the walking of myosin minifilaments on actin filament. In absence of

myosin (ρ = 0) due to pure active contribution vf (ρ = 0) = 0. Around the mean

actin and myosin density vf (c0, ρ0) = v0.

The dynamics of myosin motor filaments bound to the actin can be described as:

∂ρ

∂t
= −~∇ · Jm + kbind(c)− kuρ

Jm = −Dm(ρ, c)~∇ρ+ vm(ρ, c)ρn + ρv (1.4)

where myosin current Jm has similar three terms as actin current: a diffusive con-

tribution −Dm(ρ, c)~∇ρ, a advective contribution vm(ρ, c)ρn and the advection with

the fluid ρv. The rate of myosin binding depends monotonically on local actin

concentration with kbind(c = 0) = 0 and assumption of unlimited bath of unbound

myosin, we use saturating form kbind(c) = kb(
c

c+ch
). The myosin turn over term can

be written as kb(
c

c+ch
)− kuρ.

The equation for the orientation of actin filament can be written as an extension

of nematohydrodynamics and Toner-Tu equation. The time derivative of the local

orientation is given by

∂n

∂t
+λ(n · ~∇)n = K∇2n+K2

~∇(~∇·n)−ξ0
~∇c+M(ρ)~∇·σa+(α(c)−β(c)n2)n (1.5)
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The non-linear convection term λ(n · ~∇)n arises from the advection of filament due

to active stress. In 2D, there are two types of deformation splay and bend. The

terms corresponding to these deformations are respectively K∇2n and K2
~∇(~∇ ·n).

A compressible term ξ0
~∇c, with positive compressibility (ξ0 > 0), arises from the

orientation of self-propelled filaments during their flow. The active contractile stress

from the myosin is given by M(ρ)~∇ · σ̄a [48, 49]. The contractile drive coming from

the myosin can be expressed in a simple linear form σ̄a = −WρĪ with W < 0. The

filaments at low density are expected to be orientationally isotropic, while at high

concentration they are orientationally ordered. The term (α(c)−β(c)n2)n favours a

non-zero director when the local filament density is greater than the Onsager value

c∗. In order to ensure |n|2 → 1 when c� c∗, we choose the form α(c) = ν(c/c∗− 1)

and β(c) = ν(1 + c/c∗).

From force balance the active stress term follows,

Γv = ~∇ · σa (1.6)

Then we insert v ∝ ~∇ρ in the filament and motor current. The simplified final

equations are then

∂c

∂t
= −~∇ · (−Df

~∇c+ v0cn−Wc~∇ρ)

∂ρ

∂t
= −~∇ · (−Dm

~∇ρ+ v0ρn) + kbind(c)− kuρ

∂n

∂t
+ λ(n · ~∇)n = K∇2n +K2

~∇(~∇ · n)− ξ0
~∇c+ ξ ~∇ρ+ (α(c)− β(c)n2)n (1.7)

The results of this hydrodynamic description of polar fluid with motor activity

are summarised in the phase diagram in Figure 1.10. To distinguish between these

structures and construct the phase diagram the quantities have been measured are

following: polarity (|〈cn〉|), divergence (〈c~∇·n〉), curl (〈c~∇·n〉), and filament current

(Jf ). The following phases: mobile virtual defects, rotating spiral defects, or sta-

tionary asters, emerge spontaneously from an interplay between elastic, and active

stresses.
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Figure 1.10 (a) The spontaneously emerging patterns in the elastic constant (K)
and active contractility (ξ) plane for a fixed concentration of filaments. The fila-
ment orientation pattern shows virtual defects, aster, spiral aster, out-pointing aster
patterns. The heat map represents filament density (c) and the arrows represent cn
(Image courtesy: [46]).

In the active composite model, the coupling of the membrane to actin configura-

tions is expected to affect the dynamics and organization of the membrane compo-

nents. Let us now consider a membrane species described, in a coarse-grained sense,

by a scalar density field ρs(r, t). In the case of a passive advective scalar, we can

write [21]:
∂ρs
∂t

= −~∇ · (−(1− φ)D~∇ρs + φρsv0) (1.8)

where membrane molecules stochastically bind (unbind) onto the dynamic actin

filaments with rates kon(koff ), respectively. This stochastic binding-unbinding is

characterized by a multiplicative noise φ with the duty ratio (mean bound time)

Kd = konc/konc + koff and a switching time tsw = 2/(konc + koff ), in which c is

the local concentration and v0 velocity of actin filaments, and D is the diffusion

coefficient of the membrane molecules.

This continuum model predicts the clustering of molecules, actively driven by their

binding to the polar filaments. The number fluctuations for membrane molecules

are enormous; this anomalous fluctuation scales as ∆N ∼ N0.8 > N0.5. The number
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density probability distribution shows a non-Gaussian, slowly decaying exponential

tail. This predictions has been verified by fluorescence based experiments in cell [12,

21, 22]. Much of these behaviours were recapitulated in an in vitro experiment [44].

1.4 In-vitro realization

A minimal in vitro system [44] comprising a thin layer of short actin filaments and

Myosin-II minifilaments, ATP on a supported bilayer recapitulate the behaviour

predicted by the continuum hydrodynamics model. The orientational patterns of

the filaments goes from bundle to apolar to polar aster as one reduce the filament

density. In the apolar aster configuration, all the filaments are oriented with their

Figure 1.11 The images of actin filaments due to myosin activity. As one reduce
filament density the orientational patterns of the filaments goes from bundle to
apolar to polar aster (Image courtesy: [44]).

plus (barbed) ends facing inward, toward the core of the aster, while (minus) pointed

ends face outward. The localization of fluorescently labelled capping protein(CP)

demonstrated this polar nature of the actin asters because capping protein binds

only at the plus end of the actin filament. Myosin density is also concentrated in

the central region. The rings of capping protein in the central region is the hallmark

of myosin-driven polarity sorting and filament organization.
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Figure 1.12 High concentration of fluorescently labeled myosin (shown in green)
and capping protein (shown in cyan) in the central region of the aster has been
shown. Radial array like distribution of actin filament is shown in red (Image cour-
tesy: [44]).

These orientational patterns appear due to contractile flows generated by the

myosin minifil [44]ament once ATP is added in the system. With time as the ATP

hydrolyses and runs out, the configurations get jammed. But in the cell, the system

is in an active steady-state, the configurations form transiently, breakup. The con-

tinuum theory predicts in order to get a nonequilibrium steady state where the asters

will break up and reform, one needs to allow turnover of filaments. This nonequilib-

rium steady state is obtained in an in-vitro system with a continuous supply of ATP.

The theory prediction for non-gaussian density distribution and anomalous number

fluctuation of molecules that can bind to actin is recapitulated in the in-vitro exper-

iment. An active steady-state and recapitulation of theoretical predictions can only

happen if the actomyosin in the system is allowed to turnover. The mechanism of

the turnover in the system is still not clearly known.
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Figure 1.13 Divergence calculation of the velocity filed (black) of filaments shows
the system gets jammed after few minute of myosin activity when the ATP in the
system runs out (Image courtesy: [44]).

1.5 What this thesis is about

In this thesis, we have studied the effect of nonequilibrium dynamics of the acto-

myosin cortex on the actin-binding membrane molecules. The Actomyosin cortex

can be thought of as an active fluid or elastic meshwork depending on actin type,

size, density, crosslinkers density and turnover rate. The formin nucleated dynamic

filament in the dilute or semi-dilute limit behaves like a fluid. This fluid description

could be valid when the crosslinker density is low, and the turnover of crosslinkers is

fast. The continuum hydrodynamics description of this active fluid correctly predicts

anomalous statistics of nanoclusters and density correlations, and these behaviours

are recapitulated in in-vitro experiments. It is apparent from the observation of ex-

periments and simulations that in order to maintain an active steady-state activity

and turnover in the actomyosin cortex must be taken into account. It is also clear

that multiple actin binding site of myosin minifilament allows them to drive many

dynamic actin filaments towards formation of different orientational patterns. How-

ever, this myosin minifilament is a big structure consisting of 30-50 myosin heads.

If minifilaments were to drive the observed active nanoclustering of membrane pro-

teins, then one might worry whether steric constraints imposed by these bulky struc-

tures could frustrate clustering? A recent study involving agent-based simulations

and in vitro reconstitution experiments showed that stratification of the compo-

nents of the cortical machinery, with Myosin-II, layered atop a layer of dynamic

actin which in turn adjoins the membrane, resolves this potential conflict. Stratifi-
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cation can overcome the steric frustration due to the Myosin-II minifilaments. This

stratified organisation could allow myosin minifilament, which has multiple actin-

binding sites, to drive contractile flows that draw in the dynamic actin filaments

together in an aster like pattern.

In chapter 2, we develop a coarse-grained agent-based Brownian dynamics simula-

tion techniques that incorporates the effects of stratification, the binding of myosin

minifilaments to multiple actin filaments and their turnover. The orientational pat-

terns generated by the actin filaments driven by myosin-II minifilament are isotropic,

polar bundle, polar aster, aster, spiral aster.

In chapter 3, we have studied the effect of isotropic phase on the dynamics of

membrane molecules. In the dilute limit when the overlap of filament is negligible

the multivalency effect of minifilament is negligible. This gives rise to the isotropic

pattering of dynamic actin filaments. We have found anomalous transport properties

of membrane molecule coupled to this isotropic active fluid.

In chapter 4, we have studied the effect of aster phase on the dynamics of mem-

brane molecules. In the semi dilute limit, we have shown that activity, stratification,

multivalency and turnover - are crucial to the attainment of a nonequilibrium steady

state characterised by contractile flows and dynamic orientational patterning. This

active, steady-state enabled by the aforementioned features of the cortex can facil-

itate multi-particle encounters of membrane proteins that profoundly influence the

kinetics of bimolecular reactions at the cell surface.

On the other hand, ARP2/3 nucleated branched actin filament form elastic mesh-

work at high actin filament density and crosslinkers density. In chapter 5, we have

studied the effect of actin meshwork on the dynamics of membrane molecules. High-

speed single-particle tracking experiments with 25 µs time resolution camera shows

membrane molecules undergo short-term confined diffusion within a compartment

and long-term hop-diffusion between compartments[31, 32, 33, 34, 35]. The diffu-

sion constant of membrane molecules in the cell is 20 − 50 folds lesser than that

seen in an artificial membrane [31]. These observations from the single-particle

tracking of molecules on the cell membrane reveal a cage-hopping behaviour due to

cortical actin meshwork. A similar cage-hopping dynamics is observed in particle

transport studies of a dense fluid approaching glass transition. These resemblance

has motivated us to study the underlying physics of cage-hopping transport in the
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vicinity of a random field-glass induced by the quenched random disposition of the

cortical actin meshwork. We study the transport and approach to a new kind of

glass using a agent-based Brownian dynamics simulations. Here we show that the

actin mesh adjoining the cell membrane acts as a random line pinning that drives

it towards a dynamically arrested state at physiological temperatures. This novel

random pinning model on molecular transport is quite distinct from the random

pinning potentials studied in the glass literature. Here, the effects of topological

confinement become significant, which is captured in the different two point correla-

tion functions and dynamical heterogeneity. We have studied the influence of actin

meshwork on the phase segregation of a binary glassy mixture.
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Chapter 2

Stratified organization of the actomyosin
cortex and steady active contractile flows

2.1 Introduction

Actomyosin cortex plays pivotal role in different dynamic processes in cell such as

cell division, migration, shape change etc.. This thin layer beneath the membrane

is primarily built from two ingredients: the actin cytoskeleton and myosin motors.

The actin cytoskeleton is composed simultaneously of dynamic linear polar filaments,

nucleated by Formin [1, 2, 3] and an extensively branched, relatively static meshwork

nucleated by Arp2/3 [4, 5, 6]. Importantly, this thin structure can generate active

stresses at the membrane which affact local composition and membrane shape [7].

This active stress emerges from the interaction of the myosin motor with the actin

filament. Myosin motors use the energy of ATP hydrolysis in this process. These

motors assemble into bipolar filaments with motor-heads on the two ends and work

together as a team, known as myosin minifilament. This minifilament interact with

the actin filament in different ways. Due to this bipolar nature, myosin filaments can

slide anti-parallel actin filaments in opposing directions. The directional movement

of motors along actin leads to this polarity sorting. This process generates flow in

the actomyosin cortex and eventually, it contracts.

Thus membrane proteins that bind to cortical actin are driven by this actomyosin

contractility[1, 8, 9, 10, 11]. The major component of Myosin motors, is nonmuscle

myosin-II, which assemble as large minifilaments consisting of ∼ 30 − 50 myosin

heads [12, 13]. If myosin-II minifilaments are to drive the observed active nanoclus-
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

tering of membrane proteins [1, 8, 9, 10, 11, 14], then one might worry whether

steric constraints imposed by these bulky structures could frustrate clustering? A

recent study, involving agent-based simulations and in vitro reconstitution experi-

ments, showed that stratification of the components of the cortical machinery, with

myosin-II layered atop a layer of dynamic actin which in turn adjoins the membrane,

resolves this potential conflict [15, 16]. Stratification can circumvent the steric frus-

tration due to myosin-II minifilaments and can drive contractile flows that draw

in the dynamic actin filaments together to form a variety of orientational patterns

including asters [16].

Figure 2.1 Schematic of the cell surface as a stratified active composite of the
multicomponent bilayer membrane (z = 0), the thin layer of dynamic linear actin
filaments (z = 1) and a layer of myosin-II minifilaments (z = 2) atop a dense Arp2/3
crosslinked actin mesh (image of actin mesh modified from [17]). The myosin-II
minifilaments (red) bind to actin filaments (green) in z = 1 and apply active forces
and torques. In turn, the actin filaments bind to transmembrane proteins (blue) in
z = 0 and drive contractile flows leading to dynamic clustering of the proteins. The
+ end of actin filaments is depicted by orange dots.

The aster-like orientational patterning of actin filaments and nanoclustering of

membrane proteins are dynamic in the in vivo situation, and are maintained in a

nonequilibrium steady state by steady active contractile flows [14, 8, 1, 19, 30, 18, 20].

This is in contrast to most in vitro reconstitution system, in which the contractile

actomyosin’s orientation patterns get jammed and consequently the protein clus-

ters, once formed, disperse and diffuse away [15, 23, 21, 22]. In order to maintain

a nonequilibrium steady state characterised by steady active contractile flows, dy-

namic orientational patterning and dynamic protein clustering, one needs in addition

to the stratification of the active machinery, a constant turnover of active compo-

nents [18, 25, 24, 26], that give rise to a dynamic force patterning. This has been
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

realised in two recent in vitro studies that employ a continuous ATP regenerating

system [15, 25, 26]. The multivalency and turnover of active components give rise to

an activation and inhibition of local stresses, a crucial ingredient for the attainment

of the nonequilibrium steady state [28, 19, 30, 27, 24, 26, 25, 29].

Here we have done agent-based computer simulation of autonomous agents (in-

dividual molecules or collective molecular ensembles) and their activities and in-

teractions. The actin filaments are modelled as stiff rods composed of beads. We

have not explicitly included the myosin minifilament in our simulation. The active

force and torque induced by minifilament on the actin filament have been realised

through the interaction between the actin filament. In a simple coarse-grained agent

based simulation, we bring together all the ingredients necessary for observing the

nonequilibrium steady state, viz., stratification, turnover and multivalency of force

generators. We do this without having to explicitly include a structural model for

the molecular force generators. It would have made simulation exceedingly difficult

to monitor long time dynamics. Thus our coarse grained simulation method while

not explicitly incorporating myosin minifilaments, it takes into account its effect on

currents, forces and torques applied to single and multiple actin filaments. Indeed

we show that inhibition of any one of the three ingredients, leads to a loss of the

desired phenotype. The multivalency and turnover of active components give rise to

an activation and inhibition of local stresses, a crucial ingredient for the attainment

of the nonequilibrium steady state [28, 19, 30, 27, 24, 26, 25, 29]. The nonequilib-

rium steady states observed both in vivo and in properly designed reconstitution

experiments are recapitulated by this simple coarse grained model, which incorpo-

rates the fluctuating active forces and torques in a stratified geometry. We observe

different orientational patterns by altering the active stresses.

2.2 Dynamics of actin filaments in a stratified cor-

tex

Our coarse-grained simulation incorporates the three ingredients crucial to the active

composite - stratification of the actomyosin cortex suggested by [16], multivalency

of myosin-II minifilaments and turnover of the active components, and the way they
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

influence the dynamics of proteins that reside on the plasma membrane. To this end,

we describe coarse-grained agents (see Fig. 2.1) along three different two-dimensional

layers (strata) labelled z = 0 (membrane), z = 1 (dynamic formin-nucleated actin

filament layer), and z = 2 (myosin minifilament layer). The multivalent myosin

minifilaments at z = 2, stochastically bind and unbind onto (possibly multiple)

dynamic actin filaments at z = 1; when bound they generate active forces and

torques on the filaments.

The dynamics of the actin filaments take place in the layer z = 1. Since the linear

formin-nucleated actin filaments are much shorter than the persistence length `p,

we will treat them as rigid rods of length l and diameter b, with l � b. Our agent

based update rules for the dynamics of actin filaments are motivated by the following

- in the limit of dilute concentration of actin filaments, we can define c(r, n̂, t) as

the single filament distribution function of actin filaments of centre-of-mass position

r = (x, y) and polar orientation n̂ = (cos θ, sin θ), which obeys the Smoluchowski

equation [31, 32],

∂tc(r, n̂, t) = −∇ · J−R · J (2.1)

where R = n̂× ∂n̂ is the rotational operator.

The translational and rotational currents J and J , respectively, have contribu-

tions from interactions primarily excluded volume, thermal diffusion, and myosin

activity, and are proportional to the translational and rotational velocities of the

rigid filaments.

To implement this idea in the agent based simulation, we need to relate the centre

of mass velocity of the filament vi and the rotational velocity ωi of the corresponding

forces and torques acting on the filament.

Decomposing the centre-of-mass velocity of the filament i as, vi = v‖,in̂i + v⊥,im̂i,

where m̂i is perpendicular to n̂i, we have,

vi,‖(t) =
1

γ‖

(∑
j 6=i

Fa
ij,‖ + ξ‖n̂i + F1 + F2,‖ + F3,‖

)
vi,⊥(t) =

1

γ⊥

(∑
j 6=i

Fa
ij,⊥ + ξ⊥m̂i + F2,⊥ + F3,⊥

)
ωi(t) =

1

γr

(∑
j 6=i

Ma
ij,r + ξr + M2 + M3

)
(2.2)
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

where Fij and Mij are the passive contributions to the force and torque on the actin

filament i from filament j, ξ‖, ξ⊥ and ξr are the corresponding contributions from

thermal noise [33], and F1, . . . ,M3 are the purely active contributions induced by

myosin-II minifilaments. The friction coefficients are given by γ‖ = γal, γ⊥ = 2γ‖ and

γr = γ‖l
2/6 [34, 35]. All noises are drawn from independent Gaussian distributions

with zero mean and variance = 2kBTγk/∆t, where k ≡‖,⊥ or r. We use Eq. 2.2

to update the centre-of-mass position and orientation of the i-th filament in our

Brownian dynamics simulation [33].

The actin filaments are modeled using beads, the passive contributions to the

forces and torques on filament i from filament j, Fa
ij and Ma

ij, are calculated from

the bead-bead interaction potential,

Vij(r) =

Nb∑
m,m′=1

4εa

(
b2

|rim − rjm′ |2 + δ2

)6

+ V ′0 + V ′2 |rim − rjm′ |2 for |rim − rjm′ | ≤ b

= 0 for |rim − rjm′| > b (2.3)

where |rim − rjm′ | is the distance between the m-th bead of i-th filament and m′-th

bead of j-th filament and values of constants V ′0 and V ′2 , are chosen so that the

potential and force are continuous at cutoff r = b. Here we set the filament bead

size b = 1.6σ, and the potential parameters εa = 1 and δ = 0.8, in units of ε and σ,

respectively. With this choice of parameters, an actin filament composed of Nb = 15

beads, has a mean equilibrium length l = 24σ.

Finally, we describe the form of the active contributions to the forces and torques

that arise from the interaction of Myosin-II minifilaments in z = 2 with actin fila-

ments in z = 1. These active forces and torques can only be propagated if some of

the myosin heads of the multivalent myosin filament bind and hold on to the dense

Arp 2/3 static meshwork below it (Fig. 2.1). Now instead of explicitly including a

structural model for the bulky Myosin-II minifilaments, we will simply incorporate

the many-body contributions to the active forces and torques coming from Myosin-II

minifilaments, using a carefully chosen system of extensional and torsional springs,

Fig. 2.2. We list the contributions to the active translational and rotational currents

that enter Eq. 2.2.
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

Figure 2.2 Schematic showing the consequences of the active forces and torques
induced by Myo-II minifilament on dynamic actin filaments realised in terms of
propulsion force and extensional and torsional springs. (a) Single filament contri-
bution: Myosin driven active current v0n̂ along the filament orientation pointing to
the + end (orange dot), leading to propulsion away from the reference red dot. (b)
Two filament contribution: Myosin driven forces and torques bring together and
align two filaments leading to bundling. This is realised by having an extensional
spring (k2) and torsional spring (kθ) between the filaments. (c) Multiple filament
contribution: Myosin driven forces and torques bring together and reorient multiple
filaments leading to the formation of an aster. This is realised by having extensional
springs (k3) and torsional springs (kφ) between pairs of filaments.

1. Single filament contribution

Referring to Eq. 2.2, F1 = f0n̂ is the single filament contribution to the active

force driven by a myosin minifilament, where a few myosin heads are attached

to the filament and the heads at the other bipolar end of the myosin minifil-

ament are attached to the static actin meshwork. This leads to an active

translation current ∝ v0n̂, of magnitude v0 = f0/γ‖ along its polar orientation

n̂ (pointing towards the + end of the filament, see Fig. 2.2a). In principle,

an isolated actin filament can also contribute to an active rotational current.

We will however assume that the active orientational decorrelation time τa is
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

larger than the rotational diffusion time τr of thermal origin or collision time

τc with other filaments. With the filament concentration and filament length

under consideration, we have τc < τr � τa, and thus the late-time diffusion

coefficient of a single actin filament is set by Da = 1
2
v2

0τc.

2. Two filament contribution

A myosin minifilament whose heads attach to two dynamic actin filaments at

z = 1 at one end and to the static actin meshwork at the other end, induces

contractile flows that lead to bundling and polar alignment (Fig. 2.2b). By

a polarity sorting mechanism [15, 36], this brings the + ends of the dynamic

actin filaments together (see Fig. 2.2b). This contributes to the 2-filament

active forces and torques, F2 and M2, in Eq. 2.2, realised here by having an

extensional spring (stiffness k2) attached to the +ends of the filament pair

and a torsional spring (stiffness kθ), when the filaments are within a cutoff

distance (here, taken to be 2l/3). Since the extensional and torsional spring

stiffneses have the same molecular origin, they must be related, dimensional

considerations suggest k2 = 4kθ/l
2 [31, 32].

3. Three and multiple filament contribution

Myosin minifilaments whose heads attach to three or more dynamic actin fil-

aments at z = 1 at one end and to the static actin meshwork at the other

end, induces contractile flows that lead to the formation of bundles and ori-

entational patterns such as asters (Fig. 2.2c). This also involves the polarity

sorting mechanism that brings the + ends of the dynamic actin filaments

together (Fig. 2.2c). This leads to F3 and M3, the 3 (or multiple)-filament

contributions to the active forces and torques in Eq. 2.2. This is realised by

extensional and torsional springs of stiffness k3 and kφ, respectively, that op-

erate only when three filaments or more are within a cutoff distance 2l/3 of

each other. The torsional spring has a rest angle equal to π/n, where n is

the number of actin filaments involved. As before, dimensional considerations

suggest k3 = 4kφ/l
2 [31, 32]. Note that the salient effects of multivalency of

the Myo-II minifilaments appear via these multifilament contributions; thus in

our simulations we can turn off the effects of multivalency by simply setting
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

k3 = kφ = 0.

Turnover of dynamic actin filaments and myosin: Apart from stratification and

multivalency, the other critical feature that we need to include is the turnover of the

actomyosin machinery. The microscopic physics of turnover of myosin minifilaments

and dynamic actin is subtle and involves many distinct molecular mechanisms, such

as cooperative unbinding-rebinding of myosin heads and actin filaments, fragmenta-

tion of actin filaments by enzymes such as cofilin, depolymerisation, nucleation and

recruitment [19, 30, 27, 24, 25, 37, 29]. Turnover releases the buildup of stresses

generated by contractile flows and consequent jamming of actin and myosin minifil-

aments, and aspect that is necessary for the maintenance of the nonequilibrium

steady state. In our coarse-grained simulation we simply implement turnover by

removing actin filaments with a rate kr, modelled as a Poisson process. We ensure

that in the process, the mean number of actin filaments is held fixed, so that when a

filament is removed, we introduce another in a random spatial location with random

orientation. We have varied kr over the range 10−4 − 10−1, in simulation units.

Before we end this section, we wish to emphasize the simplicity of our coarse-

grained agent based simulation - it incorporates the minimal features necessary for

observing the nonequilibrium steady state, viz., stratification, turnover and multiva-

lency of active force generators, without explicitly including the structural aspects

of the bulky myosin-II minifilaments. It does so by taking into account its effect on

currents, forces and torques applied to single and multiple actin filaments; indeed

we show that abrogation of any one of the three features, leads to a loss of the de-

sired phenotype. This also opens the possibility of extending the study to different

physical situations like clustering, chemical kinetics of membrane molecules as we

discuss in chapter 4.

2.3 Simulation details

With the forces and torques in place, we numerically integrate the Brownian dynam-

ics equations updating the position and orientation of actin filaments (Eq. 2.2) using

a velocity Verlet integration scheme with an integration time step ∆t ∼ 2 × 10−3.
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

Total run time of the Brownian dynamics simulation is t = 5× 104. In our simula-

tions runs we have taken number of filaments Na = 64 and system size L = 400, so

that we are in the dilute filament regime. We take single filament velocity v0 = 0.2

coming from the active translation current. Our initial conditions are chosen from

a thermal distribution at temperature T = 1.0, and all results presented here are

averaged over 32 such independent initial realisations. Throughout our simulation,

the units of length, time and energy are set by σ, γp and ε (Table 2.1). All other

parameters expressed in natural units are listed in Table. 2.2 for convenience.

Table 2.1 Natural units - simulation units (S.U.) and real units (R.U.)

Natural Units Symbol [Dimension] S.U. R.U.

Length (Actin monomer) σ [l] 0.8 8 nm

Energy (Inter-actin filament interaction) ε 1 4.11× 10−21 J

Actin monomer friction coefficient γa 1 0.08 pNµm−1s

Time t = l2γa/ε 1 2× 10−3 s

Table 2.2 Other parameters expressed in natural units and their ranges

Parameters Symbol [Dimension] Value/Range

Physiological Temperature T [ε] 1

Actin filament length l [l] 24

Single actin filament propulsion velocity v0 [lt−1] 0.2

Torsional spring stiffness kθ, kφ [ε] 10−1 − 103

Extensional spring stiffness k2, k3 [εl−2] 10−1 − 103

Turnover rate of actin filaments kr [t−1] 10−1 − 10−4
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2.4 Orientational patterns of actin and the nonequi-

librium steady state

We first explore the orientational patterns displayed by the actin filaments in layer,

z = 1 in the absence of the membrane proteins at z = 0 (Fig. 2.1). Recall that we are

working in the regime where the overall concentration of the dynamic actin filaments

is low, i.e., in the absence of activity, we are in the so-called dilute regime [34].

Despite this, active contractile stresses drive the filaments to form clusters with

distinct orientation patterns, as in [15].

We define local coarse-grained fields, the actin filament density

c(r, t) =
∑
i

δ(r− ri(t)) (2.4)

and actin filament polar orientation

n(r, t) c(r, t) =
∑
i

n̂i(t) δ(r− ri(t)) (2.5)

where ri and n̂i are the centre-of-mass position and polar orientation of the ith

filament, respectively. To characterise the orientational patterning, we first note that

the contractile flows lead to strong concentration fluctuations which in turn influence

the orientation correlations. Because of the strong concentration fluctuations, one

cannot use a global orientation order parameter to describe the phases observed in

the simulations. To do so, we first compute the coarse-grained filament concentration

profile or the concentration correlation function, from which we extract a correlation

length. This defines the spatial scale of a “cluster”. We compute the net orientation

of each cluster, by projecting the orientation of individual filaments belonging to

the cluster onto the mean orientation for that cluster. The polar order parameter

〈P 〉 is then defined as an average over all clusters (and a further average over time

and independent realisations).
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

Figure 2.3 Schematic of the orientational patterns generated by the actin filaments
driven by myosin-II minifilament are i) isotropic, ii) polar bundle, iii) polar aster,
iv) aster, v) spiral aster. Polar order parameter (〈P 〉) and divergence (∇ · n) and
curl (∇×n) of the coarse-grained orientation has been measured to differentiate the
patterns.

We find that the orientation patterns within each cluster, can be described as a

polar bundle, an aster or a spiral. To characterise spatially varying orientation pat-

terns, we need to compute the divergence and curl of the coarse-grained orientation

field using the following procedure - (i) choose a coarse graining cell Ω(r) of linear

dimension 2 l, around an arbitrary point r, (ii) smear the centre of mass of each

filament by an exponentially decaying function, an interpolation scheme that allows

us to smoothen the vector fields within the cell Ω(r),

n(r) =

∑
i∈Ω(r) n̂e−|r−ri|/λ∑
i∈Ω(r) e

−|r−ri|/λ
(2.6)

where we choose the decay length λ = 3σ. This allows us to cleanly compute the
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

divergence and the curl of the vector field.

Figure 2.4 Orientational patterns exhibited by polar actin filaments using the
Brownian dynamics simulation described in Sect. 2.3. Steady state diagram in the
space of two-filament and multifilament contributions to the active torque, here re-
alised as torsional springs, kθ and kφ shows orientational patterns - Isotropic (I),
Polar Bundle (PB), Polar Aster (PA), Aster (A), and Spiral Aster (SA). The cir-
cles in the phase diagram depict the points where the simulations were done. The
boundaries between the phases were obtained by a interpolation with exponential
weights and subsequent smoothening using a cubic spline.

Keeping the overall filament concentration fixed, we vary the stiffness of the tor-

sional springs (kθ, kφ), that in turn alter the relative contributions of the Myo-II

induced active torques. As discussed in Sect. 2.3, since the extensional and torsional

springs share a common molecular origin, they are related to each other in a sim-

ple manner. From our simulations, we identify five distinct orientational phases -

isotropic (I), polar bundle (PB), polar aster (PA), aster (A) and spiral aster (SA)

as shown and characterised in Fig. 2.4. The order parameters characterising these
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

phases are the polar order parameter 〈P 〉, the divergence of the orientation or the

splay 〈∇ · n〉 and the curl of the orientation or the vorticity 〈∇ × n〉. As shown in

Fig. 2.4, increasing the 2-filament contribution to the active torque kθ favours polar

bundling, while increasing the multifilament contribution kθ favours asters. This

observation is consistent with our earlier theoretical study using a hydrodynamic

approach [38, 39]. As expected, since these orientation patterns are a consequence

of the active forces and torques, the polar bundle and polar asters move along the

direction set by their mean orientation and the spiral asters rotate, consistent with

the predictions of previous studies [40, 38, 39]. The patterns described here have

been observed in several in vitro reconstitution studies [41, 21, 15, 25].

So far we have included only two ingredients of the active composite, namely

stratification and multivalency. In this case, once steady state is reached, the ori-

entational patterns described in Fig. 2.4 remain the same, although some will ex-

hibit a mean translation (I, PB, PA) and others (SA) a mean rotation. Now when

we introduce the third ingredient, namely steady turnover of the filaments, these

patterns undergo dynamic remodelling. In our simulation, we invoke a stress de-

pendent turnover of actin filaments, which relaxes the build up of local contractile

active stress σact ∝ −c (∇ · n) [24, 26]. This is consistent with recent in vitro stud-

ies [15, 25], and with observations of turnover of actomyosin in the context of tissue

remodelling [42].

The orientation patterns, such as asters, show intermittent fluctuations as seen

in Fig. 2.5(a) - the time series of c
ρa
∇ · n - where ρa is the mean number density of

filaments, and ranges from −2 (a pure aster with n = −r̂) to 0. This is reflected in

the skewed probability distribution of the net divergence shown in Fig. 2.5(b). Inter-

mittent dynamics of a statistical variable X(t), here c
ρa
∇·n, identified by alternating

periods of quiescence and large changes over short times (Fig. 2.5(a)), shows up in

the behaviour of the kurtosis, κ(t) = S4(t)/S2
2(t), the ratio of the fourth central mo-

ment and fourth power of the standard deviation of the statistical quantity [43, 44].

Figure 2.5(c), a plot of the kurtosis κ(t) versus time, scaled by the turnover rate kr,

shows a power-law divergence as t→ 0 - a signature of intermittency characterising

the nonequilibrium steady state [44]. These results are entirely consistent with our

earlier hydrodynamic theory [1, 38, 45], and recent in vitro studies [15, 25].
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Figure 2.5 Nonequilibrium steady state characterised by intermittent orientational
patterns as a result of contractile flows and turnover. (a) For instance, fixing pa-
rameters so as to be in the Aster phase of Fig. 2.4, we monitor the time series of the
divergence c

ρa
∇ · n, averaged over an area of size L

4
× L

4
. This shows large fluctua-

tions ranging from a negative value (−2 for one pure aster, where n = −r̂) to 0. (b)
The corresponding probability distribution P ( c

ρa
∇·n) measured over 8 independent

initial realisations and 100 time windows at steady state shows a spread of values
from −2 to 0. Here, torsional spring stiffness kθ = 5, kφ = 500, and turnover rate
kr = 2 × 10−4. (c) Time dependent kurtosis κ(t) of c

ρa
∇ · n shows a power-law

divergence as krt → 0, where kr is the turnover rate. This is characteristic of an
intermittent nonequilibrim state. The corresponding κ(t) for a Gaussian distributed
variable would take a constant value equal to 3.

2.5 Discussion

Recent in vitro studies and computer simulations have shown that in order to main-

tain a nonequilibrium steady state characterised by steady active contractile flows,

dynamic orientational patterning and dynamic protein clustering, one needs in ad-

dition to the stratification of the active machinery, a constant turnover of active
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2 Stratified organization of the actomyosin cortex and steady active contractile flows

components, that give rise to a dynamic force patterning. Here we bring together,

in a rather simple coarse-grained agent based simulation, all the ingredients nec-

essary for observing the nonequilibrium steady state, viz., stratification, turnover

and multivalency of force generators. Stratification relieves us of the obligation

to include steric hindrance between molecular components that reside in different

strata, though it is important to retain steric interactions between molecules that

reside in the same layer. Even so such a computation would have been a daunting

task, since including a representation of the essential structural features of Myo-II

minifilaments in the cortical layer, would have made it exceedingly difficult to mon-

itor long time dynamics. Thus, our coarse grained simulation method has intrinsic

value, since it takes into account the effects of myosin minifilaments on currents,

forces and torques applied to single and multiple actin filaments, without explicitly

incorporating its structural details. Consistent with experimental observation, we

we show that inhibition of any one of the three ingredients, leads to a loss of the

desired phenotype.

We show that this simple coarse grained model, that incorporates the fluctuating

active forces and torques in a stratified geometry, recapitulates the nonequilibrium

steady states observed both in vivo [14, 8, 1, 19, 30, 18, 20] and in properly designed

reconstitution experiments [15, 25, 26, 16].
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Chapter 3

Transport of passive advective scalars in a
dilute active medium

3.1 Introduction

We have discussed in the introduction (chapter 1) that the spatial organization,

clustering and dynamics of many cell surface molecules is influenced by interaction

with the actomyosin cortex [1, 2, 3, 4, 5, 6]. A description of the cell surface as an

Active Composite (Fig. 2.1), appears to consistently explain the anomalous dynam-

ical features of these proteins [1, 3, 4]. Based on this Active Composite model, In

chapter 2, we developed a coarse-grained agent-based Brownian dynamics simulation

that incorporates the effects of stratification of actomyosin cortex agent, binding of

myosin minifilaments to multiple actin filaments and their turnover. We have shown

that these three features of the active cortical machinery - stratification, multiva-

lency and turnover - are crucial to the attainment of a nonequilibrium steady state

characterised by contractile flows and dynamic orientational patterning. The orien-

tational patterns generated by the actin filaments driven by myosin minifilaments

are isotropic, polar bundle, polar aster, aster and spiral aster (Fig. 2.4).

In this chapter, we have studied the effect of isotropic phase on the dynamics of

membrane molecules in z = 0 plane in the stratified cortex picture of cell surface

Fig. 2.1. In the dilute limit of actin filament when the overlap of filament is negligible

the multivalency effect of minifilament is negligible. The only contributions to the

active translational current Ja, appearing in Eq. 2.1 come from the single actin

filament translation (F1 = f0n̂) driven by myosin minifilament. The other active
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3 Transport of passive advective scalars in a dilute active medium

terms F2,F3,M2,M3 in the Eq. 2.2 that have their origin in the multivalency of

myosin-II minifilaments in the stratified cortex do not contribute much to the active

translational and rotational currents, Ja and Ja in this limit. This gives rise to the

isotropic pattering of dynamic actin filaments.

Our present study is an agent-based Brownian dynamics simulation of a mixture

of polar active filaments in isotropic phase and passive particles which interact with

each other. Here we study the statistics of density fluctuations and dynamics of

particles advected in an active quasi-two dimensional medium comprising of self-

propelled filaments with no net orientational order, using a combination of agent-

based Brownian dynamics simulations and analytical calculations. The particles

interact with each other and with the self-propelled active filaments via steric inter-

actions. Our choice of Brownian dynamics simulations is motivated by experiments

on tagged particle diffusion both on the cell surface and in the in vitro reconsti-

tution. Molecules that bind to dynamic actin (passive molecules) are affected by

the active fluctuations of actomyosin - their diffusion shows anomalous behaviour

strongly indicative of active driving. On the other hand, molecules that do not

interact with actin (inert molecules), such as short chain lipids and proteins whose

actin-binding domain has been mutated so as to abrogate their interaction with

actin, do not show any influence of active fluctuations [3, 4, 7]. There appears to be

no sign that the transport of these inert molecules is affected by potential hydrody-

namic flows induced by active stresses coming from actomyosin [8, 9]. Our choice

of Brownian dynamics simulations is justified science the dominant source of mo-

mentum dissipation is via friction associated with moving relative to the crosslinked

cortical meshwork. We find that the particles show a tendency to cluster and their

density fluctuations reflect their binding to and driving by the active filaments. The

late-time dynamics of tagged particles is diffusive, with an active diffusion coefficient

that is independent of (or at most weakly-dependent on) temperature at low tem-

peratures. Our results are in qualitative agreement with the experiments mentioned

above.

While our primary motivation are the experimental studies of the tagged particle

dynamics on the cell surface [3, 4, 7], our work is also relevant to transport in other

living and nonliving systems, as long as the effects of hydrodynamics are negligible,

for instance, to the movement of multiple motor-driven cargo vesicles or synthetic
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3 Transport of passive advective scalars in a dilute active medium

beads on the cytoskeletal network [10].

3.2 Brownian dynamics and characterization

3.2.1 Simulation details

We study the dynamics of a mixture of polar active filaments and passive parti-

cles using an agent-based Brownian dynamics simulation. The passive particles are

modelled as mono-disperse soft spheres of diameter σ. A pair of passive particles

separated by a distance r interact via a truncated Lennard Jones (LJ) pair potential

of the form,

Vpp(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

+ V0 + V2r
2 for r ≤ rc

= 0 for r > rc (3.1)

where rc = 2.5σ and values of V0 and V2 are chosen so that the potential and force

are continuous at the truncation point. We set σ = 1 and ε = 1 to be the units of

length and energy, respectively.

The polar filaments are modelled as semi-flexible bead-spring polymers, with both

stretch and bend distortions [11, 12]. We implement excluded volume interaction

between the beads of same filament, as well as between two different filaments

through a truncated Lennard Jones pair potential of the form,

Vbb(r) = 4ε′

[(
σ′

r

)12

−
(
σ′

r

)6
]

+ V ′0 + V ′2r
2 for r ≤ r′c

= 0 for r > r′c (3.2)

where r is the distance between the centres of the corresponding beads, r′c = 21/6σ′

and V ′0 , V
′

2 are constants, chosen so that the potential and force are continuous at

r′c. We take σ′ = 2 and ε′ = 1. Each filament is composed of 10 beads and therefore

has an equilibrium length l = 20, in the units of σ.

Note that with our choice of cutoffs, the particle-particle interaction Vpp has both

attractive and repulsive parts, whereas the bead-bead interaction Vbb is strictly re-
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3 Transport of passive advective scalars in a dilute active medium

pulsive.

To make the filament semi-flexible, we impose additional spring forces on the

beads. A harmonic stretching potential with extensile stiffness Kc = 400, in units

of ε/σ2, ensures that the length of the filament does not deviate significantly from

its equilibrium value, l = 20. The bending energy of a triplet of connected beads is

also harmonic in the angle, with a bending stiffness Kb = 600, in units of ε. This

high Kb makes the filaments very stiff, with a typical persistence length much larger

than l.

Figure 3.1 Schematic of the agent-based model, where the polar filaments (indi-
cated by +/−) built from beads (blue) propel in a 2d background of passive particles
(red). The passive particles can bind to the filaments with rate kb and are advected
with it. Upon unbinding with rate ku , the passive particles undergo simple thermal
diffusion.

A propulsion force F1 = f0n̂ is imposed on each of the beads, along the average

direction (f0n̂) of all the bonds present in a filament. Note that we do not impose

any filament alignment rule nor do we prescribe any activity decorrelation time.

Instead, these originate from thermal fluctuations on the constituent monomers

comprising each filament and collisions driven by thermal and active forces, an
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3 Transport of passive advective scalars in a dilute active medium

emergent many-particle feature. As a consequence, both the local alignment and

orientational de-correlation time are functions of temperature, density and activity.

On the other hand, the passive particles are subject to thermal noise and can

bind and unbind to the beads of the filament. The interactions between the beads

of the filament and the passive particles are modelled by a harmonic potential of

spring constant Ks = 50 in units of ε/σ2. The harmonic potential is truncated at

a cutoff distance r0 = 1 and set to zero beyond it. When a passive particle comes

within a distance r0 from the centre of a filament bead, it binds to the corresponding

bead and gets advected along with the filament, under the application of propulsion

force f0n̂. The unbinding of the passive particle from the filament is facilitated by

thermal noise. We will later characterise the binding/unbinding rates as a function

of Ks and temperature. Note that we do not include any steric interaction between

the passive particles on the membrane and the filaments in the cortex. A schematic

showing the dynamic processes is displayed in Fig. 3.1(a).

Unless mentioned otherwise, all results presented here are for Np = 800 passive

particles and Nr = 50 self-propelled filaments in a two dimensional (2d) area of

linear dimension L = 396.4 with periodic boundary conditions (PBC). For most of

the study, we take the area fractions of the filaments (c) and particles (ρ) to be

c = 0.01 and ρ = 0.004, respectively.

The Brownian dynamics equations involve an update of both the passive particle

and the filament bead coordinates, for which we have used a simple Euler integration

scheme with integration time step ∆t ∼ 10−4. The dynamics of the position of the

i-th passive particle is given by

ṙpi =

−γ−1
p ∇iVp +

√
2kBT/γpξi, (unbound)

−γ−1
p ∇iVp +

√
2kBT/γpξi + fi/γp, (bound)

(3.3)

where γp is the friction coefficient of the passive particle, Vp is the net potential felt

by the i-th passive particle and includes contributions from Eq. 3.1 and the bead-

particle spring interactions. The diffusion of the unbound particle is driven by a

thermal noise ξi with zero mean and unit variance acting on i-th particle (kB is the

Boltzmann constant. On the other hand, the bound particles are subject to both

the thermal noise and active driving.
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The dynamics of the filament-bead displacements in our simulation is

ṙbj = −γ−1
b ∇jVb +

√
2kBT/γb ξj + fj/γb (3.4)

where γb is the friction coefficient of the bead, Vb is the net potential felt by the

j-th bead and includes contributions from Eq. 3.2, harmonic stretching and bending

interactions. The advection force fj on j-th bead acts along the direction of the

filament the bead is part of. Since our study is entirely in the isotropic phase of the

filaments, we have ignored complications that would arise by considering anisotropies

in both friction and thermal noise, as required by detailed balance.

We take γp = 1, which together with σ = 1 and ε = 1, sets the units of space,

time and energy. All other quantities can be written in terms of these units, so as

to make Eqs. 5.3, 3.4 dimensionless. In all that follows below, except in Sec. V, we

have taken γb = γp. A typical snapshot of the simulation is shown in Fig. 3.1(b).

Table 3.1 Conversion between simulation units (S.U.) and real units (R.U.)

Parameter[Dimension] S.U. R.U.

σ [l] 1 10 nm

ε [ml2t−2] 1 4.14× 10−21 J

γp [mt−1] 1 0.123 pNµm−1s

T [k] 1 300 K

t [t] 1 3× 10−3 s

ku, kb [t−1] 1 333 s−1

f0 [mlt−2] 1 0.41 pN

Va [lt−1] 1 3.3 µm s−1

Kc [mt−2] 1 41.4 pNµm−1

Kb [ml2t−2] 1 4.14× 10−21 J

Ks [mt−2] 1 41.4 pNµm−1

D [l2t−1] 1 3.3× 10−2 µm2/s

To be able to make contact with the in vitro reconstitution experiments [7], we
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translate our simulation units (S.U.) to real units (R.U.). Setting σ = 10 nm,

γp = 0.123 pN µm−1 s [13] and ε = 4.14 × 10−21 J, we can convert our simula-

tion units to real units, as displayed in Table 1. Note however, that if we were

to compare our simulation results with some other experimental system (e.g., an

appropriately designed active colloidal suspension), then we would have to use a

different conversion factor. To allow for this, we have varied the dimensionless tem-

perature over the range T = 0.25 − 10 and the dimensionless propulsion force over

the range f0 = 0 − 4.0. We have typically run the Brownian dynamics simulation

for a total time t ∼ 104, ensuring that the system has reached steady state. Our

initial conditions are chosen from a thermal distribution at temperature T and all

results presented here are averaged over 16 such independent initial realisations.

Throughout the paper (unless mentioned otherwise) we work at a filament density

of c = 0.01, and temperatures T ≥ 0.5; in this regime, the orientational correlation

lengths are of the order of the filament length, l, and hence comfortably within the

isotropic phase.

3.2.2 Statistics of filament orientation

We characterise the i-th filament by its centre of mass position ri and a unit vector

ni = (cos θi, sin θi) along its long axis to describe its polar orientation (recall that

the filaments are very stiff). We first ensure that the configuration of filaments is in

the spatially homogeneous, orientationally isotropic state - this is demonstrated in

the plots of the probability distribution of the polar P (θ) and nematic orientations

P (θ̃) (Fig. 3.2).

We then calculate the orientational correlation lengths, so as to ensure that this is

much smaller than our system size and comparable to the size of the filaments. To do

this, we calculate the spatial correlations of both the polar and nematic orientation,

CP (r) =

〈
1

N2

N∑
i=1

N∑
j=1

cos(θi − θj)

〉
(3.5)

CN(r) =

〈
1

N2

N∑
i=1

N∑
j=1

(2 cos2(θi − θj)− 1)

〉
(3.6)
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where r = |ri− rj| is the distance between the centre-of-mass of the i-th and j-th

filaments. By fitting this to an exponential (Figs. 3.3 and 3.4), we extract the polar

and nematic orientation correlation lengths, ζP and ζN , whose dependence on the

area fraction of filaments c (we will henceforth refer to this as filament density) is

shown in the inset.

Figure 3.2 Normalised distribution of (a) polar orientation P (θ) and (b) nematic
orientation P (θ̃), of the filaments at different temperature T with activity f0 = 4.0,
showing that the system is in the isotropic phase for a representative set of param-
eters. Data displayed with standard deviations over 16 independent realisations.

Figure 3.4 Spatial correlation of the nematic orientation, CN(r), of the filaments
at different filament density c at T = 0.5 and f0 = 4. Inset shows the corresponding
correlation length ζN as a function of filament density c.
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3 Transport of passive advective scalars in a dilute active medium

Figure 3.3 Spatial correlation of the polar orientation, CP (r), of the filaments at
different filament densities c at T = 0.5 and active propulsion f0 = 4. Inset shows
the corresponding correlation length ζP as a function of filament density c.

3.2.3 Statistics of binding-unbinding of passive particles onto

filaments

The dynamical equations (5.3) and (3.4) are written entirely in terms forces, either

active or derived from a potential, and thermal noise. The particles experience a

binding and unbinding onto the filaments which depend on this interplay between

thermal noise and the attractive potentials. Thus for instance, the unbound passive

particles diffuse in the two dimensional medium and ever so often come within

the vicinity (r ≤ r0 = 1) of a moving filament-bead, whereupon they bind to the

filament-bead. In the low density limit, we expect the binding rate kb to be diffusion

limited and so kb ∝ T and independent of Ks where Ks is the strength of trapping

harmonic interaction.

To study the unbinding of a particle bound from a filament-bead, we compute the

rate of escape of a particle trapped in a truncated attractive harmonic potential [14],

parametrised by Ks and r0. This is given by

ku =
K2
s r

2
0

γpkBT
exp

(
−Ksr

2
0

2kBT

)
(3.7)
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3 Transport of passive advective scalars in a dilute active medium

and should be a good description of the dynamics of unbinding of the passive par-

ticles in the limit of low particle density.

We compare these theoretical estimates with the results of simulations on a mix-

ture of particles and filaments at equilibrium (no active propulsion), from which we

extract the values of ku and kb in two different ways. In the first method, we repre-

sent the stochastic binding and unbinding by a telegraphic process [15], characterised

by a mean duty ratio,

〈φ〉 =
kb

kb + ku
, (3.8)

the fraction of time spent by the tagged particle in the bound state over the obser-

vation time, and a two-point correlator,

〈φ(t)φ(t′)〉 = 〈φ〉2 + 〈φ〉 (1− 〈φ〉) e−2
|t−t′|
tsw (3.9)

where

tsw =
2

kb + ku
, (3.10)

is called the mean switching time and describes the mean time taken to switch from

a bound to an unbound state. We calculate kb and ku, by fitting our simulation

results to 〈φ〉 and 〈φ(t)φ(t′)〉. In the second method, we calculate ku (kb) directly,

from the inverse mean time that the particle stays bound (unbound) on the filament.

Upto a scaling by a constant, the two numerical methods show identical variation

as a function of temperature T and particle-filament binding potential Ks. These

in turn agree with our analytical estimates, with no fit parameter (Fig. 3.5).

It is important that we do not prescribe the binding-unbinding rates, rather we

derive them from the assigned potentials. The binding-unbinding rates thus depend

nontrivially on temperature; they would also depend on the density of passive parti-

cles and filaments in the high density limit. This will be crucial to our estimation of

the tagged particle diffusion coefficient and its comparison with experimental data

(Sect. IV B).
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3 Transport of passive advective scalars in a dilute active medium

Figure 3.5 Dependence of binding (unbinding) rates kb (ku) on (a) the strength of
the particle-filament binding potential, Ks, and (b) temperature, T , calculated using
the two different numerical methods (filled symbols) discussed in the text. These can
be fit, with no undetermined parameter, to the analytic forms (solid lines) discussed
in the text (Eq. 3.7).

3.3 Density fluctuations of passive advective scalars

in an active medium

We now study the statistics of density fluctuations and dynamics of the actively

driven passive particles. We find that the active driving tends to cluster the passive

particles; this shows up in the two point spatial density correlation function and the

statistics of the density fluctuations.

3.3.1 Radial distribution function

We study the behaviour of the radial distribution function of the passive particles

g(r),

g(r) =
1

Npρ

〈∑
i

∑
i 6=j

δ(r − |ri − rj|)

〉
, (3.11)
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3 Transport of passive advective scalars in a dilute active medium

Figure 3.6 Radial distribution function g(r) for (i) equilibrium system of inert
particles (kb = 0 : red •), (ii) equilibrium system of psaaive particles which can
bind to the filaments (kb > 0, f0 = 0 : green 4) and (iii) driven system of passive
particles which can bind to the self-propelled filaments (kb > 0, f0 = 4 : blue
5). In the presence of activity the peak heights increase and g(r) falls off more
gradually, indicating a high degree of clustering of the bound particles, even at
distances larger than the filament length. Data displayed with standard deviations
over 16 independent realisations.

where Np is the total number of passive particles and ρ the passive particle density.

When kb = 0 and f0 = 0, i.e., when the particles do not bind to the filament

(inert particles) and there is no propulsion force, g(r) has the form of a dilute fluid

(Fig. 3.6).

When we allow for particle binding, but in the absence of propulsion force, the

g(r) displays oscillations, which arise from particles binding to periodic locations

on the filaments (Fig. 3.6) - note r = 20 coincides with the filament length. In

this equilibrium situation, the particles not bound to the filaments do not show any

clustering. We now consider the case when the filaments are driven by a propulsion

force f0. We see that the propulsion drives the clustering of the filaments, which in

turn leads to an increase in correlation between bound particles, even at distances

beyond the filament length (Fig. 3.6).
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3 Transport of passive advective scalars in a dilute active medium

3.3.2 Probability distribution of local number density

This activity induced clustering of the passive particles should be reflected in the

probability distribution of the excess number density. To compute this we divide

the system into blocks of size Ω = 39.64 and count the number of passive particles

n in each block, to obtain the steady state distribution P (n).

Figure 3.7 Probability distribution of number density P (n) for (i) equilibrium
system of inert particles (kb = 0 : red •), (ii) equilibrium system of psaaive particles
which can bind to the filaments (kb > 0, f0 = 0 : green 4) and (iii) driven system
of passive particles which can bind to the self-propelled filaments (kb > 0, f0 = 4
: blue 5). For inert particles, P (n) fits with Poisson distribution Eq. 3.12 (dark
line). P (n) picks up an exponential tail for particles that bind and unbind onto the
filaments, that moves towards the typical value as the active propulsion force gets
larger. Data displayed with standard deviations over 16 independent realisations.

The statistics of density fluctuations of inert particles, in the dilute limit (Fig. 3.7),

are described by a probability distribution that resembles a gas at temperature T

and the average number of particle in the blocks n̄, namely,

P (n) =
λnexp(−λ)

n!
(3.12)

where mean number of particle in the blox is λ = n̄ = Ωρ.

On the other hand, the probability distribution for passive particles picks up an
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3 Transport of passive advective scalars in a dilute active medium

exponential tail arising from the binding-unbinding statistics of the particles. This

exponential tail gets more pronounced when the filaments are made active, and

which moves towards the typical value as the active propulsion force gets larger

(Fig. 3.7). This reflects the fact that for high driving, the typical particle is clus-

tered. Both these results are consistent with the observed clustering of actin-binding

proteins driven by actomyosin flows in the in vitro reconstitution system reported

in Ref. [7].

3.3.3 Number fluctuations : crossover from anomalous to

Brownian

Note that the active system of filaments is in the isotropic phase and we should not

expect to see giant number fluctuations normally associated with active systems with

global orientational order [16, 18, 17]. However when we compute the root mean

square fluctuations4n and mean n̄ of the number of passive particles over regions of

ever increasing area, and plot them with respect to each other, we find that initially

4n ∝ n̄α with α = 0.784. Subsequently, as n̄ increases, the variance scaling shows

a cross over to α = 0.5. This crossover occurs over a scale corresponding to the

orientational correlation length, which can in principle be large, especially close to

the isotropic-nematic transition or high f0. This is especially apparent in the high

particle density regime, see Fig. 3.8 for particle density ρ = 0.05 and filament density

c = 0.02. This slow crossover explains the observed anomalous number fluctuations

in the in vitro actomyosin reconstitution system [7]. In order to recover the crossover

to the expected normal fluctuations at large n, one needs to probe over length scales

larger than this crossover length [19].
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Figure 3.8 (a) Root mean square fluctuations of the number of passive particles
∆n versus the mean n̄ for inert (red •) and passive particles at two different tem-
peratures, T = 0.5 (4) and T = 2.0 (�). Solid lines indicate the local slope α in
this log-log plot of ∆n ∝ n̄α. The values of α indicated in the legend, show that
while inert particles exhibit normal fluctuations (α = 0.5), passive particles show
large fluctuations at small n̄ (with α depending on T and f0) that crosses over to
normal fluctuations beyond a scale corresponding to the orientational correlation
length (indicated by the arrow). Data displayed with standard deviations over 16
independent realisations. (b) To study the crossover behaviour, we plot ∆n versus
n̄ for two different system sizes at T = 0.5. The crossover from α = 0.784 to α = 0.5
occurs at the orientational correlation length (arrow to the left), which being much
smaller than system size, does not show any difference in the two system sizes. How-
ever, the eventual flattening and drop of the curve at large n̄ is a system size effect,
as seen by the arrows to the right. The Np = 2500 data has been shifted along the
y-axis for better visualisation.
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3 Transport of passive advective scalars in a dilute active medium

3.4 Transport of passive advective scalars in an

active medium

We now study the transport of passive particles moving in the active medium. Be-

cause the filaments are orientationally disordered, the long time dynamics of the

particles is always diffusive. However the diffusion characteristics can change de-

pending on the statistics of (un)binding to the active filaments.

3.4.1 Typical trajectories

The space-time trajectories of the passive particles show three qualitatively different

behaviours. At very low temperatures compared to U = Ksr
2
0/4, a passive parti-

cle once bound to a filament, rarely unbinds, and hence gets advected with the

self-propelled filament (Fig. 3.9(a)). The direction of advection changes because of

thermal fluctuations and collisions between filaments.

Figure 3.9 Typical trajectories of passive particles for a fixed propulsion force
f0 = 4.0 at different temperatures - (a) T = 0.5 (low : kBT/U = 0.04); (b) T = 4.0
(intermediate : kBT/U = 0.32) and (c) T = 10.0 (high : kBT/U = 0.8).

Increasing the temperature increases the probability of unbinding from the fila-

ment, whereupon the particle undergoes unrestricted thermal diffusion before bind-

ing again (Fig. 3.9(b)). At even higher temperatures, kBT/U ≈ 1 the particles do

not bind to the filaments and the motion is simple thermal diffusion (Fig. 3.9(c)).
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3 Transport of passive advective scalars in a dilute active medium

3.4.2 Statistics of displacements

Propensity distribution. The distribution of displacements ∆x (along the x̂

direction) evaluated over a time window tw is called the propensity distribution.

This will depend on the statistics of binding/unbinding, which in turn depends on

the temperature T and f0, densities of filaments and particles, and of course on the

time window tw, which we fix at tw = 10. This can be obtained both from our

Brownian dynamics simulation and, in the dilute limit, analytically.

In the dilute limit, one can obtain the form of this probability distribution from

the stationary process describing the particle vector-displacements in a small time

interval tw,

r(tw) = r(0) +

∫ tw

0

V(t′) dt′ (3.13)

where V is the velocity of the tagged particle at time t, given by,

V(t) = φ(t)
f0

γ
n̂(t) + (1− φ(t)) ξ(t), (3.14)

where n̂ is the polar vector representing the orientation of the filament to which the

particle is bound at time t, ξ is the thermal noise, and φ(t) is the telegraphic noise

whose statistics is described in Sect. II D. The distribution of the particle displace-

ments ∆xtw ≡ (r(tw)− r(0)) · x̂, can be obtained by evaluating,

P (∆x) = 〈δ (∆x−∆xtw)〉 (3.15)

where ∆xtw is obtained from Eq. 3.13 and the angular bracket denotes an average

over the joint distribution of ξ and φ. This can be evaluated by standard techniques

of Fourier transformation and cumulant expansion [15],

ln P̃ (k) =
∞∑
m=1

(ik)m

m!
〈(∆xtw)m〉c (3.16)

where P̃ (k) is the Fourier transform of P (∆x). The m-th cumulants 〈(∆xtw)m〉c can

be evaluated from Eqs. 3.13, 3.14, knowing that φ and ξ are independent stochastic

processes. The distribution P (∆x) is then obtained by taking the inverse Fourier
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3 Transport of passive advective scalars in a dilute active medium

transform of P̃ (k).

However, in practice, the inverse Fourier transform of P̃ (k), for the stationary

process Eq. 3.13, has to be evaluated numerically. Rather than do this, we provide

an alternate argument which gives more insight.

Figure 3.10 Probability distribution P (∆x) of the displacements of passive par-
ticles, evaluated for fixed time interval 4t = 10, at a propulsion force f0 = 4.0
and temperatures (a) T = 0.5 and (b) T = 2.0. The central peak comes from the
fraction undergoing thermal diffusion, while the side peaks come from the bound
fraction undergoing active motion. The black filled line shows parameter-free fits
to the approximate analytical form (Eq. 3.17), where we have estimated the value
of 〈φ〉 = 0.9995 at T = 0.5 (mainly bound) and 〈φ〉 = 0.632 at T = 2.0. Data
displayed with standard deviations over 16 independent realisations.

At low enough T , the passive particles are completely bound to the self-propelled

filaments, and so as long as tw < τ , the orientational correlation time of the filaments,

the particles get displaced by ∆r = f0tw
γp

n̂, where γp is the friction coefficient and

n̂ is the unit vector representing the average orientation of a filament during time

interval tw.

Since the filament orientation is uniformly distributed, the contribution to the

step-size distribution from this process is P (∆x) = γp
πf0tw

1√
1−(

γp
f0

∆x
tw

)2
. On the other

hand, at very high T , the particles are completely unbound and undergo thermal

diffusion, for which the step-size distribution is P (∆x) = 1√
2πσ2

exp [− (∆x)2

2σ2 ], where

σ2 = 2kBT
γp

tw. We propose that at an intermediate T , the propensity distribution
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can be written as a linear combination, weighted by the duty ratio 〈φ〉, i.e.,

P (∆x) =
γp

πf0tw

〈φ〉√
1−

(
γp
f0

∆x
tw

)2
+

1− 〈φ〉√
2πσ2

exp

[
−(∆x)2

2σ2

]
. (3.17)

Considering that there are no undetermined parameters, the agreement of this ap-

proximate analytical form with the results of the Brownian simulation is quite rea-

sonable, see Fig. 3.10.

3.4.3 Mean square displacement and diffusion coefficient

Figure 3.11 (a) MSD of passive particles as a function of time at T = 0.5 for
different values of self-propulsion force (f0) of the filaments. (b) Collapse of MSD
using crossover time (tc) and long time diffusion constant for the same case. Inset
shows crossover time (tc) as a function of self-propulsion force (f0) of the active
filaments for the same case.

From the statistics of the displacement we can compute the mean square displace-

ment (MSD) as 〈∆r2(t)〉 = 〈 1
Np

∑
i |ri(t0+t)−ri(t0)|2〉, where ri is the position of the

i-th particle. This shows a change from a short time diffusive regime crossing over to

a long time diffusive regime via an intermediate super-diffusive regime (Fig. 3.11(a)).

We estimate the second crossover time tc(T, f0) from the super-diffusive to late time
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3 Transport of passive advective scalars in a dilute active medium

diffusion D, by fitting the simulation data to 〈∆r2(t)〉 = 4Dt [1 − exp(−t/tc)] [20],

using which we can collapse the MSD data for different values of active propulsion

f0 (Fig. 3.11(b)). From this we see that tc decreases with f0 (Fig. 3.11(b) inset).

This is because the filament orientation decorrelates on account of collisions, whose

frequency increases with f0. In experimental systems where hydrodynamics plays a

crucial role [20], this dependence of tc on f0 may be different.

In situations where the crossover tc is large, the apparent super-diffusion behaviour

would last for many decades in time. We can then fit the MSD to 〈∆r2(t)〉 ∼ tβ to

obtain the super-diffusion exponent β > 1 - we find that β = 1.95 at T = 0.5 and

β = 1.77 at T = 2.0, for a propulsion force f0 = 4.0.

Temperature and activity dependence of MSD.

Figure 3.12 Diffusion of membrane proteins exhibit temperature insensitivity. Typ-
ical diffusion coefficient (D) has been extracted from FCS measurements for lipids
and proteins in CHO cells across the temperature range 20− 37◦C. The inert lipid
probes (B-SM and B-PC) show distinct temperature dependence, whereas the GPI
probes (FR-GPI and CD52) show temperature insensitivity (Image Courtesy: [4]).

We now compute the late time diffusion coefficient of the tagged particles, D =
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limt→∞〈∆r2(t)〉/4t, for different T and f0. For a fixed f0, one might expect that at

low temperatures D is weakly dependent on (or even independent of) temperature

because a particle once bound to the filament remains so and undergoes active diffu-

sion as it is transported by the filament (Fig. 3.13). As we increase the temperature,

D decreases, since a particle spends less time, on an average, bound to the filament

(recall we have set γb = γp).

At high temperatures, the particles are predominantly unbound, and hence D

resembles that of an inert particle, which increases linearly with temperature. This

is indeed what we see from a direct numerical simulation of the Brownian dynamics

trajectories of a tagged particle (Fig. 3.13).

Figure 3.13 (a) Diffusion coefficient (D) of tagged passive particles has been plot-
ted as a function of T for different values of f0 of the filaments. At low temperature
regime D is weakly dependent on T (signature of ‘active diffusion’). At interme-
diate regime D decreases then again increases at high temperature regime where
thermal diffusion dominates. (b) We have plotted total diffusion coefficient D (with
points) and active diffusion coefficient Da ( with line) with f0 for different T . In
the low temperature and high activity regime the difference between D and Da is
insignificant, as we increase T and decrease f0 the difference becomes prominent.

From the stationary process, Eq. (3.13), the MSD of the tagged passive particle,

〈δr2(t)〉 =

∫ t

0

∫ t

0

〈V(t′) ·V(t′′)〉dt′dt′′ , (3.18)
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immediately gives the diffusion coefficient,

D =
1

2

∫ ∞
0

〈V(t) ·V(0)〉dt. (3.19)

Figure 3.14 (a) Temporal correlation of the direction of persistent movement of
the filaments, measured by the velocity orientation correlation function Cθ(t), at
different temperatures, with the filament density c = 0.01 and propulsion force
f0 = 4. Inset shows the corresponding orientation correlation time τ as a function of
T . (b) Temperature dependence of binding (kb) and unbinding (ku) rates calculated
from the statistics of the telegraphic noise φ(t). (c) Both simulation and analytic
calculation of diffusion coefficient (D) of tagged passive particles are plotted as a
function of temperature (T ) for two different activities (f0 = 2, 4) for filament density
c = 0.01. Data displayed with standard deviations over 16 independent realisations.
Note that the standard deviation in the analytic graph is because we have used the
values of τ , ku and kb from simulations.

Using Eq. (3.14), we see that the diffusion coefficient of the bound particle is given

by the correlations of Va, which is given by (Fig. 3.14(a)),
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〈Va(t) ·Va(0)〉 =
f 2

0

γ2
p

〈cos(θ(t)− θ(0))〉

=
f 2

0

γ2
p

e− |t|/τ (3.20)

The diffusion coefficient can now be simply evaluated,

D =
f 2

0 τkb(τkb + 1)

2γ2
p(ku + kb)[(ku + kb)τ + 1]

+
kBTku

γp(ku + kb)
(3.21)

To plot D versus T and f0, we need to know the values of kb, ku (equivalently 〈φ〉,
tsw) and τ , which depend on the temperature and density, and which we obtain from

our simulations. We then compare this semi-analytical form to the direct numerical

computation of the diffusion coefficient from the Brownian dynamics trajectories

(Fig. 3.14). The agreement between the two is excellent. Our computations recapit-

ulate in vivo observations (see Fig. 3.12) of the temperature insensitivity of diffusion

coefficient of a variety of passive molecules driven by actomyosin flows at the cell

surface, using fluorescence correlation spectroscopy (FCS) [4].

It might be objected that in our analysis we have treated the active propulsion

as an independently tunable parameter, thus precluding the possibility that the

activity itself may be temperature dependent. However, as we saw in [2], and as

noted elsewhere [21, 22], the actomyosin contractile processes taken as a whole,

appear to be independent of temperature in the physiological range, 24◦ − 37◦C.

Figure 3.15 shows the dependence of D on filament concentration c, both from di-

rect simulations and from the analytical form using the values of kb, ku (equivalently

〈φ〉, tsw) and τ , from simulations. This shows optimal transport at a specific fila-

ment concentration; the orientational decorrelation time is smaller at higher filament

concentration, due to higher collision frequency.
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Figure 3.15 (a) Temporal correlation of the direction of persistent movement of
the filaments, measured by the velocity orientation correlation function Cθ(t), with
different filament density (c), at temperature T = 0.5 and propulsion force f0 = 4.
Inset shows the corresponding orientation correlation time τ as a function of c. (b)
Dependence of binding (kb) and unbinding (ku) rates on filament density c, calculated
from the statistics of the telegraphic noise φ(t). (c) Both, simulation and analytic
calculation of diffusion coefficient (D) of tagged passive particles has been plotted
as a function of filament density (c) at T = 0.5 and for f0 = 4. Data displayed
with standard deviations over 16 independent realisations. Note that the standard
deviation in the analytic graph is because we have used the values of τ , ku and kb
from simulations.

3.5 Viscosity stratification and its effect on mem-

brane diffusion

So far, our study of transport of passive molecules in an active medium has been

restricted to two dimensions. However as we discussed in Sect. I, the cell surface
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is a composite of a bilayer membrane and a thin actomyosin cortex. Thus while

the proteins move on the cell membrane, the actively driven actin moves in the

actomyosin cortex. The viscosities of these two layers are significantly different,

with the bilayer membrane having a viscosity which is an order of magnitude larger

than the cortex (≈ 0.86 Pa s [13]). Indeed the local viscosity of a multicomponent

membrane can be quite heterogeneous - for instance the particle mobility within

the so-called “membrane rafts” or liquid-ordered regions on the cell membrane can

be very different from those within liquid-disordered regions. Moreover the local

cortical viscosity depends on local actin, myosin and cross-linker concentrations.

How does this viscosity mismatch affect the actively driven transport of passive

molecules?

To address this important issue within our simulation, we vary the ratio of the

friction coefficients Γ = γp/γb in Eqs. 5.3, 3.4. We find that the mean fraction of

passive particles bound to filaments 〈nb〉 decreases with increasing Γ over a range

of T and f0 = 4.0 (Fig. 3.16(a)). This is an interesting observation, since one might

have naively thought that 〈nb〉 is solely governed by binding-unbinding, a purely

equilibrium process and hence independent of relative viscosities. However, we see

that the drag induced by the imposed viscosity stratification (a nonequilibrium

feature), can “peel-off” particles from the filaments. It is not clear to us why we see

a shoulder at intermediate values of Γ for low enough temperatures (Fig. 3.16(a)).

This is reflected in changes that we observe in the measured diffusion coefficient

D, as it decreases with increasing Γ at different T (Fig. 3.16(b)). As can be seen, the

active-diffusion regime at low temperatures becomes significantly more temperature

dependent as the viscosity mismatch Γ increases.

The results of this section are not purely academic, on the contrary taken together

they pose an interesting possibility that by tuning local viscosity mismatch, for in-

stance by locally recruiting the so-called “membrane rafts” or liquid-ordered regions

on the cell membrane or by locally regulating the concentrations of actin, myosin

or cross-linkers, the living cell surface could control the clustering and transport of

specific membrane proteins.
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Figure 3.16 (a) Fraction of bound particles 〈nb〉 decreases with Γ = γp/γb over
a range of temperatures. (b) Diffusion coefficient versus temperature at different
values of viscosity mismatch parameter Γ. In both figures, the propulsion force has
been fixed at f0 = 4.0.

3.6 Discussion

We had earlier shown that a coarse grained active hydrodynamics description of

the active composite cell surface, successfully explains the statistics of clustering of

membrane proteins capable of binding to the cortical actomyosin in living cells [1, 3].

Such a description make predictions regarding the statistics of density fluctuations

and transport of such actin-binding membrane proteins, which were verified in ex-

periments [3, 4]. Following this we were able to recapitulate much of this behaviour

in a minimal in vitro system comprising a thin layer of short actin filaments and

Myosin-II minifilaments on a supported bilayer [7]. The success of this approach

has motivated us to do an agent-based Brownian dynamics simulation using these

minimal ingredients - that of a collection of passive molecules which bind/unbind to

actin filaments and move in this active medium in two dimensions.

The results obtained here, based on simulations and analytical calculations, are

in qualitative agreement with the experiments both in vivo and in vitro. For in-

stance, the exponential tails appearing in the probability distribution of the number

(Fig. 3.7) and the scaling of the variance of the number (Fig. 3.8) is precisely the

behaviour seen in our earlier in vitro experiments. In addition, we show how activity

induced clustering of passive particles (Fig. 3.6) arises naturally from such a minimal

description.
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We have also studied transport of passive particles moving in this active medium,

and find that there is a crossover from an intermediate time super diffusive to late

time diffusive behaviour as a consequence of active driving (Fig. 3.11(a)). The trans-

port behaviour shows a striking dependence on temperature and active forcing - at

low temperatures the diffusion coefficient is insensitive to temperature, and crosses

over to a linear temperature dependence at higher temperatures, in qualitative agree-

ment with experiments [4].

Finally, recognising that the viscosity of the cortical layer is different from that

of the membrane, we show that a friction coefficient mismatch has a strong effect

on the mean number of bound particles and the diffusion coefficient. This is a con-

sequence of the drag induced by the imposed viscosity stratification, which results

in a “peeling-off” of the particles from the filaments. This opens up the possibility

of local tuning of viscosity mismatch, for instance by locally recruiting the so-called

“membrane rafts” or liquid-ordered regions on the cell membrane or by locally reg-

ulating the concentrations of actin, myosin or cross-linkers. This could result in yet

another mechanism by which the cell surface might locally control the clustering and

transport of specific membrane proteins. We hope that some of these predictions

can be tested in future experiments.
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Chapter 4

Clustering and reaction kinetics of cell sur-
face molecules in semi-dilute active medium

4.1 Introduction

As discussed in the introduction (chapter 1), many cell membrane proteins that

bind to actin, form dynamic clusters driven by contractile flows arising from ac-

tomyosin at the cell cortex. Recent evidences suggest that a necessary condition

for the generation of these protein clusters on the membrane is the stratified or-

ganization of the active agents - formin-nucleated actin, myosin-II minifilaments,

and ARP2/3-nucleated actin mesh - within the cortex. Further, the observation

that these clusters dynamically remodel, requires that the components of this active

machinery undergo turnover. In chapter 2 we developed a coarse-grained agent-

based Brownian dynamics simulation that incorporates the effects of stratification,

binding of myosin minifilaments to multiple actin filaments and their turnover. We

have shown that these three features of the active cortical machinery - stratifica-

tion, multivalency and turnover - are crucial to the attainment of a nonequilibrium

steady state characterised by contractile flows and dynamic orientational pattern-

ing. The orientational patterns generated by the actin filaments driven by myosin

minifilaments are isotropic, polar bundle, polar aster, aster and spiral asterFig. 2.4.

In this chapter, coupling this actomyosin dynamics to the dynamics of molecules

on the two dimensional cell surface, we find that this automatically drives multi-

particle encounters and dynamical clustering. We have studied the effect of aster

phase on the dynamics of membrane molecules. We show that this steady state
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4 Clustering and reaction kinetics of cell surface molecules in semi-dilute active medium

enabled by the above features of the cortex, can facilitate multi-particle encounters

of membrane proteins that profoundly influences the kinetics of bimolecular reactions

at the cell surface. Indeed we show that inhibition of any one of the three ingredients

leads to a loss of the desired phenotype. This provides the motivation to study the

influence of active stresses on the dynamics of generic bimolecular chemical reactions,

A+B 
 C on the cell surface, an issue of profound biological significance [1, 2, 3,

4, 5, 6].

4.2 Dynamics of cell surface molecules driven by

stratified active actomyosin cortex

The dynamics of actin filaments in the z = 1 layer in a stratified cortex has been

described in the chapter 2. This dynamic actin filaments drives the membrane

proteins that bind to it.

Membrane proteins in the z = 0 layer are modelled as mono-disperse soft discs of

diameter σ. The dynamics of membrane proteins are determined by protein-protein

interactions, interactions with the dynamic actin filaments situated in the z = 1

layer and thermal noise. A pair of proteins separated by a distance rαβ interact via

a purely repulsive potential, a truncated and shifted pair potential of the form,

Vp(rαβ) = 4ε

(
σ

rαβ

)12

+ V0 + V2 r
2
αβ + V4 r

4
αβ for rαβ ≤ σ

= 0 for rαβ > σ (4.1)

where the values of V0, V2 and V4 are chosen so that the potential and force are

continuous at the truncation point. In what follows, we set σ = 1 and ε = 1 to be

the units of length and energy, respectively.

Actin filaments in the z = 1 layer are represented as a string of beads, the details

of the inter-bead potential will be specified later in this section. Here, we focus on

its influence on the dynamics of a membrane protein in the z = 0 layer, which is

simply that when bound to a bead belonging to an actin filament, it moves with the

velocity of that filament, in a “no-slip” manner. We implement this by prescribing

the net force on the α-th membrane protein in the z = 0 layer as,
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4 Clustering and reaction kinetics of cell surface molecules in semi-dilute active medium

fα(t) =


∑

β 6=α Fp
αβ(t) + ξpα(t) (always)

−k |rα − rm,i| (applicable when the protein is

bound to any bead m of filament i)

(4.2)

where Fp
αβ is the force on the α-th membrane protein due to the β-th protein calcu-

lated from Eq. 4.1, ξpα is the thermal noise, drawn from a Gaussian distribution with

zero mean and variance = 2kBTγp/∆t, where γp is the friction coefficient of the pro-

teins in the membrane, and finally, k is the attractive spring force between the the

actin filament and the protein when it is bound to it. The binding-unbinding status

of each membrane protein is determined by switching rates kb and ku, respectively,

where binding to bead m is initiated when a distance criterion |rα − rm,i| ≤ 1.6σ is

met. We vary ku over the range 10−5− 10−1, where we use γp to set the unit of time

(see, Table 1).

With this force, the position of the α-th membrane protein gets updated by

vα(t) = fα(t)/γp in a time ∆t.

4.3 Simulation details

All results presented here are for Np = 300 membrane proteins and Na = 64 actin

filaments in a two dimensional (2d) area of linear dimension L = 400 with periodic

boundary conditions (PBC). In our Brownian dynamics simulations runs, the time

update is ∆t ∼ 2 × 10−3, with total run time being t = 5 × 104. Our initial

conditions are chosen from a thermal distribution at temperature T = 1.0, and all

results presented here are averaged over 32 such independent initial realisations. We

take single filament velocity v0 = 0.2 coming from the active translation current.

Membrane protein number density is ρp = 1.8 × 10−3 and actin filament number

density is ρa = 4 × 10−4. We studied the clustering of molecules with all same

type of membrane proteins and while studying chemical kinetics we took two type

of proteins with equal numbers where NA = NB = 150. The membrane proteins

can bind and unbind to the beads of the filament with rate kb and ku, respectively.

When a membrane protein comes within a distance lbp = 0.8σb from the centre of
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4 Clustering and reaction kinetics of cell surface molecules in semi-dilute active medium

a filament bead, it binds to the corresponding bead with rate kb and gets advected

along with the filament. The attractive interactions between the filament beads and

the membrane protein are modelled by a harmonic potential with spring constant

kbp = 100. The bound particle unbinds from the filament with rate ku.

We study the role of particle attachment to the filament (ku) and filament turnover

rate (kr) on clustering and chemical kinetics. We take binding rate kb = 0.5. We

have varied unbinding rate ku over the range 10−5 − 10−1 and turnover rate kr over

the range 10−4 − 10−1. In chemical kinetics study the association rate ka = 0.004

and the dissociation rate kd = 10−4.

Throughout our simulation, the units of length, time and energy are set by σ,

γp and ε (Table 4.1). All other parameters expressed in natural units are listed in

Table. 4.2 for convenience.

Table 4.1 Natural units - simulation units (S.U.) and real units (R.U.)

Natural Units Symbol [Dimension] S.U. R.U.

Length (Membrane protein diameter) σ [l] 1 10 nm

Energy (Inter-protein interaction) ε 1 4.11× 10−21 J

Membrane protein friction coefficient γp 10 0.8 pNµm−1s

Time t = l2γp/10ε 1 2× 10−3 s
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Table 4.2 Other parameters expressed in natural units and their ranges

Parameters Symbol [Dimension] Value/Range

Membrane protein diffusion constant D [l2t−1] 0.1

Physiological Temperature T [ε] 1

Actin filament bead diameter σb [l] 1.6

Actin filament length l [l] 24

Single actin filament propulsion velocity v0 [lt−1] 0.2

2-filament torsional spring stiffness kθ [ε] 5

Multi-filament torsional spring stiffness kφ [ε] 500

2-filament extensional spring stiffness k2 [εl−2] 10

Multi-filament extensional spring stiffness k3 [εl−2] 5

Turnover rate of actin filaments kr [t−1] 10−1 − 10−4

Binding rate of protein to actin filament kb [l2t−1] 0.5

Unbinding rate of protein from actin filament ku [t−1] 10−1 − 10−5

Association rate of bimolecular reaction ka [l2t−1] 0.004

Disassociation rate of bimolecular reaction kd [t−1] 10−4

4.4 Activity enhances multi-particle encounters

Having described the orientational patterning and nonequilibrium dynamics of actin

filaments driven by Myo-II minifilaments, we ask how these might affect the dynam-

ics of membrane proteins in the z = 0 layer of the stratified active composite surface.

From the combined active dynamics of the actin filaments and membrane proteins

interacting with actin (Eqs. 4.2, 2.2), we see that the contractile flows generated

by the active forces and torques on single and multiple actin filaments, draw in

the bound membrane proteins. Following this, the membrane proteins may unbind

from the filaments, resulting locally in high concentrations of free proteins that can

engage in multiple binary and multiparticle encounters with each other. This is best

seen in the Aster phase of Fig. 2.4.
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4 Clustering and reaction kinetics of cell surface molecules in semi-dilute active medium

Results of Turnover and Multivalency of actin filaments:

To quantify the extent of multi-particle encounters, we compute both the number

of clusters of size k and their lifetimes. Figure 4.1 shows the average number of

clusters of size k, denoted as 〈nk〉, that appear within a time window (here, we take

it to be 103) at steady state. (Note that to define a cluster, we need a inter-particle

distance cutoff, which we take to be 1.2σ). In the equilibrium limit, obtained by

setting the binding of membrane proteins to the active actin filaments to zero, we

see that thermal motion alone leads to transient clusters that are predominantly

dimers (k = 2) and rarely trimers or higher k-mers (k ≥ 3). This is in striking

contrast to the active steady state with turnover, which shows a significant fraction

of large clusters (k up to 10, as seen in Fig. 4.1.

−3

−2

−1

0

1

2

3

2 4 6 8 10

Equilibrium
Active

Active without Turnover
Active without Multivalency

Figure 4.1 Activity and turnover enhance multiparticle encounters. (a) Mean
number of k-clusters, 〈nk〉 versus with cluster size k (y-axis in log10 scale). Observe
the enhancement of the number of large clusters in the active case with both turnover
and multivalency (green triangle), compared to the equilibrium limit (red square).
Abrogation of turnover (blue triangle) or multivalency (purple circle) leads to a
significant reduction in the number.
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We emphasize that these multiparticle encounters are realised only in the active

nonequilibrium steady state, which is contingent on stratification, turnover and

multivalency of force generators. Significantly, when we abrogate either turnover

(kr = 0) or multivalency (k3 = kφ = 0), we loose the larger clusters.

0

20

40

60

80

0 1 2 3 4

Active
Active without Turnover

Active without Multivalency

Figure 4.2 Time series of 3-particle clustering (mean number of 3-clusters, 〈n3〉)
shows large intermittent fluctuations of 〈n3(t)〉 in the active system with turnover
and multivalency, which is dramatically suppressed in the absence of turnover or
multivalency.

Figure 4.2 shows the time series of the number of 3-particle clusters 〈n3(t)〉 (within

a time window τr) in the nonequilibrium steady state (red). The large temporal

fluctuations of 〈n3(t)〉 are suppressed in the absence of turnover and multivalency of

the active force generators. These results, namely the presence of large and transient

clusters in the nonequilibrium steady state is contingent on stratification, turnover

and multivalency and is in agreement with recent experiments on reconstituted

actomyosin on a supported bilayer [7].

Variation with unbinding rate and turnover rate: In addition, we make sev-
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eral qualitative predictions that can be tested in carefully engineered in-vitro ex-

periments. For instance, in Fig. 4.2(a), we find that 〈nk〉 increases upon reducing

the unbinding rate associated with the interaction of the membrane protein with

filamentous actin, keeping the turnover rate kr fixed. Further, 〈nk〉 shows a non-

monotonic dependence on the turnover rate kr, keeping the unbinding rate ku fixed

(Fig. 4.3.
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Figure 4.3 Mean number of k-clusters, 〈nk〉 versus with cluster size k (y-axis in
log10 scale). Observe the enhancement of the number of large clusters in the active
case. Lower unbinding rate enhance multiparticle encounters.

In the nonequilibrium steady state, the number of k−clusters shows the same

intermittent dynamics as mean aster density. Figure 4.2 shows the time series of the

number of 3-clusters 〈n3(t)〉 in the nonequilibrium steady state. The large temporal

fluctuations of 〈n3(t)〉 are suppressed in the absence of turnover and multivalency of

the active force generators. Interestingly, 〈nk〉 shows a non-monotonic dependence

on the turnover rate kr (Fig. 4.4 a prediction that can be tested in reconstitution

experiments, such as [7].
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Figure 4.4 Mean number of k-clusters 〈nk〉 for k = 3 (red circle) and k = 4 (green
square) shows non-monotonic behaviour with filament turnover rate kr.

To summarize, the formation of large and intermittent clusters in the nonequi-

librium steady state is contingent on stratification, turnover and multivalency, in

agreement with experiments on reconstituted actomyosin on a supported bilayer [7].

4.5 Activity influences chemical reaction kinetics

at the cell surface

Since many signalling molecules at the cell surface interact with cortical actin, it

is reasonable that most biochemical reactions on the cell membrane are strongly

influenced by the actomyosin cortex. For instance, there have been proposals that

trapping of membrane proteins by the cortical actin mesh underlying the cell mem-

brane can lead to enhancement of reaction kinetics [3, 4, 5, 8, 9, 10, 11]. Since in

these models there is no dynamical feedback between the chemical reactants and
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the cortical mesh, there is no mechanism by which spatiotemporal control and regu-

lation can be effected. Our observation that multi-particle encounters of membrane

proteins are more frequent when they are driven by active forces and torques, to-

gether with turnover of the active machinery, suggests an additional mechanism

for enhancement of chemical reaction kinetics along with its spatiotemporal regula-

tion [6].

To fix ideas, let us consider a reversible bimolecular reaction between two mem-

brane protein species A and B reacting to form a complex C, A+B
kf


kb
C, where kf

and kb are the effective forward and backward reaction rates, respectively. For the

forward reaction to be realised, the A and B proteins need to first diffuse towards

each other, close enough (we take the scale of this reaction zone to be 1.2σ), so

as to engage in a chemical bonding, and then associate to form C with a rate ka

modelled as a Poisson process. The effective backward reaction, involves a chemical

dissociation of the complex C with a rate kd modelled as a Poisson process and a

subsequent escape of the products A and B from the reaction zone. Note that the

individual chemical reactions are equilibrium processes, the only role that activity

plays in these chemical reactions is in creating situations where the local reactant

density is high.

The fraction of C proteins c(t) = 2NC(t)/N , starting from an equal number of

A and B proteins, appears to grows as c(t) = c∗
(

1− e− t
τ

)
, even in the nonequi-

librium steady state, simulated for different values of ku and turnover rate kr > 0

(see, Fig. 4.5(a-d)). This form is exactly what one would expect for a mass action

bimolecular reaction,

dρC(t)

dt
= kf ρA(t)ρB(t)− kb ρC(t) (4.3)

where, ρA(t), ρB(t) and ρC(t) are the number density of A, B and C molecules,

respectively. This is reinforced by constructing a scaling plot over a range of values

of ku (Fig. 4.5(c)) using the extracted parametric dependence of c∗ and τ with ku

(Fig. 4.5(b)).

From Fig. 4.5(a,b), we see that the reaction yield c∗ is significantly larger in the

nonequilibrium steady state with active driving and turnover compared to its value

at equilibrium and shows a strong dependence on actin binding affinity ku of the
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reactants. Further, the reaction proceeds faster as seen in the plot of the reaction

time τ (Fig. 4.5(b)).
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Figure 4.5 (a) The fraction of C proteins c(t) increases with time as the bimolecular
reaction proceeds; in the nonequilibrium steady state with contractile flows and
turnover, both the reaction yield and net reaction speed, increase with increasing
actin binding affinity (or decreasing unbinding rate ku), keeping the turnover rate
at kr = 5× 10−4. (b) Reaction yield c∗, obtained from the saturation concentration,
and the net reaction time τ , obtained from the initial slope of the growth curve,
decrease with unbinding rate. For reference, we display the value of c∗ and τ for
the equilibrium reaction. (c) Using the extracted values of c∗ and τ , we display a
scaling collapse of all the data with different values of ku. The dashed line in (c) is
the scaling curve (1−e− t

τ ). (d) The fraction of C proteins c(t) in the nonequilibrium
steady state versus time for different turnover rates kr keeping the protein unbinding
rate fixed ku = 10−4. The reaction yield c∗ increases with increasing turnover rate
kr, and is higher than the equilibrium reaction. One expects the reaction yield to
start decreasing when kr � ku. Note that without turnover (kr = 0), the reaction
yield is extremely small. Throughout this panel, we have fixed the torsional spring
stiffness kθ = 5, kφ = 500, binding rate kb = 0.5, association rate ka = 4× 10−3 and
disassociation rate kd = 10−4.
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In general, this is due to a combination of faster advective transport and enhance-

ment in the local concentration of reactants as a consequence of a larger binding

affinity to actin and the active contractile flows. In Fig. 4.5, since the values of the

reactin parameters are such that ka/D < 0.05, the chemical reactions are largely

association rate limited [12], and so the dominant mechanism for .

We see that fixing the binding affinity, the reaction yield increases with increasing

turnover rate. This is due to the combination of stochastic active contractile flows

and turnover in the nonequilibrium steady state, and can be thought of as contribut-

ing to both an enhanced (active) temperature and an increase in local concentration

of reactants. Note that when the turnover is switched off and the actin asters are

static, there is very little increase in the of the reaction yield Fig. 4.5(d).

In chapter 2 Fig. 2.5, the orientation patterns in the actomyosin cortex show

intermittent behaviour characteristic of nonequilibrium dynamics. Here, we study

the statistics of the reaction event of membrane molecules. In an active system, when

the membrane molecules are coupled to the actomyosin cortex, we see intermittent

behaviour in the time series of the number of reaction events (ne) over a small time

window inside a small area (L
5
× L

5
) (see Figure. 4.6). This intermittent behaviour

is not present in the equilibrium system. This kind of intermittent reaction event

is referred to as ‘burst reaction’, which plays a role in cell signalling. Proteins in

the cell membrane receive information from the environment and trigger signalling

pathways inside the cell in the signalling process. A common mechanism to reduce

the signal to noise ratio would be to digitalised the input signals. Clustering of

receptor molecules and bursty reaction offer a general way to digitalised analogue

input signals. The spike in the number of the same type of molecule provides a

discrete switch-like output because of its short lifetime.
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Figure 4.6 The time series of the number of reaction events (ne) over a small time
window inside a small area L

5
× L

5
. This shows large fluctuations in active system

compared to the equilibrium system. We have fixed the torsional spring stiffness
kθ = 5, kφ = 500, binding rate kb = 0.5, unbinding rate ku = 10−4, association rate
ka = 10−2, disassociation rate kd = 10−4 and turnover rate kr = 2× 10−4.

we have seen nonequilibrium dynamics in the orientational patterns, such as

asters, show intermittent fluctuations. Here, we show that due to the coupling

of membrane molecules to the actomyosin cortex, the number of reaction events

(ne) over a small time window inside a small area (L
5
× L

5
) shows bursty reaction

Fig. 4.6.

4.6 Discussion

In this chapter, we have studied the dynamics of membrane molecules using the

coarse grained agent based simulation model of a stratified active composite of a

membrane, comprising lipids and proteins, juxtaposed with an active actomyosin

layer developed in chapter 2. We show that this simple coarse grained model, that in-

corporates the fluctuating active forces and torques in a stratified geometry, recapitu-

lates the nonequilibrium steady states observed both in vivo [13, 14, 15, 16, 17, 18, 19]

and in properly designed reconstitution experiments [7, 20, 21, 22]. By coupling this

actomyosin dynamics to the dynamics of molecules on the two dimensional mem-

brane bilayer, we find that this automatically drives multiparticle encounters and
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dynamical clustering. We show that these multiparticle encounters are realised

only in the active nonequilibrium steady state, which is contingent on stratifica-

tion, turnover and multivalency of force generators. Significantly, when we abrogate

either turnover or multivalency , we loose the larger clusters. Mean number of mul-

tiparticle cluster shows non-monotonic behaviour with filament turnover rate. We

have studied the dynamics of generic bimolecular chemical reactions, A + B 
 C

on the cell surface [6]. In the nonequilibrium steady state with contractile flows and

turnover, both the reaction yield and net reaction speed, increase with increasing

actin binding affinity. The model describe here, can be be easily extended to address

a variety of relevant physical situations, such as an extension to multicomponent bi-

layer capable of phase segregation [23].
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Chapter 5

Membrane-Cortex composite as a Random
Field Active Glass with line-disorder

5.1 Introduction and Motivation

In 1972, Singer and Nicholson [1] presented the classic fluid mosaic model. According

to this model, the lipid bilayer is in a fluid state, and proteins freely diffuse in

the membrane, presumably undergoing simple Brownian motion. Single particle

tracking experiments at low frame rates (up to 65 Hz) that capture only the long

time behaviour of the trajectory supports this simple Brownian motion dynamics of

membrane molecules [2, 3].

Figure 5.1 The trajectory of a transmembrane protein (left) and a lipid molecule
(right) with 25 µs time resolution. The residency time in each compartment is
indicated (Image Courtesy : [6]).

Recent studies of membrane molecules dynamics using high-speed single-particle
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tracking (SPT) camera at 50 kHz (25 µs time resolution) have revealed that mem-

brane molecules undergo short-term confined diffusion within a cage followed by

long-term hop-diffusion(Figure. 5.1) between compartments [4, 5, 6, 7, 8]. This SPT

experiments with 25 µs time resolution camera can capture the few millisecond res-

idency time in a compartment before it hops to another. Also, the mean square

displacement of the molecules shows anomalous sub-diffusion [6]. The diffusion con-

stant of lipids in the cell is 20 − 50 folds smaller than that seen in an artificial

membrane, and this was a profound puzzle till these observations of confined diffu-

sion in the cell came from the SPT experiments [4].

Figure 5.2 (a)Electron microscopic image of the membrane skeleton (MSK) of a
fetal rat skin ketatinocyte (FRSK) cell. (b) A comparison of the distribution of
the MSK mesh size measured by electron tomography (open bars) with that of
the compartment size determined from phospholipid diffusion data (closed bars) for
normal rat kidney (NRK, orange) and FRSK (green) cell lines. The MSK mesh size
and the diffusion compartment size had identical distributions within the same cell
type (compare the open and closed bars with the same colour)(Image Courtesy: [7]).

Recent experimental studies [4, 5, 6] have revealed that the lateral transport

of a variety of membrane components (proteins and lipids) is strongly affected by

the presence of the dense cortical actin meshwork. The actomyosin cortex is si-

multaneously built of dynamic filaments and a dense actin meshwork. So far, we

have not explicitly studied the effect of the mesh, except for taking its effect on

momentum dissipation. This chapter explicitly takes the dense meshwork into ac-
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count in terms of its interactions with membrane components. These observations

provide the motivation for models such as “membrane-skeleton fence” model for

transmembrane protein diffusion and the “anchored-protein picket” model for lipid

diffusion [4, 5, 6]. In these models, the plasma membrane is partitioned into com-

partments of size 20 − 200 nm by the actin-based membrane skeleton(MSK) and

MSK-anchored proteins.

Figure 5.3 Membrane-skeleton “fences” and anchored-protein “pickets” models of
the plasma membrane for lateral diffusion of transmembrane proteins and GPI-
anchored proteins (GPI-AP). Short-time confined diffusion within a compartment
and long time hop-diffusion between compartments are experienced by all membrane
constituent molecules. (a) A schematic representation of transmembrane protein,
GPI- anchored protein and an MSK-anchored protein from the side. The transmem-
brane protein interacts directly with the membrane skeleton and GPI-AP interacts
via GPI-linkers. (b) The membrane-skeleton fence model shows that transmembrane
proteins are confined in the mesh of the actin-based membrane skeleton. Meanwhile,
lipids and GPI-anchored proteins in the membrane’s outer leaflet have no clear inter-
actions with the skeleton. (c) On the other hand, the anchored-protein picket model
shows MSK-anchored proteins as immobile obstacles in the path of transmembrane
proteins, lipids, and GPI-anchored proteins. [6]

In the membrane-skeleton fence model, the cytoplasmic domains of the transmem-

brane proteins interact with the membrane skeleton. This gives rise to the tempo-
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rary confinement of the transmembrane proteins in the membrane-skeleton mesh

compartments (Figure. 5.3 a and b). In the anchored-protein picket model, trans-

membrane proteins are anchored to and aligned along with the membrane skeleton.

They effectively form rows of pickets. These pickets can create a barrier against

the free diffusion of both lipids and transmembrane proteins (Figure. 5.3 a and c).

Furthermore, the distribution of the membrane skeleton mesh size determined by

Morone et al. [9] using electron tomography(Figure. 5.2) agrees well with the com-

partment sizes determined from the hop diffusion from a single-particle tracking

experiment using a high-speed camera.

These observations from the single-particle tracking of molecules on the cell mem-

brane reveal a cage-hopping behaviour due to cortical actin meshwork. A similar

cage-hopping dynamics is observed in particle transport studies of a dense fluid ap-

proaching glass transition. This is the motivation to study the underlying physics

of cage-hopping transport in the vicinity of a random field glass induced by the

quenched random disposition of the cortical actin meshwork. Typically, a liquid

upon slow cooling undergoes a first-order phase transition at the freezing point and

forms a crystal. This crystallization can be avoided either by rapid cooling of the

system or by introducing polydisperse disorder and the liquid enters a metastable

liquid phase known as the supercooled liquid. With a further decrease in tempera-

ture, the viscosity and the relaxation time scale of this supercooled liquid continues

to increase rapidly until it falls out-of-equilibrium (at T = Tg) [10]. The dynamics

can be slowed down by 16 orders of magnitude but there is no signature of liquid to

glass transition in static structural properties, such as radial distribution function

(g(r)) or static structure factor (S(q)).
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Figure 5.4 Trajectory of a single tagged particle in a model glass former (Kob-
Andersen [11]) in 2-dimension at different temperature. (Left) The trajectory is
diffusive at high temperature (T = 5.0). (Middle) The trajectory shows a strong
signature of cage diffusion and hopping between cages at intermediate temperature
(T = 0.6). (Right) The trajectory reveals that the particle is caged at a very low
temperature (T = 0.1). Note, as the dynamics get slowed down by several orders of
magnitude, the duration over which we plot the trajectories is progressively increased
from left to right.

The dynamics of a tagged particle in a dense liquid at high temperature (i.e.

far from the glass transition point) and at a long time limit can be described by

Brownian motion. In Figure. 5.4 we have shown trajectory of tagged particle in Kob-

Andersen glass [11], a popular simulation model for glass forming liquids. However,

as the temperature of a liquid is decreased, a qualitatively new behaviour known as

‘caging’ occurs, in addition to the apparent slowing down of motion (see Figure. 5.4

). It is evident from a particle’s trajectory that the particle is confined for some

time in a ‘cage’-like structure created by its neighbours. It then escapes the cage

(uncaging) and gets trapped inside another cage. This type of dynamic features, such

as motion within a cage, cage hopping, and then again motion within another cage,

results in a plateau in the mean squared displacement (MSD) and subsequent long

time diffusion. Simultaneously, the two-point overlap correlation function (Q(t)),

a measure of the dynamic slowing down, displays multi-step relaxation. When

the system reaches the glassy phase at lower temperatures, this caging behaviour

becomes stronger, and the corresponding plateau in MSD (see Figure. 5.5) becomes

more prominent. The particle is confined in a cage at and below the glass transition,

and the plateau extend to t = ∞. Consequently, this form of caging-uncaging
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dynamics near the glassy phase and perpetual caging inside the glassy state is a

measure of the liquid’s dynamical arrest at the glass transition.
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Figure 5.5 The mean squared displacement (MSD) at T � T0 where T0 is the glass
transition temperature shows short time diffusive (∼ t ) behaviour which crosses
over to long time diffusive behaviour (∼ t) via sub-diffusion. Because of caging, as
T decreases, the MSD starts to display a slight plateau at intermediate times. The
width of the plateau increases as T decreases more, and at T0 (not shown), MSD
stays in the plateau region over the simulation time scales and does not exhibit late
time diffusive behaviour, suggesting that the system has entered a glassy state.

One of the outstanding issues in the study of the glassy system is understanding

the rapid growth in viscosity (η) or structural relaxation time (τα) of supercooled

liquids while approaching the glass transition [10, 12, 13, 14]. Experimentally, the

temperature at which the supercooled liquid’s viscosity reaches the value 1012 Pa.s

is defined as the glass transition (dynamic) temperature. The transition point can

be extracted from both the diffusion constant (D) and the relaxation timescale (τα),

extrapolating the supercooled liquid side data. An important question in the field is

whether an “ideal” thermodynamic glass transition, characterised by the vanishing

of configurational entropy, can occur at a temperature less than the experimentally

defined operational glass transition temperature [15, 18, 16, 17]. The difficulty in

observing this ideal glass transition is that the supercooled liquid goes out of equi-

librium. Recently, it has been proposed that liquids in the presence of quenched

disordered can bypass this difficulty [19]. These studies suggest a higher thermody-

namic glass transition temperature in quenched disordered liquids when compared to
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the transition temperature of the liquid without the disorder and that the transition

temperature will increase with pinning density in the quenched disorder system.

However, a recent molecular dynamics simulation study finds no sign of increased

transition temperature with increasing pinning concentration [20].

We now return to the problem of single particle transport in the plasma mem-

brane of the cell. The cortical meshwork adjoining the plasma membrane provides

a quenched random environment with correlated line disorder. The meshwork pins

those cell membrane molecules that directly bind to it, giving rise to the suggested

picket-fence model. These pinned MSK-anchored proteins, in turn, provides obsta-

cles to other molecules, even small molecules such as upper leaflet lipids, with no

direct interaction with the cortical meshwork. This novel random pinning model on

molecular transport is quite distinct from the random pinning potentials studied in

the glass literature. Here, the effects of topological confinement become significant.

We study the transport and approach to a new kind of glass using a agent-based

Brownian dynamics simulations. Using such descriptions, we are able to make sev-

eral predictions that can be tested in future experiments.

5.2 Simulation details

We have studied a binary mixture of particles (α and β) in two dimensions (2d). A

pair of particles of the same species interact via the following potential,

Vij(r) = 4εij

[(
aij
r

)12

−

(
aij
r

)6
]

+ v(r) for r ≤ 3aij

= 0 for r > 3aij (5.1)

where, r is the distance between the i-th and the j-th particle, aij = (σi + σj)/2

and σi is the diameter of the particle i. We have truncated and shifted the potential

at the cutoff using quadratic function v(r) = V0 + V2 r
2.

Particles of different species interact through the Weeks-ChandlerAndersen (WCA)
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potential:

Vij(r) = 4εij

[(
aij
r

)12

−

(
aij
r

)6
]

+ v(r) for r ≤ 21/6aij

= 0 for r > 21/6aij (5.2)

Thus, in this model [21], particles have attractive interactions with other particles

of the same species and repulsive interactions with those of different species. We

introduce polydispersity in the particle size on top of the bi-dispersity in interaction

energy to avoid crystallization. We choose particles diameter from uniform distri-

bution between 0.8σ and 1.2σ for each component. The polydispersity index for

this distribution of size is δ = 11.5. The number of A and B particle is NA and NB

respectively. The fraction of A particle is denoted as x = NA/N . The total number

of the particle is N = 1500. We mainly consider the “binary model” ( x = 0.5) to

study phase segregation and the “pure model” (x = 1 ) to study the glass behaviour

of the system. We have done Brownian Dynamics simulation, for particle coordinate

updates, using verlet integration scheme with integration time step ∆t ∼ 2× 10−3.

The dynamics of the position of the i-th particle is given by

ṙi = −γ−1∇iVi +
√

2kBT/γξi (5.3)

where γ is the friction coefficient of the particle, Vi is the net potential felt by the

i-th particle and includes contributions from Eq. 5.2. The diffusion of the particle is

driven by a thermal noise ξi with zero mean and unit variance acting on i-th particle

(kB is the Boltzmann constant).

All results presented here are for number density ρ = 0.925 in a two-dimensional

(2d) area of linear dimension L = 40.26 with periodic boundary conditions (PBC).

The system is well equilibrated at a high temperature (T = 4) in its liquid state and

then quenched to a low temperature to prepare the initial configurations. Then the

system is equilibrated at that temperature with a runtime one-tenth of the produc-

tion run time to reach the steady-state of that temperature. Then, we perform the

production runs at each target temperature. All data presented here have been aver-

aged over 16 independent realisations. All the results are reported in Lennard-Jones
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units: length in σ, energy in ε, temperature in ε/kB, and time in
√
mσ2/ε.

Our choice of Brownian dynamics simulations is justified science the dominant

source of momentum dissipation is via friction associated with moving relative to

the crosslinked cortical meshwork.

Pinning Protocol

In our simulation, we have incorporated the effects of static actin mesh via an short

range attractive line pinning potential. In doing so we ignore microscopic structural

details of the actin mesh and the linking proteins. The effect of the cortical actin

mesh has been modelled by introducing interaction between particles and a criss-

cross array of attractive line potential in our system. The interaction of pinned

particles with the lines is modelled by attractive Gaussian potential −V0 exp(−r2/λ)

characterised by pinning strength V0 and length scale λ. The whole system is divided

into very fine grids, where we calculate the potential value at the grid points due to

the attractive lines. This decaying potential with a small length scale (λ) ensures

that the pinned particles will feel strong attractive potential only at grid points near

the line-potential. This attractive interaction with the line-potential force pinned

particles to arrange themselves in line. The lines built by the pinned particles

are in the same plane as the membrane, and the stiffness of the attractive line

potential is large enough to suppress thermal fluctuations. The lines are distributed

along the x or y axis with randomness in their position parametrised by ∆ to form

random orthogonal rectangular grids. The probability distribution of the area of

the resulting random mesh is parametrised by this randomness parameter ∆. This

mesh is characterised by ∆, V0 and number of lines nl in a fixed system size.

Now we will discuss the results of the system. We have explored both the physics

of random field glass and phase segregation in this system.

5.3 Glass Physics

We have discussed in section 5.1 that although the structural properties do not

change much as the system approaches the glassy phase, the dynamic properties of

the system show drastic variation. Here, we will look into different dynamic quan-
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tities to understand the effect of line pinning in this dense system.

5.3.1 Caging dynamics

Simple glass without pinning shows qualitative changes in the particle trajectories

as one approaches the glass transition. The trajectory of a tagged particle at high

temperature (T = 1.0) is diffusive in the unpinned system and shows the signature

of cage diffusion and hopping between cages at intermediate temperature (T =

0.6). However, the trajectory shows a very strong signature of caging dynamics at

high temperature in the pinned system. Initially, particle trajectory shows hopping

between cages formed by the neighbour particles, and at large time particle hops

between the cages formed by the pinned particles. This strong caging dynamics

signature is observed in the two-point correlation functions (such as MSD and

Q(t)) with time, as discussed below.
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Figure 5.6 Trajectory of tagged particle at temperature T = 1 for pinning potential
V0 = 8 and number of lines nl = 6. (a) Two sample trajectories has been shown in
two different colour (red and green). Black lines are the pinning lines. (b) Zoomed
in trajectory over a small area (5× 5) clearly shows the cage-hopping of the particle
inside the cage formed by the pinned particles.
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5.3.2 Mean Square Displacement (MSD)

To study the system dynamics more quantitatively, we measure the mean-square-

displacement (MSD) of tagged particles, 〈∆r2〉, as a function of time t. The time-

dependent diffusion constant D(t) = 〈∆r(t)2〉
4t

shows diffusive behaviour at small time.

The two sub-diffusion to diffusive crossover in the time-dependent diffusion constant

(Figure. 5.7) is a signature of the two types of cage hopping dynamics we see in the

trajectory Figure. 5.6. The first crossover is associated with the ‘cage’-like structure

created by its neighbours, and the second crossover associated with the cages formed

by the pinned particles. As we lower the temperature, we are unable to capture the

second crossover within our run time. The sub-diffusion follows the same t−0.5 scaling

for pinned system with different number of lines (nl = 4, 6).
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Figure 5.7 Mean squared displacement (MSD) divided by 4t has been plotted as a
function of time (t) at three different temperature for line pinning potential V0 = 8
and density nl = 4, 6. In pinned system at T = 1.0 (red circle), we see two sub-
diffusive to diffusive crossover before it saturates in the late time diffusive regime,
where as in unpinned system we see only one sub-diffusive to diffusive crossover. As
we lower the temperature, we are unable to capture the second crossover within our
run time and the sub-diffusion follows t−0.5 scaling.
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We have studied the variation in MSD with temperature in the pinned system

with line pinning potential V0 = 8 and number of lines nl = 6. Figure. 5.8 shows that

at high temperature, the time-dependent diffusion constant saturates at a long time

diffusion value (marked by the black line) with a single crossover. As we decrease the

temperature, two sub-diffusive to diffusive crossover appears in the MSD. Finally,

the system does not reach the long time saturation within our run time at low

temperature.
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Figure 5.8 Mean squared displacement divided by 4t has been plotted as a function
of time (t) at different temperature for line pinning potential V0 = 8 and nl = 6.
The time-dependent diffusion constant (D(t)) shows one sub-diffusive to diffusive
crossover at high temperature before it saturates in the late time diffusive regime.
We find two sub-diffusive to diffusive crossover at intermediate temperature before
it saturates in the late time diffusive regime. At low temperate, the system does not
reach the late time saturation regime within our run time.

5.3.3 Two-point overlap correlation function (Q(t))

The two-point overlap correlation function (Q(t)) has been measured to study the

system’s dynamics. The decay of Q(t) with time provides a measure of the dynamic

slowing down in glass systems [16].
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Q(t) =
1

N −Np

∑
i

〈w(|ri(t0)− ri(t+ t0)|)〉 (5.4)

where,

w(r) =

1 if r ≤ a0

0 otherwise
(5.5)

and 〈...〉 indicates an average over the time origin t0 and as well as different statis-

tically independent simulation runs. The summation is over all unpinned particles

N−Np and parameter a0 is a short-distance cutoff chosen to be a0 = 0.3 in Lennard-

Jones unit.
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Figure 5.9 The decay of two-point self-correlation function Q(t) has been shown
for unpinned system (V0 = 0) and two pinned system with V0 = 8 and nl = 4, 6 at
T = 0.7. In unpinned system at T = 0.7 (red circle) the Q(t) decays exponentially
to zero, characteristic of a liquid. In pinned system Q(t) starts exhibiting multi-step
relaxation with stretched exponential behaviour, the signature of caging what we
see at low temperature in unpinned system. It is worth noting that stretching in
Q(t) increases as we increase the number of lines from 4 to 6.
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Figure. 5.9 shows the two-point self-correlation function Q(t) decays exponentially

in the unpinned system at T = 0.7 (high temperature). In the pinned system at

the same temperature T = 0.7, the two-point self-correlation function Q(t) decays

slowly, and with increasing number of lines nl, it decays more slowly. It shows multi-

step relaxation in the pinned system, the signature of caging that we see at low

temperature in the unpinned system. This multi-step relaxation can be described

by stretched exponential function at long time.

5.3.4 Glass Transition
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Figure 5.10 The decay of two-point self-correlation function Q(t) has been shown
at different temperature for the line pinning potential V0 = 8 and number of lines
nl = 6. At high temperature Q(t) decays exponentially to zero, characteristic of a
liquid. Upon decreasing temperature Q(t) starts exhibiting multi-step relaxation,
the signature of caging.

In order to find out the glass transition temperature, the decay of the two-point self-

correlation function Q(t) has been studied for a set of temperature. We have done
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this study for unpinned system (V0 = 0) and pinned system with number of lines

nl = 4, 6. In Figure. 5.10, we have shown the decay of Q(t) with time at different

temperature for pinning potential V0 = 8 and nl = 6.
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Figure 5.11 Relaxation timescale (τα) extracted from Q(t) has been plotted with
temperature (T ) for unpinned system (V0 = 0) and two pinned system with V0 = 8
and nl = 4, 6. The rapid rise in the relaxation time with decreasing T has been
fitted with VFT exponential form. The black dotted line is fit to the data.

At high enough temperature, T = 2.0, Q(t) decays exponentially to zero, charac-

teristic of a liquid. On decreasing the temperature, Q(t) starts exhibiting multi-step

relaxation, described by a stretched exponential function at long times, a hallmark of

supercooled liquid. The α-relaxation time scale τα has been extracted from the Q(t)

using the definition Q(τα) = 1/e. This α-relaxation time scale (τα) has been plotted

against temperature (T )(Figure. 5.11). The relaxation time (τα ) rises rapidly and

exponential in nature as T is decreased close to the glass transition point. The black

dotted line is a fit to the Vogel-Fulcher-Tammann exponential form

τα = τ∞ exp
[ 1

κ( T
T0
− 1)

]
(5.6)
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where τ∞ is the relaxation time at very high temperature, T0 is the glass transition

temperature, κ is the kinetic fragility. Fragility is a quantitative measure of the speed

in the increase of a supercooled liquid’s relaxation timescale or viscosity when the

glassy phase is approached. Depending on the rapidity of increase in the viscosity or

the relaxation timescales glassy materials can be divided into two class: (a) fragile

glass (b) strong glass. Kinetic fragility (κ) value is large in fragile glass than strong

glass. Figure. 5.11 shows the increase of relaxation timescale τα as we decrease T .

In the case of line pinning, we see a decrease in glass transition temperature T0 and

kinetic fragility (Figure. 5.12).
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Figure 5.12 We have extracted the glass transition temperature (T0) and kinetic
fragility (κ) from the extrapolated behaviour of relaxation time scale (τα) by fitting
data with VFT exponential form. (a) Glass transition temperature for the unpinned
system is T0 = 0.208 (red bar). In the pinned system the glass transition temperature
decays to T0 = 0.078 for nl = 4. As we increase the number of line to nl = 6 the
transition temperature decays to T0 = 0.067. (b) Kinetic fragility (κ) decays in a
order of magnitude in pinned system from unpinned system. With higher number
of lines the fragility value is small.

5.3.5 Dynamical heterogeneity

The dynamics of a tagged particle in liquid is mostly homogeneous in terms of

tagged particle mobility. Now, as one decrease the temperature, particles form

slow-moving and fast-moving correlated regions. This dynamical heterogeneity in

the displacement field becomes prominent as one approaches the glassy phase. The

dynamic susceptibility χ4 = 1
(N−Np)

[
〈Q(t)2〉−〈Q(t)〉2

]
, a 4-point correlation function

is obtained from the fluctuation of Q(t) [16].
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Figure 5.13 Dynamic susceptibility χ4(t) has been plotted as a function of time
for for unpinned system (V0 = 0) and two pinned system with V0 = 8 and nl = 4, 6
at T = 1.0. We see a increase in peak position and peak height (χ∗4) in pinned
system compare to the unpinned system. The huge increase in peak height infers
increase in dynamical heterogeneity in pinned system than the unpinned system at
same temperature.

This four-point susceptibility function exhibits a maximum. The peak position

t = τ4 is proportional to the structural relaxation time τα obtained from the temporal

decay of Q(t) and the peak height (χ∗4) of this function is a measure of the dynamical

heterogeneity in the system. We see a considerable increase in dynamical hetero-

geneity in the pinned system compared to the unpinned system (see Figure. 5.13).

Peak height also increases with number of lines.

In order to see this dynamical heterogeneity, we colour plot the magnitude dis-

placement within the α-relaxation time scale (τα) of all particles (all unpinned parti-

cles in the case of the pinned system) with their displacement vector in Figure. 5.14.

Both unpinned and pinned system shows emergent collective large length scale cor-

related motion. However, in the pinned system, we notice that the displacement
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of particles close to the line is smaller than the bulk particles displacement due to

entropic reason. The motion of the unpinned particles near the line is constrained,

which makes them slow. This slow unpinned particles in turn makes the next layer

of particles slow. There is a length scale associated with this [31]. Statistically, we

see less displacement of particles in smaller cages than big one.
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Figure 5.14 Displacement distribution of all unpinned the particles within the α-
relaxation time scale (τα) has been plotted at T = 1.0 for (a) unpinned system and
(b) pinned system with line pinning potential V0 = 8 and density nl = 6. Both
displacement map shows collective large-scale correlated motion in region. Another
feature in case of line pinned system is that the displacement of particles close to
the line is smaller than the bulk particles.

This feature has been captured by the bi-modality in the displacement distribu-

tion of the particles (see Figure. 5.15) in the pinned system. The peak at small

displacement in the distribution comes from the set of particles near the line and

peak at large displacement comes from the bulk particles in the cage. In contrast,

the unpinned system shows uni-modal behaviour.
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Figure 5.15 Distribution of root of mean square displacement (∆r) within the α-
relaxation time scale (τα) for unpinned system (V0 = 0) and two pinned system with
V0 = 8 and nl = 4, 6 shows qualitatively different behaviour. The unpinned system
shows uni-modal behaviour. On the other hand pinned system shows bi-modality;
the peak at small displacement comes from the set of particles near the line and
peak at large displacement comes from the bulk particles in the cage.

We have studied how the displacement of particles depends on the cage size.

Figure. 5.16(a) shows mean square displacement of unpinned particles in a cage

within a time window tw = 103 increases with cage size. Probability distribution of

mean square displacement ( (P (〈∆r2〉))) of particles in a cage becomes wide with

cage size Figure. 5.16(b).
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Figure 5.16 (a) Mean square displacement (〈∆r2〉) of all unpinned the particles
in a cage within a time window tw = 103 has been plotted with cage area (Acage)
in a pinned system with line pinning potential V = 8 and nl = 6 at T = 1.0. (b)
Probability distribution of mean square displacement ( (P (〈∆r2〉))) of particles in a
cage has been shown for three different cage area Acage = 15 (red square), Acage = 45
(green circle) and Acage = 85 (blue triangle).

5.4 Phase Separation in the cell membrane

In the cell membrane, it has been frequently found that various species of molecules

tend to stay segregated. These lateral heterogeneous organizations are essential for

physiological functions. The size of these domains ranges from a few nanometers to

few microns. For example, lipid-rafts that are a segregated region of highly ordered

lipids effectively concentrate specific proteins in this domain and helps in molecular

associating events, such as signalling. Recently, much attention has been given to the

mechanism of formation and stabilization of these domains. The appearance of these

domains in a multi-component lipid vesicle is considered a form of two-dimensional

equilibrium phase separation that develops due to the interaction between lipid

molecules. In this equilibrium phase separation, when a multi-component system is

quenched from a homogeneous state into an unstable state below its phase separation

temperature (Tc), domains form in the system and evolve with time until segregate.

These domains coarsen and grow according to a power-law l(t) ∼ tα, where l(t) is the

110



5 Membrane-Cortex composite as a Random Field Active Glass with line-disorder

characteristic size of the domains. Various experiments [27, 28], simulations [25, 26]

and theoretical study [29, 30] has established the domain growth scaling in case of

both diffusive and hydrodynamic coarsening. In the case of diffusive coarsening,

the characteristic size of the domain grows as ξ ∼ t1/3 [24]. Here, we study the

phase separation of binary mixtures as a model of phase segregation of membrane

molecules. However, the cell must control this phase separation process to build

functional segregation of molecules at the correct time and desired location. Recent

studies have revealed that the interaction of membrane molecules with the dense

actin meshwork and actomyosin activity influences the segregation of membrane

molecules. This motivates us to study the effect of line pinning and activity on

phase separation in a dense binary mixture (A and B) with agent-based Brownian

dynamics simulation. In a binary mixture, the local fraction of the components φ =
nA−nB
nA+nB

, where nA and nB are local number density of A and B, is the conserved order

parameter to distinguish between homogeneous phase and segregated phase. Phase

segregation of the passive unpinned system with a similar choice of the parameter

has been studied by Ikeda et al. [21]. The phase separation temperature Tc = 1.93

is obtained by monitoring the probability distribution of the order parameter.

5.4.1 Phase separation in Line-Pinned system

We have studied the effect of line pinning on the phase separation in a dense binary

mixture, described in section 5.2. This line pinning is a realisation of quenched

disorder of membrane proteins formed by the dense actin meshwork, as discussed in

section 5.1 and 5.2. The probability distribution of order parameter (P (φ)) shows

a peak at zero in the single-phase homogeneous state. On the other hand, in the

segregated two-phase state, the PDF becomes bimodal, showing peaks at ±1. The

probability distribution of order parameter (P (φ)) shows bi-modality when temper-

ature is quenched below Tc (T = 1.0) without line-pinning (V = 0)(red circle in

Figure. 5.17). As, the system get phase segregated below Tc, the probability dis-

tribution of order parameter shows peaks at ±1. Note that the phase separation

temperature of the binary mixture is Tc = 1.93. The probability distribution of

order parameter (P (φ)) shows peak at zero when temperature is quenched below

Tc (T = 1.0) in the presence of line-pinning (V = 12)(blue square in Figure. 5.17.
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Actin meshwork prevents the segregation from happening when the temperature is

quenched below Tc.
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Figure 5.17 The probability distribution of order parameter (P (φ)) is shown when
the system is quenched into T = 1.0 without line-pinning (V0 = 0, red circle) and in
the presence of line pinning (V0 = 12, blue square).

5.4.2 Phase separation in Active Glass

Membrane molecules that bind to cortical actin, are driven by contractile flows

generated by active actomyosin stresses. We have modelled this active force on

the molecule by a self propulsion force f0n̂ along n̂ with a active orientational

decorrelation time τa. We have studied the phase separation in this dense binary

mixture in the presence of activity. The magnitude of order parameter plotted in

the T − f0 plane with colour shows three different regions (Figure. 5.18). At low

f0 and T , the system is dynamics arrested, and the order parameter value is small

in this homogeneous glassy phase. As we increase T or f0, the order parameter

value increase, and the mixture gets phase segregated. At high temperature T > Tc
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naturally the system goes into homogeneous phase (not shown in the Figure. 5.18).

The increase of active force increases the effective temperature, which leads the

system into a homogeneous liquid state.
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Figure 5.18 The phase diagram in the T − f0 plane. The circles indicate the
points at which simulations are performed. The magnitude of the order parameter
is plotted in the T − f0 plane with colour. The small value of the order parameter
indicates a homogeneous phase. At a small T and f0 value, the system is in the
glassy phase. Due to very slow dynamics in this region, the phase separation process
does not happen even the system is in T < Tc in simulation run time. On the other
extreme, when f0 is high, or T is high, or both values are high, the system is also
homogeneous. We see phase segregation in the middle region.
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5.5 Discussion

The similarity between cage hopping behaviour of membrane molecule and particle

dynamics in dense super-cooled liquid has motivated us to study the underlying

physics of cage-hopping transport of membrane molecules. Here we show that the

actin mesh adjoining the cell membrane acts as a random line pinning that drives it

towards a dynamically arrested state at physiological temperatures. This perspective

introduces the membrane-actin mesh composite as a novel example of a random

pinning glass. It introduces the language of glassy physics to study the dynamical

properties of the cell membrane.

Here we summarise the results presented in this chapter and discuss the possible

scope for future developments. We have carried out a detailed numerical study of

the dynamics of glass-forming liquid with a fraction of particles pinned on random

lines. The trajectory of unpinned particles shows a strong indication of caging

dynamics. This signature of caging dynamics is observed in two-point correlation

functions. Mean square displacement shows two sub-diffusive to diffusive crossover

even at high temperature. The two-point overlap function Q(t) shows stretched

exponential behaviour, and the structural relaxation time (τα) extracted from it

has increased by few decades at high temperature. The temperature dependence of

structural relaxation time (τα) is fitted to VFT exponential form, and glass transition

temperature (T0) is inferred. We see glass transition temperature decreases in the

pinned system and a huge decrease in kinetic fragility (κ), making the pinned glass

less fragile. As we increase the number of lines, both of these quantity decreases.

We see a considerable increase χ4 peak height signature of increasing dynamical

heterogeneity in the pinned system. In pinned system, the displacement of the

unpinned particles close to the lines is much smaller than the bulk particles. This

is the reason behind the huge increase in dynamical heterogeneity and bi-modal

displacement distribution in the pinned system.

In future, we would like to extend this work for more different line pinning densities

line densities (nL) and cage size distribution. To account for the fact that the actin

mesh coupling to the membrane is dynamic and occurs at different spatial locations,

we may allow pinning potential V (x, t) to stochastically flash between 0 and V with

a specific rate that depends on space. In future, we would like to study the effect
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of this stochastic flashing on membrane component dynamics and organisation. We

hope this perspective will provide insight into the study of localisation dynamics in

the presence of line randomness.

Interaction with the actin meshwork and actomyosin activity can influence the

phase segregation of membrane molecules. We have studied the influence of random

line pinning and activity on the phase segregation of binary glassy mixture. Actin

meshwork prevents segregation from happening when the temperature is quenched

below Tc. This gives the cell control over the segregation process. In future, we

would like to study the influence of actin meshwork and activity combinedly on the

phase segregation process, the fluctuation of the interface and kinetics of domain

growth.
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