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Synopsis

Quantum superposition and entanglement are the quintessential character-

istics of quantum mechanics and play an invaluable role in most quantum in-

formation processing protocols. In the existing literature, they have often been

the subject of intense debate due to their counter-intuitive characteristics. While

the former refers to the possibility of a quantum system simultaneously being in

two (or more) different states, the latter can be seen as the superposition of the

states of two (or more) different systems (or two properties of the same system)

in such a correlated manner that their joint state cannot be factorised into the

state of individual systems. Quantum entanglement is a non-classical correlation

shared among quantum systems, which is now seen as an indispensable resource

in quantum computation and communication.

Technological advancement over the last few decades has witnessed a rapid

growth in research explorations in the field of quantum information science. This

is fuelled by its direct impact on the upcoming quantum technologies with com-

mercial applications. Exponential speed up of certain tasks in quantum com-

putation as well as enabling some other tasks in quantum information process-

ing such as teleportation, superdense coding, ensuring unconditional security

through quantum key distribution protocols, etc., are some of the attractive ad-

vantages offered by quantum information science which are either impossible or

less efficient in the realm of classical information. Most of these quantum advan-
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tages are manifestations of the superposition principle and quantum entangle-

ment which appear only in the framework of quantum mechanics.

The goal of quantum information processing is to prepare a set of qubits;

quantum mechanical two-level systems (or qudits, d-level systems), in a known

coherent superposition state and to perform arbitrary computation with them.

This requires the implementation of an arbitrary unitary matrix on the Hilbert

space of the qubits and finally qubit states are readout to get the result of com-

putation. In a physical system, we don’t get hold of the unitary matrix directly,

rather it is constructed through the Hamiltonian in the Hilbert space of the qubits.

IfH(t) is the Hamiltonian in the system Hilbert space then corresponding unitary

matrix is generated as

U = exp(−
ι

h̵ ∫
t

0
dt′H(t′)) , (1)

where H ∈HS ; HS being the Hilbert space of the system.

Evolution of the system ρs(0) is given by

ρs(t) = Uρs(0)U
† (2)

In a real physical system, however, the Hamiltonian that we engineer need

not be acting only on the system Hilbert space but also on the environment and

in that case, we get

U = exp(−
ι

h̵ ∫
t

0
dt′[H(t′) + δH(t′)]) , (3)

where H ∈HS, δH(t′) ∈HS ⊗HE , HE is the Hilbert space of the environment.

When Hamiltonian acts on both, the system as well as the environment, it

generates correlation between them. If we look at the state of the system alone

by tracing out the environment degrees of freedom, the correlations are lost and

it appears as decoherence on the quantum system. Thus, quantum decoherence

is a ubiquitous and unavoidable phenomenon arising because of entanglement

between quantum systems and their environment.

Like classical correlations, entanglement also decays with time in the presence

of noise in the ambient environment. More precisely, the presence of decoher-

ence in the computing devices and communication channels, due to the unavoid-

able and irreversible interaction between the system and environment, causes the
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degradation in entanglement present in the system as the computation evolves

or particles propagate. The decay of entanglement depends on the initial state as

well as the amount and type of noise (amplitude damping, phase damping, etc.)

acting on the system. In the presence of multiple stochastic noises, decoherence of

individual qubits follows the additive law of relaxation rates whereas the decay

of entanglement does not. In fact, entanglement may not decay asymptotically at

all, and disentanglement can happen in finite time. Entanglement Sudden Death

(ESD) is the phenomenon wherein a multipartite entangled state disentangles in

finite time even when individual qubits decohere only asymptotically in time due

to noise. ESD has been experimentally demonstrated in atomic and photonic sys-

tems.

Since quantum entanglement is an indispensable resource in quantum infor-

mation processing, manipulation that prolongs entanglement will help realize

protocols that would otherwise suffer due to short entanglement decay times.

Entanglement purification and distillation schemes could possibly recover the

initial correlation from the ensemble of noise-degraded correlated states so long

as the system has not completely disentangled. Therefore, delay or avoidance of

ESD is important. For this purpose, local NOT operation in the computational

basis on one or both qubits (σx⊗ I, I⊗σx, or σx⊗σx) has been proposed to combat

the amplitude damping noise. Here, we report an all-optical implementation of

the NOT operations; a theoretical proposal as well as the experimental demon-

stration, that can hasten, delay, or avert ESD, all depending on when it is applied

during the process of decoherence for the polarization entangled photonic qubit

system. We give analytical expressions for the probabilities corresponding to the

hastening, delay, and avoidance of ESD which depend only on the parameters of

the initial state density matrix of the system. These results are then experimen-

tally verified in a suitably planned experiment.

Our proposal has an advantage over other known decoherence suppression

schemes such as decoherence suppression using weak measurement and quan-

tum measurement reversal, and delayed-choice decoherence suppression. There,

as the strength of weak interaction increases, the success probability of decoher-
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ence suppression decreases. In our scheme, however, we can manipulate the ESD,

in principle, with unit success probability as long as we perform the NOT oper-

ation at the appropriate time. Delay and avoidance of ESD, in particular, will

find applications in the practical realization of quantum information and com-

putation protocols that might otherwise suffer due to a short lifetime of entan-

glement. Also, it will have implications towards such control in other physical

systems. A major advantage of the manipulation of ESD in a photonic system

is that one has complete control over the damping parameters, unlike in most

atomic systems, and hence provides a perfect test bed for such a study. The ex-

periment that I report in this thesis is important for practical noise engineering in

quantum information processing. Now, I will outline the structure of my thesis.

In this thesis, I will present our work on creation and characterization of

quantum entanglement in a photonic system, and manipulation of its dynamics

in the presence of an amplitude damping channel. When a two-qubit entangled

system passes through an amplitude damping channel, some initial entangled

states follow the asymptotic decay of entanglement whereas others undergo the

sudden death of entanglement. The class of states which undergo ESD are then

manipulated by local NOT operations (σx) on one or both qubits. This thesis is

divided into seven chapters as given below.

In chapter one, I discuss the notations and basic concepts of quantum in-

formation that shall be helpful in understanding the rest of the thesis. An in-

troduction to quantum entanglement along with the entanglement measures is

given. Next, evolution equation of the open quantum system is discussed us-

ing the Kraus operator formalism. Then the basics of non-linear optics such as

birefringence, second order non-linearity, phase matching condition, and sponta-

neous parametric down-conversion are presented.

In chapter two, I discuss the theoretical framework for, and experimental im-

plementation of a type-I polarization entangled photon source based on spon-

taneous parametric down conversion. The entangled state is characterized by

Quantum State Tomography (QST) and Maximum Likelihood Estimation (MLE).

The concept of QST is discussed and it is motivated as to how a density matrix re-
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constructed by linear inversion of the QST data may not satisfy the requirements

of a physical state; i.e., normalization, positivity, and hermiticity. The process of

obtaining a physical state from the above density matrix using MLE, is discussed.

In chapter three, I address the issue of quantitative non-equivalence of dif-

ferent entanglement measures for two-qubit pure states. Given a non-maximally

entangled state, an operationally significant question is to quantitatively assess

as to what extent the state is away from the maximally entangled state, which

is of importance in evaluating the efficacy of the state for its various uses as a

resource. It is this question which is examined in this paper for two-qubit pure

entangled states in terms of different entanglement measures like Negativity (N),

Logarithmic Negativity (LN), and Entanglement of Formation (EOF). Although

these entanglement measures are defined differently, to what extent they differ

in quantitatively addressing the earlier mentioned question has remained unin-

vestigated. Theoretical estimate in this paper shows that an appropriately de-

fined parameter characterizing the fractional deviation of any given entangled

state from the maximally entangled state in terms of N is quite different from

that computed in terms of EOF with their values differing up to ∼ 15% for states

further away from the maximally entangled state. Similarly, the values of such

fractional deviation parameters estimated using the entanglement measures LN

and EOF, respectively, also strikingly differ among themselves with the maxi-

mum value of this difference being around 23%. This analysis is complemented

by illustration of these differences in terms of empirical results obtained from a

suitably planned experimental study. Thus, such appreciable amount of quan-

titative non-equivalence between the entanglement measures in addressing the

experimentally relevant question considered in the present paper highlights the

requirement of an appropriate quantifier for such intent. We indicate directions

of study that can be explored towards finding such a quantifier.

In chapter four, I present the theoretical proposal for the manipulation of en-

tanglement sudden death in an all optical set up. Evolution of a two-qubit entan-

gled state is studied in the presence of an Amplitude Damping Channel (ADC).

Two levels of the qubits are realized by the H- and V-polarization states of the
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photon and ADC is mimicked by the action of a half-wave plate (HWP) acting

only on the V-polarization component of the photon in a displaced Sagnac intere-

frometer (DSI). As a result, polarization and momentum modes of the photon get

entangled. When momentum modes of the photon are traced out, it acts as ADC.

We see that the entangled state ∣ψ⟩ = α∣HH⟩ + β∣V V ⟩ undergoes ESD for ∣α∣ < ∣β∣

and asymptotic decay for ∣α∣ > ∣β∣ in the presence of an ADC. To manipulate the

ESD, we again use a HWP@45o but acting on both H- as well as V-polarization

components and hence mimics NOT (σx) operation. The complete theoretical

analysis of the experiment is given and results of the manipulation are compared

with the ESD results. We see the phenomenon of hastening, delay, and avoidance

of ESD for either cases when NOT operation is applied on only one or both the

qubits.

In chapter five, I present our experimental results on ESD followed by its

manipulation in the photonic system. This requires preparation and character-

ization of a non-maximally entangled state. These entangled photons are then

passed through the DSI. ADC is artificially introduced using a HWP acting only

on the vertical polarization component of the entangled state in the DSI. Initially,

ESD experiment is performed by setting the ADC HWPs at non-zero angles and

then reconstructing the state by QST and MLE for each setting and entanglement

is computed from the density matrix. Next, ESD manipulation experiment is set

up and for each setting of the ADC HWP, NOT operation is performed and out-

put modes are appropriately traced out. Resulting state is reconstructed using

QST and MLE; and then entanglement is computed from the density matrix. The

results of ESD and manipulation experiments are compared with the simulation

results.

In chapter six, I extend the theoretical proposal for manipulation of ESD in

a 2 ⊗ 2 system to 2 ⊗ 3 and 3 ⊗ 3 entangled system. We find that these higher

dimensional systems can also be manipulated similar to the 2 ⊗ 2 systems and

the phenomenon of hastening, delay, and avoidance of ESD also occur as seen

in 2 ⊗ 2 systems. Our study, thus, indicates the possibility of controlled manip-

ulation of higher dimensional entangled quantum systems evolving in a noisy
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environment.

In chapter seven, I conclude with the summary of the thesis followed by fu-

ture scope of work.

Prof. Urbasi Sinha

(Supervisor)

Ashutosh Singh

(Student)
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Chapter 1

Introduction and basics

1.1 Motivation

Quantum Information Processing (QIP) exploits the fundamentals laws of quan-

tum mechanics for information processing, communication, computation, metrol-

ogy, and sensing [1, 3]. The fundamental difference which makes QIP more effi-

cient, attractive, and fascinating is its ability to use entangled states and the infor-

mation processing of the more general input states in the form of superposition of

different possible eigenstates of a quantum system as opposed to the information

processing via classical systems which can handle only bits. Moreover, two dis-

tant parties which may be space-like separated can share arbitrary and unknown

quantum information without physically sending the quantum system in which

the information is stored using a prior shared entanglement between them [1, 3].

Further, no-cloning theorem and uncertainty principle ensures that arbitrary and

unknown quantum information can neither be copied nor eavesdropped without

leaving behind a trace for the same.

The possibility of preparation and controlled manipulation of multi-partite

superposition states with exquisite precision has opened up the doors for quan-

tum computation which is fundamentally equivalent to doing massive parallel

computation with classical systems. All the aforementioned quantum advantages

require maintenance of quantum coherence (well defined phase relationship) [4]

among different parts of the multi-partite systems for large time scales as well as
1
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over long distances. It means that the interaction of the quantum systems with

their environment need to be minimized. Ideally, system should be isolated from

the environment to avoid loss of quantum coherence due to interaction of these

systems with the environment.

However, practical realization of an ideal isolated quantum system may not

be possible and systems will inevitably interact with its environment leading to

decoherence [5, 6] in the system. The term decoherence refers to a dynamical

process through which a quantum mechanical system looses the phase relation-

ship between its different parts. Decoherence is an unavoidable and irreversible

phenomenon arising because of entanglement between system and environment

due to interaction. It is the biggest obstacle towards practical realization of expo-

nential speedup promised for certain tasks is quantum computation. In the pres-

ence of local stochastic noises in the environment, system doesn’t only loose the

single particle coherence, even the non-local coherence (entanglement) degrades

in the multi-particle system [6, 7]. Since entanglement is the quintessential re-

source for QIP protocols, protecting entanglement against the detrimental effects

of the noise is important. There are several schemes to protect entanglement from

decoeherence such as weak measurement and reversal, dynamical decoupling,

quantum bang-bang protocol, delayed choice decoherence suppression [6], etc.

In this thesis, we propose another scheme [8] to protect quantum entangle-

ment in the presence of an amplitude damping channel (ADC). We know that

under the action of an ADC, excited state of a two-level atomic system decays

down to ground state emitting the energy to the environment. Thus, as time

passes, excited state population decreases and ground state population increases.

Therefore, any process which flips the population between ground and excited

states of the quantum system is expected to give some interesting results on the

system dynamics. Motivated by this idea, we propose a local unitary operation

(NOT operation, σx) on the individual qubit of a two-qubit entangled state dur-

ing the process of decoherence and study its impact on entanglement preserva-

tion in a noisy environment. It turns out that the action of NOT operation on one

or both qubits preserves entanglement for longer duration [8] for states which
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would have otherwise become separable in finite time due to the action of ADC.

Here, we present the results based on simulation as well as taken some steps to

verify them experimentally in a two-qubit entangled state evolving in the pres-

ence of an ADC in a photonic system.

Consider a practical scenario where Charlie prepares a bipartite entangled

state for some QIP task and he has to send the entangled particles to Alice and

Bob through a quantum channel which is noisy and can potentially cause dis-

entanglement before the particles reach the two parties. In this scenario, we ask

the following question: given a bipartite entangled state which would undergo

finite time disentanglement (also known as Entanglement Sudden Death or ESD)

in the presence of an ADC, can we alter the time of disentanglement by some

suitable local unitary operations during the process of decoherence? To answer

this question, we explore not only qubit-qubit system but higher-dimensional

systems such as qubit-qutrit and qutrit-qutrit system as well. If such systems

undergo ESD, we propose a set of local unitary operations such that when ap-

plied on the subsystems during the process of decoherence, these operations can

manipulate the disentanglement dynamics, in particular, delay the time at which

ESD occurs. Depending on the combination of local unitary operations, and the

time of their application, this method is shown to be able to hasten, delay or

completely avoid the ESD even in higher-dimensional systems. Such an entan-

glement protection scheme will not only facilitate the aforementioned task but

will also find application where two parties, say Alice and Bob, share an entan-

gled pair for some quantum information processing task and they know a-priori

that ADC is present in the environment, and therefore they can decide whether

they are faced with the prospect of ESD. Then, they can locally apply suitable

local unitary operations at appropriate time to delay or avoid the ESD. Our pro-

posed scheme for preserving entanglement longer will also find application in

entanglement distillation protocols.
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1.2 Outline of the thesis

This thesis deals with creation, characterization, and manipulation of quantum

entanglement in a photonic system. It has two main parts which deal with static

and dynamic properties of entanglement, respectively, in bipartite systems. It is

organized in a way that the current introductory chapter deals with several basic

and technical concepts which are required for understanding the research work

reported in this thesis.

In our exploration of the static properties of entanglement, we experimentally

prepare a polarization entangled photon source using Spontaneous Parametric

Down-Conversion (SPDC) and reconstruct the state (density matrix) via Quan-

tum State Tomography (QST) and Maximum Likelihood Estimation (MLE) [9].

For characterization of the experimentally prepared states and quantification of

entanglement, we use different computable measures of entanglement. In this

process, we make some non-trivial observations on the comparison of entangle-

ment measures for two-qubit pure states and indicate directions for further study

in higher-dimensional systems [10]. In order to comprehend this aspect of the

thesis, a basic understanding of the concepts such as SPDC based single and en-

tangled photon sources, quantification of entanglement using different entangle-

ment measures, as well as QST and MLE are essential.

In our investigation of entanglement dynamics, we study the evolution of en-

tanglement in a noisy environment. The noise under consideration is a local,

identical but independent Markovian noise acting on each qubit. It is found that

under the action of an Amplitude Damping Channel (ADC), an initially entan-

gled state can either undergo Asymptotic Decay of Entanglement (ADE) or fi-

nite time disappearance of entanglement, also known as Entanglement Sudden

Death (ESD) [7]. For the state undergoing ESD, we propose a local unitary oper-

ation (more specifically NOT operation, also known as σx) on one or both qubits

such that depending on the time of application of NOT operation, ESD can be

hastened, delayed or avoided [8]. The phenomenon of ESD and ADE are then ex-

perimentally demonstrated for polarization entangled photonic qubit system in
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a Displaced Sagnac Interferometer (DSI). This is followed by a discussion on our

attempts towards experimental demonstration of manipulation of ESD in such

a system. In order to appreciate this portion of the thesis, we require to under-

stand the evolution of open quantum systems, in general, and entangled states,

in particular. The overarching theme of this thesis being entanglement, it is im-

portant to have a basic understanding of the same; both theoretically as well as

experimentally and some basic concepts of quantum information.

In the end, we theoretically extend the idea of manipulation of ESD to higher-

dimensional systems such as 2 ⊗ 3 and 3 ⊗ 3 systems. By choosing suitable mea-

sure(s) of entanglement for this purpose, we study the evolution of entanglement

in the presence of ADC and phenomenon of ESD is observed. Like 2⊗ 2 systems,

we propose a set of local unitary operations for qubit as well as qutrit subsystems

wherein we indicate more than one possible choices of local unitaries for qutrit.

We then demonstrate the phenomenon of hastening, delay, and avoidance of ESD

in these systems as well.

To start with, we will discuss the basic terminology, notation, and some basic

concepts of quantum information to set the stage for the rest of the thesis. This

chapter begins by motivating the subject of this thesis which is followed by a

primer on the concept of state vector and density matrices, concept of pure and

mixed states, followed by a detailed introduction to classical bit and quantum-

bit (qubit). Then, we introduce the concept of quantum entanglement and its

measures for pure and mixed states. Next, evolution of closed quantum systems

is introduced which is followed by open quantum system dynamics using the

Kraus operator formalism. The chapter ends with the discussion of the basics

of birefringence, nonlinear optics, and spontaneous parametric down conversion

(SPDC).

• Let us begin the introduction with some basic concepts of quantum me-

chanics and quantum information.
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1.3 Basics of quantum mechanics and quantum infor-

mation

1.3.1 Concept of state vector and density matrix

In quantum mechanics, the state of an isolated physical system is described by

a state vector, a unit vector in the Hilbert space, which completely characterizes

the physical properties of the system. The simplest quantum mechanical system

is a qubit, which resides in a two-dimensional Hilbert space C2. If ∣0⟩ and ∣1⟩ are

taken as the basis vectors for the Hilbert space, then the general state vector can

be written [1] as

∣Ψ⟩ = α∣0⟩ + β∣1⟩, (1.1)

where α and β are, in general, complex numbers satisfying the normalization

condition for the state vectors: ∣α∣2 + ∣β∣2 = 1.

The state vectors for quantum systems are idealized descriptions which rep-

resent only pure states and not the statistical (incoherent) mixtures - ensemble

comprising of many pure states with weighted probabilities which are frequently

encountered in experiments. The density matrix or density operator is an alternate

and more general description of quantum systems for both pure as well as mixed

states [1, 3]. All the accessible information of a quantum system is encoded in the

density matrix.

Consider an ensemble of systems all in the same state ∣Ψ⟩, also known as pure

state. The density matrix ρ̂ for such a pure state ∣Ψ⟩ is defined as the outer product

of the wave function and its conjugate as given below [1, 3].

ρ̂ ∶= ∣Ψ⟩⟨Ψ∣ . (1.2)

Let us consider an ensemble of n-systems where not all of them are in the

same state but ni no. of systems are in the state ∣Ψi⟩, etc., where ∑i ni = n. The

probability of finding an individual system in the state ∣Ψi⟩ of such a ensemble

is given by pi = ni/n. In such a situation, when all the systems of the ensemble

{∣Ψi⟩} are not in the same state, but a statistical mixture of the states {∣Ψi⟩} with
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respective probabilities pi then it is said to be in mixed state [1, 3]. The density

matrix of such a ensemble is given by

ρ̂ ∶= ∑
i

pi∣Ψi⟩⟨Ψi∣. (1.3)

Any physical density matrix satisfies the following three cardinal properties:

Tr[ρ̂] = 1 (Normalization)

ρ̂† = ρ̂ (Hermiticity)

det[ρ̂] ≥ 0 (Positive semidefiniteness)

(1.4)

A pure state density matrix, in addition, satisfies the condition: ρ̂2 = ρ̂, i.e., it

is also a projector.

1.3.2 Pure and mixed states

Consider an ensemble of particles in the states {∣Ψi⟩}. If all the particles are in

the same state then the ensemble is represented by a pure state. For a pure state,

ρ̂2 = ρ̂, and thus

Tr[ρ̂2] = 1 (For pure state). (1.5)

When all the particles of the ensemble {∣Ψi⟩} are not in the same state, but

a statistical mixture of the states {∣Ψi⟩} with respective probabilities pi then it is

said to be in mixed state and its density matrix is given by

ρ̂ = ∑
i

pi∣Ψi⟩⟨Ψi∣. (1.6)

For a mixed state ρ̂2 ≠ ρ̂ and thus

Tr[ρ̂2] < 1 (For mixed state). (1.7)

The term Tr[ρ̂2] is defined as the purity of a state. It can take a minimum value

of 1/d for maximally mixed state, where d is the dimensionality of the system, and

1 for pure state.
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1.3.3 Bit and Qubit

Classical bit, also known as bit, is the basic unit of digital information in classical

information theory, which can take logical values ‘0’ or ‘1’. These two possi-

bilities are mutually exclusive. Because of its binary nature, it can be encoded

into the property of any physical system which has two stable states, e.g., ON or

OFF state of a transistor, direction of magnetic domain in a magnetic media, etc.

On the other hand, quantum bit or qubit is the quantum mechanical analogue of

the classical bit which can exist in an arbitrary superposition of the two possible

states, say ∣0⟩ and ∣1⟩. The term ‘qubit’ was first introduced by Schumacher in 1995

[11]. The general state of a qubit is given by

∣Ψ⟩ = α∣0⟩ + β∣1⟩, (1.8)

where α and β are in general complex, and ∣α∣2 + ∣β∣2 = 1.

Figure 1.1: Difference between a classical bit and qubit illustrated using a switch [12].

A classical bit always remains in one of the two possible orthogonal states (‘0’, or ‘1’)

whereas a qubit can exist in a coherent superposition of the two orthogonal states as well.

An example of a classical and quantum bit is illustrated using a switch [12] is

shown in Fig. 1.1 below. Quantum superposition is the key difference between

the two. A classical bit always remains in one of the two possible orthogonal

states (‘0’, or ‘1’) whereas a qubit can exist in a coherent superposition of the two
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orthogonal states as well. The state of a qubit is an element of two-dimensional

Hilbert space. The states ∣0⟩ and ∣1⟩ are the eigenstates of the Pauli matrix σz

which form the basis vectors of this space, and known as computational basis

states.

∣0⟩ =
⎛
⎜
⎝

1

0

⎞
⎟
⎠
, and ∣1⟩ =

⎛
⎜
⎝

0

1

⎞
⎟
⎠
. (1.9)

If the normalization is written implicitly into the coefficients, and global phases

are ignored, then Eq. (1.8) can be rewritten as

∣Ψ⟩ = cos(
θ

2
) ∣0⟩ + exp(iφ) sin(

θ

2
) ∣1⟩, (1.10)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

If we consider a point with (θ, φ) as defined above and r = 1 as the spherical

polar coordinates (r, θ, φ) on a sphere then corresponding point on the Poincare

sphere represents a state of the quantum system whose density matrix is given

by

ρ̂ =
1

2
(I2 + r⃗.σ⃗), (1.11)

where r⃗ is the Poincare vector given by

r⃗ =

⎛
⎜
⎜
⎜
⎜
⎝

rD

rR

rH

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

⎞
⎟
⎟
⎟
⎟
⎠

, σ⃗ =

⎛
⎜
⎜
⎜
⎜
⎝

σx

σy

σz

⎞
⎟
⎟
⎟
⎟
⎠

, (1.12)

and, I2 is the identity matrix, and σis are the Pauli matrices as given below.

I2 =
⎛
⎜
⎝

1 0

0 1

⎞
⎟
⎠
, σx =

⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠
, σy =

⎛
⎜
⎝

0 −i

i 0

⎞
⎟
⎠
, σz =

⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠
. (1.13)

Three components of r⃗ (rD, rR, rH) can be viewed as the coordinates in the

three dimensional polarization space and give the polarization component of the

photon in diagonal/anti-diagonal (D/A), right-/left-circular (R/L), and horizon-

tal/vertical (H/V), bases, respectively. A spin-1/2 particle such as electron, po-

larization state of a photon, etc., are good examples of a qubit. If we represent the

basis states ∣H⟩ ≡ ∣0⟩ and ∣V ⟩ ≡ ∣1⟩, then the general polarization state of a photon

can be written as Eq. (1.10) or (1.11) and it can be represented on the Poincare

sphere as shown in the Fig. 1.2.
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θ

φ

∣H⟩

∣V ⟩

∣D⟩

∣A⟩

∣R⟩∣L⟩

∣Ψ⟩

x y

z

Figure 1.2: Poincare sphere representation of a qubit. All points at the suraface of

Poincare sphere represent pure states whereas those lying inside the spehere represent

mixed state. Point at the center of the sphere is maximally mixed.

Note that Eq. (1.11) with ∣r⃗∣ = 1 captures all the pure states which lie on the

surface of the Poincare sphere. All the states in Eq. (1.11) with ∣r⃗∣ < 1 are mixed

states and they lie inside the sphere, and maximally mixed state (I/2) lies at the

center of the sphere. It is important to bear in mind that the orthogonal states lie

180○ apart, i.e., on the diametrically opposite sides of the sphere. The ∣H⟩ and ∣V ⟩

polarization states lie on the opposite sides (θ = 180○ apart) of the pole, and ∣D⟩,

∣R⟩, ∣A⟩, and ∣L⟩ lie on the equator at φ = 90○ apart from the adjacent ones. These

polarization states can be expressed in terms of the bases states ∣H⟩ and ∣V ⟩ as

follows:

∣D⟩ =
∣H⟩ + ∣V ⟩

√
2

, ∣A⟩ =
∣H⟩ − ∣V ⟩

√
2

,

∣R⟩ =
∣H⟩ + i∣V ⟩

√
2

, ∣L⟩ =
∣H⟩ − i∣V ⟩

√
2

.

(1.14)

Such a visualization of a polarization qubit on the Poincare sphere will be very

convenient and intuitive to understand the unitary transformations on the Hilbert
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space of a qubit and projective measurements on different bases set for quantum

state tomography in next chapter.

1.3.4 Partial trace and reduced density matrix

Consider a composite quantum system characterized by the density matrix ρ̂(AB)

comprising of two subsystems A and B. Suppose we are interested in only one

of the subsystems; say A, then this situation is captured by the reduced density

matrix. For subsystem A, it is obtained by tracing out [3] the subsystem B as

follows:

ρ̂(A) = TrB[ρ̂(AB)]. (1.15)

TrB(∣ai⟩⟨aj ∣ ⊗ ∣bk⟩⟨bl∣) ≡ ∣ai⟩⟨ajTr(∣bk⟩⟨bl∣) = ∣ai⟩⟨aj ∣⟨bk∣bl⟩. (1.16)

where {∣ai⟩, ∣aj⟩}, and {∣bk⟩, ∣bl⟩} are the basis vectors of the state space A and

B, respectively. Physically, partial trace is the unique operation for obtaining the

correct measurement statistics of a subsystem of the composite quantum system.

1.3.5 Partial transpose

Let us consider a bipartite joint system density matrix ρ̂(AB) with the density ma-

trices of its individual subsystems given by ρ̂(A) = TrB[ρ̂(AB)] and ρ̂(B) = TrA[ρ̂(AB)].

The elements of the density matrix ρ̂(AB) can be written as

ρmµ,nν = ⟨am, bµ∣ρ̂
(AB)∣an, bν⟩ (1.17)

where {am} and {bµ} are the orthonormal bases sets in the Hilbert space of subsys-

tems A and B, respectively.

As the name suggests, partial transpose [13] is the transpose taken with re-

spect to one of the subsystems of a bipartite quantum system. Using the above

representation, partial transposition with respect to subsystem A can be written

as follows:

PTA(ρmµ,nν) = ρnµ,mν (1.18)
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Likewise, partial transposition with respect to subsystem B can be written as

follows:

PTB(ρmµ,nν) = ρmν,nµ (1.19)

This can be further illustrated by taking the explicit example of the density

matrix of a 2 ⊗ 2 dimensional system and dividing it into 2 × 2 blocks and doing

transpose in each block to get the partially transposed density matrix with respect

to subsystem B.

ρ̂(AB) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ11,11 ρ11,12 ρ11,21 ρ11,22

ρ12,11 ρ12,12 ρ12,21 ρ12,22

ρ21,11 ρ21,12 ρ21,21 ρ21,22

ρ22,11 ρ22,12 ρ22,21 ρ22,22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇒ PTB(ρ̂(AB)) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ11,11 ρ12,11 ρ11,21 ρ12,21

ρ11,12 ρ12,12 ρ11,22 ρ12,22

ρ21,11 ρ22,11 ρ21,21 ρ22,21

ρ21,12 ρ22,12 ρ21,22 ρ22,22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1.20)

It is evident that the partial transpose operation interchanges the entries in

blue and magenta in each block. Partial transpose operation finds application in

deciding the (non)separability of a bipartite state using PPT criterion (discussed

in Sec. 1.4.3).

1.3.6 Fidelity

Fidelity is a distance measure of two quantum states. Fidelity F (ρ̂, σ̂) of the states

ρ̂ and σ̂ measures the “closeness" of the states and it is defined as [14]

F (ρ̂, σ̂) ∶= Tr [
√√

ρ̂ σ̂
√
ρ̂ ] . (1.21)

Fidelity of a pure state ∣ψ⟩ and an arbitrary state ρ̂ is defined as

F (∣Ψ⟩, ρ̂) = Tr [
√

⟨Ψ∣ρ̂∣Ψ⟩∣Ψ⟩⟨Ψ∣] =
√

⟨Ψ∣ρ̂∣Ψ⟩, (1.22)

i.e., fidelity equals the square root of the overlap between Ψ and ρ̂.

Fidelity between two pure states ∣φ⟩ and ∣ψ⟩ is defined as

F (∣φ⟩, ∣ψ⟩) = ∣⟨φ∣ψ⟩∣. (1.23)
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It is symmetric in its inputs and a good distance measure between the quan-

tum states. Some useful properties of the fidelity are:

(i) 0 ≤ F (ρ, σ) ≤ 1

(ii) F (ρ, σ) = F (σ, ρ)

(iii) F (ρ, ρ) = 1

(iv) F (ρ, σ) = 1 ⇒ ρ = σ

(v) F (ρ, σ) = 0 ⇒ ρ ⊥ σ

In literature, some physicists choose to define Fidelity as the overlap squared. So,

one should be careful and consistent with the fidelity definition.

• Given a bipartite entangled state ρ̂(AB), how do we know whether it is en-

tangled or not (separable)? How to quantify entanglement? What are the

basic requirements for the entanglement measure? We will learn all these

things in the next section.

1.4 Quantum entanglement

To quote E. Schrödinger who coined the term entanglement to describe the strange

connection between the quantum systems.

• “I would not call that one but rather the characteristic trait of quantum mechanics,

the one that enforces its entire departure from classical lines of thought."

• “The best possible knowledge of of the whole does not include the best possible

knowledge of its parts. By the interaction the two representatives [the quantum

states] have become entangled."

1.4.1 Separable and entangled states

A bipartite state ρ̂(AB) (whether pure or mixed) is said to be separable, classically

correlated or unentangled, if it can be prepared “classically" by two parties; say
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Alice and Bob, by local operation and classical communication (LOCC) alone.

The state created in this manner can contain only classical correlations. States

which cannot be prepared by LOCC alone are said to be entangled.

Mathematically speaking, a bipartite pure state ∣Ψ⟩AB is said to be separable if

it can be written as the direct product of the states from the subsystem Hilbert

spaces, i.e.,

∣Ψ⟩AB = ∣Ψ⟩A ⊗ ∣Ψ⟩B , (1.24)

where ∣ψ⟩AB ∈ HAB = HA ⊗HB, ∣ψ⟩A ∈ HA, and ∣ψ⟩B ∈ HB. The joint state ∣Ψ⟩AB is

said to be entangled [15] if it is not separable.

On the other hand, a bipartite mixed state ρ̂(AB) is said to be separable if it can be

written as the convex combination of the pure product states from the subsystem

Hilbert spaces, i.e.,

ρ̂(AB) = ∑
i

pi ρ̂
(A)
i ⊗ ρ̂

(B)
i . (1.25)

where ρ̂(AB) ∈ HAB = HA ⊗HB, ρ̂(A)i = ∣ψi⟩A⟨ψi∣ ∈ HA, ρ̂(B)i = ∣φi⟩B⟨φi∣ ∈ HB, ∑i pi = 1

(pi are non-negative coefficients), and ∣ψi⟩A and ∣φi⟩B denote the normalized states

of subsystems A and B, respectively.

The above separability criterion is not operational, as it is very difficult to find

a composition of the form (1.25) or to prove that it doesn’t exist. Therefore, we

need operational criterion and measures of entanglement, discussed below.

1.4.2 Basic requirements for an entanglement measure

A measure of entanglement E(ρ̂) must assign a non-negative value for each state

ρ̂. A good measure of entanglement E(ρ̂AB) is required to satisfy the following

criterion [15-17]:

1. Separability: For separable states, the measure of entanglement must vanish.

E(ρ̂AB) = 0 ∀ separable ρ̂AB . (1.26)

2. Normalization: The entanglement of a maximally entangled qudit-qudit sys-

tem is given by

E(ρ̂AB) = log2 d. (1.27)
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3. Invariant under unitary transformation: E(ρ̂AB) is invariant under all local

unitary transformations UA ⊗UB. i.e.,

E (ρ̂AB) = E ((UA ⊗UB)ρ̂AB(UA ⊗UB)
†) . (1.28)

It should not depend on the choice of basis.

4. Non increasing under LOCC: On an average, E(ρ̂AB) should not increase un-

der local operation and classical communication (LOCC).

E(ρ̂AB) ≥ E(Θ(ρ̂AB)), (1.29)

where Θ(ρ̂AB) is completely positive trace preserving (CPTP) map.

5. Continuity: If the distance between two density matrices is vanishingly small,

the difference between their entanglement should vanish, i.e.,

E(ρ̂) −E(σ̂) → 0 , if ∣∣ρ̂ − σ̂∣∣ → 0. (1.30)

6. Additivity: The entanglement contained in n identical copies of a state ρ

equals n times the entanglement of one copy.

E(ρ̂⊗n) = nE(ρ̂). (1.31)

7. Sub-additivity: The entanglement of the tensor product of the two states ρ̂

and σ̂ should not exceed the sum of entanglement of each of the states.

E(ρ̂⊗ σ̂) ≤ E(ρ̂) +E(σ̂). (1.32)

8. Convexity: The entanglement measure should satisfy the convexity prop-

erty, i.e.

E(λρ̂ + (1 − λ)σ̂) ≤ λE(ρ̂) + (1 − λ)E(σ̂). (1.33)

From the definition of entanglement, first condition is obvious: separable

states are not entangled. Second and third conditions are essential for entan-

glement to be considered global property of the joint system and they render it

impossible to create and distribute the entanglement via LOCC alone. It should

be noted that whether all these requirements are necessary or not, is still an open

question.
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1.4.3 Measures of entanglement

Some measures that fulfil most of the above requirements are discussed below.

(i) Schmidt decomposition

Consider a n ⊗m dimensional Hilbert space HAB defined by Kronecker product

of the two Hilbert spacesHA andHB. For a pure state ∣Ψ⟩AB fromHAB, there exists

an orthonormal bases {∣ai⟩, i = 1,2...n} and {∣bi⟩, i = 1,2...m} in the spacesHA and

HB, respectively, such that

∣Ψ⟩AB =
d

∑
i=1

√
λi∣ai⟩ ⊗ ∣bi⟩ ; d ≤ min(n,m). (1.34)

where λi’s are non-negative coefficients known as Schmidt coefficients satisfying

∑
d
i=1 λi = 1, and above decomposition is known as Schmidt decomposition [1]. The

bases ∣ai⟩ and ∣bi⟩ are called Schmidt bases for A and B, respectively, and the num-

ber of non-zero values of λi is called Schmidt number for the state ∣ψ⟩AB. The

values λi’s are precisely the features of the state ∣Ψ⟩AB that remains intact when

the subsystems are subjected to local unitary transformation. For a pure state

∣Ψ⟩AB the λi’s are equal to the eigenvalues of the density matrix of subsystem A,

given by ρ̂A = TrB[∣ΨAB⟩⟨ΨAB ∣]. The state ∣Ψ⟩AB is entangled [1] if it has more than

one Schmidt coefficients and separable iff there is only one Schmidt coefficient, i.e.,

λi = 1.

(ii) Entropy of entanglement

Consider a bipartite pure state ∣ΨAB⟩ with density matrix ρ̂AB (= ∣ΨAB⟩⟨ΨAB ∣)

in the Hilbert space HAB of dimension dA ⊗ dB. The quantum state of the in-

dividual subsystem is obtained by tracing out the other subsystems such that

ρ̂i = Trj[ρ̂ij] ; i, j = A,B. If the joint state ∣ΨAB⟩ is entangled, then the marginal

density operators will be mixed, implying the presence of quantum entangle-

ment. Entropy of entanglement [18] uses the Von Neumann entropy of density

matrix, defined by

S(ρ̂) = −Tr[ρ̂ log2(ρ̂)] = −∑
i

λi logλi. (1.35)
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where λi’s are the eigenvalues of the density matrix ρ̂. For pure bipartite states,

the entropy of entanglement is defined as the Von Neumann entropy of the re-

duced density matrices.

E(ρ̂AB) = S(ρ̂A) = S(ρ̂B) , (1.36)

where ρ̂A = TrB[ρ̂AB], and ρ̂B = TrA[ρ̂AB].

Note that von Neumann entropy is zero for a pure entangled state and non-

zero for its reduced states which makes it a measure of entanglement.

(iii) Entanglement of formation

Entanglement of formation [19] is an information theoretic measure of entangle-

ment for bipartite mixed states which quantifies the resource required to create

the given state. Consider a bipartite mixed state density matrix ρ̂ as given below.

ρ̂ = ∑
i

pi∣ψi⟩⟨ψi∣. (1.37)

Note that it can have infinitely many pure state decompositions.

Entanglement of formation (E) of the state ρ̂ is defined as the minimum aver-

age entanglement over all possible pure-state decompositions of ρ̂.

E(ρ̂) = inf∑
i

pi E(∣ψi⟩) . (1.38)

For a maximally mixed state, entanglement of formation is trivially zero.

(iv) Concurrence and Tangle

Concurrence (C) [20] is a measure of entanglement defined for 2 ⊗ 2 and 2 ⊗ 3

dimensional systems. For a pure state ∣Ψ⟩AB, concurrence is defined as

C(∣Ψ⟩AB) = ∣⟨ΨAB ∣Ψ̃AB⟩∣, (1.39)

where Ψ̃AB = σy ⊗ σy ∣Ψ⟩AB is referred as spin flipped state vector and σy is the

second Pauli matrix.

The concurrence of a mixed entangled state ρ̂AB is defined as

C(ρ̂AB) = Max{0,Λ}, (1.40)
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where Λ =
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4, and λ′is are the positive eigenvalues of the

auxiliary matrix ρ̃AB defined by

ρ̃AB = ρ̂AB(σy ⊗ σy)ρ̂
∗
AB(σy ⊗ σy). (1.41)

The complex conjugation is done in the computational basis: ∣00⟩, ∣01⟩, ∣10⟩, ∣11⟩.

Tangle (τ ) is defined as the square of concurrence, i.e.,

τ = [C(ρ̂AB)]
2 (1.42)

Initially, interest in Concurrence started due to its connection to the entangle-

ment of formation (E) as given below

E(C(ρ)) ∶= h(
1 +

√
1 +C2

2
) , (1.43)

where h(x) = −x log2(x) − (1 − x) log2(1 − x).

(v) Peres-Horodecki criterion and Negativity

The Peres-Horodecki criterion for separability is also known as positive partial

transpose (PPT) criterion [21]. It is necessary condition for separability of pure as

well as mixed states. It turns out that for 2⊗ 2 and 2⊗ 3 dimensional systems, the

PPT criterion is also sufficient condition for separability.

When a positive map is applied to one of the subsystems of a composite quan-

tum system in a separable state, it always maps to a valid quantum state. How-

ever, when the composite state is entangled, the same positive map, in general,

does not results in a valid density operator. This happens because a positive

operator does not behave like a completely positive operator in the presence of

quantum entanglement in the system. The partial transposition operator is such

an example of a positive but not completely positive operator.

Let the composite system density matrix be written as

ρAB = ∑
ijkl

pklij ∣iAkB⟩⟨jAlB ∣, (1.44)

where {∣iA⟩}, and {∣kB⟩} form the orthonormal basis set for the subsystem ‘A’ and

‘B’, respectively. Then the partial transposed density matrix, with respect to the
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subsystem ‘A′, is given by

ρTAAB = ∑
ijkl

pklij ∣jAkB⟩⟨iAlB ∣. (1.45)

If the state ρ̂AB is separable then above Eq. (1.44) can be rewritten as

ρ̂TAAB = ∑
ijkl

pklij ∣jA⟩⟨iA∣ ⊗ ∣kB⟩⟨lB ∣ = ∑
ijkl

pklij(∣iA⟩⟨jA∣)
T ⊗ ∣kB⟩⟨lB ∣. (1.46)

Since (∣iA⟩⟨jA∣)T are again valid density matrices for Alice, it implies that ρ̂TAAB ≥

0. Same argument can be given for partial transposition with respect to Bob’s

subsystem. In short, the partial transpose of a bipartite separable state ρ̂AB with

respect to any subsystem is positive.

Negativity is a measure of entanglement based on the PPT criteria of separability and

it is defined as the sum of absolute values of all the negative eigenvalues of the partially

transposed density matrix with respect to one of its subsystems.

Note that PPT criterion is necessary but not sufficient condition for separa-

bility in higher-dimensional (d ⊗ D, d,D ≥ 3) systems. If a higher-dimensional

system is found to be PPT, we can’t say whether state is entangled or separable,

and in that case we can use matrix realignment method (discussed below) for de-

tecting some of the bound entangled states which may not be detected by PPT

criterion.

(vi) Matrix realignment method for detecting entanglement

This criterion for inseparability of bipartite systems of arbitrary dimensions is

motivated by Kronecker product approximation technique for density matrices.

It is based on a realigned matrix [22] obtained from the density matrix via realign-

ment method as discussed below.

Consider a matrix A = [aij] having dimension m ⊗ n, where aij is the ith row

and jth column entry of this matrix. Let us define vec(A) as

vec(A) = [a11, .....am1, .....am2, ......a1n, ......amn]
T , (1.47)

where symbol T denotes transpose.



1.4. Quantum entanglement 20

Now, consider a block matrix B of dimension m ×m with each block of size

n×n. Let us define the realigned matrix B̃ of dimension m2 ×n2 that contains the

same elements as in matrix as B but in a rearranged position as given below.

B̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vec(B1,1)T

⋮

vec(Bm,1)T

⋮

vec(B1,n)T

⋮

vec(Bm,n)T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1.48)

where Bi,j denotes the block in the ith row and jth column.

The Singular value decomposition of B is given by

B̃ = UDV † =
q

∑
i=1
diuiv

†
i (1.49)

where D is a diagonal matrix with elements d1 ≥ d2 ≥ d2 ≥ .....dq ≥ 0 with q =

min(m2, n2), and U = u1, u2.......um2 ∈ Cm
2×m2 & V = v1, v2.......vm2 ∈ Cn

2×n2 are

unitary matrices.

where dis are given by non-negative square roots of the eigenvalues of the

matrix B̃B̃† or B̃†B̃. In fact, rank of the matrix B̃ is equal to number of non-

zero singular values di. Inspired by this construction, Loan and Pitsianis gave the

following decomposition for B.

B =
r

∑
i=1
Xi ⊗ Yi , (1.50)

where vec(Xi) =
√
diui and vec(Yi) =

√
div∗i .

For a given density matrix ρAB, we can write the realigned matrix ρ̃AB accord-

ing to the transformation given in Eq. (1.48). As an example, a bipartite 2 ⊗ 2

density matrix ρAB can be transformed as follows:

ρAB =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇒ ρ̃AB =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ11 ρ21 ρ12 ρ22

ρ31 ρ41 ρ32 ρ42

ρ13 ρ23 ρ14 ρ24

ρ33 ρ43 ρ34 ρ44

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1.51)
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Realigned Negativity is then defined as

R(ρAB) = max(0, ∣∣ρ̃AB ∣∣ − 1) (1.52)

where symbol ∣∣.∣∣ denotes trace norm.

This criteria is motivated by the fact that for any separable state, trace norm of

the realigned matrix will not be greater than one. Hence, If R(ρ) turns out to be

greater than zero, state must be entangled. This criterion can detect some of the

bound entangled states in higher-dimensional system which may not be detected

by PPT criterion.

• Given a quantum system ρ(0) at time t = 0. How does it evolve with time

in the presence of different environments? We will learn this in the next

section.

1.5 Time evolution of the quantum systems

In this section, we introduce the minimum basic formalism required to under-

stand and mathematically describe decoherence in the framework of quantum

theory. A closed quantum system is one which neither interchanges energy nor

matter with its environment. On the other hand, an open quantum system inter-

changes energy or matter or both with its environment.

1.5.1 Evolution of the closed quantum systems

Evolution of a closed quantum system [1] in the pure state ∣ψ(t)⟩ is given by

Schrödinger equation:
d

dt
∣ψ(t)⟩ = −

i

h̵
H(t)∣ψ(t)⟩, (1.53)

where H(t) is the Hamiltonian of the system.

Evolution of the states under Schrödinger equation is unitary and governed

by a unitary time-evolution operator U(t, t′) such that it takes the state ∣ψ(t′)⟩ to

∣ψ(t)⟩ as

∣ψ(t)⟩ = U(t, t′)∣ψ(t′)⟩, (1.54)
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where U(t′, t′) = I.

Substituting ∣ψ(t)⟩ into Eq. (1.53), we get

∂

∂t
U(t, t′) = −

i

h̵
H(t)U(t, t′). (1.55)

For an isolated system (which is not driven by any external agency) Hamilto-

nian becomes time independent and Unitary operator can be written as

U(t, t′) = exp[−
i

h̵
H(t − t′)]. (1.56)

If the initial state of system is a statistical mixture then it is characterized by a

density matrix ρ instead of a state vector. Let the initial state be given by

ρ(t′) = ∑
i

pi∣ψ(t
′)⟩⟨ψ(t′)∣. (1.57)

Each state vector of the ensemble evolves as per Eq. (1.56) and thus the state

of the system at a later time ’t’ is given by

ρ(t) = ∑
i

piU(t, t′)∣ψ(t′)⟩⟨ψ(t′)∣U †(t, t′),

= U(t, t′)ρ(t′)U †(t, t′).

(1.58)

Upon differentiating the above eqn. wrt. time, we get the eqn. of motion as

d

dt
ρ(t) = −

i

h̵
[H(t), ρ(t)]. (1.59)

This is known as Liouville - von Neumann equation. It gives the evolution of a

closed quantum system ρ with time.

1.5.2 Evolution of the open quantum systems

Let us consider a quantum system ‘S’ denoted by density matrix ρS in the Hilbert

space HS interacting with another quantum system ‘E’, called environment, hav-

ing density matrix ρE in the Hilbert space HE . The state of the joint system; Sys-

tem + Environment (S+E), is given by the tensor product ρS ⊗ρE which resides in

the joint Hilbert space HS ⊗HE . The schematic of a quantum system interacting

with its environment is shown in the Fig. 1.3.
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(S,HS, ρS)

System

(E,HE, ρE)
Environment

(S +E,HS ⊗HE, ρ)

Figure 1.3: Schematic diagram of an open quantum system.

The joint system (S+E) behaves as a closed quantum system and follows the

Hamiltonian dynamics, as discussed above. During the evolution, system and

environment develop some kind of correlation and consequently, if we consider

the evolution of the system alone, it becomes non-unitary and behaves as an open

quantum system [1, 2]. The Hamiltonian of the joint quantum system can be

written as

H(t) =HS ⊗ IE + IS ⊗HE +Hint(t), (1.60)

where HS and HE are the system and environment Hamiltonian, respectively,

and Hint(t) is the interaction Hamiltonian acting on the Hilbert space HS ⊗ HE .

The IS and IE are the identity matrices in HS and HE , respectively.

The reduced density matrix of the system (ρs) can be found by tracing over the

degrees of the freedom of the environment from the joint system density matrix

[1, 2] as follows:

ρs = TrE(ρ). (1.61)

Substituting ρ(t) from Eq. (1.58), we get

ρS(t) = TrE (U(t, t′)ρ(t′)U †(t, t′)) . (1.62)

Above equation gives the evolution of an open quantum system. To illustrate

this further, we consider a specific noise model of Amplitude Damping Channel
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(ADC) and discuss the time evolution of a two-level system using Kraus operator

formalism.

Amplitude damping channel

Amplitude damping channel [1, 2] is a noise model that captures the dissipative

interaction of a quantum system with its environment. For example, spontaneous

decay of the excited state of a two-level atomic system resulting in emission of a

photon. Consider a two-level systems ‘S’ in a cavity interacting with the vacuum

mode of the electromagnetic field at absolute zero temperature. Initially, elec-

tromagnetic field (which is treated as environment ‘E’) is assumed to be in the

vacuum state. Let us label the ground and excited states of the system by ∣g⟩S

and ∣e⟩S , respectively, and label ∣0⟩E and ∣1⟩E as the vacuum state and the one

photon state of the environment, respectively.

Evolution of the system and environment is unitary and represented by fol-

lowing quantum map:

∣g⟩S ∣0⟩E → ∣g⟩S ∣0⟩E

∣e⟩S ∣0⟩E →
√

1 − p∣e⟩S ∣0⟩E +
√
p∣g⟩S ∣1⟩E

(1.63)

For an atom initially in excited state, there is a probability (1 − p) that the

system remains in the excited state environment in vacuum state and there is

probability p that system de-excites to ground state with an excitation in the en-

vironment. Under the Born-Markov approximation; p = 1 − exp(−Γt), where t

denotes time and Γ is the decay rate of the two-level atomic system.

Thus, a superposition of ground and excited states of the two-level atomic

system evolves with the environment as follows:

(α∣g⟩S + β∣e⟩S)∣0⟩E
USE
ÐÐ→ α∣g⟩S ∣0⟩E + β [

√
1 − p∣e⟩S ∣0⟩E +

√
p∣g⟩S ∣1⟩E] (1.64)

By tracing out the environment in the {∣0⟩E, ∣1⟩E} bases, we get the Kraus

operators as follows:

Kµ = E⟨µ∣USE ∣0⟩E, µ = 0, 1. (1.65)

⇒ K0 =
⎛
⎜
⎝

1 0

0
√

1 − p

⎞
⎟
⎠
, K1 =

⎛
⎜
⎝

0
√
p

0 0

⎞
⎟
⎠
. (1.66)
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The Kraus operator K1 governs the decay of the system from ∣e⟩S to ∣g⟩S and

K0 governs the evolution when there is no decay. These operators are non-unitary

operators and satisfy the completeness condition

∑
i

K†
iKi = I (1.67)

Evolution of the system ρS(0) is given by

ρS(p) =
1

∑
i=0
KiρS(0)K

†
i , (1.68)

The Eq. (1.68) governs the evolution of a system ρS(0) with time in the pres-

ence of an ADC.

• Let us learn some basics of birefringence and non-linearity. Birefringence

plays a very important role in most of the polarization dependent optical

components such as half- and quarter-wave plates, polarizer, polarizing

beam splitters, and in the phase matching of non-linear crystals used for

spontaneous parametric down-conversion, etc.

1.6 Basics of birefringence and nonlinear optics

1.6.1 Anisotropy and birefringence

When an electric field E is applied to a dielectric media, it causes the separation

between positive and negative charge centres creating electric dipoles. The net

dipole moment P, electric field E, and electric displacement vector D are related

as

D = ε0E + P. (1.69)

When dipoles are always oriented along the direction of applied electric field,

displacement vector D is parallel to the applied electric field E, medium is called

isotropic [23]. This is the case with the media which has same properties in all the

directions.

In an isotropic media, we have

P = ε0χE⇒ P ∥ E. (1.70)
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Thus,

D = εE⇒D ∥ E. (1.71)

where ε = ε0(1 + χ) is a scalar quantity, called dielectric permittivity, and χ is

electric susceptibility.

But, if the structure is not symmetric then dipoles may orient themselves in a

direction other than field E due to restoring forces from all the directions. As a

result P ∦ E. Such a medium is called anisotropic. In such a medium, we have

Dx = εxxEx + εxyEy + εxzEz,

Dy = εyxEx + εyyEy + εyzEz,

Dz = εzxEx + εzyEy + εzzEz.

(1.72)

Or,

⎛
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⎜
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Dx
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⎞
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⎞
⎟
⎟
⎟
⎟
⎠

. (1.73)

Or,

D = ¯̄ε E. (1.74)

In component form,

Di = ∑
j

εijEj ; i, j = 1,2,3. (1.75)

It can be shown that the ¯̄ε tensor is symmetric; i.e,

εxy = εyx, εyz = εzy, εxz = εzx. (1.76)

One can rotate the coordinate system such that the ε matrix becomes diagonal,

this coordinate system is known as principal axis coordinate system [23] and ¯̄ε takes

the following form:

¯̄ε =

⎛
⎜
⎜
⎜
⎜
⎝

εxx 0 0

0 εyy 0

0 0 εzz

⎞
⎟
⎟
⎟
⎟
⎠

. (1.77)
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In the principal axis system, if we rewrite the diagonal elements of ¯̄ε tensor as

εx, εy, εz : Principal permittivity

then

kx =
εx
ε0
, ky =

εy
ε0
, kz =

εz
ε0

: Dielectric constant

nx =
√
kx, ny =

√
ky, nz =

√
kz : Refractive indices.

(1.78)

Case(I): If εx = εy = εz, then medium is said to be isotropic, for example: glass.

Case(II): If εx = εy ≠ εz, then medium is said to be uniaxial anisotropic medium,

for example: quartz.

Case(III): If εx ≠ εy ≠ εz, then medium is said to be biaxial anisotropic medium,

for example: mica.

1.6.2 Non-linearity

In the linear optics, the response of a medium to an applied electric field E is

given by

P = ε0 ¯̄χE . (1.79)

This is known as linear approximation [23]. When the applied E field becomes

very large compared to the inter-atomic fields in the medium then linear approx-

imation fails. The oscillators are no more harmonic, and induced polarization is

given by

Pi = ε0χ
(1)
ij Ej + ε0χ

(2)
ijkEjEk + ε0χ

(3)
ijklEjEkEl + ..... (1.80)

where χ(1)ij , χ(2)ijk , and χ(3)ijkl are linear, second-, and third-order nonlinear optical

susceptibilities, respectively. The χ(2)ijk plays a very important role in many nonlin-

ear optical phenomena, e.g. second harmonic generation, parametric generation,

etc. It has 27 elements and if a medium possesses center of inversion symme-

try then all the 27 elements vanish and such a crystal doesn’t exhibit nonlinear

effects.

• We will now discuss some basic concepts related to Spontaneous Parametric

Down-Conversion and how phase matching is achieved in a birefringent
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medium. This process is an important tool for the generation of single and

entangled photons.

1.7 Spontaneous Parametric Down-Conversion

Generally speaking, Spontaneous Parametric Down-Conversion (SPDC) [24, 25]

is the process by which a parent photon decays into arbitrary number of lower

energy daughter photons. For our purposes, we identify SPDC as a second order

non-linear optical process wherein a high energy pump photon (ωp), in the pres-

ence of a non-linear medium, spontaneously splits into two lower energy pho-

tons; historically known as signal (photon with higher frequency, ωs), and idler

(photon with lower frequency, ωi), due to scattering by the zero point fluctuation

of vacuum. This process is known as SPDC because it is generated by quan-

tum vacuum fields (spontaneous), initial and final quantum mechanical states

of the medium are identical and photon energy is always conserved (paramet-

ric), and signal and idler frequencies are lower than the pump frequency (down-

conversion). It is also known as spontaneous parametric scattering (SPS), and

optical parametric generation (OPG). An example of type-II SPDC process (dis-

cussed below) resulting in intersecting cones is shown below.

The SPDC is a three-wave mixing process which utilizes the second-order

non-linear susceptibility, χ(2). It satisfies energy and momentum conservation,

collectively known as phase matching condition (discussed below). If the ener-

gies of the signal and idler photons are equal (different), the process is known

as degenerate (non-degenerate) SPDC. The daughter photons may be correlated

in energy, momentum, time and spatial degrees of freedom. Generally, these

photons posses only classical correlations and special techniques need to be em-

ployed to make them entangled.

1.7.1 Phase matching technique

Consider a non-centro-symmetric uniaxial birefringent crystal. For efficient SPDC

process, it is required that the phase velocities of all the interacting waves (pump,
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signal, and idler) are equal, so that the intensity of down-converted signal can

coherently build up throughout the crystal at the expense of pump beam. If the

phase velocities of the pump, signal, and idler were different then the energies

would be exchanged back and forth between them, resulting in inefficient SPDC.

The frequencies and wave vectors of the three-wave interaction is governed by

the following energy and momentum conservation laws, known as phase matching

condition [24-26]:

h̵ωp = h̵ωs + h̵ωi , (1.81a)

kp = ks + ki +∆k. (1.81b)

where kp, ks, and ki are the k vectors corresponding the frequencies ωp, ωs,

and ωi of the pump, signal, and idler photons respectively, and ∆k is the phase

mismatch term.

γs(ωs)

γi(ωi)
Time

γp(ωp)

(a) Feynman diagram

ωp

ωs

ωi

(b) Energy conservation

kp

ks ki

∆k

(c) Momentum conservation

Figure 1.4: Non-collinear phase matching condition for the SPDC process where a pump

photon having energy h̵ωp gets absorbed and two lower energy photons h̵ωs (signal) and

h̵ωi (idler) get emitted. The kp, ks and ki are the momentum vectors of the pump, signal,

and idler, respectively.

Phase matching is achieved whenever ∆k = 0. When all k vectors are parallel,

it is called collinear phase matching and when the k vectors are non-parallel, it is

called non-collinear phase matching. An example of non-collinear phase matching
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is shown in Fig. 1.4.

Now,

k =
nω

c
î . (1.82)

where, n is the refractive index at frequency ω, c is the velocity of light in

vacuum, and î is the unit vector parallel to k.

Using Eq. (1.82), under phase matching condition, Eq. (1.81b) can be rewritten

as

npωpîp = nsωsîs + niωiîi. (1.83)

If all the three waves propagate with parallel wave normals in the crystal, i.e.

îp = îs = îi, then Eq. (1.83) reduces to

np =
ωs
ωp
ns +

ωi
ωp
ni . (1.84)

There are two different ways in which phase matching condition can be achieved:

type-I and type-II phase matching.

1) Type-I phase matching: The signal and idler, both have same polarization,

i.e. either both are o-rays or both e-rays, but orthogonal to pump polarization. In

the case of a negative uniaxial crystal (no > ne), an extra-ordinary polarized high en-

ergy pump photon down-converts into two ordinary polarized low energy pho-

tons.

kep(θ) → kos + koi . (1.85)

where θ is the angle between the pump propagation direction and the optic

axis of the crystal, inside it. Whereas, in the case of a positive uniaxial crystal (no <

ne), an ordinary polarized high energy pump photon down-converts into two

extra-ordinary polarized low energy photons.

kop → kes(θ) + kei(θ). (1.86)

As an example, schematic of a type-I SPDC source in paired-crystal geometry

(more details can be found in the next chapter [2]) resulting in a pair of concentric

overlapping cones is shown in Fig. 1.5. The cross section of such a SPDC cone is
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a ring in the non-collinear configuration and a Gaussian spot in the collinear con-

figuration as shown in Fig. 1.6. These images were captured from SPDC sources

in our lab by Andor CMOS camera.

Figure 1.5: Schemtaic of a type-I non-collinear SPDC process resulting in concentric

cones. A pair of photons collected from diamtrically opposite sides of the ring will be

polarizatiion entangled. (Image Credit: S. N. Sahoo)
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Figure 1.6: Type-I SPDC ring in collinear (left) and non-collinear (right) configurations

imaged by Andor CMOS camera.

2) Type-II phase matching: The signal and idler have orthogonal polariza-

tions, i.e., if one is e-ray, other is o-ray. In the case of a negative uniaxial crystal,

an extra ordinary polarized high energy pump photon down-converts into one

ordinary and one extra-ordinary polarized low energy photons.

kep(θ) → kes(θ) + koi . (1.87)

Whereas, in the case of a positive uniaxial crystal, an ordinary polarized high

energy pump photon down-converts into one ordinary and one extra-ordinary

polarized low energy photons.

kep(θ) → kos + kei(θ). (1.88)

As an example, schematic of a type-II SPDC source resulting in intersecting

cones is shown in Fig. 1.7. The cross section of such a SPDC cone is a pair of in-

tersecting rings in the non-collinear configuration and rings just touch each other

in the collinear configuration as shown in Fig. 8. These images were captured

from SPDC sources in our lab by Andor CMOS camera.
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Figure 1.7: Schematic of type-II non-collinear SPDC process resulting in intersecting

cones [27].

Figure 1.8: Type-II SPDC ring in collinear (left) and non-collinear (right) configurations

imaged by Andor CMOS camera. In the overlapping region of the two rings, one cannot

comment whether which ring the photon belongs to, hence a pair of photons collected from

these regions will be polarization entangled.
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It should be noted that phase matching condition may not be satisfied in

all uniaxial crystals. The desirable optical properties of a crystal are high non-

linearity, large birefringence, and small dispersion. Depending on the relative

orientation of the k vectors of pump, signal, and idler, phase matching is called

collinear when all k vectors are parallel to each other, and non-collinear when the

k vectors are non-parallel.

The refractive indices of the e-ray (ne) and o-ray (no) propagating in a uniaxial

with a common wave normal at an angle θ to the optic axis are given by,

n(o) = no , (1.89a)

n(e)(θ) =
none

[n2
e sin2(θ) + n2

o cos2(θ)]1/2
. (1.89b)

where n0 and ne are ordinary and extraordinary refractive indices of the crystal.

As an example, we choose BBO which is a negative uniaxial crystal with point

symmetry 3. The effective non-linear optical constants [23] of BBO for type-I

phase matching are given by

deff = [d11 cos(3φ) − d22 sin(3φ)] cos(θ) + d31 sin(θ), (1.90)

where θ and φ are usual polar and azimuthal angles.

The Sellmier’s equation for BBO are given by

n2
o = 2.7359 +

0.01878

λ2 − 0.01822
− 0.01354λ2,

n2
e = 2.3753 +

0.01224

λ2 − 0.01667
− 0.01516λ2.

(1.91)

where λ is in microns. For λ = 0.405 µm, we get no = 1.611 and ne = 1.544.

If no and ne are known at each of the frequencies ωp, ωs, and ωi then the phase

matching angle θpm can be calculated for type-I or type-II phase matching using

Eq. (1.84) and appropriate condition as given in Eq. (1.89). An example of phase

matching for negative uniaxial crystal is shown in Fig. 1.9.
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Z

Y

î

θpm

O

Optics axis

Figure 1.9: Wave surfaces for a negative uniaxial crystal. The blue curves show the

wave surfaces at fundamental frequency and red curves show the wave surfaces for down-

converted frequency. The unit vector î points in the direction of index matched wave

normals, and θpm is the phase matching angle.

Although SPDC process produces the brightest photon sources, the efficiency

of SPDC is about 1 in 109. Hence, we use “Non-depleted pump approximation"

for SPDC process. In the semi-classical analysis of SPDC, the pump beam is

treated classically, and signal and idler fields are quantized [25]. The interaction

Hamiltonian is then written as

Ĥ = ∫
v
d3r χ(2)Ep(r, t)Ê

(−)
s (r, t)Ê

(−)
i (r, t) + h.c.

=
1

v ∫v
d3r χ(2)Epe

i(kp.r−ωt) ∑
ks,m

P̂ks,m

√
h̵ωks
2ε0

â†
ks,m

ei(ks.r) ∑
ki,n

P̂ki,n

√
h̵ωki
2ε0

× â†
ki,n

ei(ki.r) + h.c.

(1.92)

where kp,ks,ki are the pump, signal and idler wave vectors, and P̂kp , P̂ks , P̂ki are

corresponding polarization vectors.

As soon as pump beam enters the non-linear crystal, SPDC process begins.

The phase matching condition (discussed above) ensures that the down-conversion

probability amplitudes add constructively throughout the crystal.
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Chapter 2

Preparation and characterization of

polarization entangled photon source

In this chapter, we discuss the experimental techniques for preparation and char-

acterization of a polarization Entangled Photon Source (EPS). We give a theo-

retical framework for and experimental realization of a Spontaneous Parametric

Down-Conversion (SPDC) based type-I polarization-entangled photon source.

The two-crystal geometry, where optic axes of the two crystals are orthogonal

to each other, is used in type-I phase matching to produce the polarization entan-

gled photons by pumping it with a diagonally polarized laser beam. This scheme

causes the spatial and temporal walk-offs leading to decoherence in such sources

when Continuous Wave (CW) diode lasers with low coherence time are used as

pump. We discuss the origin of decoherence mechanism and its compensation

using specially designed crystals. The source is characterized by complete two-

qubit Quantum State Tomography (QST) - a technique to reconstruct the state

(density matrix) of an unknown ensemble of quantum systems through a series

of measurements.

To begin with, we introduce the concept of tomography in classical and quan-

tum systems and then give a brief introduction to Stokes parameter and how

polarization state of light can be expressed in terms of Stokes parameters. This is

followed by experimental setup for the measurement of Stokes parameters and

its relation to polarization density-matrix of qubits. Then we give a detailed dis-
39
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cussion on single- and two-qubit QST. The tomographic measurements are in-

evitably affected by statistical errors, imperfect measurement settings, and device

imperfections and if we directly reconstruct the density matrix from such mea-

surements, the state may not be physical. To avoid this issue, we use Maximum

Likelihood Estimation (MLE) to ensure that the reconstructed density matrices be

necessarily physical - i.e, Hermitian, unit trace, and positive, even with imperfect

measurements.

Degree of entanglement is quantified by computing Concurrence of the recon-

structed density matrix and closeness of the reconstructed state with the ideal/fiducial

state is quantified by fidelity which is a measure of overlap between the two

states. Effect of spectral filtering on the purity and Concurrence of two-qubit

entanglement is discussed. In the end, we briefly comment on the two-qubit en-

tanglement characterization by measuring visibility of entanglement and make a

remark on how Bell-state fidelity can be inferred by a smaller set of measurements

in Mutually Unbiased Bases (MUBs).

2.1 Quantum state tomography (QST)

The word tomography has originated from greek words ‘tomos’ meaning ‘slice

or section’ and ‘graphein’ meaning ‘to write’. Thus, the word ‘tomography’ can be

loosely translated to ‘section imaging’. A very popular injury diagnosing tool in

medical science is what is known as computerized tomography scan (or CT scan)

which uses a programmed computer and rotating X-ray machine to generate dif-

ferent cross-sectional images of the human body. From a set of images that con-

tain reduced information about the object, the complete object is reconstructed.

For example, the 3D content of a picture can be extracted from several 2D pictures

taken from different directions. This process of generating images is known as to-

mography, the device used is called tomograph, and the image generated is called

tomogram. This is also the basic idea of quantum state tomography (QST) wherein

a series of measurements (known as tomographic set) are performed in different

bases onto the quantum system for complete characterization of the quantum
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state.

While characterizing the classical systems, it may be possible to perform a

series of measurements on the same system, hence a single copy of the classical

system would suffice for its complete characterization. But, in the case of quan-

tum systems, from the measurement postulate of quantum mechanics we know

that the very act of measurement disturbs the state of the quantum system being

measured. Hence, further measurements on the same system wouldn’t give any

meaningful information. Due to this limitation, QST must be performed on an

ensemble of identically prepared systems in several stages. Therefore, QST can

be interpreted as a technique to reconstruct the state of unknown quantum sys-

tem by doing measurements over an ensemble of identically prepared particles.

We will first discuss the ideal tomography of a single qubit followed by two-qubit

system. Further generalization to multipartite systems is straight forward. In or-

der to understand the single-qubit tomography, let us first understand the stokes

parameter representation of polarization state of light.

2.1.1 Stokes parameter representation of polarized light

Let us consider a light wave whose x- and y-components of the electric field are

given by

Ex(t) = Exo cos(ωt + δx) , (2.1a)

Ey(t) = Eyo cos(ωt + δy) , (2.1b)

where Exo and Eyo are the electric field amplitudes corresponding to x- and y-

components of the field, respectively, ω is the instantaneous angular frequency,

and δx, δy are the phase factors.

Eqs. (2.1a) and (2.1b) can be combined and rewritten as

E2
x(t)

E2
xo

+
E2
y(t)

E2
yo

−
2Ex(t)Ey(t)

ExoEyo
cos(δ) = sin2(δ) , (2.2)

where δ = δy − δx is the relative phase between and x- and y-components of the

field. The Eq. (2.2) represents the equation of an ellipse, known as polarization

ellipse.
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In order to represent Eq. (2.2) in terms of experimentally observable quantity

of the optical field, we take an average over time which is given by

⟨E2
x(t)⟩

E2
xo

+
⟨E2

y(t)⟩

E2
yo

−
2⟨Ex(t)Ey(t)⟩

ExoEyo
cos(δ) = sin2(δ) , (2.3)

where

⟨Ei(t)Ej(t)⟩ = lim
t→T

1

T ∫
T

0
Ei(t)Ej(t)dt ; i, j = x, y. (2.4)

On multiplying Eq. (2.3) by 4E2
xoE

2
yo, we get

4E2
yo⟨E

2
x(t)⟩+4E2

xo⟨E
2
y(t)⟩−8ExoEyo⟨Exo(t)Eyo(t)⟩ cos(δ) = [2ExoEyo sin(δ)]2 (2.5)

Using Eq. (2.4), time average of Eq. (2.1a) and (2.1b) can be written as

⟨E2
x(t)⟩ =

1

2
E2
xo , (2.6a)

⟨E2
x(t)⟩ =

1

2
E2
xo , (2.6b)

⟨Ex(t)Ey(t)⟩ =
1

2
ExoEyo cos(δ) . (2.6c)

Substituting values from Eq. (2.6) into Eq. (2.3), we get

2E2
yoE

2
xo + 2E2

xoE
2
yo − [2ExoEyo cos(δ)]2 = [2ExoEyo sin(δ)]2 . (2.7)

Upon adding and subtracting E4
xo +E

4
yo in Eq. (2.7) and rewriting, we get

(E2
xo +E

2
yo)

2 − (E2
xo −E

2
yo)

2 − (2ExoEyo cos(δ))2 = (2ExoEyo sin(δ))2 (2.8)

Let us express quantities in the parentheses in Eq. (2.8) as follows:

S0 = E
2
xo +E

2
yo , (2.9a)

S1 = E
2
xo −E

2
yo , (2.9b)

S2 = 2ExoEyo cos(δ) , (2.9c)

S3 = 2ExoEyo sin(δ) . (2.9d)

Using Eq. (2.9) in Eq. (2.8), we get

S2
0 = S

2
1 + S

2
2 + S

2
3 . (2.10)

The parameters {Si} as given by Eq. (2.9) are the un-normalized Stokes param-

eters which were first introduced by Sir G. G. Stokes in 1852 [1]. It is clear that
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the Stokes parameters are the observables of optical field (intensity) on the po-

larization ellipse and hence real quantities. The Stokes parameter S0 represents

the total intensity of light. The parameters S1, S2, and S3 represent the horizon-

tal/vertical, diagonal/anti-diagonal and right-/left-circular polarization compo-

nents, respectively.

Using Schwarz’s inequality, we find that for an arbitrary state of polarized

light, the Stokes parameters follow the relation:

S2
0 ≥ S

2
1 + S

2
2 + S

2
3 , (2.11)

where equality holds for polarized light and inequality for partially polarized

light.

For polarization ellipse represented by Eq. (2.2), the angle of orientation ψ,

and ellipticity angle χ of the ellipse [2, 3] are given by

tan(2ψ) =
2ExoEyo cos(δ)

E2
xo −E

2
yo

, (2.12a)

sin(2χ) =
2ExoEyo sin(δ)

E2
xo +E

2
yo

. (2.12b)

From Eqs. (2.9) and (2.12), we get

tan(2ψ) =
S2

S1

, (2.13a)

sin(2χ) =
S3

S0

. (2.13b)

From Eqs. (2.13a) and (2.13b), we get S2 = S1 tan(2ψ) and S3 = S0 sin(2χ).

Substituting these values in Eq. (2.10), we get

S1 = S0 cos(2χ) cos(2ψ) , (2.14a)

S2 = S0 cos(2χ) sin(2ψ) , (2.14b)

S3 = S0 sin(2χ) . (2.14c)
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Let us arrange these in the from of Stokes vector as follows:

S = S0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

cos(2χ) cos(2ψ)

cos(2χ) sin(2ψ)

sin(2χ)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.15)

We get normalized Stokes parameters (si) by dividing the un-normalized Stokes

parameters Si by S0.

s ∶=
S

S0

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

cos(2χ) cos(2ψ)

cos(2χ) sin(2ψ)

sin(2χ)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s0

s1

s2

s3.

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.16)

Let us recall that the Spherical polar coordinates (r, θ, φ) are related to Cartesian

coordinates (x, y, z) as

x = r sin(θ) cos(φ) , (2.17a)

y = r sin(θ) sin(φ) , (2.17b)

z = r cos(θ) . (2.17c)

On comparing Eq. (2.17) with (s1, s2, s3) in Eq. (2.16), we get

r = 1 , (2.18a)

θ = 90 − 2χ , (2.18b)

φ = 2ψ . (2.18c)

The polarization state of light can be represented by stokes parameter on the

surface of unit radius sphere, known as Poincare sphere, as illustrated in Fig. 2.1

below.
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Figure 2.1: Poincare sphere representation of polarization state of light depicting the

stokes parameter [2].

2.1.2 Single-qubit tomography

A single-qubit’s polarization density matrix ρ̂ can be uniquely represented by its

Stokes parameters {s0, s1, s2, s3} as follows [4-7]:

ρ̂ =
1

2

3

∑
i=0
siσ̂i , (2.19)

where s0 is normalized to one (by definition, s0 = Tr[ρ̂] = 1), and σ̂i’s are the Pauli

spin matrices given by

σ̂0 =
⎛
⎜
⎝

1 0

0 1

⎞
⎟
⎠
, σ̂1 =

⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠
, σ̂2 =

⎛
⎜
⎝

0 −i

i 0

⎞
⎟
⎠
, σ̂3 =

⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠
. (2.20)

The Stokes parameters are, thus, the real coefficients of expansion of a single

qubit polarization density matrix in terms of the Pauli matrices (σi). If we rewrite

Eq. (2.19) using (2.20), we get

ρ̂ =
1

2

⎛
⎜
⎝

s0 + s3 s1 − is2

s1 + is2 s0 − s3

⎞
⎟
⎠
. (2.21)
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Invoking the condition of non-negativity for a density matrix (det(ρ) ≥ 0) on

Eq. (2.21), we get

s2
0 + s

2
1 + s

2
2 + s

2
3 ≤ 2 , Or

s2
1 + s

2
2 + s

2
3 ≤ 1 ; (s0 = 1).

(2.22)

For all pure states ∑3
i=1 s

2
i = 1, for mixed states ∑3

i=1 s
2
i < 1, and ∑3

i=1 s
2
i = 0 for

maximally mixed states. Given the density matrix, the stokes parameters si can

be found by

si = Tr [σ̂iρ̂] . (2.23)

One can define degree of polarization (DOP) of a single photon source using

the stokes parameter as follows:

DOP =
√
s2

1 + s
2
2 + s

2
3 . (2.24)

For a pure polarization state, DOP = 1 and that for a maximally mixed state

DOP = 0, thus, the stokes parameters for maximally mixed state would be {1,0,0,0}.

Measurement of the single-qubit Stokes parameter

The Stokes parameters are defined from a set of four intensity measurements [4]:

(i) with a filter that transmits 50% of the incident radiation, regardless of its polar-

ization, (ii) with a polarizer that transmits only horizontally polarized light, (iii)

with a polarizer that transmits only light polarized at 45○ to the horizontal, and

(iv) with a polarizer that transmits only right-circularly polarized light. Physi-

cally, each of these Stokes parameters correspond to a specific pair of projective

measurements as given below [4].

s0 = P∣H⟩ + P∣V ⟩ =
N∣H⟩ +N∣V ⟩

N∣H⟩ +N∣V ⟩
, (2.25a)

s1 = P∣D⟩ − P∣A⟩ =
N∣D⟩ −N∣A⟩

N∣D⟩ +N∣A⟩
, (2.25b)

s2 = P∣R⟩ − P∣L⟩ =
N∣R⟩ −N∣L⟩

N∣R⟩ +N∣L⟩
, (2.25c)

s3 = P∣H⟩ − P∣V ⟩ =
N∣H⟩ −N∣V ⟩

N∣H⟩ +N∣V ⟩
. (2.25d)

where P∣φ⟩ denotes the projection probability of the ensemble of photons in state

ρ̂ onto the bases state ∣φ⟩.
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If we use single photon detectors then the number of photons (N∣φ⟩) detected

for a fixed acquisition time, say τ , are related to the projection probability (P∣φ⟩) as

given on the right side of Eq. (2.25). The three orthogonal bases sets: {∣H⟩, ∣V ⟩},

{∣D⟩, ∣A⟩}, and {∣R⟩, ∣L⟩} are an example of mutually unbiased (MUB) set. The

measurement bases set for determining the Stokes parameters are not unique and

they are not required to be mutually unbiased either. However, the choice of

bases set in Eq. (2.25) are natural as they are the eigen states of the Pauli spin

matrices.

For single qubit tomography, we use quarter-wave plate (QWP), half-wave

plate (HWP), and polarizing beam-splitter (PBS) combination as shown in Fig. 2.2

below, for projecting the input state onto different bases states. Note that a PBS

transmits a horizontally polarized light and reflects vertically polarized light. The

wave-plate settings for different projectors in the transmitted arm of the PBS are

given in the table [2.1] below.

Detector

Signal

PBSHWPQWP

Figure 2.2: Schematic of the experimental set up for quantum state tomography of a

single qubit.
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S.N. QWP orientation wrt

fast axis (in Degree)

HWP orientation wrt

fast axis (in Degree)

Projection in the

transmitted arm

1. 0 0 ∣H⟩⟨H ∣

2. 45 0 ∣R⟩⟨R∣

3. 0 22.5 ∣L⟩⟨L∣

4. 45 22.5 ∣D⟩⟨D∣

5. 0 45 ∣V ⟩⟨V ∣

6. 45 67.5 ∣A⟩⟨A∣

Table 2.1: QST settings for projection onto different bases for single qubit.

Intuitive understanding of the single-qubit stokes parameter measurement

Let us now intuitively understand how different settings of QWP, HWP, followed

by a polarizer with transmission axis along horizontal direction (∣H⟩⟨H ∣ projec-

tion, or detection in the transmitted arm of the PBS) enables projection onto dif-

ferent bases in the QST setup (Fig. 2.2). Let us consider a polarization qubit on the

Poincare sphere. Using a QWP and a HWP, one can implement arbitrary unitary

operation on the system. If we include a polarizer with transmission axis oriented

along horizontal direction, then one can implement arbitrary projection operator

on the polarization Hilbert space of a single qubit. Action of a QWP and a HWP

whose fast axis makes an angle q and h, respectively, with respect to vertical, on

the polarization state of qubit are given by Jones matrix as given below.

Q(q) =
⎛
⎜
⎝

i − cos(2q) sin(2q)

sin(2q) i + cos(2q)

⎞
⎟
⎠

(2.26a)

H(h) =
⎛
⎜
⎝

cos(2h) − sin(2h)

− sin(2h) − cos(2h)

⎞
⎟
⎠

(2.26b)
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Jones matrix of a linear polarizer with transmission axis along horizontal di-

rection is given by

LPH =
⎛
⎜
⎝

1 0

0 0

⎞
⎟
⎠

(2.27)

When these components are placed as in Fig. 2.2, their general action for arbi-

trary settings of QWP, and HWP is given by

P∣x⟩⟨x∣ = LPH.H(h).Q(q) (2.28)

By choosing the appropriate settings of QWP and HWP angles, one can imple-

ment all the projections as given in Table [2.1]. Ideally, a single qubit QST requires

a set of three linearly independent measurements. Each of these measurements

specifies one degree of freedom, thus reduces the number of free parameters of

the unknown state’s Hilbert space by one. The first projective measurement lo-

cates the unknown state into a plane orthogonal to the measurement basis. The

second measurement locates the unknown state along the line of intersection of

the plane orthogonal to the current measurement basis and the plane located by

first measurement. In the end, third measurement locates the state at the pinpoint

on the Bloch sphere which is the point of intersection of the plane orthogonal to

the current measurement basis and the line located by the second measurement.

These steps can be understood from the Fig. (2.3) shown below [5].

Figure 2.3: Three digrams depict measurement along three linearly independent bases

(∣R⟩, ∣D⟩, and ∣H⟩ from left to right) which locate the state of single qubit (represented

by as an open circle in the Poincare sphere) in the Hilbert space [5].

.
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• Next, we will discuss a technique known as maximum likelihood estima-

tion to get the physical state from the set of non-ideal measurements as

discussed below.

2.1.3 Maximum likelihood estimation

As mentioned earlier, the density matrix representing a physical system must

fulfil the following conditions:

Tr [ρ] =1 (Normalization), (2.29a)

det(ρ) ≥0 (ρ is non-negative), (2.29b)

note that positivity of the matrix ρ̂ guarantees Hermiticity.

An ideal QST requires exact measurements to be performed on an ensemble

of infinite many systems to reveal the true probability distribution for different

projection measurement, which are then used to reconstruct the density matrix of

the system. Practically, any measurement has a finite sample size and each mea-

surement is bound to be affected by experimental imperfections, and thus, recon-

structed density matrix may not satisfy the above conditions. In such cases, a

theoretical fit to the experimental data is required. This is achieved by construct-

ing a density matrix in terms of the parameters to be fitted by an optimization

procedure known as maximum likelihood estimation (MLE).

The basic approach for MLE is the following [4].

1. A two-qubit density matrix has 15 independent parameters and one depen-

dent parameter that ensures normalization. Therefore, the first step is to

write a physical density matrix (i.e, normalized, hermitian, and positive)

depending on 16 real parameters {t1, t2, ....., t16}. Let us denote this density

matrix by ρ̂p(t1, t2, ...., t16).

2. We need to perform minimum 16 measurements to get hold of 16 indepen-

dent parameters of the density matrix. Let us denote the experimental data

set as {nν , ν = 1,2...16}. Next, define a likelihood function that captures
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how good ρ̂p(t1, t2, ...., t16) is for the experimental data. Let us denote the

likelihood function by L(t1, t2, ..., t16;n1, n2, ..., n16).

3. The objective is to find the optimum values of the parameters

{t
(opt)
1 , t

(opt)
2 , ....t

(opt)
16 } using numerical optimization techniques for which

the likelihood function is maximized or log-likelihood function is mini-

mized.

A detailed discussion on the execution of these steps is given in the following

section below.

T-matrix calculation

Let us first understand the MLE of a single qubit. Consider a T-matrix of the form

T =
⎛
⎜
⎝

t1 0

t3 + it4 t2

⎞
⎟
⎠
, (2.30)

where the real parameters t1, t2, t3, t4 are obtained by MLE fitting. Then the fitted

density matrix of a single qubit system can be defined through the T-matrix as

follows:

ρ̂ ∶=
T †T

Tr(T †T )
. (2.31)

Using Eq.(2.31) into (2.30) we get

ρ̂ =
1

t21 + t
2
2 + t

2
3 + t

2
4

⎛
⎜
⎝

t21 + t
2
3 + t

2
4 t2(t3 − it4)

t2(t3 + it4) t22

⎞
⎟
⎠
. (2.32)

It should be noted here that by construction all the properties of the density

matrix are satisfied by ρ̂. The purpose of MLE process is to find the global min-

imum (not the local minimum) and to achieve this it is important to start with

a good guess for the initial values of ti’s. To do so, we relate the ti’s with the

normalized stokes parameters si’s. Comparing Eq.(2.21) and (2.33), we get

s1 =
2t2t3

t21 + t
2
2 + t

2
3 + t

2
4

, (2.33a)

s2 =
2t2t4

t21 + t
2
2 + t

2
3 + t

2
4

, (2.33b)

s3 =
t21 − t

2
2 + t

2
3 + t

2
4

t21 + t
2
2 + t

2
3 + t

2
4

. (2.33c)
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Upon solving for ti’s, we get

t1 =

¿
Á
ÁÀ(1 − s2

1 − s
2
2 − s

2
3

(1 − s3)2
t2 (2.34a)

t3 =
s1

1 − s3

t2 (2.34b)

t4 =
s2

1 − s3

t2 (2.34c)

Thus we get the expressions for t1, t3, t4 in the form of normalized stokes pa-

rameter and parameter t2 for optimization.

Numerical optimization

For numerical optimization, we do Chi-squared test using ‘NMinimize’ routine

in Mathematica to find optimum set of t-parameters {t
(opt)
1 , t

(opt)
2 , ....t

(opt)
16 } which

minimizes the Likelihood function. These optimum t-parameters are then plugged

in to the Eq.(2.32) to get the likelihood density matrix which is by definition phys-

ical.

2.1.4 Two-qubit tomography

Like in single qubit case, the two-qubit polarization state is characterized by a

density matrix

ρ̂ =
1

4

3

∑
i,j=0

rijσ̂i ⊗ σ̂j (2.35)

where two photon stokes parameter rij are the real coefficient of expansion of

a two-qubit density matrix in terms of Pauli matrices σ̂i ⊗ σ̂j . Normalization of

the density matrix demands that r00 = Tr[ρ̂] = 1, and therefore the two-qubit

density matrix is characterized by 15 real parameters. The experimental setup for

characterizing two-qubit state is shown in the Fig. 2.4.
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PBSH1Q1

Signal

Detector

DetectorPBSH2Q2

Idler

Figure 2.4: Schematic of the experimental set up for quantum state tomography of two-

qubit state.

The measurement settings for two-qubit QST are listed in Table 2.2 below.
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Q1 settings H1 settings Q2 settings H2 settings Projection in
( in degree) ( in degree) ( in degree) ( in degree) transmitted arms

0 0 ∣HH⟩⟨HH ∣

45 0 ∣HR⟩⟨HR∣

0 0 0 22.5 ∣HL⟩⟨HL∣

45 22.5 ∣HD⟩⟨HD∣

0 45 ∣HV ⟩⟨HV ∣

45 67.5 ∣HA⟩⟨HA∣

0 0 ∣RH⟩⟨RH ∣

45 0 ∣RR⟩⟨RR∣

45 0 0 22.5 ∣RL⟩⟨RL∣

45 22.5 ∣RD⟩⟨RD∣

0 45 ∣RV ⟩⟨RV ∣

45 67.5 ∣RA⟩⟨RA∣

0 0 ∣LH⟩⟨LH ∣

45 0 ∣LR⟩⟨LR∣

0 22.5 0 22.5 ∣LL⟩⟨LL∣

45 22.5 ∣LD⟩⟨LD∣

0 45 ∣LV ⟩⟨LV ∣

45 67.5 ∣LA⟩⟨LA∣

0 0 ∣DH⟩⟨DH ∣

45 0 ∣DR⟩⟨DR∣

45 22.5 0 22.5 ∣DL⟩⟨DL∣

45 22.5 ∣DD⟩⟨DD∣

0 45 ∣DV ⟩⟨DV ∣

45 67.5 ∣DA⟩⟨DA∣

0 0 ∣V H⟩⟨V H ∣

45 0 ∣V R⟩⟨V R∣

0 45 0 22.5 ∣V L⟩⟨V L∣

45 22.5 ∣V D⟩⟨V D∣

0 45 ∣V V ⟩⟨V V ∣

45 67.5 ∣V A⟩⟨V A∣

0 0 ∣AH⟩⟨AH ∣

45 0 ∣AR⟩⟨AR∣

45 67.5 0 22.5 ∣AL⟩⟨AL∣

45 22.5 ∣AD⟩⟨AD∣

0 45 ∣AV ⟩⟨AV ∣

45 67.5 ∣AA⟩⟨AA∣

Table 2.2: QST settings for projection onto different bases for two-qubit system.
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For MLE in a two-qubit system, the T-matrix takes the form

T =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.36)

The other expressions in the previous section and the procedure to get the

physical density matrix remains exactly the same.

2.2 Preparation of the entangled photon source

High fidelity polarization-entangled photons are produced by the non-linear op-

tical process of SPDC in a two-crystal geometry [9-14]. Two identically cut beta-

Barium Borate (β − BaB2O4, also known as BBO) crystals with their optic axes

aligned orthogonal to each other are oriented such that the pump beam propa-

gation direction and optic axis of the first (second) crystal defines the horizon-

tal (vertical) plane. If a horizontally (vertically) polarized pump beam is inci-

dent on such a crystal, then down-conversion occurs in the first (second) crystal,

where pump beam is extraordinary polarized, due to type-I SPDC. This leads to

a down-conversion light cone of vertically (horizontally) polarized photons from

first (second) crystal. Under no pump depletion approximation, a diagonally po-

larized pump beam has equal probability of down-conversion in the either crys-

tals.

If spatial overlap of the two down-conversion cones emanating from two crys-

tals is high enough, then the SPDC polarization amplitudes from the two crys-

tals add coherently leading to the generation of an entangled state of the kind:

∣Ψ⟩ = [∣HH⟩ + exp(iφ)∣V V ⟩]/
√

2. The spatial overlap of the of the light cones is

defined by the parameter θdcL/D; where θdc is the cone opening angle, L is the

crystal thickness, and D is the pump beam diameter [9]. For coherent addition

of the down-converted polarization amplitudes from the two crystals, we must

have: θdcL/D >> 1.

Schematic of the experimental setup to produce and characterize type-I po-
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larization entangled photon source is shown in Fig. 2.5. We used a 100 mW,

CW diode laser having central wavelength at 405 nm and a bandwidth of 1.2

nm (Cobolt-06-01-Series) as pump. Two type-I BBO crystals in sandwich config-

uration (5 × 5 × 0.5 mm3 each, from Castech Inc. China) having their optic axis

orthogonal to each other and phase matched at θ = 28.9○ and φ = 0○ with half

opening angle of the cone equal to 3○ are used for generating entangled photons.

Time
Tagger

SPAD

SPAD

SMF

SMF

60 cm

10 cm 20 cm75 cm 15 cm

Laser
M0

M1

H0

P1

H1

TC

NLC

BD

L1

L2

M2

M4

M3

M5

H2
Q2

P2

H3

Q3

P3

AL

AL

BPF

BPF

Figure 2.5: Schematic of the experimental apparatus (not to scale) for preparation of
SPDC based type-I polarization entangled photon source using two crystal geometry and
characterization using quantum state tomography. Different symbols have the following
meaning: P, polarizing beam splitter; Q, quarter wave plate; H, half wave plate; NLC,
non-linear crystal; TC, temporal compensator; L, plano-convex lens; M, mirror; BPF,
bandpass filter; AL, aspheric lens, SMF, single mod fiber; SPAD, single-photon avalanche
diode; and TT, time tagger unit or coincidence module.

The polarization state of the pump beam is controlled using a HWP acting on

an input ∣H⟩ polarized beam as follows:

∣H⟩
HWP at θ
ÐÐÐÐ→ sin(2θ)∣V ⟩ + cos(2θ)∣H⟩. (2.37)
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When a laser beam in the polarization state given by Eq. (2.37) is incident on

the sandwich BBO crystal, it undergoes SPDC and resulting state is given by

∣Ψ⟩ = sin(2θ)∣HH⟩ + cos(2θ) exp(iφ)∣V V ⟩,

= α∣HH⟩ + β exp(iφ)∣V V ⟩.
(2.38)

where α = sin(2θ), β = cos(2θ), and relative phase φ depends on the specifics of

phase matching condition and crystal thickness. It can be controlled by tilting the

BBO crystals (which in turn changes the opening angle of the cone) or by placing

a tiltable quarter wave plate in the path of pump beam that introduces a relative

phase between H- and V-polarization components of the laser beam polarization.

If the pump beam is spectrally filtered and a CMOS camera is placed in front

of the crystal, one can image the SPDC cone in non-collinear configuration as

shown in Fig. 2.6. If certain conditions are satisfied (discussed in the next section),

then the photons emitted along the diametrically opposite sides of the cone are

found to be entangled.

Figure 2.6: SPDC ring of type-I polarization entangled photon source imaged by Andor
CMOS camera. Photon at the diametrically opposite sides of the cone are entangled.

For source characterization, we used QWP, HWP, followed by PBS on both

the sides to implement arbitrary projectors in the two-qubit Hilbert space as dis-



2.3. Decoherence due to walk-off 58

cussed in Section [2.1]. A total 36-measurements are performed for complete two-

qubit QST in the product bases. The SPDC photons are spectrally filtered using

810-10 nm band pass filters on either side and then coupled into single mode

fibers and coincidence measurement is performed for a fixed acquisition time of

100 s for each setting. For pump HWP oriented at 23.1○, we did the complete

two-qubit QST followed by maximum likelihood estimation to reconstruct the

density matrix and found that the state has a fidelity of 81.4% with the ideal state

∣ψ⟩ = sin(46.2○)∣HH⟩+ cos(46.2○)∣V V ⟩, concurrence = 0.669, and purity of the state

= 0.709. The real and imaginary parts of the density matrix are shown in Fig. 2.7.

Figure 2.7: The two-qubit entangled state reconstructed through QST. Left (right) figure
shows the real (imaginary) part of the density matrix. The reconstructed state had 81.4%

fidelity with the ideal state, concurrence = 0.669, and purity = 0.709.

Ideally, we expect a maximally entangled state to be produced with this pro-

cess but finite thickness of the BBO crystals and non-monochromatic pump beam

causes decoherence. This leads to drop in entangled state purity, fidelity, and

concurrence as discussed below.

2.3 Decoherence due to walk-off

There are two main processes of decoherence: Temporal walk-off and spatial

walk-off as discussed below [11-13].
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2.3.1 Temporal walk-off

“Spectral-temporal decoherence due to the timing information (Pump frequency

dependent phase when using low coherence time pumps such as free-running

diode lasers): Spectral decoherence [11] arises due to frequency-dependence of

the relative phase φ. It can be intuitively understood (especially in the case of

a pulsed pump) in the temporal domain (hence the term spectral-temporal de-

coherence) as follows: different propagation speeds of the pump and downcon-

version photons within the crystals leads to temporal which-crystal information.

The ∣HH⟩ photons emitted in the first crystal are delayed by ∆t compared to the

∣V V ⟩ photons generated in the second crystal. If this relative delay is compara-

ble to, or greater than, the pump coherence time, entanglement quality will be

reduced. This effect can be countered by “precompensating" the pump by pass-

ing it through a birefringent crystal before the downconversion crystals, which

reverses the effect of temporal walk-off as seen in the sandwich SPDC crystal."

Generation of entangled photons through SPDC process in a two-crystal ge-

ometry can be understood as follows: a V-polarized pump photon gets down-

converted in the first crystal (whose optic axis is in vertical plane) into a pair

of H-polarized photons, and a H-polarized pump photon gets down-converted

in the second crystal (whose optic axis is in horizontal plane) into a pair of V-

polarized photons. If these two processes occur in a coherent manner, i.e., they

are indistinguishable, the two down-converted polarization amplitudes are co-

herently added and the resultant state becomes an entangled state as given be-

low.

α∣H⟩ + β∣V ⟩
SPDC
ÐÐÐ→ α∣V V ⟩ + β exp(iφ)∣HH⟩. (2.39)

The relative phase φ depends on the optical path difference/delay between

the photons down-converted in the first and second crystals. It can be controlled

by a tilting a quarter-wave plate in the pump beam (not shown in Fig.2.5).
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Figure 2.8: Entangled photon generation and propagation inside the crystals. For clar-
ity, only signal photon trajectories are drawn. The “o" and “e" indicate ordinary and
extraordinary rays, respectively; Lc is the length of each crystal [14].

The propagation times for V- and H-polarized photons are given by [14]

τV =
Lc
2

[
1

cos(φ1)V o
SPDC

+
1

cos(φ2)V e
SPDC

] (2.40a)

τH =
Lc
2

[
1

V o
pump

+
1

V e
pump

+
1

cos(φ3)V o
SPDC

] (2.40b)

where V (o,e)(pump, SPDC) are group velocities, and angles φ1 = 1.807, φ2 = 1.84, and

φ3 = 1.806 are found by imposing the condition that signal and idler exit making

an angle 3○ with the pump.

The propagation delay within the birefringent crystal (5 mm thick each) is

given by

∆τ = τH − τV = 210fs. (2.41)

The coherence time of the pump for a CW diode laser (405 nm Cobolt-06-01-

Series) with 1.2 nm linewidth is given by

τc =
λ2

c∆λ
= 455fs. (2.42)

The temporal delay between the photons produced in the first an second crys-

tal leads to distinguishability by providing which crystal information leading to

decoherence. If ∆τ is the delay between the H and V components produced in

first and second crystals, and τc is the coherence time of pump beam then the off
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diagonal term of the two-qubit density matrix scales as exp(−∆τ/τc) and result-

ing density matrix is given by

ρ̂decohered =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣α∣2 0 0 αβ∗ exp(−∆τ/τc)

0 0 0 0

0 0 0 0

α∗β exp(−∆τ/τc) 0 0 ∣β∣2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.43)

Thus, the coherence term of the two-qubit density matrix reduces to 0.5 exp(−∆τ/τc) =

0.3152 as compared to 0.5, due to temporal walk-off alone.

2.3.2 Spatial walk-off

“Spatial decoherence [11] due to spatial mode (emission angle) dependent phase:

Ordinary polarized downconversion photons from the first crystal acquire an ad-

ditional phase in the second crystal, where they are extraordinarily polarized,

both because of spatial walk-off and the fact that they have to traverse the addi-

tional (i.e., the second) crystal. Three phase terms — the extraordinary phase φe,

ordinary phase φo, and external phase φ∆ -contribute to the total relative spatial

phase. Thus, collecting the photons with moderate-size irises (e.g., 5-mm diame-

ter) would greatly decohere the polarization entanglement."

Spatial decoherence can be eliminated by directing the downconversion pho-

tons through suitable birefringent compensating crystals that have the opposite

phase characteristics as that of the downconversion crystals, a technique called

spatial compensation. We have verified experimentally that in the case of single

mode fiber optic collection of entangled photons, spatial decoherence does not

occur.

2.4 Temporal walk-off pre-compensation

The BBO crystals give rise to a delay of 210 fs which causes spectro-temporal de-

coherence leading to a mixed state having a fidelity of 80% with the Bell state
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∣Ψ⟩ = [∣HH⟩ + ∣V V ⟩]/
√

2. To compensate this temporal delay of 210 fs, a BBO

(Quartz) precompensator of the thickness 1.61 mm (5.65 mm) is required. Since

we were using single-mode collection optics, we can ignore the spatial decoher-

ence effects.

2.4.1 Partial temporal compensation

To combat the spectral-temporal decoherence, initially, we used a 1.5mm thick

suboptimal type-II BBO crystal cut for θ = 42○ phase matching (5 × 5 × 1.5 mm3

from Castech Inc., China), available in our lab. It introduces a temporal delay

of 360 fs between e- and o-rays at 405 nm. Thus, when this type-II crystal is

used as pre-compensator, net delay would be 360 ± 210 = 570 fs, 150 fs. Thus,

in one orientation, it would increase the temporal delay to 570 fs whereas in the

orthogonal orientation, delay would be reduced to 150 fs as compared to 210 fs

delay due to down-converting crystals.

For pump HWP oriented at 23.1○, full two-qubit QST was performed for zero-

and ninety-degree orientations of the compensator followed by maximum likeli-

hood estimation to reconstruct the density matrix. For zero-degree, it was found

that the state fidelity, concurrence, and purity dropped to 53.83%, 0.115, and

0.4992, respectively, as compared to 81.4%, 0.669, and 0.709. This indicates that

the temporal delays are getting added for this orientation leading to drop in the

state properties.

Next, compensator was rotated by ninety-degrees and QST was performed. It

was found that the state fidelity, concurrence, and purity improved to 86.97%,

0.764, and 0.776, respectively. This implies that the temporal delay is getting

partially compensated for this orientation leading to improvement in the state

properties. Real and imaginary parts of the density matrix is shown in Fig. 2.9.
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Figure 2.9: The two-qubit entangled state reconstructed through QST with partial tem-
poral compensation. The left (right) figure shows the real (imaginary) part of the density
matrix. The reconstructed state has a fidelity of 86.97% with the ideal state, concurrence
= 0.764, and purity = 0.776.

2.4.2 Complete temporal compensation

A custom designed compensator with following specifications: 5 mm × 5 mm ×

(1.61 ± 0.05 mm) type-I BBO crystal cut for θ = 28.9○, φ = 0○, was procured from

(Castech Inc., China) for perfect temporal compensation. Again, for this com-

pensator also, there exist two orientations; one in which delays get added and

other for which delay, ideally, completely cancels out. After placing this pre-

compensator in correct orientation, QST was performed for different pump HWP

orientations.

For pump HWP at 22.5○ QST was performed and state was reconstructed us-

ing MLE. The reconstructed state had fidelity with ideal state:

∣ψ⟩ = sin(45○)∣HH⟩+ exp(iφ) cos(45○)∣V V ⟩, φ = 283○ = 93.46%, concurrence = 0.909,

purity = 0.891. The reconstructed state density matrix is given in Eq. (2.44) and

3D plot of the density matrix is shown in Fig.(2.10).
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ρexp =

⎛
⎜
⎜
⎜
⎜
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⎜
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⎜
⎝

0.486 −0.0346 − 0.008i 0.003 + 0.018i 0.101 + 0.441i

−0.035 + 0.008i 0.033 −0.005 + 0.001i −0.037 − 0.066i

0.003 − 0.018i −0.005 − 0.001i 0.002 0.018 + 0.006i

0.101 − 0.441i −0.0369 + 0.0659i 0.018 − 0.006i 0.479

⎞
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⎟
⎟
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⎟
⎟
⎟
⎟
⎠
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(2.44)

Figure 2.10: The two-qubit entangled state reconstructed through QST with partial tem-
poral compensation. The left (right) figure shows the real (imaginary) part of the density
matrix. The reconstructed state has a fidelity of 93.46% with the ideal state, concurrence
= 0.909 and purity = 0.891.

Another QST was performed for pump HWP at 13.1○ and state was recon-

structed using MLE. The reconstructed state had fidelity with ideal state (∣ψ⟩ =

sin(26.2○)∣HH⟩ + exp(iφ) cos(26.2○)∣V V ⟩, φ = 133○) = 95.03%, concurrence = 0.717,

purity = 0.929. The reconstructed state density matrix is given in Eq. (2.45) and

3D plot of the density matrix is shown in Fig.(2.11).
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ρexp =
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⎜
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⎜
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⎜
⎝

0.184 −0.028 + 0.0007i 0.0081 − 0.0006i 0.0654 + 0.349i

−0.0276 − 0.0007i 0.0272 −0.0078 + 0.0012i −0.0317 − 0.0949i
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Figure 2.11: The two-qubit entangled state reconstructed through QST with partial tem-
poral compensation. The left (right) figure shows the real (imaginary) part of the density
matrix. The reconstructed state has a fidelity of 95.03% with the ideal state, concurrence
= 0.717 and purity = 0.929.

Although after the near perfect temporal compensation, fidelity improved but

it was not close to the ideal state and purity was just ∼ 93%, we decided to inves-

tigate the spectral filtering condition and its effect on state properties.

2.5 Effect of spectral filtering on entanglement

The phase matching, however, cannot be perfect in real experimental situations

due to dispersion and the finite thickness of the nonlinear crystal. Therefore, the

real phase-matching condition always contains the phase-mismatch term and it

is precisely the phase-mismatch term that gives rise to the spectral bandwidth of

the SPDC process.
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Therefore, we used a 810-10 nm BPF instead of 800-40 nm BPF used earlier

for high collection efficiency. This lead to drop in the overall singles as well as

coincidence rate. Next, coincidence was optimized with the new BPF and QST

was performed for pump HWP at 23.1○ (near maximally entangled state) and

13.1○ (non-maximally entangled state required for the ESD expt).

The ideal two-qubit density matrix for pump HWP at 23.1○ is given by

ρideal =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.520938 0 0 0.499561

0 0 0 0

0 0 0 0

0.499561 0 0 0.479062

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.46)

Experimentally reconstructed density matrix using QST and maximum like-

lihood estimation is given in Eq. (2.47) below. This can be represented using 3D

plot of the real and imaginary parts of the density matrix as shown in Fig. 2.12

below.

ρexp =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.510 0.0206 + 0.0233i −0.0209 + 0.0199i 0.483 + 0.0104i

0.0206 − 0.0233i 0.0063 0.0012 + 0.00047i 0.0266 − 0.0279i

−0.0209 − 0.0199i 0.00115 − 0.00047i 0.0037 −0.0141 − 0.0183i

0.483 − 0.0104i 0.0266 + 0.0279i −0.0141 + 0.0183i 0.480

⎞
⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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.

(2.47)

The reconstructed state has following properties:

• Concurrence of the target/ideal state = 0.9991.

• Concurrence of the reconstructed state = 0.9652.

• Fidelity with the ideal state = 0.9785.

• Purity of the state = 0.9657.
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Figure 2.12: The two-qubit entangled state reconstructed through QST with perfect tem-
poral compensation and narrow spectral filtering using 810-10 nm band pass filters for
pump HWP at 23.1○. Left (right) figure shows the real (imaginary) part of the density
matrix. The reconstructed state has a fidelity of 97.86% with the ideal state.

Next, QST was performed for pump HWP at 13.1○. The ideal/target state

density matrix is given by

ρideal =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.1949 0 0 −0.1158 − 0.3788i

0 0 0 0

0 0 0 0

−0.1158 + 0.3788i 0 0 0.8051
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.48)

Experimentally reconstructed density matrix using QST and maximum like-

lihood estimation is given in Eq. (2.49) below. This can be represented using 3D

plot of the real and imaginary parts of the density matrix is shown in Fig. 2.13

below.
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ρexp =
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Figure 2.13: The two-qubit entangled state reconstructed through QST with nearly per-
fect temporal precompensation and narrow spectral filtering using 810-10 nm band pass
filters for pump HWP at 13.1○. Left (right) figure shows the real (imaginary) part of the
density matrix. The reconstructed state has a fidelity of 97.88% with the ideal state.

The reconstructed state has the following properties:

• Concurrence of the ideal state = 0.7923.

• Concurrence of the reconstructed state = 0.7659.

• Fidelity with the ideal state = 0.9788.

• Purity of the state: 0.9617.
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2.6 Visibility of entanglement

The experimental setup to measure visibility of entanglement is same as shown

in Fig. 2.1. For measuring visibility in ∣HH⟩ (∣V V ⟩) bases, one one side QWP is set

to zero degree and HWP is set to zero degree (45○) so that it acts as ∣H⟩⟨H ∣ (∣V ⟩⟨V ∣)

projector and on the other side HWP is rotated from 0○ to 140○ (keeping QWP to

zero degree) in the steps of 2○ and coincidence was recorded for fixed acquisition

time of 100 s each. Likewise, for measuring visibility in ∣LL⟩⟨LL∣ bases, one one

side, HWP was set to zero degree and QWP was set to 22.5○ such that it it acts

as or ∣L⟩⟨L∣ projector and QWP on the other side is rotated from 0○ to 140○ and

coincidence is recorded for a fixed acquisition time of 100 s each. Normalized

coincidence is plotted as a function of the waveplate orientation for three different

visibility measurements.
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Figure 2.14: Result of the entanglement visibility measurement in
∣HH⟩, ∣V V ⟩, and ∣LL⟩ bases. Note that when this data was taken, soure fidelity
was about ∼ 88%.
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In the case of Bell states, one can give a lower bound on the fidelity of entan-

glement by performing Visibility measurement in two mutually unbiased bases,

say ∣HV ⟩ and ∣DA⟩. Fidelity of the experimental state from Bell state is then de-

fined as the average value of visibility in the two-photon correlation function

obtained in the two mutually unbiased bases.
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Chapter 3

Revisiting comparison between
entanglement measures

Given a non-maximally entangled state, an operationally significant question is

to quantitatively assess as to what extent the state is away from the maximally

entangled state, which is of importance in evaluating the efficacy of the state for

its various uses as a resource. It is this question which is examined in this chap-

ter for two-qubit pure entangled states in terms of different entanglement mea-

sures like Negativity (N), Logarithmic Negativity (LN), and Entanglement of For-

mation (EOF). Although these entanglement measures are defined differently, to

what extent they differ in quantitatively addressing the earlier mentioned ques-

tion has remained uninvestigated. Theoretical estimate in this chapter shows that

an appropriately defined parameter characterizing the fractional deviation of any

given entangled state from the maximally entangled state in terms of N is quite

different from that computed in terms of EOF with their values differing up to

∼ 15% for states further away from the maximally entangled state. Similarly, the

values of such fractional deviation parameters estimated using the entanglement

measures LN and EOF, respectively, also strikingly differ among themselves with

the maximum value of this difference being around 23%. This analysis is comple-

mented by illustration of these differences in terms of empirical results obtained

from a suitably planned experimental study. Thus, such appreciable amount of

quantitative non-equivalence between the entanglement measures in addressing

the experimentally relevant question considered in the present chapter highlights
72
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the requirement of an appropriate quantifier for such intent. We indicate direc-

tions of study that can be explored towards finding such a quantifier.

3.1 Introduction: Background and Motivation

Entanglement lies at the core of Quantum Foundational studies leading to Infor-

mation Theoretic applications and forms the bedrock of Quantum Computation.

One of the key concepts used for studying entanglement is what is known as En-

tanglement Measure (EM) which is invoked for quantifying entanglement. For

this purpose, different EMs have been proposed. It was argued by Bennett et

al. [1, 2] that the Entanglement of Formation (EOF), intended to quantify the re-

sources needed to create a given entangled state, satisfies the criterion of being

nonincreasing under local operations and classical communication (LOCC); for

bipartite pure states it is given by the von Neumann entropy of reduced density

matrix relevant to either Alice or Bob, also known as Entanglement Entropy. Jus-

tification of the above EM from the thermodynamic considerations was given by

Popescu et al. [3], followed by a comprehensive analysis due to Vedral et al. [4,5]

and Vidal [6] who argued that only one EM is not sufficient to completely quan-

tify entanglement of pure states for bipartite systems. Subsequently, Życzkowski

et al. [7,8] defined Negativity as a “quantity capable of measuring a degree of

entanglement". Later, Negativity was proved to be a valid EM [9-11] by showing

that it is an entanglement monotone, i.e., nonincreasing under LOCC.

In this chapter, we have used the particular expression of Negativity (N) given

by Vidal and Werner [10], who also defined another quantity called Logarithmic

Negativity (LN = log2(2N+1)) as a valid EM which exhibits a form of monotonic-

ity under LOCC (non-increasing under deterministic distillation protocols) and

signifies an upper bound of distillable entanglement. In a separate line of work,

for bipartite qubit states, Wootters [12] expressed EOF as a monotonic function

of a quantity called ‘Concurrence’ and argued that Concurrence can also be re-

garded as a measure of entanglement. Note that, for bipartite pure qubit states,

Concurrence is twice of Negativity [13], thus implying that EOF is also a mono-
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tonic function of N and LN for such states. The Fig. 3.1 below shows the compar-

ison of different EMs for a two-qubit pure state: ∣ψ⟩ = c0∣00⟩ + c1∣11⟩, where c0 and

c1 are the Schmidt coefficients. It is worth noting that (a) Concurrence and twice

Negativity, and (b) Entanglement of Formation and Entanglement Entropy match

with each other. Therefore, in this work, while considering essentially two-qubit

pure states, we focus on N, LN and EOF as the relevant EMs as these are the ones

which do not overlap.

0.2 0.4 0.6 0.8 1.0
c0

0.2

0.4

0.6

0.8

1.0

EMs

C

2N

LN

EOF

EE

Figure 3.1: A comparison of different entanglement measures with respect to the state pa-
rameter c0 for two-qubit pure states. Here, C, N, LN, EOF, and EE denote Concurrence,
Negativity, Logarithmic Negativity, Entanglement of Formation, and Entanglement En-
tropy, respectively.

From the Fig. 3.1, it can be seen that although for any given two-qubit pure

state, the values of N, LN and EOF differ among themselves, these EMs are mono-

tonic with respect to each other. Hence, for comparing the amount of entangle-

ment between two-qubit pure states, N, LN and EOF are all equivalent in the

sense that all these EMs give the same result in answering the question as to

whether a given two-qubit pure state is more (less) entangled than any other

state. On the other hand, in this chapter, an operationally relevant different ques-

tion is addressed; i.e., of quantifying the percentage deviation of a given state

from the maximally entangled state- it is in this context, we consider the issue of

comparison between the various EMs. To this end, by appropriately defining the
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measures of such percentage deviations in terms of N, LN and EOF, respectively,

we present in Section 3.2 the theoretical estimates of these measures for the gen-

eral class of two-qubit pure states by varying values of the Schmidt coefficients.

This thorough study reveals a considerable amount of disagreement between the

computed measures of percentage deviations from the maximally entangled state

using N, LN and EOF, respectively.

A complementary line of study of this issue is then presented in Section 3.3

by considering a range of states produced in a relevant experimental study for

which the quantities N, LN and EOF are determined from the density matrix re-

constructed using quantum state tomography. The results obtained in this way

confirm significant quantitative non-equivalence between these EMs in captur-

ing the extent to which a given non-maximal entangled state is deviating from

the maximally entangled state. This finding, therefore, underscores the need for

identifying an appropriate quantifier for addressing such an empirically relevant

question even in the simplest case of 2⊗ 2 composite systems.

In Section 3.4, we extend the current analysis to higher dimensional systems;

bipartite pure qutrit states and tripartite pure qubit states, in particular. In Sec-

tion 3.5, we discuss possible directions of study for addressing this issue based

on the various suggested ideas of ‘distance measure’ between quantum states, as

well as a line of study is outlined in terms of the deviation of the maximum value

of the violation of Bell-CHSH inequality for a given state from that corresponding

to the maximally entangled state. Further, indications have been given about the

way the results obtained from such studies can be compared with those obtained

from different EMs. This is followed by concluding remarks in Section 3.6.

3.2 Theoretical study of the deviation of any given
state from the MES using different EMs

Consider a two-qubit pure state with Schmidt coefficients c0 and c1 as given be-

low.

∣Ψ⟩ = c0 ∣0⟩ ∣0⟩ + c1 ∣1⟩ ∣1⟩ , (3.1)
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where c0 and c1 satisfy the relation 0 ≤ c0, c1 ≤ 1 and c2
0 + c

2
1 = 1. The state (3.1) is

maximally entangled for c0, c1 = 1/
√

2, and separable for c0, c1 = 0,1.

The three EMs discussed above for a two-qubit pure state are given by

N = c0c1, (3.2a)

LN = log2(2c0c1 + 1), (3.2b)

EOF = −c2
0 log2 c

2
0 − c

2
1 log2 c

2
1. (3.2c)

In order to quantify the deviation of a given entangled state from the maxi-

mally entangled state, the following parameters are defined as measures of frac-

tional deviations in terms of the quantities N, LN and EOF whose maximum

values for the maximally entangled state are 0.5, 1, and 1, respectively.

QN = (0.5 −N)/0.5 , (3.3a)

QL = (1 − LN), (3.3b)

QE = (1 − EOF). (3.3c)

Note that all the above parameters range from 0 to 1, with 0 for the maxi-

mally entangled state and 1 for the separable state. For quantifying the extent

to which these three parameters differ with each other, the following quantities

are defined as absolute differences between the respective fractional deviations

defined above.

∆QNL = ∣QN −QL∣, (3.4a)

∆QEL = ∣QE −QL∣, (3.4b)

∆QNE = ∣QN −QE∣. (3.4c)

Different values of the quantities QN, QL, QE , ∆QNL, ∆QEL, and ∆QNE cor-

responding to different values of Schmidt coefficients have been incorporated in

Table 3.1 as percentage values.

It is evident from Table 3.1 that for a given entangled state the percentage de-

viations are different for different EMs. For example, for a state with c0 = 0.4
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c0 N LN EOF QN(%) QL(%) QE(%) ∆QNL(%) ∆QEL(%) ∆QNE(%)

0.1 0.099 0.262 0.081 80.10 73.82 91.92 6.28 18.10 11.82

0.2 0.196 0.477 0.242 60.81 52.29 75.77 8.52 23.48 14.96

0.4 0.367 0.793 0.634 26.68 20.66 36.57 6.02 15.91 9.89

0.7 0.499 0.999 0.999 0.02 0.01 0.03 0.01 0.01 0.01

0.7071 0.5 1 1 0 0 0 0 0 0

0.8 0.480 0.971 0.943 4.00 2.91 5.73 1.09 2.82 1.73

0.9 0.392 0.836 0.701 21.54 16.44 29.85 5.10 13.41 8.31

Table 3.1: Differences between the respective fractional deviation parameters for different
EMs for two-qubit pure states given as percentage values.

(where c0 = 0.7071 corresponds to the maximally entangled state), its percent-

age deviation from the maximally entangled state is 26.68% when N is used to

quantify entanglement; the percentage deviation is 20.66% when LN is used to

quantify entanglement, and is 36.57% when one uses EOF. Thus, in this case, the

differences in the percentage deviations are, respectively, given by ∆QNL = 6.02%

, ∆QEL = 15.91%, and ∆QNE = 9.89%.

Numerical study by optimization of the Schmidt coefficients to find the max-

imum deviations in ∆Q leads to the following results:

• Maximum value of ∆QNL is 8.61% corresponding to the states with c0 =

0.227 and 0.974.

• Maximum value of ∆QEL is 23.57% corresponding to the states with c0 =

0.217 and 0.976.

• Maximum value of ∆QNE is 14.99% corresponding to the states with c0 =

0.210 and 0.978.

Note that the disagreement between the values of ∆Qs increases for the states

further away from the maximally entangled state, reaching a maximum value,
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and then decreases for the states getting closer to the separable state. Now, in

order to analyze the way the above mentioned differences between the deviation

parameters occur, we obtain the following results by studying the derivatives of

different EMs with respect to the Schmidt coefficient c0 characterizing the two-

qubit pure state:

The derivative of N with respect to c0 is given by

dN
dc0

=
1 − 2c2

0√
1 − c2

0

. (3.5)

The derivative of LN with respect to c0 is given by

dLN
dc0

=
2(1 − 2c2

0)√
1 − c2

0 [2c0

√
1 − c2

0 + 1] ln(2)
. (3.6)

The derivative of E with respect to c0 is given by

dEOF
dc0

=
2c0 log2[(1 − c

2
0)/c

2
0]

ln(2)
. (3.7)

It can then be seen that the values of 2N, LN and EOF increase with c0 starting

from 0 and reach their respective maximum values corresponding to the max-

imally entangled state when c0 is 1/
√

2 and then start decreasing with further

increasing values of c0. Note that although the values of 2N, LN and EOF start

from 0, the quantity LN kicks off rapidly due to the higher value of its derivative

with respect to the state parameter c0 as compared to that of N and EOF. Hence,

for any c0, the quantity LN is always greater than 2N and EOF, and has least de-

viation from the maximally entangled state. On the other hand, for any value of

c0, EOF is always less than 2N and LN, and has the highest deviation from the

maximally entangled state. These features are illustrated in Figs. 3.2-3.5. Mono-

tonicity of N, EOF and LN with respect to each other can be further verified from

Eqs. (3.5-3.7) by computing the quantities dN
dEOF , etc.
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Figure 3.2: This figure illustrates the variation of different entanglement measures with
respect to the state parameter c0.

Figure 3.3: This figure shows how the fractional deviations of a given state from the
maximally entangled state calculated using different entanglement measures N, LN and
EOF vary with respect to the state parameter c0.
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Figure 3.4: This figure illustrates the differences in the fractional deviations of the
respective states from the maximally entangled state calculated using different entangle-
ment measures N, LN and EOF by varying the state parameter c0.

Figure 3.5: This figure shows how the absolute values of the derivatives of different en-
tanglement measures; 2N, LN and EOF with respect to state parameter c0, vary with
c0.
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3.3 Deviation of the experimental states from MES
using different EMs

Polarization entangled photon pairs are produced by the second order non-linear

optical process of Spontaneous Parametric Down-Conversion (SPDC) in a two-

crystal geometry [14]. A 100 mW, Continuous Wave (CW) diode laser having

central wavelength at 405 nm and a bandwidth of 1.2 nm (405 nm Cobolt-06-01-

Series) was used as the pump laser. Two type-I BBO (β − BaB2O4) crystals in

sandwich configuration (5 × 5 × 0.5 mm3 each from Castech Inc., China) having

their optic axes orthogonal to each other and phase matched at θ = 28.9○ and φ = 0○

with half opening angle of the cone equal to 3○ was used for producing entangled

photon pairs. Schematic of the experimental set up is shown in Fig. 3.6 below.

TT
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SPAD

SMF

SMF

Laser
M0
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H1

TC
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Figure 3.6: Schematic of the experimental apparatus (not to scale) for preparation of
SPDC based type-I polarization entangled photon source using two-crystal geometry
and characterization using quantum state tomography. Different symbols have the fol-
lowing meaning: P, polarizing beam splitter; Q, quarter wave plate; H, half wave plate;
NLC, non-linear crystal; TC, temporal compensator; L, plano-convex lens; M, mirror;
BPF, bandpass filter; AL, aspheric lens; SMF, single mode fiber; SPAD, single-photon
avalanche diode; and TT, time tagger unit or coincidence module.
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The pump beam is passed through a half-wave plate (HWP) and polarizing

beam splitter (PBS) to get pure H-polarized laser beam. This laser beam is then

passed through a HWP (H1) with fast axis oriented at an angle θ with respect to

vertical, which prepares the pump polarization state to be inputted to the BBO

crystals for the preparation of different entangled states.

∣H⟩
HWP at θ
ÐÐÐÐ→ sin(2θ)∣H⟩ + cos(2θ)∣V ⟩ = α∣H⟩ + β∣V ⟩, (3.8)

where α = sin(2θ), and β = cos(2θ).

Generation of entangled photons through SPDC process in a two-crystal ge-

ometry can be understood as follows: a H-polarized pump photon gets down-

converted in the first crystal (whose optic axis is in horizontal plane) into a pair

of V-polarized photons, and a V-polarized pump photon gets down-converted in

the second crystal (whose optic axis is in vertical plane) into a pair of H-polarized

photons. If these two processes occur in a coherent manner, i.e., they are in-

distinguishable, the two down-converted polarization amplitudes are coherently

added and the resultant state becomes an entangled state as given below.

α∣H⟩ + β∣V ⟩
SPDC
ÐÐÐ→ α∣V V ⟩ + β exp(iφ)∣HH⟩. (3.9)

The relative phase φ depends on the optical path difference/delay between

the photons down-converted in the first and second crystals. It can be controlled

by a tilting a quarter-wave plate in the pump beam (not shown in Fig.3.6).

The SPDC photons created in the first crystal get delayed compared to those

created in the second crystal, thus giving rise to temporal distinguishability lead-

ing to drop in the quality of entanglement. This temporal delay is pre-compensated

[15] using another type-I BBO crystal (TC) of thickness 1.6 mm. The SPDC pho-

tons are then passed through a Quantum State Tomography (QST) setup [16]

consisting of quarter-wave plate, half-wave plate and PBS on either side and col-

lected through single mode fiber using aspheric lens and 810-10 nm band pass fil-

ter used for spectral filtering. These photons are then detected by single photon

detectors and 36-coincidence measurements are performed for acquisition time

of 60 s each. These measurements correspond to the projections in different bases
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that are required in QST for the state reconstruction. The maximum-likelihood

estimation (MLE) [16] is used to get the physical state (density matrix) from the

QST data which is expected to have some experimental imperfections.

Here, we have prepared three different two-qubit entangled states (three sets

each) for pump HWP oriented at 23.1○ (State-I), 13.1○ (State-II) and 9.1○ (State-III).

These states have average purity (where purity is denoted by P and defined as

Tr[ρ2], ρ being the density matrix of the system) better than 95.7%. The represen-

tative 3D plots of the density matrices reconstructed through QST and MLE are

shown in Figs. 3.7-3.9 below.

Figure 3.7: Representative 3D plot of the experimentally reconstructed density matrix
for state-I with P=0.966 and 2N=0.964.

Figure 3.8: Representative 3D plot of the experimentally reconstructed density matrix
for state-II with P=0.962 and 2N=0.759.
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Figure 3.9: Representative 3D plot of the experimentally reconstructed density matrix
for state-III with P=0.960 and 2N=0.544.

Properties of different experimentally prepared entangled states such as pu-

rity, quantification of entanglement by different EMs, and their respective devia-

tions from the maximally entangled state are summarized in the Table 3.2 below.

The statistical error due to reconstruction occurs in the third decimal place (in-

dicated in parentheses in the Table 3.2) for P, 2N, LN and EOF. Thus statistical

errors in other derived quantities would also be of the same order. It is evident

States 2Nideal Pexpt 2Nexpt LNexpt EOFexpt QL(%) QN(%) QE(%) ∆QNL(%) ∆QNE(%) ∆QEL(%)

I 0.999 0.961(5) 0 0.960(5) 0.971(4) 0.944(6) 4.01 2.93 5.57 1.09 1.55 2.64

II 0.792 0.957(4) 0.749(9) 0.808(7) 0.663(12) 25.07 19.32 33.68 5.75 8.61 14.36

III 0.593 0.958(2) 0.547(3) 0.629(3) 0.413(5) 45.32 37.07 58.70 8.25 13.39 21.64

Table 3.2: Comparison tables for the properties of experimentally prepared two-qubit
entangled states and its deviation from the intended maximally entangled state. Different
Q-values are reported as percentage quantity.

from the experimentally prepared states considered here that ∆QEL > ∆QNE >

∆QNL. Further, for the State-III, the values of ∆QNL, ∆QEL, and ∆QNE are very

close to the maximum deviation obtained by numerical optimization, albeit with

small impurity in the experimental states. These observations are in close agree-

ment with the expectations from the analytical derivations that have been shown

in the theory Section 3.2.
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3.4 Extending the analysis to higher dimensional sys-
tems

In this section, we will discuss the way the present analysis can be extended to

higher dimensional systems by considering bipartite pure qutrit states and mul-

tipartite states such as tripartite pure qubit states.

3.4.1 Bipartite pure qutrit states

Consider a two-qutrit pure state with Schmidt coefficients c0, c1, and c2 as given

below.

∣Φ⟩ = c0 ∣0⟩ ∣0⟩ + c1 ∣1⟩ ∣1⟩ + c2 ∣2⟩ ∣2⟩ , (3.10)

where 0 ≤ c0, c1, c2 ≤ 1 and c2
0 + c2

1 + c2
2 = 1. The state (3.10) is maximally entangled

for c0 = c1 = c2 = 1/
√

3 and separable when one of the Schmidt coefficients is one

and others are zero.

We will first recap some of the well known entanglement measures for higher

dimensional systems. Negativity (N ) [17], Entanglement of formation (E) [18],

normalized generalized Concurrence (C) [19], and Linear entropy (I) [20] for two-

qutrit pure states are defined as follows:

N = c0c1 + c1c2 + c2c0, (3.11a)

E = −c2
0(log2c

2
0) − c

2
1(log2c

2
1) − c

2
2(log2c

2
2), (3.11b)

C =
√

3(c2
0c

2
1 + c

2
1c

2
2 + c

2
2c

2
0), (3.11c)

I = 3(c2
0c

2
1 + c

2
1c2

2 + c2
2c

2
0). (3.11d)

From Eq. (3.11c) and (3.11d), it is clear that the Linear entropy is just the square

of generalized Concurrence. Hence, we shall consider generalized Concurrence

and compare it with other EMs. In order to quantify the percentage deviation

of a given non-maximally entangled two-qutrit pure state from the maximally

entangled state using different EMs, we define the Q-parameters as given below.
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QE =
log2(3) − E

log2(3)
, (3.12a)

QN = (1 −N), (3.12b)

QC = (1 − C). (3.12c)

In this context, in a recent earlier work from our group [21], extensive theo-

retical as well as experimental analysis on the certification and quantification of

entanglement in spatial-bin bipartite photonic qutrits was done. Here, significant

differences between the computed deviations of any pure non-maximally entan-

gled bipartite qutrit state from the maximally entangled state in terms of the EMs

such as E andN were reported for a different pair of Schmidt coefficients from the

ones reported here. Further, it was shown that E and N are not monotonic with

respect to each other. In this work, we consider, in addition to the comparison

between E and N , the entanglement measure C as well.

In order to quantify to what extent these three parameters differ with each

other, the following quantities are appropriate measures.

∆QNE = ∣QN −QE ∣ , (3.13a)

∆QEC = ∣QE −QC ∣ , (3.13b)

∆QNC = ∣QN −QC ∣ . (3.13c)

Now, we will present some specific cases exemplifying the non-monotonic

nature of these EMs.

• Consider a state ∣φ1⟩ with Schmidt coefficients c0 = 0.9755 and c1 = 0.0361,

and another state ∣φ2⟩ with Schmidt coefficients c0=0.1403 and c1 = 0.1346.

E(φ1) = 0.2878 and N(φ1) = 0.2546 ,

E(φ2) = 0.2698 and N(φ2) = 0.2885 .

Here, E(φ1) > E(φ2) but N(φ1) < N(φ2), showing that E and N are not

monotonic with respect to each other.
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• Consider a state ∣φ3⟩ with Schmidt coefficients c0 = 0.4134 and c1 = 0.8275,

and another state ∣φ4⟩ with Schmidt coefficients c0 = 0.7452 and c1 = 0.1143.

N(φ3) = 0.8136 and C(φ3) = 0.8495 ,

N(φ4) = 0.6498 and C(φ4) = 0.8705 .

Here, C(φ3) < C(φ4) but N(φ3) > N(φ4), showing that C and N are not

monotonic with respect to each other.

• Consider a state ∣φ5⟩ with Schmidt coefficients c0 = 0.4134 and c1 = 0.8275

and another state ∣φ6⟩ with Schmidt coefficients c0 = 0.2334 and c1 = 0.8052.

E(φ5) = 1.2128 and C(φ5) = 0.8495 ,

E(φ6) = 1.1542 and C(φ6) = 0.8559 .

Here, C(φ5) < C(φ6) but E(φ5) > E(φ6), showing that C and E are not mono-

tonic with respect to each other.

Different values of the quantities QE , QN , QC , ∆QNE , ∆QEC , and ∆QNC cor-

responding to different values of Schmidt coefficients have been incorporated in

Table 3.3 as percentage values.

c0 c1 E N C QE QN QC ∆QNE ∆QEC ∆QNC

0.1 0.1 0.1614 0.2080 0.2431 89.81 79.20 75.69 10.61 14.12 3.51

0.3 0.8 1.2347 0.8116 0.8741 22.10 18.84 12.59 3.25 9.51 6.26

0.5774 0.5774 1.5850 1 1 0 0 0 0 0 0

0.6 0.6 1.5755 0.9950 0.9968 0.60 0.50 0.32 0.10 0.28 0.18

0.9 0.3 0.8911 0.6495 0.6990 43.78 35.05 30.09 8.73 13.69 4.96

Table 3.3: Differences in the percentage deviations of entanglement measures of a given
state from the value corresponding to the maximally entangled two-qutrit pure state.

Observations:
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• For non-maximally entangled two-qutrit pure states, a given EM is not al-

ways greater (or less) than any other EM for different values of the state

parameters, unlike for the case of two-qubit pure states.

• From numerical optimization, we find that the ∆QNE takes a maximum

value of 13.09% when c0 = 0.7071 and c1 = 0.7071, ∆QEC takes a maximum

value of 23.81% when c0 = 0.5 and c1 = 0.8660, and ∆QNC takes a maximum

value of 36.60% when c0 = 0.7071 and c1 = 0.7071.

We would like to emphasize an important and interesting point that although

in the bipartite qubit case different EMs show different deviations of a given state

from maximally entangled state, the EMs are monotonic with respect to each

other. But in the bipartite qutrit case, different EMs not only provide different

estimations of the deviation of any non-maximally entangled state from the max-

imally entangled state, the EMs can also be non-monotonic with respect to each

other.

3.4.2 Tripartite pure qubit states

Here, we indicate the directions for extending the analysis presented in this chap-

ter to multipartite systems focusing primarily on tripartite pure qubit states. Let

us consider the usually discussed tripartite pure qubit states such as GHZ-type

state [22], W-state [23] and Cluster state [24]. In tripartite system, Cluster state

is same as the GHZ state [24]. Let us consider the following tripartite pure qubit

state

∣ξ1⟩ = c0 ∣000⟩ + c1 ∣111⟩ , (3.14)

where 0 ≤ c0, c1 ≤ 1 and c2
0 + c

2
1 = 1. The state (3.14) is precisely the GHZ-state for

c0 = c1 = 1/
√

2 when it is maximally entangled.

We consider two of the most commonly discussed EMs in tripartite system.

One is the Tangle introduced by Coffman et al. [25] which can be regarded as a

hyperdeterminant of second order [26]. Tangle for the state (3.14) is given by

τ = 4c2
0c

2
1. (3.15)



3.4. Extending the analysis to higher dimensional systems 89

Another relevant EM is global measure of entanglement(G) introduced by

Meyer et al. [27] in Brennon form [28-30]. The value of this measure for the state

(3.14) is given by

G = 4c2
0c

2
1. (3.16)

It is found that the expressions for EMs G and τ are same for the class of states

given by Eq. (3.14). Hence, estimation of the deviation of any given entangled

state of form (3.14) from the maximally entangled state using these two EMs will

be the same, while both these measures give the same value. Both these measures

give the same value one [27] for the GHZ state.

Next, we consider another commonly discussed tripartite pure qubit state of

the form

∣ξ2⟩ = c0 ∣001⟩ + c1 ∣010⟩ + c2 ∣100⟩ , (3.17)

where 0 ≤ c0, c1, c2 ≤ 1 and c2
0 + c2

1 + c2
2 = 1. The above state is a W-state for c0 = c1

= c2 = 1/
√

3 when it is maximally entangled.

On calculation, it is found that for the state (3.17) Tangle vanishes for all the

values of the state parameters, whereas the other measure G is non-zero and

given by

G = 8/3(c2
0c

2
1 + c

2
1c

2
2 + c

2
2c

2
0). (3.18)

It can be seen from above that for W-state, G = 8/9 whereas τ remains zero

[25-27]. Hence, the deviation of any non-maximally entangled state of the form

(3.17) from the maximally entangled W-state can only be estimated in terms of G,

not using tangle. A curious observation is that although the two entanglement

measures τ and G are defined differently, but for the particular class of state in

(3.14), they capture same amount of entanglement as well as give same amount of

deviation from the maximally entangled state. This example is in stark contrast

to the two-qubit case where different EMs give different deviations. On the other

hand, for state (3.17), τ vanishes whereas G remains non-zero. This highlights

the importance of this enterprise of comparing and contrasting different EMs. It

would be worth further developing this line of study using other EMs as well for

the tripartite qubit case.
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3.5 Outlook

The appreciable quantitative disagreement between estimates of the percentage

deviation of a given state from the maximally entangled state using different

EMs, thoroughly shown in this chapter using both theoretical and experiment-

based (for bipartite qubit states) analyses, underscores the need for an appro-

priate quantifier for addressing such an empirically relevant issue which is of

significance for evaluating the efficacy of a given entangled state for its various

applications. In this context, it is relevant to note that the question of quanti-

fying ‘distance’ or deviation of a given state from the separable state has been

raised earlier and for this purpose the concept of ‘distance measures’ has been

suggested in two different ways; one of which is in terms of relative entropy of

entanglement [4] and the other using the notion of ‘robustness’ [31] in terms of

the noise that is required to be added to a given state to make it a separable state.

Taking clue from such studies, one line of study may be to formulate a suitable

‘distance measure’ for capturing the departure of a given non-maximally entan-

gled state from the maximally entangled state and compare the results obtained

with the relevant estimates using different EMs. On the other hand, one can take

cue from the concept of ‘teleportation distance’ [10] that has been used to quantify

the degree of performance of the resource channel used for teleportation, where

distance of the teleported state from the target state has been quantified in terms

of the trace norm (T = Tr[
√
A†A]). Adapting this measure, by using the Frobenius

norm [32], one may invoke the following measure to signify how close a given

state (ψ) is to the intended maximally entangled state (ψmax) (the correct choice of

the maximally entangled state ψmax is the one which has minimum distance from

the given state)

D = ∣∣ ∣ψ⟩ ⟨ψ∣ − ∣ψmax⟩ ⟨ψmax∣ ∣∣ , (3.19)

where the Frobenius norm for a density matrix A, ∣∣A∣∣ used above is given

by
√

Tr[A†A]. Here, the Frobenius norm is preferred over trace norm in order to

ensure that the parameter D ranges from 0 to 1 for two-qubit pure states, with

D = 0 for the maximally entangled state and D = 1 for the separable state.
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Another possible approach is in terms of the notion of fidelity [33] as a mea-

sure of ‘closeness’ between two pure states. The metric defined using this notion

of fidelity like Bures distance [34, 35], or the Fubini-Study metric used by Anan-

dan and Aharonov [36] does not range from 0 to 1 for two-qubit pure states and

hence is not useful for comparison with the results obtained using the deviation

parameters (ranging from 0 to 1) defined in Section 3.2. On the other hand, by ap-

propriately scaling the metric defined in terms of fidelity by Gilchrist et al., [37],

the following measure ‘C’ which ranges from 0 to 1 for two-qubit pure states can

be used for the purpose of comparison with the results obtained from the devia-

tion parameters defined in terms of different EMs.

C =
√

2 − 2(⟨ψ∣ψmax⟩)2 , (3.20)

where ψmax is the intended maximally entangled two-qubit pure state. Note

that C = 0 for the maximally entangled state and C = 1 for the separable state.

Now, we note that for any given ∣ψ⟩, the two measures D and C defined above,

can be shown analytically to be equivalent. The numerical study in this case by

varying values of the state parameter c0 in Eq (3.1), interestingly, shows that the

above mentioned distance measure D(C) provides an upper bound to the frac-

tional deviations of various states from the maximally entangled state, calculated

using N and LN; i.e.,

D(C) ≥ QN,QL. (3.21)

However, there are certain states for which the respective fractional deviation

from the maximally entangled state in terms of EOF, i.e., the quantityQE is greater

than D(C), thus, restricting the use of D(C) as an upper bound of such fractional

deviations using EOF. These features pertaining to the distance measure D(C)

from the maximally entangled state are illustrated in Fig. 3.10, whose implications

may further be studied.
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Figure 3.10: This figure illustrates that the curve for the distance measureD provides an
upper bound to the fractional deviation curves for N and LN, but not for EOF, since there
are certain states for which the fractional deviation curve for EOF is not upper bounded
by the curve related to D.

A line of study different from the above mentioned approaches in terms of

‘distance measures’ could be from the operational perspective of the use of quan-

tum entanglement as resource; in other words, one may try to assess how close

a non-maximally entangled state is to the maximally entangled state in terms of

how useful it is as a resource. For example, in the context of demonstrating non-

locality, in order to quantify the fractional deviation of a given non-maximally

entangled state from the maximally entangled state, one may compute the max-

imum possible quantum mechanical violation of the Bell-CHSH inequality (BV ),

i.e., the difference between the maximum quantum mechanical value of the Bell-

CHSH expression for the given state and the lower bound of the Bell-CHSH ex-

pression. One can then estimate the fractional deviation of the parameter BV

from its maximum value (BV )max = 2
√

2 − 2 which is achieved for the maximally

entangled state. Note that for any the two-qubit pure state characterized by the

Schmidt coefficients c0 and c1, BV for the two outcomes-two settings scenario is

given by [38-40]

BV = 2
√

1 + (2c0c1)2 − 2. (3.22)

Now, similar to the other fractional deviation parameters defined in Section

3.2, here we define the following parameter as a measure of the fractional devia-
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tion of BV from its value (BV )max for the maximally entangled state.

QBV =
(BV )max −BV

(BV )max
. (3.23)

Note that the values of QBV range from 0 to 1, with 0 for the maximally en-

tangled state and 1 for the separable state. A numerical study of QBV by vary-

ing values of the state parameter c0 shows an interesting result that for any non-

maximally entangled state, this fractional deviation parameter is greater than all

other such fractional deviation parameters evaluated using different EMs like N,

LN and EOF; i.e.,

QBV ≥ QN,QL,QE, (3.24)

where the equality holds good for the maximally entangled state and the sep-

arable state. This means that the measure of deviation of a given non-maximally

entangled state from the maximally entangled state as quantified by the param-

eter QBV is always greater than that obtained from different EMs. For example,

for a state with c0 = 0.4, the fractional deviation of BV from its value correspond-

ing to the maximally entangled state in percentage is 42.06%; while the fractional

deviations of N, LN and EOF from their values corresponding to the maximally

entangled state in percentages are 26.68%, 20.66% and 36.57%, respectively. Illus-

tration of this feature provided in Fig. 3.11, thus, suggests nuances in the quan-

titative relationship between EMs and the amount of non-locality shown by the

Bell-CHSH violation present even in the simplest two outcomes - two settings

scenario involving two-qubit pure states; on the other hand, aspects of quanti-

tative non-equivalence between entanglement and non-locality have so far been

discussed essentially for high dimensional systems or scenarios involving larger

number of settings [41-44].
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Figure 3.11: This figure shows that the fractional deviation curve for the quantity BV

provides an upper bound to the other fractional deviation curves corresponding to the
quantities N, LN and EOF, signifying that in terms of the amount of Bell-CHSH vi-
olation, any given state is further away from the maximally entangled state than that
estimated using different entanglement measures.

3.6 Concluding Remarks

In sum, the results of studies of the present chapter bring out the need for ex-

ploring different ideas for quantifying how close (far) a given entangled state is

to (from) the maximally entangled state and comparing the results obtained by

using such quantifiers with that based on different entanglement measures. This

leads to the following question: Is there any fundamental criterion for assess-

ing which quantifier is the appropriate one to be used for addressing questions

such as the one posed in this chapter, or whether such a criterion would have to

be operationally defined essentially dependent on the specific context in which

the entangled state is used as a resource? A comprehensive study is required for

shedding further light on this issue as well as for gaining a deeper understanding

of the comparison between different entanglement measures taking into account

the studies probing their respective physical significance [2,3,45].

The published version of the research work reported in this chapter can be

found in Ref. [46].



3.7. References 95

3.7 References

1. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating

partial entanglement by local operations," Phys. Rev. A 53, 2046 (1996).

2. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state

entanglement and quantum error correction," Phys. Rev. A 54, 3824 (1996).

3. S. Popescu and D. Rohrlich, “Thermodynamics and the measure of entanglement,"

Phys. Rev. A 56, R3319 (1997).

4. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entangle-

ment," Phys. Rev. Lett. 78, 2275 (1997).

5. V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,"

Phys. Rev. A 57, 1619 (1998).

6. G. Vidal, “Entanglement monotones," J. Mod. Opt. 47, 355–376 (2000).

7. K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set

of separable states," Phys. Rev. A 58, 883 (1998).

8. K. Zyczkowski, “Volume of the set of separable states. II," Phys. Rev. A 60, 3496

(1999).

9. J. Lee, M. Kim, Y. Park, and S. Lee, “Partial teleportation of entanglement in a

noisy environment," J. Mod. Opt. 47, 2151–2164 (2000).

10. G. Vidal and R. F. Werner, “Computable measure of entanglement," Phys. Rev. A

65, 032314 (2002).

11. J. Eisert, “Entanglement in quantum information theory," quant-ph/0610253 (2006).

12. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,"

Phys. Rev. Lett. 80, 2245 (1998).

13. J. Eisert and M. B. Plenio, “A comparison of entanglement measures," J. Mod.

Opt. 46, 145–154 (1999).

https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.56.R3319
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/PhysRevA.57.1619
https://doi.org/10.1080/09500340008244048
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevA.60.3496
https://doi.org/10.1103/PhysRevA.60.3496
https://doi.org/10.1080/09500340008235138
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://arxiv.org/abs/quant-ph/0610253
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1080/09500349908231260 
https://doi.org/10.1080/09500349908231260 


3.7. References 96

14. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright

source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999).

15. R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled

photons," Opt. Express 17, 18920–18933 (2009).

16. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of

qubits," Phys. Rev. A 64, 052312 (2001).

17. C. Eltschka, G. Tóth, and J. Siewert, “Partial transposition as a direct link between

concurrence and negativity," Phys. Rev. A 91, 032327 (2015).

18. W. K. Wootters, “Entanglement of formation and concurrence," Quantum Infor-

mation & Computation 1, 27–44 (2001).

19. Y. Maleki and B. Ahansaz, “Quantum correlations in qutrit-like superposition of

spin coherent states," Laser Phys. Lett. 16, 075205 (2019).

20. Y. Maleki and A. M. Zheltikov, “Linear entropy of multiqutrit nonorthogonal

states," Opt. express 27, 8291–8307 (2019).

21. D. Ghosh, T. Jennewein, and U. Sinha, “Entanglement certification and quantifi-

cation in spatial-bin photonic qutrits," arXiv:1909.01367 (2019).

22. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem

without inequalities," Am. J. Phys. 58, 1131–1143 (1990).

23. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequiva-

lent ways," Phys. Rev. A 62, 062314 (2000).

24. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting

particles," Phys. Rev. Lett. 86, 910 (2001).

25. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement," Phys.

Rev. A 61, 052306 (2000).

26. A. Miyake, “Classification of multipartite entangled states by multidimensional

determinants," Phys. Rev. A 67, 012108 (2003).

https://doi.org/10.1103/PhysRevA.60.R773
https://doi.org/10.1364/OE.17.018920
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.91.032327
https://doi.org/10.1088/1612-202X/ab12e5
ttps://doi.org/10.1364/OE.27.008291
https://arxiv.org/abs/1909.01367
https://doi.org/10.1119/1.16243
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.67.012108


3.7. References 97

27. D. A. Meyer and N. R. Wallach, “Global entanglement in multiparticle systems,"

J. Math. Phys. 43, 4273–4278 (2002).

28. G. K. Brennen, “An observable measure of entanglement for pure states of multi-

qubit systems," Quantum Information & Computation 3, 619–626 (2003).

29. Y. Maleki, F. Khashami, and Y. Mousavi, “Entanglement of three spin states in the

context of su (2) coherent states," Int. J. Theor. Phys. 54, 210–218 (2015).

30. Y. Maleki and A. Maleki, “Entangled multimode spin coherent states of trapped

ions," J. Opt. Soc. Am. B 35, 1211–1217 (2018).

31. G. Vidal and R. Tarrach, “Robustness of entanglement," Phys. Rev. A 59, 141

(1999).

32. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press,

2012), chap. 5, pp. 321.

33. R. Jozsa, “Fidelity for mixed quantum states," J. Mod. Opt. 41, 2315–2323 (1994).

34. D. Bures, “An extension of kakutani’s theorem on infinite product measures to the

tensor product of semifinite w*-algebras," Trans. Am. Math. Soc. 135, 199–212

(1969).

35. K. Zyczkowski and I. Bengtsson, “Relativity of pure states entanglement," Ann.

Phys. 295, 115–135 (2002).

36. J. Anandan and Y. Aharonov, “Geometry of quantum evolution," Phys. Rev. Lett.

65, 1697 (1990).

37. A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare

real and ideal quantum processes," Phys. Rev. A 71, 062310 (2005).

38. N. Gisin, “Hidden quantum nonlocality revealed by local filters," Phys. Lett. A

210, 151–156 (1996).

https://doi.org/10.1063/1.1497700
https://doi.org/I 10.1007/s10773-014-2215-5
https://doi.org/10.1364/JOSAB.35.001211
https://doi.org/10.1103/PhysRevA.59.141
https://doi.org/10.1103/PhysRevA.59.141
http://www.cambridge.org/9780521548236
https://doi.org/10.1080/09500349414552171
https://www.jstor.org/stable/1995012
https://www.jstor.org/stable/1995012
https://doi.org/10.1006/aphy.2001.6201
https://doi.org/10.1006/aphy.2001.6201
https://doi.org/10.1103/PhysRevLett.65.1697
https://doi.org/10.1103/PhysRevLett.65.1697
https://doi.org/10.1103/PhysRevA.71.062310
https://doi.org/10.1016/S0375-9601(96)80001-6
https://doi.org/10.1016/S0375-9601(96)80001-6


3.7. References 98

39. R. Horodecki, P. Horodecki, and M. Horodecki, “Violating bell inequality by mixed

spin-1/2 states: necessary and sufficient condition," Phys. Lett. A 200, 340–344

(1995).

40. B. Horst, K. Bartkiewicz, and A. Miranowicz, “Two-qubit mixed states more en-

tangled than pure states: Comparison of the relative entropy of entanglement for a

given nonlocality," Phys. Rev. A 87, 042108 (2013).

41. S. Zohren and R. D. Gill, “Maximal violation of the collins-gisinlinden-massar-

popescu inequality for infinite dimensional states," Phys. Rev. Lett. 100, 120406

(2008).

42. C. Bernhard, B. Bessire, A. Montina, M. Pfaffhauser, A. Stefanov, and S. Wolf,

“Non-locality of experimental qutrit pairs," J. Phys. A 47, 424013 (2014).

43. A. Acín, R. Gill, and N. Gisin, “Optimal bell tests do not require maximally en-

tangled states," Phys. Rev. Lett. 95, 210402 (2005).

44. N. Brunner, N. Gisin, and V. Scarani, “Entanglement and nonlocality are different

resources," New J. Phys. 7, 88 (2005).

45. C. Eltschka and J. Siewert, “Negativity as an estimator of entanglement dimen-

sion," Phys. Rev. Lett. 111, 100503 (2013).

46. Ashutosh Singh, Ijaz Ahamed, Dipankar Home, and Urbasi Sinha, “Revisiting

comparison between entanglement measures for two-qubit pure states," J. Opt. Soc.

Am. B 37, 157-166 (2020).

https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1103/PhysRevA.87.042108
https://doi.org/10.1103/PhysRevLett.100.120406
https://doi.org/10.1103/PhysRevLett.100.120406
https:/doi.org/10.1088/1751-8113/47/42/424013
https://doi.org/10.1103/PhysRevLett.95.210402
https://doi.org/10.1088/1367-2630/7/1/088
https://doi.org/10.1103/PhysRevLett.111.100503
https://doi.org/10.1364/JOSAB.37.000157
https://doi.org/10.1364/JOSAB.37.000157


Chapter 4

Manipulation of entanglement
sudden death in an all-optical setup

The unavoidable and irreversible interaction between an entangled quantum sys-

tem and its environment causes decoherence of the individual qubits as well as

degradation of the entanglement between them. Entanglement sudden death

(ESD) is the phenomenon wherein disentanglement happens in finite time even

when individual qubits decohere only asymptotically in time due to noise. Pro-

longing the entanglement is essential for the practical realization of entanglement-

based quantum information and computation protocols. For this purpose, the

local NOT operation in the computational basis on one or both qubits has been

proposed. Here, we formulate an all-optical experimental set-up involving such

NOT operations that can hasten, delay, or completely avert ESD, all depending

on when it is applied during the process of decoherence. Analytical expressions

for these are derived in terms of parameters of the initial state’s density matrix,

whether for pure or mixed entangled states. After a discussion of the schematics

of the experiment, the problem is theoretically analyzed, and simulation results

of such manipulations of ESD are presented.

4.1 Introduction

Quantum entanglement [1,2] is a non-classical correlation shared among quan-

tum systems which could be non-local [3,4] in some cases. It is a fundamental

trait of quantum mechanics. Like classical correlations, entanglement also de-
99
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cays with time in the presence of noise in the ambient environment. The decay

of entanglement depends on the initial state and the type and amount of noise

(Amplitude damping, Phase damping, etc.) acting on the system [5-7]. The en-

tangled states: ∣ψ±⟩ = ∣α∣∣ge⟩ ± ∣β∣ exp(ιδ)∣eg⟩) and ∣φ±⟩ = ∣α∣∣gg⟩ ± ∣β∣ exp(ιδ)∣ee⟩

(maximally entangled “Bell states" for ∣α∣ = ∣β∣ = 1/
√

2, δ = 0) being the simplest

and most useful entangled states in quantum information processing receive spe-

cial attention. The maximally entangled states ∣φ±⟩ and ∣ψ±⟩ undergo asymptotic

decay of entanglement in the presence of an amplitude damping channel (ADC).

The non maximally entangled states ∣ψ±⟩ always undergo asymptotic decay of

entanglement, whereas ∣φ±⟩ undergo asymptotic decay for ∣α∣ > ∣β∣ and a finite

time end called entanglement sudden death (ESD) for ∣α∣ < ∣β∣ in the presence

of ADC. On the other hand, a pure phase damping channel (PDC) causes en-

tanglement to always decay asymptotically. Two different initial states (∣ψ⟩ =

∣α∣ ∣gg⟩+∣β∣ exp(ιδ) ∣ee⟩, ∣α∣2+∣β∣2 = 1 , where (i) ∣β∣ = k∣α∣ and (ii) ∣α∣ = k∣β∣, k > 1 ),

which share the same amount of initial entanglement (measured through Nega-

tivity) being affected by the same type of noise may follow very different tra-

jectories of entanglement decay. In the presence of multiple stochastic noises,

although the decoherence of individual qubits follows the additive law of relax-

ation rates, the decay of entanglement, does not. In fact, entanglement may not

decay asymptotically at all, and disentanglement can happen in finite time (ESD).

ESD has been experimentally demonstrated in atomic [8] and photonic systems

[9,10].

Since entanglement is a resource in quantum information processing [11-13],

manipulation that prolongs entanglement will help realize protocols that would

otherwise suffer due to short entanglement times. Also, entanglement purifi-

cation [14] and distillation [15] schemes could possibly recover the initial cor-

relation from the ensemble of noise-degraded correlation so long as the system

has not completely disentangled. Therefore, the delay or avoidance of ESD is

important. Several proposals exist to suppress the decoherence; for example,

decoherence-free subspaces [16-19], quantum error correction [20,21], dynamical

decoupling [22-24], quantum Zeno effect [25-27], quantum measurement reversal
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[28-33], and delayed-choice decoherence suppression [34]. Protecting entangle-

ment using weak measurement and quantum measurement reversal [32,33], and

delayed choice decoherence suppression [34] have been experimentally demon-

strated. Both of these schemes, however, have the limitation that the success

probability of decoherence suppression decreases as the strength of the weak in-

teraction increases.

The practical question we want to address here is; whether, given a two-qubit

entangled state in the presence of amplitude damping channel which causes dis-

entanglement in finite time, can we alter the time of disentanglement by a suitable

operation during the process of decoherence? A theoretical proposal exists in the

literature for such manipulation of ESD [35] through a local unitary operation

(NOT operation in computational basis: σx) performed on the individual qubits

which swaps their population of ground and excited states. Depending on the

time of application of this NOT operation, it can avoid, delay, or hasten the ESD.

Based on this proposal [35], we have extended the experimental set up [9] for

ESD and propose here an all-optical experimental set up for manipulating ESD

involving the NOT operation on one or both the qubits of a bipartite entangled

state in a photonic system.

The system consists of polarization-entangled photon pairs: ∣ψ⟩ = ∣α∣∣HH⟩ +

∣β∣ exp(iδ)∣V V ⟩ produced in the sandwich configuration Type-I spontaneous para-

metric down conversion (SPDC)[38]. These photons are sent to two displaced

identical Sagnac interferometers, where ADC is simulated using rotating HWPs

(half wave plates) placed in the path of incoming photons (See Fig. 4.2). The HWP

selectively causes a ∣V ⟩ polarized photon to “decay" to ∣H⟩ (∣H⟩ and ∣V ⟩ serve as

ground and excited states of the system, the two states of a qubit) [9]. The NOT

operation is implemented by a HWP with fast axis at 45o relative to ∣V ⟩, placed

right after the ADC. This HWP is followed by PBS (polarizing beam splitter) to

segregate the ∣H⟩ and ∣V ⟩ polarizations and, with subsequent ADC after the NOT

operation implemented by a set of secondary HWPs acting on ∣V ⟩ only. Such a set

of secondary HWPs simulating the ADC (or evolution of qubits in noisy environ-

ment) is essential to our study as the ADC (for example, spontaneous emission
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in case of a two-level atomic system) continues to act even after the NOT op-

eration is applied [35] and these secondary HWPs simulate it in our proposed

experiment. The orientation of the HWP (θ) plays the role of time (t) with θ → 45o

(p = sin2(2θ) → 1) analogous to t→∞ (p = 1− exp(−Γt) → 1) for a two-level atomic

system decaying to the ground state due to spontaneous emission.

We use Negativity as a measure of entanglement. It is defined as the sum

of absolute values of negative eigen values of the partially transposed density

matrix [36,37]. We find that our simulation results for the manipulation of ESD

involving NOT operations on one or both the qubits of a polarization entangled

photonic system in presence of ADC are completely consistent with the theoret-

ical predictions of the reference [35] which has analyzed an atomic system. The

merit of our scheme is that it can delay or avoid ESD (provided the NOT oper-

ation is performed sufficiently early) unlike previous experiments [32-34] where

success probabilities scaled with the strength of the weak interaction. Since the

photonic system is time independent and noise is simulated using HWPs, it gives

experimentalists complete freedom to study and manipulate the disentanglement

dynamics in a controlled manner. In this, our photonic system through a control-

lable HWP offers an advantage over others such as atomic states where the decay

occurs through noise sources lying outside experimental control. The NOT oper-

ation that we apply through a HWP is the analogue of flipping spin in a nuclear

magnetic system, achieved through what is referred to as a π-pulse.

The chapter is organized as follows: In Section (4.2), we discuss the all-optical

implementation of the proposed ESD experiment and analyze it theoretically us-

ing the Kraus operator formalism. In Section (4.3) and (4.4), we discuss and the-

oretically analyze the proposed ESD-manipulation experiment involving NOT

operation on both or on only one of the qubits, respectively. In Section (4.5), we

give analytical expressions for probabilities p0, pA, and pB and also for ESD and

its manipulation curves in terms of the parameters of the initial state (density

matrix). The first of these is the setting (“time") for ESD, the next setting for the

NOT marking the border between hastening and delay; that is, if the NOT is ap-

plied after pA (and of course before p0), it actually hastens, ESD happening before
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p0, whereas application before delays ESD to stretch past p0 to larger but still fi-

nite value less than one. The third, pB, marks the border between delaying or

completely avoiding ESD. Applying the NOT after pB delays to a larger p0 value

whereas applying before avoids ESD altogether. In Section (4.6), we summarize

the results of manipulation of ESD for different pure and mixed initial entangled

states, giving numerical values of p0, pA, and pB. Section (4.7) concludes with

pros and cons of the proposed scheme for the manipulation of ESD and the fu-

ture scope of this work.

4.2 Experimental set up for ESD and its analysis

The proposed experimental setup for ESD is shown in Fig. (4.1), which is a gen-

eralization of the scheme used in Ref. [9]. The type-I polarization entangled

photons (∣ψ⟩ = ∣α∣∣HH⟩ + ∣β∣ exp(ιδ)∣V V ⟩) can be prepared by standard methods

[38]; the amplitudes ∣α∣ and ∣β∣ and relative phase δ are controlled by the HWP

and QWP (quarter wave plate). These entangled photons are sent to two dis-

placed Sagnac interferometers with HWPs simulating the ADC, where decoher-

ence takes place, and finally these photons are sent for tomographic reconstruc-

tion of the quantum state [39]. The ∣H⟩ and ∣V ⟩ polarizations of the photon serve

as the ground and excited states of the analogous atomic system, while output

spatial modes of the reservoir ∣a⟩, ∣a′⟩ and ∣b⟩, ∣b′⟩ serve as the ground and excited

states of the reservoir. Asymmetry between degenerate polarization states of a

photon ( ∣H⟩ and ∣V ⟩) is introduced by the HWP rotation such that it selectively

causes an incident ∣V ⟩ polarization to “decay" to ∣H⟩, while leaving ∣H⟩ polariza-

tion intact. Thus, the ∣H⟩ and ∣V ⟩ polarization states are analogous to the ground

and excited states, respectively, of a two-level atomic system.

The polarization entangled photons from the mid-left of the figure are sent to

two displaced identical Sagnac interferometers. The Fig. (4.1) shows the Sagnac

interferometers and its output spatial modes: ∣a⟩, ∣a′⟩, ∣b⟩ and ∣b′⟩, which serve as

the modes of the reservoir. Following an initial photon in the upper arm, an inci-

dent ∣V ⟩ polarized photon is reflected by PBS P1 and traverses the interferometer
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Figure 4.1: The proposed experimental set up for ESD in the presence of ADC in a
photonic system.

in clockwise sense where HWP H1 acts as ADC causing ∣V ⟩ polarized photon

to decay to cos(2θ)∣V ⟩ + sin(2θ)∣H⟩. The PBS P2 transmits ∣H⟩ component and

reflects ∣V ⟩ component. The transmitted ∣H⟩ component comes back to PBS P1

and is transmitted to spatial mode ∣b⟩. The reflected ∣V ⟩ component from P2 sees

another ADC HWP H2 which causes it to decay to cos(2θ′)∣V ⟩ + sin(2θ′)∣H⟩ and

when it comes to PBS P1, the ∣V ⟩ component gets reflected to mode ∣a′⟩ and ∣H⟩
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component gets transmitted to mode ∣b′⟩. On the other hand, an incident ∣H⟩

polarized photon is transmitted by the PBS P1 and traverses the interferometer

in counter-clockwise sense, comes back to PBS P1 and gets transmitted to mode

∣a⟩. The path lengths of the photons reaching in modes ∣a′⟩ and ∣a⟩ are compen-

sated for coherent recombination of polarization amplitudes at PBS P4. This en-

sures that when all the ADC HWPs are set to zero, and an initial entangled state

∣α∣∣HH⟩ + ∣β∣ exp(ιδ)∣V V ⟩ is incident at the input ports of the interferometers, the

initial state is reconstructed at the output ports. These photons are finally sent

for quantum state tomography (QST). The HWP H4 is used to flip the polariza-

tion of photons passing through it such that the QST settings remain the same for

the photons in all spatial modes. The Q, H and P stand for Quarter wave plate,

Half wave plate and Polarizing beam splitter. EPS and IF stand for Entangled

Photon Source and Interference Filter respectively. For tracing photon paths with

polarizations and spatial modes, see also Appendix [4.8].

The ADC is implemented using two HWPs: H1 and H2 oriented at θ and θ′

respectively, such that incident ∣V ⟩ polarization amplitude “decays“ to ∣H⟩. For

different fixed orientations of H1, evolution in ADC is completed by rotating H2.

The PBS P2 is used to segregate the ∣H⟩ and ∣V ⟩ polarization amplitudes such that

the HWP H2 is applied only to ∣V ⟩ polarization for it to serve as excited state of

the system and leaving ∣H⟩ polarization (ground state of the system) undisturbed.

The single qubit Kraus operators for ADC are given by,

M1 =
⎛
⎜
⎝

1 0

0
√

1 − p

⎞
⎟
⎠
, M2 =

⎛
⎜
⎝

0
√
p

0 0

⎞
⎟
⎠
, (4.1)

where p = sin2(2θ) for ADC mimicked by HWP in a photonic system [9].

These operators satisfy the completeness condition,

M †
1M1 +M

†
2M2 = I, (4.2)

where I is the identity matrix.

The Kraus operators for the two-qubits are obtained by taking appropriate

tensor products of single qubit Kraus operators as follows,

Mij =Mi ⊗Mj ; i, j = 1,2. (4.3)
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Label another set of Kraus operators by M ′
ij ; i, j = 1,2, with variable p re-

placed by p′ (p′ = sin2(2θ′)) to distinguish it from the former, with the form of

Kraus operators remaining similar to that in Eq. (4.1). Such a splitting into two

angles or two values of probability will prove convenient for later applications in

the section of manipulation using optical elements in between.

Let the initial state of the system be

∣ψ⟩ = α∣HH⟩ + β exp(ιδ)∣V V ⟩, (4.4)

with a corresponding density matrix given by,

ρ(0,0) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u 0 0 v

0 0 0 0

0 0 0 0

v∗ 0 0 x

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.5)

where u = ∣α∣2 , v = αβ∗ , v∗ = βα∗ , x = ∣β∣2 and u + x = 1. In general, if ∣v∣2 = ux,

this represents a pure entangled state, otherwise a mixed entangled state. A more

general mixed state with non-zero entries in the other two diagonal positions is

considered in appendix [4.8.1].

The initial state of the system (4.5) in the presence of ADC (due to H1 at θ)

evolves as follows,

ρ(1)(p,0) = ∑
i,j

Mij ρ(0,0)M
†
ij ; i, j = 1,2. (4.6)

Apply the Kraus operators M ′
ij to complete the evolution in the presence of

ADC (due to H2 at θ′) as follows,

ρ(1)(p, p′) = ∑
i,j

M ′
ij ρ(p,0)M

′†
ij ; i, j = 1,2 ,

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ
(1)
11 (p, p′) 0 0 ρ

(1)
14 (p, p′)

0 ρ
(1)
22 (p, p′) 0 0

0 0 ρ
(1)
33 (p, p′) 0

ρ
(1)
41 (p, p′) 0 0 ρ

(1)
44 (p, p′)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(4.7)
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where,

ρ
(1)
11 (p, p′) = u + p2x + p′2(1 − p)2x + 2p′(1 − p)px,

ρ
(1)
22 (p, p′) = (1 − p′)p′(1 − p)2x + (1 − p′)(1 − p)px,

ρ
(1)
33 (p, p′) = (1 − p′)p′(1 − p)2x + (1 − p′)(1 − p)px,

ρ
(1)
44 (p, p′) = (1 − p′)2(1 − p)2x,

ρ
(1)
14 (p, p′) = (1 − p′)(1 − p)v,

ρ
(1)
41 (p, p′) = (1 − p′)(1 − p)v∗.

(4.8)

4.3 Manipulation of ESD using the NOT operation
on both qubits

The experimental set up for manipulation of ESD based on the local NOT oper-

ation performed on both the qubits of a bipartite entangled state (4.5) is shown

in Fig. (4.2). The HWP H1 acts as ADC for incident ∣V ⟩ polarized photon and

then NOT operation is performed by H5 at 45o, which swaps the ∣H⟩ and ∣V ⟩

amplitudes, which are then segregated by PBS P2. The ADC is continued by syn-

chronous rotation of H2 and H6 oriented at θ′, which causes the swapped ∣V ⟩

amplitude to “decay" to ∣H⟩. The photons from the output spatial modes of the

interferometer are sent for tomographic reconstruction of the quantum state [39].

The polarization entangled photons are sent to two displaced Sagnac interfer-

ometers where ADC is simulated by rotating HWP H1 and the NOT operation is

performed by HWP H5, and then ADC is continued by a set of secondary HWPs

H2 andH6. The path lengths of the photons reaching in mode ∣b⟩ are compensated

for coherent recombination of polarization amplitudes at PBS P1. This ensures

that when all the ADC HWPs are set to zero, except for NOT operation, and an

initial entangled state ∣α∣∣HH⟩+∣β∣ exp(ιδ)∣V V ⟩ is incident at the input ports of the

interferometers, we reconstruct the state ∣α∣∣V V ⟩ + ∣β∣ exp(ιδ)∣HH⟩ at the output

ports. These photons are finally sent for quantum state tomography (QST). The

HWP H4 is used to flip the polarization of photons passing through it such that

the QST settings remain the same for the photons in all spatial modes.

The initial state of the system (4.5) in the presence of ADC (due to H1 at θ)
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Figure 4.2: The proposed experimental set up for manipulation of ESD involving NOT
operation on both the qubits of a bipartite entangled state in the presence of ADC in a
photonic system.

evolves as follows,

ρ(2)(p,0) = ∑
i,j

Mij ρ(0,0)M
†
ij ; i, j = 1,2. (4.9)
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Apply the NOT operation on both the qubits at p = pn as follows,

ρ(2)(pn,0) = (σ̂x ⊗ σ̂x)ρ
(2)(p,0) (σ̂x ⊗ σ̂x)

†, (4.10)

where σ̂x is the Pauli matrix. This amounts to switching the elements ρ11 and

ρ44 and ρ22 and ρ33 and interchanging (complex conjugation) the off-diagonal el-

ements.

Apply the Kraus operators M ′
ij to complete the evolution of the system in the

presence of ADC (due to H2 and H6 at θ′) after the NOT operation as follows,

ρ(2)(pn, p
′) = ∑

i,j

M ′
ij ρ

(2)(pn,0)M
′†
ij ; i, j = 1,2, (4.11)

with entries now in the form of (7) given by,

ρ
(2)
11 (pn, p

′) = (1 − pn)
2x + 2p′(1 − pn)pnx + p

′2(u + p2
nx),

ρ
(2)
22 (pn, p

′) = (1 − p′)(1 − pn)pnx + (1 − p′)p′(u + p2
nx),

ρ
(2)
33 (pn, p

′) = (1 − p′)(1 − pn)pnx + (1 − p′)p′(u + p2
nx),

ρ
(2)
44 (pn, p

′) = (1 − p′)2(u + p2
nx),

ρ
(2)
14 (pn, p

′) = (1 − p′)(1 − pn)v
∗,

ρ
(2)
41 (pn, p

′) = (1 − p′)(1 − pn)v.

(4.12)

4.4 Effect of the NOT operation applied on only one
of the qubits

The experimental set up for studying the effect of a NOT operation applied on

only one of the qubits of a bipartite entangled state in the presence of ADC on the

dynamics of entanglement is to retain one half, say the lower, as in Fig. (4.1) and

have only the upper half as in Fig. (4.2), the optical elements H5 and H6 occurring

only in the upper arm.

The initial state of the system (4.5) in the presence of ADC (due to H1 at θ)

evolves as follows

ρ(3)(p,0) = ∑
i,j

Mij ρ(0,0)M
†
ij ; i, j = 1,2. (4.13)



4.5. Some analytical expressions 110

Apply the NOT operation on only one of the qubits by H5 at 45○, let us say

first qubit, at p = pn as follows

ρ(3)(pn,0) = (σ̂x ⊗ Î) ρ(3)(p,0) (σ̂x ⊗ Î)†. (4.14)

Apply next the Kraus operators M ′
ij to complete the evolution of the system

in the presence of ADC (due to H2 and H6 at θ′) after the NOT operation to give

ρ(3)(pn, p
′) = ∑

i,j

M ′
ij ρ

(3)(pn,0)M
′†
ij ; i, j = 1,2, (4.15)

with entries now in the form of (4.7) given by,

ρ
(3)
11 (pn, p

′) = p′(1 − pn)
2x + (1 − pn)pnx + p

′2(1 − pn)pnx + p
′(u + p2

nx),

ρ
(3)
22 (pn, p

′) = (1 − p′)(1 − pn)
2x + (1 − p′)p′(1 − pn)pnx,

ρ
(3)
33 (pn, p

′) = (1 − p′)p′(1 − pn)pnx + (1 − p′)(u + p2
nx),

ρ
(3)
44 (pn, p

′) = (1 − p′)2(1 − pn)pnx,

ρ
(3)
23 (pn, p

′) = (1 − p′)(1 − pn)v
∗,

ρ
(3)
32 (pn, p

′) = (1 − p′)(1 − pn)v.

(4.16)

4.5 Some analytical expressions

Let the two polarization entangled qubits constitute the system, as given by Eq. (4.5),

and the action of the rotating HWPs simulate the ADC. This causes a ∣V ⟩ po-

larized photon to probabilistically “decay" to ∣H⟩ with probability p = sin2(2θ)

(p′ = sin2(2θ′)), where θ (θ′) is the angle between the fast axis of the HWP and

∣V ⟩. The ADC probability p′0 at which ESD happens, depends on the initial state

parameters of the entangled system and the ADC setting of first HWP p. The

criterion for ESD as indicated by a switch in sign of the eigenvalues of the par-

tial transpose of Eq. (4.7) is given by ρ22ρ33 = ∣ρ14∣2. For the initial state (4.5), the

condition for ESD is obtained by computing the Negativity of the state (4.7) and

equating it to zero. The condition for ESD is given by,

p′0 =
∣v∣ − xp

x(1 − p)
. (4.17)
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Let us denote the effective end of entanglement due to combined evolution

through two HWPs by pend. The pend involves a multiplication of survival proba-

bilities to give,

1 − pend = (1 − p)(1 − p′0) with pend = ∣v∣/x. (4.18)

depending only on the initial state parameters in (4.5).

For the manipulation of ESD using NOT operation on both the qubits, this

operation switches ρ11 and ρ44, ρ22 and ρ33 , and interchanges the off-diagonal

elements ρ14 and ρ41 in Eq. (4.7). With subsequent evolution, the criterion for

when ESD now happens, can be used to determine the value of pA that marks the

boundary between hastening or not relative to pend, and similarly the value pB

that is the boundary between delaying pend past p0 or averting ESD completely.

We get,

pA =
1 − 2u

2(1 − u)
, pB =

∣v∣ − u

1 + ∣v∣ − u
. (4.19)

For the manipulation of ESD using NOT operation on only one of the qubits,

this operation now switches ρ11 and ρ33, ρ22 and ρ44, and moves ρ14 into the ρ23

position. Following subsequent evolution, the ESD criterion through the partial

transpose matrix now becomes ρ11ρ44 = ∣ρ23∣2. We now get,

pA =
∣v∣

u + 2∣v∣
, pB =

∣v∣2

∣v∣2 − u + 1
. (4.20)

These simple expressions defining the time p0 for ESD, and the times for NOT

operation that define the delay/hasten and avert/delay boundaries may also be

given for a more general mixed state density matrix with also non-zero entries in

the two other diagonal position in (4.5) and are recorded in Appendix [4.8.1]. The

Appendix [4.8.2] records similar expressions for a density matrix with non-zero

values in the other off-diagonal position as in [35].

The NOT operation applied on both the qubits at p = pn of a bipartite entan-

gled state leads to the end of entanglement given by,

pend =
p2
n(2x + ∣v∣) + pn(1 − 2x − 2∣v∣) + ∣v∣

x (p2
n − 1) + 1

. (4.21)

When NOT operation is applied on only one of the qubits at p = pn, the end of
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entanglement is given by,

pend =
[4x(pn − 1)pn + 4(pn − 1)2∣v∣2 + 1]1/2 + 2xpn − 1

2xpn
. (4.22)

4.6 Results and Discussion

As an example, we choose the initial state: ∣ψ⟩ = ∣α∣∣HH⟩ + ∣β∣ exp(ιδ)∣V V ⟩ with

∣α∣ = 1/
√

5, ∣β∣ = 2/
√

5 and δ = 0 and report the results for ESD, and ESD-manipulation

using the NOT operation on one or both the qubits of the bipartite entangled state.

For ESD using two HWPs, the disentanglement happens for p = 0 at p′0 = 0.5

and for any other combination of p and p′, p′0 follows the non-linear Eq. (4.17) in

p, and the effective end due to two HWPs is given by non-linear Eq. (4.18) with

pend = 0.5. The plot of Negativity N vs. probability of decay of qubits (p, p′) for

the state (4.7) is shown in Fig. (4.3). The plot of Purity (defined as Tr[ρ2]) vs.

probability of decay of qubits (p, p′) for ESD is shown in Fig. (4.4). The two-qubit

entangled state (4.5), initially in a pure state, gets mixed at intermediate stages of

amplitude damping and finally becomes pure again when both the qubits have

decohered down to the ground state (∣HH⟩) at p = 1 or p′ = 1. However, at ESD

for p0 = 0.5, it ends as a mixed disentangled state.

For the manipulation of ESD using NOT operation on both the qubits: we get

pA = 0.375, and pB = 0.1667. The corresponding plot of Negativity N vs. ADC

probability (pn, p′) for the state (4.11) is shown in Fig. (4.5). For the manipulation

of ESD using NOT operation on only one of the qubits: we get pA = 0.4, pB =

0.1667. The corresponding plot of Negativity N vs. ADC probability (pn, p′) for

the state (4.15) is shown in Fig. (4.6).

The plot of pend vs. pn for Eqs. (4.21) and (4.22) such that the NOT operations

applied on both (only one of) the qubits at pn leads to disentanglement at pend

is shown by dashed (solid) blue curve in Fig. (4.7). In the avoidance range 0 ≤

pn ≤ 0.1667, the pend vs. pn curves are cut off at pend = 1 to signify the asymptotic

decay with probabilities remaining in the physical domain. For comparison, we

have also included the results of ESD; Eq. (4.17) and a rendering of (4.18), for

every p, giving the value of p′0, the compounding of them giving the flat line at
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Figure 4.3: Plot of Negativity N vs. ADC probability (p, p′) for ESD using two HWPs
for a bipartite entangled state. The plot implies ESD for p = 0, p′ = 0.5 and p′ = 0, p = 0.5.
For intermediate values of p (p′), the curvature reflects the non-linear relation between
them as per (17), the action of two HWPs oriented at θ and θ′ applied one after another is
not equivalent to that of one HWP oriented at θ + θ′.

pend = 0.5 as shown by dotted red curve and dot-dashed red line in Fig. (4.7). The

role of NOT operation on manipulation of ESD is evident as for (i) 0 ≤ pn ≤ 0.1667,

we get avoidance of ESD with pend = 1 in this range for NOT operation on only

one or both the qubits (ii) 0.1667 < pn < 0.375 ( 0.1667 < pn < 0.4), we get delay

of ESD as the dashed (solid) blue curve lies above 0.5 but less than 1, and (iii)

0.375 < pn < 0.5 (0.4 < pn < 0.5), we get hastening of ESD as the dashed (solid) blue

curve dips below 0.5.

The discussion so far, and Figs. (4.3 - 4.7), pertain to the choice u = 0.2, ∣v∣ = 0.4,

and result in p0 = 0.5, pB = 0.1667, pA = 0.375 for NOT applied to both whereas

pA = 0.4 when applied to just one qubit. This is an example when pA > pB and both

lie in the physically relevant interval (0, p0). All three phenomena, of hastening

(pA < pNOT < p0), delaying (pB < pNOT < pA), and averting (0 ≤ pNOT ≤ pB) ESD then

occur. The appearance of the various manipulation regimes (hastening, delay,

and avoidance of ESD) critically depends on the choice of the parameters of the

initial state (density matrix) of the system as expressed in Eqs. (4.17 - 4.20).
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Figure 4.4: Plot of Purity P vs. ADC probability (p, p′) for ESD using two HWPs for
a bipartite entangled state. The state (4.7) is initially pure, gets mixed at intermediate
ADC probabilities and becomes pure again at p = 1 or p′ = 1.

Figure 4.5: Plot of Negativity N vs. ADC probability (pn, p′) such that NOT operation is
applied on both the qubits at p = pn for manipulation of ESD of a bipartite entangled state.
The NOT operation leads to hastening for 0.375 < pn < 0.5, delay for 0.1667 < pn < 0.375,
and avoidance of ESD for 0 ≤ pn ≤ 0.1667.
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Figure 4.6: Plot of Negativity N vs. ADC probability (pn, p′) such that NOT operation
is applied on only one of the qubits at p = pn for manipulation of ESD of a bipartite
entangled state. The NOT operation leads to hastening for 0.4 < pn < 0.5, delay for
0.1667 < pn < 0.4, and avoidance of ESD for 0 ≤ pn ≤ 0.1667.

Consider a general initial state (4.5), with ∣v∣ ≤
√
u(1 − u), which captures pure

as well as mixed entangled states. The condition for the existence of hastening

regime is u + ∣v∣ > 0.5 for manipulation of ESD using single or double NOT op-

eration. The condition for existence of avoidance regime is ∣v∣ > 0 (∣v∣ > u) for

manipulation of ESD using single (double) NOT operation. For the pure entan-

gled state (4.4), the condition for a physically relevant pA is u ≥ 0.1464. Thus, pure

entangled states (4.4) with 0.1464 ≤ u < 0.5 give rise to hastening, delay as well

as avoidance of ESD, whereas states with 0 < u < 0.1464 give rise to delay and

avoidance of ESD only. For all values of initial parameters, the analytical expres-

sions in (4.17 - 4.20) provide p0 for ESD, and pA and pB. When these lie within the

domain (0, p0), all three regimes are realized. Otherwise, one may have only two

or one of the three regimes of avoidance, delay or hastening of ESD. More general

expressions for a wider class of density matrices than (4.5) are given in Appendix

[4.8.1, 4.8.2].

Consider another example of pure entangled state of the form (4.5) with u =
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Figure 4.7: Plot shows the effect of NOT operation on manipulation of ESD at various pn
values for density matrix parameters u = 0.2, ∣v∣ = 0.4. The plot for ESD, Eq. (4.17) and
a rendering of (4.18), for every p, giving the value of p′0, the compounding of them giving
the flat line pend = 0.5 are shown by dotted red curve and dot-dashed red line. The plot
for manipulation of ESD using NOT on both or only one qubit are shown by dashed and
solid blue curves, respectively. For 0 ≤ pn ≤ 0.1667, pend = 1 means avoidance of ESD,
the pB value for single and double NOT coinciding for these particular parameters but
pB is in general different. For 0.1667 < pn < 0.4 ( 0.1667 < pn < 0.375) the dashed (solid)
blue curve lies above 0.5, implies delays of ESD for double (single) NOT manipulation of
ESD. The dashed (solid) blue curve dipping below 0.5 for 0.375 < pn < 0.5 (0.4 < pn < 0.5)
for manipulation using double (single) NOT operation implies hastening of ESD in this
range.

0.14 and ∣v∣ = 0.347. For this state, p0 = 0.4035, pB = 0.1228 (pB = 0.1715) and pA does

not exist in the physical domain for single (double) NOT operation. Therefore,

we get only delay and avoidance of ESD. The corresponding plot of pend vs. pn

is shown by solid (dashed) blue curve in Fig. (4.8). Next, consider an example

of mixed entangled state of the form (5) with u = 0.2 and ∣v∣ = 0.15. For this

state, p0 = 0.1875, pB = 0.0274 (pB does not exist), and pA does not exist in the

physical domain for single (double) NOT operation. Therefore, NOT operation
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applied on only one (both) of the qubits delays as well avoids (only delays) the

ESD. The corresponding plot of pend vs. pn is shown by solid (dashed) blue curve

in Fig. (4.9).

p
e
n
d

0.1228 0.1715 0.4035

0.4035

1.

pn

Figure 4.8: Plot of pend vs. pn for manipulation of ESD using NOT operation on one
(solid blue curve) or both (dashed blue curve) the qubits of a bipartite entangled state
in the presence of ADC for density matrix parameters u = 0.14, ∣v∣ = 0.347. The NOT
operation leads to avoidance for 0 ≤ pn ≤ 0.1228 (0 ≤ pn ≤ 0.1715) with disentangle-
ment happening at pend = 1 in this range, and delay of ESD for 0.1228 < pn < 0.4035

(0.1715 < pn < 0.4035) as pend curve lies above the pend = 0.4035 dotted red ESD line for
single (double) NOT operation. There is no hastening of ESD for this particular choice of
parameters for single or double NOT operation.
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Figure 4.9: Plot of pend vs. pn for manipulation of ESD using NOT operation on one
(solid blue curve) or both (dashed blue curve) the qubits of a bipartite entangled state in
the presence of ADC for density matrix parameters u = 0.2, ∣v∣ = 0.15. The NOT operation
when applied on only one of the qubits leads to avoidance of ESD for 0 < pn < 0.0274 with
disentanglement happening at pend = 1 in this range, and delay for 0.0274 < pn < 0.1875

as the solid blue curve lies above the pend = 0.1875 dotted red ESD line. The NOT
operation when applied on both the qubits leads to delay for 0 < pn < 0.1875 as the dashed
blue curve lies above the pend = 0.1875 dotted red ESD line. There is no hastening of ESD
for single or double NOT operation and no avoidance of ESD for double NOT operation
for this particular choice of parameters.

4.7 Conclusions and future work

We have proposed an all-optical experimental setup for the demonstration of has-

tening, delay, and avoidance of ESD in the presence of ADC in a photonic system.

The simulation results of the manipulation of ESD considering a photonic system,

when NOT operations are applied on one or both the qubits, are completely con-

sistent with the theoretical predictions of reference [35] for the two-level atomic

system where spontaneous emission is the ADC. We give analytical expressions

for p0, pA and pB which depend on the parameters of the density matrix of the

system for both the forms considered here in (5) and that in [35].

Our proposal also has an advantage over decoherence suppression using weak

measurement and quantum measurement reversal, and delayed choice decoher-

ence suppression. There, as the strength of weak interaction increases, the success

probability of decoherence suppression decreases. In our scheme, however, we

can manipulate the ESD, in principle, with unit success probability as long as we
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perform the NOT operation at the appropriate wave plate angle which is analo-

gous to time in the atomic system. Delay and avoidance of ESD, in particular, will

find application in the practical realization of quantum information and compu-

tation protocols which might otherwise suffer a short lifetime of entanglement.

Also, it will have implications towards such control over other physical systems.

The advantage of the manipulation of ESD in a photonic system is that one has

complete control over the damping parameters, unlike in most atomic systems.

An experimental realization of our proposal will be important for practical noise

engineering in quantum information processing, and is under way. Further work

in the future could study the dynamics of entanglement in the presence of the

generalized ADC [40-43] and the squeezed generalized ADC [44] and the possi-

ble schemes for manipulation of entanglement sudden death in the presence of

such damping channels.

4.8 An alternative approach to analyze the ESD and
manipulation experiments

We provide here an alternative and intuitive approach to analyze the ESD and

its manipulation set up by tagging the photon polarization states with the spa-

tial modes of the interferometer upon the action of each of optical component

encountered in the photon’s path. The evolution of system plus reservoir is rep-

resented by a unitary operator USR. The degrees of freedom of the reservoir can

be traced out from USR to get the Kraus operators which govern the evolution of

the system by itself.

ESD experiment

Consider the experimental set up for ESD as shown in Fig. (4.1). An incident ∣H⟩

polarized photon is transmitted though the PBS P1 and traverses the interferom-

eter in a counter-clockwise direction, returns to P1 and is transmitted into spatial

mode ∣a⟩ of the reservoir. The corresponding quantum map is given by,

USR∣H⟩S ∣a⟩R → ∣H⟩S ∣a⟩R. (4.23)
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An incident ∣V ⟩ polarized photon is reflected by PBS P1 and traverses the in-

terferometer in a clockwise direction. The action of HWPs H1 and H2 and PBS P1

and P2 are represented by the quantum map,

USR∣V ⟩S ∣a⟩R
H1@θ
ÐÐÐ→
P2

√
1 − p∣V ⟩S ∣a

′⟩R +
√
p∣H⟩S ∣b⟩R,

H2@θ′

ÐÐÐÐÐ→
in ∣V ⟩ arm

√
1 − p[

√
1 − p′ ∣V ⟩S ∣a

′⟩R

+
√
p′ ∣H⟩S ∣b

′⟩R] +
√
p∣H⟩S ∣b⟩R],

(4.24)

where p = sin2(2θ) , p′ = sin2(2θ′).

Combining above two Eqs., the unitary operator USR can be written as:

USR =∣H⟩S ∣a⟩R S⟨H ∣R⟨a∣ + [
√
p∣H⟩S ∣b⟩R +

√
(1 − p)(1 − p′)∣V ⟩S ∣a

′⟩R

+
√

(1 − p)p′∣H⟩S ∣b′⟩R]S⟨V ∣R⟨a∣.
(4.25)

Since we coherently recombine the spatial modes ∣a⟩ and ∣a′⟩ due to physically

motivated reasons, i.e., ∣a′⟩ ≡ ∣a⟩, the above unitary operator reduces to

USR =∣H⟩S ∣a⟩R S⟨H ∣R⟨a∣ + [
√
p∣H⟩S ∣b⟩R +

√
(1 − p)(1 − p′)∣V ⟩S ∣a⟩R

+
√

(1 − p)p′∣H⟩S ∣b′⟩R]S⟨V ∣R⟨a∣.
(4.26)

The Kraus operator for the ESD are obtained by tracing out the degrees of

freedom of the reservoir as follows:

Kµ = R⟨µ∣USR∣a⟩R ; µ = a, b, b′. (4.27)

The Kraus operators, thus, obtained are

K1 = R⟨a∣USR∣a⟩R =
⎛
⎜
⎝

1 0

0
√

(1 − p)(1 − p′)

⎞
⎟
⎠
, (4.28a)

K2 = R⟨b∣USR∣a⟩R =
⎛
⎜
⎝

0
√
p

0 0

⎞
⎟
⎠
, (4.28b)

K3 = R⟨b
′∣USR∣a⟩R =

⎛
⎜
⎝

0
√

(1 − p′)p

0 0

⎞
⎟
⎠
. (4.28c)

The Kraus operators for two-qubit system is obtained by

Kij =Ki ⊗Kj ; i, j = 1,2,3. (4.29)
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These Kraus operators govern the evolution of the system from the initial state

ρ(0) to the final state ρ(p, p′) as follows.

ρ(p, p′) =
3

∑
i,j=1

Kijρ(0,0)K
†
ij. (4.30)

ESD manipulation experiment

Consider the experimental setup for ESD manipulation using double NOT op-

eration as shown in Fig. (4.2). An incident ∣H⟩ polarized photon is transmitted

through PBS P1 and traverses the interferometer in a counter-clockwise direction

where the NOT operation is applied by HWP H5 and ADC afterwards is simu-

lated by H6. The corresponding quantum map is given by

USR∣H⟩S ∣a⟩R
H5 at 45
ÐÐÐÐ→ ∣V ⟩S ∣b⟩R ,

H6 at θ′
ÐÐÐÐ→

√
1 − p′∣V ⟩S ∣b⟩R +

√
p′∣H⟩S ∣a⟩R .

(4.31)

An incident ∣V ⟩ polarized photon is reflected by PBS P1 and traverses the in-

terferometer in a clockwise direction where ADC is introduced by HWP H1 fol-

lowed by NOT operation by HWP H5 and then ADC is continued by HWP H2.

The corresponding quantum map is given by

USR∣V ⟩S ∣a⟩R
H1 at θ
ÐÐÐ→

√
1 − p∣V ⟩S ∣a⟩R +

√
p∣H⟩S ∣b⟩R ,

P2
ÐÐÐÐ→
H5 at 45

√
1 − p∣H⟩S ∣b⟩R +

√
p∣V ⟩S ∣a

′⟩R ,

H2 at θ′
ÐÐÐÐÐ→
in ∣V ⟩ arm

√
1 − p∣H⟩S ∣b⟩R +

√
p[

√
1 − p′∣V ⟩S ∣a

′⟩R +
√
p′∣H⟩S ∣b

′⟩R] .

(4.32)

Combining above two Eqs., the unitary operator USR can be written as:

USR = [
√

1 − p′∣V ⟩S ∣b⟩R +
√
p′∣H⟩S ∣a⟩R] S⟨H ∣R⟨a∣ +

[
√

1 − p∣H⟩S ∣b⟩R +
√
p (

√
1 − p′∣V ⟩S ∣a

′⟩R +
√
p′∣H⟩S ∣b

′⟩R )] S⟨V ∣R⟨a∣.
(4.33)

The Kraus operators which govern the evolution of the system are obtained

by tracing out the degrees of freedom of the reservoir as follows:

Kµ =R ⟨µ∣USR∣a⟩R ; µ = a, a′, b, b′. (4.34)
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The Kraus operators, thus, obtained are

K1 = R⟨a∣USR∣a⟩R =
⎛
⎜
⎝

√
p′ 0

0 0

⎞
⎟
⎠
, (4.35a)

K2 = R⟨b∣USR∣a⟩R =
⎛
⎜
⎝

0
√

1 − p
√

1 − p 0

⎞
⎟
⎠
, (4.35b)

K3 = R⟨a
′∣USR∣a⟩R =

⎛
⎜
⎝

0 0

0
√
p(1 − p′)

⎞
⎟
⎠
, (4.35c)

K4 = R⟨b
′∣USR∣a⟩R =

⎛
⎜
⎝

0
√
pp′

0 0

⎞
⎟
⎠
. (4.35d)

The Kraus operators for two-qubit system is obtained by

Kij =Ki ⊗Kj ; i, j = 1,2,3,4. (4.36)

These Kraus operators govern the evolution of the system from the initial state

ρ(0) and give the final state ρ(p, p′).

ρ(p, p′) =
4

∑
i,j=1

Kijρ(0,0)K
†
ij . (4.37)

4.8.1 Analytical expressions for X-state with non-zero entries in
the other diagonal terms

As discussed in Section (4.5), we again use the negativity criterion for the partial

transposed density matrix to determine the occurrence of ESD. By following, as

in [35], the evolution of the parameters in Eq. (4.2), and double NOT switching a

and d, b and c, and swapping the off-diagonal terms z and z∗, whereas a single

NOT at one end switches a and c, b and d, and moves z and z∗ inward along

the anti-diagonal, we again obtain analytical expressions for the various p (or

equivalently, γ and t) of interest. Consider the initial mixed entangled state with

the density matrix given in a form more general than (4.5) given below.

ρ2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 z

0 b 0 0

0 0 c 0

z∗ 0 0 d

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.38)
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where a + b + c + d = 1. As per the convention for ground and excited states in

the reference [35], we choose ‘a′ as the population of both qubits being in excited

states and ‘d′ being the population of both qubits in the ground states unlike the

(reversed) convention in the main body of this paper.

In the presence of ADC, the condition for ESD is given by

p0 =
−b − c + [(b − c)2 + 4∣z∣2]1/2

2a
. (4.39)

For manipulation of ESD using NOT operation on both the qubits, the condi-

tion for hastening ESD is given by

pA =
a − d

1 + a − d
. (4.40)

The condition for avoidance of ESD is given by

pB = 1 −
2a + b + c − [(b − c)2 + 4∣z∣2)]1/2

2[(a + b)(a + c) − ∣z∣2]
. (4.41)

For manipulation of ESD using NOT operation on only one of the qubits, the

condition for hastening ESD is given by

pA = 1 −
(c + a)[(c + a)(1 − p0) − 1]

(a + b){(a + b) − [(b − c)2 + 4∣z∣2]1/2} − a
. (4.42)

and the condition for avoidance of ESD is given by

pB =
∣z∣2 − c

∣z∣2 + a
. (4.43)

4.8.2 Analytical expressions for the X-state in Reference [35]

Consider the initial mixed entangled state with the form of density matrix as in

reference [35],

ρ1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 0

0 b z 0

0 z∗ c 0

0 0 0 d

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.44)

for simplicity, the 1/3 factor in [35] has been absorbed into the density matrix

elements.



4.9. References 124

In the presence of ADC, the condition for ESD is given by

p0 =
−b − c + [(b + c + 2a)2 − 4(a − ∣z∣2)]1/2

2a
, (4.45)

where p = 1 − γ2 = 1 − exp(−Γt), Γ is the spontaneous decay rate of the two level

atomic qubit as introduced in [35].

For manipulation of ESD using NOT operation on both the qubits, the condi-

tion for hastening ESD is given by

pA =
a − d

1 + a − d
. (4.46)

The condition for avoidance of ESD is given by

pB =
2(a − ∣z∣2) − (2a + b + c) + [(b + c + 2a)2 − 4(a − ∣z∣2)]1/2

2(a − ∣z∣2)
. (4.47)

For manipulation of ESD using NOT operation on only one of the qubits, the

condition for hastening ESD is given by

pA =
(c + a)[2a(1 − p0) − (c + a)(1 − p0) + c + d] − a

(c + a)[2a(1 − p0) − (b + a)] − a
. (4.48)

The condition for avoidance of ESD is given by

pB = 1 −
a + c

(a + b)(a + c) + ∣z∣2
. (4.49)

For hastening, delay and avoidance to exist in a physical region, the corre-

sponding parameters must satisfy the condition 0 < pB, pA < p0. As an example,

the choice a = 0.4, b = c = 0.2, z = 0.25 gives p0 = 0.125, pA = 0.1667, and an unphys-

ical negative value of pB. This means that neither hastening nor averting ESD is

possible, only delaying it by applying NOT between 0 and p0.

The published version of the research work reported in this chapter can be

found in Ref. [45].
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Chapter 5

Experimental demonstration of ESD
and its manipulation

5.1 Introduction

In this chapter, we will present a detailed discussion on the experimental meth-

ods involved in setting up the Entanglement Sudden Death (ESD) experiment

from scratch, issues encountered in the process, and their resolution. Then, we

will present experimental results on the demonstration of ESD in the presence of

a simulated Amplitude Damping Channel (ADC) in an all-optical experimental

setup. For completeness, we will also demonstrate the Asymptotic Decay of En-

tanglement (ADE) in the presence of an ADC for a different initial state. This will

be followed by a discussion on our attempts in setting up the ESD-manipulation

(ESDM) experiment using local unitary operations (to be specific, NOT opera-

tion: Pauli σx operator) on both the qubits during the process of decoherence as

proposed in the previous chapter. It is worth noting that the action of local uni-

tary operations on individual subsystems cannot change the amount of entan-

glement in the system but subsequent dynamics can be altered. We will outline

various constraints in the ESDM setup that need to be simultaneously satisfied

for the ESDM experiment to work. Then we will discuss our efforts towards set-

ting up the manipulation experiment, current status of the experiment, and the

way forward. We will conclude this chapter with a brief discussion on the pos-

sible impact of ESD-manipulation on the other physical systems and Quantum

Information Processing (QIP) tasks.
129
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One important element of this experiment is the Sagnac Interferometer in the

displaced configuration, known as Displaced Sagnac Interferometer (DSI), which

consists of one PBS and three mirrors. For any input polarization state, DSI splits

the H- and V-polarization amplitudes in orthogonal directions and spatially seg-

regates their path inside the interfereometer and thus gives us separate access to

these polarization components for controlled manipulation. Since, both the clock-

wise as well as counter-clockwise propagating beams pass through the same set

of optics (PBS and mirrors), it is fairly stable against vibrations as compared to

the other interferometers such as Michelson or Mach-Zhender interferometers.

Inherent stability of the SI is one of the reasons why it is a preferred choice in

many interferometric applications such as in preparation of SPDC based polar-

ization entangled photon sources, etc.

The ESD experiment involves setting up of two DSIs using an alignment laser

beam and then fine alignment when the entangled photon source is turned on

to optimize the coincidence in different bases. Such an optimization is required

to ensure that the input state to DSI is reconstructed at the output port with a

high-fidelity for zero-degree setting of the damping channel parameters. During

the experiment, it was found that one of the DSIs had some instability as a result

of which we observed periodic fluctuations and drift in the single counts of one

side and thereby coincidence counts in a given projection bases. Such instabil-

ities were quantified by correlation-noise based analyses using Pearson correla-

tion coefficient (PCC). It was conjectured that such instability could arise due to

two reasons: (i) air currents flowing in the lab due to air-conditioning and fan-

filter units, and/or (ii) expansion and contraction of the Holmarc platform mount

springs/knobs used for mounting PBS in the corresponding DSI due to temper-

ature change of 1 − 2○c from morning to evening. To isolate the interferometers

from air currents, we covered the two DSIs using cardboard and the poor-quality

beam splitter platform mount from Holmarc was replaced by a 2-inch beam split-

ter mount from Thor Labs. These solutions resolved the coincidence drift issue to

a great extent and then we performed the ESD and ADE experiments which was

followed by ESDM experiment.
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5.2 Setting up the ESD experiment

5.2.1 ESD with one HWP vs. two HWPs

The ESD experiment using two HWPs as proposed in the previous chapter is

very difficult to set up as it is very challenging and cumbersome to ensure the

coherent recombination of modes ∣a⟩ and ∣a′⟩ as in Fig. 4.01 due to macroscopic

path differences between these spatial modes. Here, a mathematical trick comes

to our rescue. From Eq. (4.18), it is evident that the effective end of entanglement

due to combined evolution through two HWPs is given by pend. The pend involves

a multiplication of survival probabilities due to individual HWPs to give

1 − pend = (1 − p)(1 − p′0) with pend = ∣v∣/x. (5.1)

depending only on the initial state parameters of the density matrix.

The end of entanglement due to two HWPs mimicking the ADC oriented at

θ = arcsin(
√
p)/2 and θ′0 = arcsin(

√
p′0)/2, respectively, as given by Eq. (5.1) is same

as that due to a single HWP oriented at θend = arcsin(
√
pend)/2 in the ESD setup in

Ref. [2]. We will exploit the equivalence due to Eq. (5.1) and set up the ESD exper-

iment for polarization entangled photonic qubits using DSI as in Ref. [1]. These

results will set the reference point for the ESD manipulation experiment. These

results will be then compared with the ESD manipulation experiment and then

phenomenon of hastening, delay, and avoidance of ESD will be demonstrated for

an initially entangled state. The difference between what we call p′ and p is that

factor (1 − p), that is, any p′ such as pend can be converted into the unprimed pend

through an expression such as Eq. (4.18). What is multiplicative is the survival

(1 − p), not p, itself, so that to make the passage you take (1 − p′) and multiply by

(1 − p) or (1 − pn) and that gives the corresponding (1 − p) without the prime.

5.2.2 Alignment of DSIs using He-Ne Laser and coincidence op-
timization

Schematic of the experimental setup that we have used for demonstrating ESD in

an all-optical setup is shown in Fig. 5.1.
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Figure 5.1: Experimental setup for demonstrating ESD in the photonic system [1]. Po-
larization entangled photons are sent to two DSI where a half-waveplate (HWP1 at θ)
acts on ∣V ⟩ polarization only. Upon tracing out the spatial modes; mode ∣a⟩ (transmit-
ted, top) and ∣b⟩(reflected, bottom), of the interferometer at PBS, the HWP action mimics
ADC.

To give a feel for the experiment as well as a visual aid to the interested read-

ers, a picture of the experimental setup on the optical table is shown in Fig. 5.2

below. The entire experimental setup including entangled photon source and

displaced Sagnac interferometer for ESD experiment is built on a 6×4 square-feet

optical table. Sagnac interferometer paths are approximately 10 inch long.
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Figure 5.2: A piture of the experimental setup for demonstrating ESD in the photonic
system captured from our laboratory.

Starting from the entangled photon source setup, one DSI is set up at a time

using the alignment laser. The other aligned side serves as a reference for the DSI

alignment to get the single photon coupling and coincidence optimization when

source is turned on. When a diagonally polarized laser beam is incident on the

PBS of DSI, half of the incident light gets transmitted and remaining half gets

reflected. These two light beams travel the interferometer in counter-clockwise

and clockwise directions, respectively, get reflected from the three mirrors and

meet at a different point on the PBS. This is where coherent recombination of the

two beams (polarization amplitudes in the cases of single/entangled photons)

takes place and ideally entire light beam should get transmitted to spatial mode

∣a⟩. Experimentally, however, one would observe a very small leakage to spatial

mode ∣b⟩ due to imperfections in optical components (such as mirror reflectivity

or PBS extinction ratio) or due to error in aligning the wave-plates at a given
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angle. If DSI is balanced and perfectly phase stable, then the polarization state of

light at the output port remains same as that at the input port.

The relative path delay between clockwise and counter-clockwise paths, which

are supposed to be coherently recombined at the PBS of displaced Sagnac inter-

ferometer, should be ideally zero. However, due to manufacturing limitations

on the surface flatness of 2" optics (mirrors, polarizing beam splitters, and wave-

plates), there will be a residual path difference between the two arms. Since upon

performing tomography (see Sec. 5.2.3 and 5.3.1, for instance), we got better than

95% fidelity of the entanglement for zero settings of ADC HWPs (for ESD exper-

iment) with the interferometer. Thus, we infer that the path difference between

the two arms would be significantly lower than the coherence length of the down-

converted photons: lc = λ2/∆λ = 67 microns (for a 10 nm band pass filter used for

spectral filtering at 810 nm).

We used an alignment laser (He-Ne laser, 632.8 nm), apertures and beam pro-

filer for setting up the DSI for the ESD experiment. Overlap of the He-Ne beam

traversing the DSI clockwise and counter-clockwise directions was checked at the

output port (mode ∣a⟩) at different positions and it was ensured that two beams

remain on-top of each other. This ensures the overlap of the K vectors of the two

beams. In collinear configuration of the DSI, there will be a single Gaussian spot

at the output port as shown in Fig. 5.3 below.

When a polarizer with transmission axis at 45○ was placed at the output port

in spatial mode ∣a⟩ of the DSI to see the interference due to diagonal components

of the two beams in the non-collinear configuration (by slightly misaligning one

of the mirrors so that k-vectors of transmitted and reflected components exit at a

small angle), we observe interference fringes as shown in Fig. 5.4 below. In the

end, DSI is brought back to the collinear configuration.
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Figure 5.3: Overlap of the clockwise and counter-clockwise propagating Gaussian beams
at the output port (spatial mode ∣a⟩) of the DSI in collinear configuration captured by
DataRay beam profiler.

Figure 5.4: Interference due to clockwise and counter-clockwise propagating Gaussian
beams on a polarizer at 45○ at the output port ∣a⟩ of the DSI in non-collinear configuration
captured by DataRay beam profiler.
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To introduce the spatial mode ∣b⟩, HWP in the reflected arm of DSI is set to

45○ so that the polarization state of light after passing through this HWP becomes

H-polarized and thereby gets transmitted to spatial mode ∣b⟩. This helps us in

aligning the mirrors in mode ∣b⟩. The light beam in mode ∣b⟩ is incoherently re-

combined with that in mode ∣a⟩ (as path difference between mode ∣a⟩ and ∣b⟩ is

much larger than the coherence length of the signal) using a HWP at 45○ onto PBS

and gets reflected towards the detector. The HWP at 45○ in mode ∣b⟩ ensures that

the QST settings for both modes remain the same.

5.2.3 Coincidence optimization and QST

After aligning one of the DSIs using He-Ne laser, ADC HWP (H1 at θ○) as well

as optical path compensating HWP (H at 0○) in the DSI were placed with fast

axes making zero-degree with vertical. At the output port of the DSI, QST setup

was already placed. On the other side, only QST setup was placed. In such

case, when entangled photon source is turned on, one of the photons (say, signal)

passes through QST setup directly whereas other one (say, idler) passes through

the DSI. In the DSI, ∣H⟩ polarization amplitude is transmitted and traverses the

interferometer in counter-clockwise direction, and ∣V ⟩ polarization amplitude is

reflected and traverses the interferometer in clockwise direction. Both of these

polarization amplitudes then coherently recombine at a different point on the

PBS and get transmitted to mode ∣a⟩. Thus, only mode ∣a⟩ is populated when

ADC HWPs are set to zero-degree.

Coincidence was optimized for ∣HH⟩⟨HH ∣ and ∣V V ⟩⟨V V ∣ projections to max-

imize and make them equal, and at the same time for ∣HV ⟩⟨HV ∣ and ∣V H⟩⟨V H ∣

projections coincidence should be close to zero for a maximally entangled state

as the input. Next, ADC HWP in the reflected arm of the DSI was set to 45○ and

coincidence was optimized from mode ∣b⟩ for ∣HH⟩⟨HH ∣ projection, preferably

by using mirrors in the mode ∣b⟩ alone. Ideally, sum of the coincidences from

mode ∣a⟩ for ∣HH⟩⟨HH ∣ and ∣V V ⟩⟨V V ∣ projections for ADC HWPs at zero-degree

should be equal to the coincidence from mode ∣a⟩ and ∣b⟩ for ∣HH⟩⟨HH ∣ projection

with ADC HWP at 45○. Also, the coincidence contribution from mode ∣b⟩ should
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be equal to that from mode ∣a⟩ for ∣HH⟩⟨HH ∣ projection when ADC HWPs are set

to 45○.

In the next step, DSI was aligned on the other side as well using alignment

laser followed by coincidence optimization with entangled photon source on, fol-

lowing exactly the same procedure as discussed above.

Then QST was performed for pump HWP at 22.5○ and physical state (density

matrix) was reconstructed using Maximum Likelihood Estimation (MLE). In the

ideal case, we expect that the initial state incident at the input ports of the DSI

should be reconstructed at the output ports. The real and imaginary parts of the

density matrix obtained upon reconstructing the state, is shown in the Fig. 5.5

below.

Figure 5.5: The two-qubit entangled state reconstructed through QST with perfect tem-
poral compensation and narrow spectral filtering using 810-10 nm band pass filters for
pump HWP at 22.5○. Left (right) figure shows the real (imaginary) part of the density
matrix. The reconstructed state has a fidelity of 95.50% with the ideal state.

The reconstructed state had the following properties:

• Concurrence of the ideal state = 1.

• Concurrence of the reconstructed state = 0.9170.

• Fidelity with the ideal state = 0.9550.

• Purity of the state: 0.9179.
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At this stage, many QSTs were performed for pump HWP at 22.5○ with ADC

HWPs at zero deg to see its reproducibility but state properties were found to be

significantly different for different runs of the experiment. For a sanity check, we

changed the pump HWP to ≈ 45.1○ so that down-converted state becomes nearly

∣HH⟩ and reconstructed the state using QST. We found that the reconstructed

state had following properties:

• Fidelity with the ideal state: 99.68%.

• Concurrence of the ideal state: 0.00698 .

• Concurrence of the reconstructed state: 0.00724 .

• Purity of the state: 0.99999 .

The real and imaginary parts of the density matrix are shown in the Fig. 5.6

below.

Figure 5.6: The two-qubit product state ∣HH⟩ reconstructed through QST with narrow
spectral filtering using 810-10 nm band pass filters for pump HWP at 45○. Left (right)
figure shows the real (imaginary) part of the density matrix. The reconstructed state has
a fidelity of 99.67% with the ideal state.

Thus, we were able to reconstruct the product state ∣HH⟩ with a very high

purity (> 99.99%) and fidelity (99.67%) but for entangled states, purity and fi-

delity were significantly lower. It should be noted here that the product state

∣HH⟩ (or ∣V V ⟩) does not involve any recombination of the counter propagating
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polarization amplitudes at PBS in the DSI. Any entangled state, however, would

have both clockwise and counter-clockwise propagating polarization amplitudes

in the DSI which should coherently recombine at the PBS in order to reconstruct

the input state at the output ports. The relative phase φo of the reconstructed state

would depend on the input state phase φi (where ∣ψi⟩ = α∣HH⟩ + β exp(iφi)∣V V ⟩)

as well as phase accrued due to propagation in the DSI due to the infinitesimal

optical path difference in the two arms. We need to take a total 36-measurements

to fully reconstruct the two-qubit state. If DSI had some phase instability, say op-

tical path difference changes by a few nm in different QST runs, then net phase φ

would be different for different projections. When density matrix is reconstructed

from such projections, this would lead to a phase averaging, and thus net dephas-

ing effect on the reconstructed state, leading to drop in coherence term and state

purity. Furthermore, if the spatial overlap of clockwise and counter-clockwise

propagating components is not perfect at PBS, then coherent recombination con-

dition would not be satisfied which would again lead to drop in the state purity.

All these conjectures lead us to investigate the (in)stability of the DSI in detail as

discussed in the next section.

5.2.4 Instability and drift in the DSI

When the initial entangled state ∣ψi⟩ = [∣HH⟩ + exp(iφi)∣V V ⟩] /
√

2 is inputted to

the DSI, it showed short term oscillations and long term drift in the coincidence

for a given projection setting. Projections which do not depend on the relative

phase φi (such as ∣HH⟩⟨HH ∣, ∣HV ⟩⟨HV ∣, etc.) show short oscillation and long

terms drift in the coincidence and singles of one side where singles/coincidence

increased by nearly 30% from morning to evening. Whereas projections depen-

dent on the relative phase φi (such as ∣RR⟩⟨RR∣, ∣RL⟩⟨RL∣, etc.) show a nearly

periodic short term oscillations and a long term oscillation as shown in Figs. 5.7

and 5.8 below.
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Figure 5.7: Coincidence measured in ∣V V ⟩⟨V V ∣ bases vs. time (100s iterations) for a
maximally entangled state input to DSIs. It clearly shows short time scale oscillation and
long term drift.

Figure 5.8: Coincidence measured in ∣LL⟩⟨LL∣ bases vs. time (100s iteration) for max-
imally entangled state input to the DSIs. It shows both both short time scale as well as
long time scale oscillations.

To understand this further, Pearson correlation coefficient (PCC) based anal-

ysis was carried out where singles, coincidence, temperature and laser power

were recorded simultaneously. PCC between two variables X and Y is a measure

of linear correlation between them and defined as follows:

PXY =
cov(X,Y )

σXσY
(5.2)

where cov(X,Y ) is the covariance, and σX and σY are standard deviation of X

and Y, respectively.
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Expressing covariance between X and Y as

cov(X,Y ) = E[(X − X̄)(Y − Ȳ )], (5.3)

where E denotes expectation value, and X̄, Ȳ denote mean of X and Y respec-

tively. Expression for PCC can be rewritten as

PXY =
E[(X − X̄)(Y − Ȳ )]

σXσY
(5.4)

The coincidence data was collected for 600 iterations of 100 s acquisition time

each, along with lab temperature and laser power. It can be seen from the plot

in Fig. 5.9 that change in singles on left side correlates well with the change in

coincidence.

100 200 300 400 500 600

-100

100

200

Changes in Singles left Singles right Coincidence

Figure 5.9: The horizontal axis denote the number of 100s iterations for which data was
recorded and vertical axis denotes corresponding changes in singles counts on the left
side, right side, and the coincidence counts per iteration.

The coincidence data was collected for 100 s accumulation time and tempera-

ture data was also recorded at these intervals, and PCC is calculated for every 100

s data. Corresponding PCC plot between coincidence and temperature is shown

in the Fig. 5.10 below. Since both the data (coincidence as well as temperature)

were recorded at fixed time intervals, time was an appropriate parameter to plot

on the x-axis.
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Figure 5.10: The plot of PCC vs. time delay. Since each coincidence count measurement
as well as temperature data was recorded in the steps of 100 s , hence PCC is calculated
at the interval of 100 s.

It is evident from the plots in Fig. 5.9 that the changes in the coincidence

counts nearly mimic the changes in single counts on left side. The PCC plot

between temperature and coincidence shown in Fig. 5.10 further reinforces the

conjecture that the changes in single counts on left and coincidence counts are

strongly correlated with the temperature. Such instability could arise because of

the expansion/contraction of the platform mount used for PBS in the DSI. Inter-

estingly, on the left side, PBS mount was from a local company (Holmarc Inc.,

India), hence we replaced it with the Thor Labs 2" kinematic platform mount

which led to the marked improvement. After achieving the stability of SI, it was

found that the QST data were pretty much reproducible. Then we move onto

performing the ESD experiment.

5.3 ESD experiment and results

The experimental demonstration of ESD requires preparation of a non-maximally

entangled state (∣ψ⟩ = α∣HH⟩+β∣V V ⟩, where ∣β∣ > ∣α∣) with high purity as the initial

state. The individual subsystems (photons) of the initial entangled state are then

sent through two separate DSIs where local, identical but independent amplitude
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damping channels (ADC) act on the subsystems and evolution of entanglement

is studied as a function of the ADC parameter. The ADC is mimicked by a half-

wave plate (HWP) which acts only on the ∣V ⟩ polarization state which is treated as

excited state (∣H⟩ polarization state remains unaffected as it is treated as ground

state) and thus transforms the polarization state of the input photon as:

∣H⟩∣a⟩ → ∣H⟩∣a⟩ ,

∣V ⟩∣a⟩ → cos(2θ)∣V ⟩∣a⟩ + sin(2θ)∣H⟩∣b⟩ ,
(5.5)

where ∣a⟩ and ∣b⟩ are the output spatial modes of DSI and θ is the orientation of the

fast axis of the HWP with respect to vertical. The decay probability of a photon

in ∣V ⟩ state to ∣H⟩ state due to ADC is given by p = sin2(2θ).

Eq. (5.5) is a quantum map that represents the unitary evolution of the system

and environment (output spatial mode of the DSI). When the spatial modes (∣a⟩

and ∣b⟩) of the interferometer are traced out by incoherently recombining them

on the PBS, it acts as the ADC on the polarization state of the photon pairs. For

detailed discussion on this, please refer to the theory chapter [4]. In the end,

quantum state tomography is done by projecting the polarization state of photons

onto different bases then these photons are coupled into single-mode fiber (SMF)

and coincidence measurement is performed (see Fig. 5.1).

5.3.1 Results

We set pump HWP at 13.1○ from vertical for the initial state preparation for ESD

experiment. Theoretically, concurrence is expected to be 0.792 but the best recon-

structed state through QST and MLE (after the initial state passed through DSIs,

with ADC HWPs and optical path compensating HWPs at zero-deg) was found

to be 96.17% pure and had a concurrence value of 0.766. Five such initial states

were prepared and collective evolution of all the states were used to obtain the

theoretical plot for the ESD experiment. The initial state density matrix for one

of the experimentally reconstructed states is given in Eq. (5.6) and its real and

imaginary parts are shown in Fig. 5.11 in a 3D plot.



5.3. ESD experiment and results 144

ρexp =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.195 0.0148 − 0.0044i 0.003 + 0.0004i −0.2635 − 0.2835i

0.0148 + 0.0044i 0.0067 −0.0054 − 0.0024i −0.0092 − 0.0366i

0.003 − 0.0004i −0.0054 + 0.0024i 0.0105 −0.0045 + 0.0054i

−0.2635 + 0.2835i −0.0092 + 0.0366i −0.0045 − 0.0054i 0.788

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(5.6)

Figure 5.11: The two-qubit entangled state reconstructed through QST with nearly per-
fect temporal compensation and spectral filtering using 810-10 nm band pass filters for
pump HWP at 13.1○. The left (right) figure shows the real (imaginary) part of the density
matrix. The reconstructed state had a fidelity of 97.88% with the ideal state.

The reconstructed state has the following properties:

• Concurrence of the ideal state = 0.7923.

• Concurrence of the reconstructed state = 0.7659.

• Fidelity with the ideal state = 0.9788.

• Purity of the state = 0.9617.

Results of the ESD experiment obtained from five runs of the experiment are

shown in Figs. 5.12 and 5.13 below. The Fig. 5.12 demonstrates the phenomenon

of ESD as the initial state having average Concurrence = 0.755(7) gets disentan-

gled at p = 0.48 and remains separable afterwards. The Fig. 5.13 demonstrates the



5.3. ESD experiment and results 145

change in purity of the state as a function of ADC parameter. Initial state has a

purity = 0.959(3), which decreases as the strength of ADC parameter (p) increases

until ESD occurs at p = 0.48, where purity of the states reach a minimum value

of 0.354(4). After this point, purity would increase as more and more population

get pumped into ∣HH⟩ bases state due to the action of ADC and finally joint state

would end up as a pure state when both the qubits of two-qubit system decay

down to ground state ∣HH⟩ at p = 1. In both the plots, shaded blue curve indi-

cates the theoretically expected evolution in the ADC obtained for the five initial

states reconstructed via QST and MLE. The red dots indicate average value of the

experimental data for the corresponding ADC value and vertical bars represent

error in the state reconstruction due to statistical fluctuation in the counts.
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Figure 5.12: Plot of Concurrence vs. ADC probability p shows the pheonomenon of
ESD. The initial state ∣ψi⟩ = α∣HH⟩ + β∣V V ⟩ with ∣β∣ = 4∣α∣ undergoes ESD (solid blue
shaded line) as concurrence drops to zero at p = 0.48. The red dots indicate experimental
data points and vertical bars represent error in state reconstruction due to statistical
fluctuation in the counts.
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Figure 5.13: Plot of purity vs. ADC probability p for the ESD experiment. The average
purity of the initial state ∣ψi⟩ = α∣HH⟩ + β∣V V ⟩ with ∣β∣ = 4.12∣α∣ drops from 0.959(3)
to a minimum value of 0.353(4) at the time of ESD and then starts increasing again after
this point. The red dots indicate experimental data points and vertical bars represent error
in state reconstruction due to statistical fluctuation in the counts.

5.4 ADE experiment and results

The experimental demonstration of ADE requires preparation of a non-maximally

entangled state (∣ψ⟩ = α∣HH⟩+β∣V V ⟩, where ∣α∣ > ∣β∣) with high purity as the initial

state. We set the pump HWP at 31.9○ from vertical for the initial state prepara-

tion with ∣α∣ = 4.12 ∣β∣. Theoretically, concurrence is expected to be 0.792 but the

best reconstructed state through QST and MLE (after the initial state was passed

through DSIs, with ADC HWPs and optical path compensating HWPs at zero-

deg) was 98.12% pure and had a concurrence value of 0.778. Five such initial

states were prepared and collective evolution of all the states were used to obtain

the theoretical plot for the ESD experiment. The initial state density matrix for

one of the experimentally reconstructed states is given in Eq. (5.7) and its real

and imaginary parts are shown in Fig. 5.14 in a 3D plot.
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ρexp =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.8073 0.0228 − 0.0189i 0.007 + 0.037i −0.3737 − 0.0048i

0.0228 + 0.0189i 0.0058 0.0021 + 0.0004i −0.0151 − 0.0129i

0.007 − 0.037i 0.0021 − 0.0004i 0.0045 −0.0063 + 0.0131i

−0.3737 + 0.0048i −0.0151 + 0.0129i −0.0063 − 0.0131i 0.1825
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⎟
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(5.7)

Figure 5.14: The two-qubit entangled state reconstructed through QST with perfect tem-
poral compensation and narrow spectral filtering using 810-10 nm band pass filters for
pump HWP at 13.1○. Left (right) figure shows the real (imaginary) part of the density
matrix. The reconstructed state had a fidelity of 98.71% with the ideal state.

The experimentally reconstructed state had following properties:

• Fidelity with the ideal state = 0.9871

• Concurrence of the ideal state = 0.7923

• Concurrence of the reconstructed state = 0.7781

• Purity of the state = 0.9812

• Relative phase = 153○

5.4.1 Results

Results of the ADE experiment obtained from five runs of the experiment are

shown in Figs. 5.15 and 5.16 below. The Fig. 5.15 demonstrates the phenomenon
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of ADE as the initial state having Concurrence=0.76(1) gets disentangled only at

p = 1, i.e., when both the polarization qubits decay down to the ground state

∣HH⟩. The Fig. 5.16 demonstrates the change in purity of the state function of

ADC parameter. Initial state has a purity = 0.97(1), which initially decreases as

the strength of ADC parameter (p) increases until p = 0.5. After this point, purity

starts increasing as more and more population gets pump into ∣HH⟩ state due to

the action of ADC and finally joint state ends up as a pure state when both the

qubits of two-qubit system decay down to ground state ∣HH⟩ at p = 1. In both

the plots, shaded blue curve indicates the theoretically expected evolution in the

ADC obtained for the five initial states reconstructed via QST and MLE. The red

dots indicate average value of the experimental data for the corresponding ADC

value and vertical bars represent error in state reconstruction due to statistical

fluctuation in the counts.
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Figure 5.15: Plot of concurrence vs. ADC probability p for the ADE experiment. The
state ∣ψi⟩ = α∣HH⟩ + β∣V V ⟩ with ∣α∣ = 4.12∣β∣ undergoes ADE (solid blue shaded curve)
as concurrence drops to zero only at p = 1. The red dots indicate experimental data points
and vertical bars represent error in state reconstruction due to statistical fluctuation in
the counts.

An interesting observation is that the blue shaded curves, in both Fig. 5.15

as well as Fig. 5.16, have larger thickness in the beginning (for lower ADC val-

ues) and then it narrows down as p approaches 1. When initial state is recon-

structed for lower ADC values, we get slightly different states (density matrices)

in different runs of the QST. This can be attributed to the statistical fluctuations
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Figure 5.16: Plot of purity vs. ADC probability p for ADE experiment. The average
purity of the initial state: ∣ψi⟩ = α∣HH⟩ + β∣V V ⟩ with ∣α∣ = 4.12∣β∣, drops from 0.97(1)
to a minimum value of 0.80(1) and then starts increasing again and finally end up as a
pure state when the joint state of the two-qubits becomes ∣HH⟩. The red dots indicate
experimental data points and vertical bars represent error in state reconstruction due to
statistical fluctuation in the counts.

in the coincidences for different projections as well as imperfect projections due

to the error in half- and quarter- waveplate orientations as compared to the ideal

value which leads to different results in different runs of the QST. Since all the

initial states, starting from different points in the Hilbert space approach towards

a common final state ∣HH⟩ in the presence of ADC, hence curve narrows down

as p increases. Also, as pointed out earlier, entangled states get more affected

with slight interferometric instabilities as compared to the separable state such

as ∣HH⟩ and ∣V V ⟩ as they do not involve recombination of counter-propagating

polarization amplitudes at PBS in DSI.

5.5 Attempts towards manipulation of ESD using NOT
operation on both the qubits

5.5.1 Setting up the ESD manipulation experiment

The ESD manipulation experiment [2] requires setting up the two DSIs with

added optical components for the manipulation as shown in the Fig. 5.17 below.
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Figure 5.17: Experimental setup for demonstrating manipulation of ESD using NOT
operation on both the qubits of a bipartite entangled state in the presence of an ADC in
a photonic system [2]. Entangled photons are prepared on the left side which are then
fed into two DSIs (top and bottom) where ADC is mimicked using HWPs acting on V-
polarization component and NOT operations are applied by a HWP at 45○ on both H-
as well as V-polarization components for the manipulation of ESD and system is evolved
in the ADC afterwards. In the end, output spatial modes are traced out and QST is
performed (right side).

5.5.2 Aligning ESD manipulation setup using He-Ne laser

It is evident from the Fig. 5.17 that many additional optical components such

as ADC HWPs, NOT operation HWP (HWP at 45), PBS, mirrors, and couplers

need to be suitably introduced in the ESD setup (Fig. 5.1) for the manipulation

experiment. Initially, these components were aligned using a forward propa-
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gating alignment laser (He-Ne, 632.8 nm) such that the adjacent spatial modes

(∣a′⟩ ∣a⟩, ∣b′⟩, and ∣b⟩) are equidistant (approx. 0.5 inch). He-Ne laser beam was

then coupled into SMF to ensure proper positioning of the new coupler L2 (R2).

The first step to ensure the single photons coupling into the new coupler which

had a SMF, a backward propagating laser beam (Ti-Saph laser, 810 nm) was passed

through the couplers L1 and L2 (and likewise R1 and R2). The spatial mode over-

lap of the forward propagating He-Ne beam with the corresponding backward

propagating Ti-Saph beam from L1 and L2 was ensured throughout the interfer-

ometer and near the crystal for appropriate settings of the ADC HWPs. Since L1

and R1 were already coupled for ESD experiment, they served as a reference for

aligning L2 and R2.

Next, overlap of the K-vectors of the backward propagating beams from L1

and L2 was ensured by placing a beam profiler near the crystal and looking at the

interference pattern of the co-polarized beams. This step is necessary to guaran-

tee the single photon coupling into SMF. The power levels of the two backward

propagating beams were adjusted to make them equal by choosing appropriate

setting of the waveplates (or neutral density filters) and beam collimation was

ensured by focusing screw of the coupler. Initially, non-collinear interference

fringes were observed which was iteratively made collinear by tweaking the new

coupler L2 and the mirror next to it until fringes disappeared and only two over-

lapping Gaussian spots were seen. For tweaking, we used H- and V-screws of

the mirror and coupler L2 iteratively and looked at the centroid of the individual

beam (from L1 and L2) and minimization of the interference pattern when both

the beams were present together. When horizontal and vertical positions of the

centroid of individual beam matched (within 10 µm) with that when both beams

were present, the two beams were assumed to have matching K-vectors. Further-

more, no interference fringes were observed in this configuration. One can also

check the beam wander profile of the individual beams as well as both together,

which should match for the two beams with overlapping K vectors.
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5.5.3 Spatial mode tracing and constraints

In order to understand the output mode population for different ADC settings,

we represent the action of different optical elements on the input state ∣ψ⟩ =

α∣HH⟩ + β∣V V ⟩ as given below.

• An input ∣HH⟩ polarization state gets transformed as follows:

α∣HH⟩
H at 45
ÐÐÐÐ→α∣V V ⟩ ,

p′H
ÐÐÐ→α[(1 − p′H)∣V V ⟩ + p′H ∣HH⟩],

Tagging
ÐÐÐÐÐ→
path modes

α[(1 − p′H)∣V V ⟩∣b⟩ + p′H ∣HH⟩∣a⟩].

(5.8)

where p′H = sin2(2θ′H). This is due to the action of an ADC HWP after the

NOT operation in the path of counter-clockwise propagating (initially) H-

polarized beam.

• An input ∣V V ⟩ polarization state gets transformed as follows:

β∣V V ⟩
pV
ÐÐ→β[(1 − pV )∣V V ⟩ + pV ∣HH⟩],

H at 45
ÐÐÐÐ→β[(1 − pV )∣HH⟩ + pV ∣V V ⟩],

p′V
ÐÐÐ→β[(1 − pV )∣HH⟩ + pV ((1 − p′V )∣V V ⟩ + p′V ∣HH⟩)],

Tagging
ÐÐÐÐÐ→
path modes

β[(1 − pV )∣HH⟩∣b⟩ + pV (1 − p
′
V )∣V V ⟩∣a′⟩ + pV p

′
V ∣HH⟩∣b′⟩].

(5.9)

where pV = sin2(2θV ) and p′V = sin2(2θ′V ). The ADC parameter pV (p′V ) is due

to the action of an ADC HWP in the path of clockwise propagating (initially)

V-polarized beam before (after) the NOT operation.

Upon combining Eqs. (5.8) and (5.9), we get

α∣HH⟩ + β∣V V ⟩ →α[(1 − p′H)∣V V ⟩∣b⟩ + p′H ∣HH⟩∣a⟩]+

β[(1 − pV )∣HH⟩∣b⟩ + pV (1 − p
′
V )∣V V ⟩∣a′⟩ + pV p

′
V ∣HH⟩∣b′⟩].

(5.10)

From Eq. (5.10), the spatial mode population for different ADC settings can

be found. Details are listed in the table [5.1]. ESD-manipulation setup has four

spatial modes (∣a⟩, ∣a′⟩, ∣b⟩, and ∣b′⟩) and there are total five different conditions on

population of different spatial modes corresponding to different settings of the
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ADC values that need to be satisfied for the manipulation experiment to work.

For example, for pV = 0, p′V = 0, and pH = 0, input ∣H⟩- and ∣V ⟩-polarization compo-

nents get converted to ∣V ⟩- and ∣H⟩-polarizations, respectively, and go to spatial

mode ∣b⟩. These photons are then coupled to L1R1 couplers and give rise to co-

incidences for ∣HH⟩⟨HH ∣ and ∣V V ⟩⟨V V ∣ projections with equal probability for a

maximally entangled state ∣ψ⟩ = [∣HH⟩ + ∣V V ⟩]/
√

2 as input. Similarly, for other

ADC settings, these conditions are listed in the table [5.2].

S.N.
ADC settings Output mode population

pV p′V p′H ∣a⟩ ∣b⟩ ∣a′⟩ ∣b′⟩

1 pV p′V p′H αp′H ∣HH⟩ α(1 − p′H)∣V V ⟩ +

β(1 − pV )∣HH⟩

βpV (1− p′V )∣V V ⟩ βpV p′V ∣HH⟩

2 0 0 0 0 α∣V V ⟩ + β∣HH⟩ 0 0

3 1 0 0 0 α∣V V ⟩ β∣HH⟩ 0

4 1 1 0 0 α∣V V ⟩ 0 β∣HH⟩

5 1 1 1 α∣HH⟩ 0 0 β∣HH⟩

6 1 0 1 α∣HH⟩ 0 β∣V V ⟩ 0

7 0 0 1 α∣HH⟩ β∣HH⟩ 0 0

8 0 1 1 α∣HH⟩ β∣V V ⟩ 0 0

Table 5.1: This table summarizes the results of different ADC settings on the output
mode population in the ESD-manipulation experiment when NOT operation is applied
on both the qubits.

5.5.4 Coincidence optimization and QST

Initially coupling into single mode fibres in L2 and R2 were achieved by meth-

ods discussed in section [5.5.2]. Then, coincidence was optimized from different

spatial modes for different settings of ADC values in different projection bases as

given in Table [5.2]. After achieving near optimal coupling from different spatial

modes, we performed a QST for maximally entangled state input to DSIs with

ADC HWPs at zero-deg and found that the reconstructed state had following
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S.N. Input pol. ADC settings
(pV , p′V , p′H)

Projection Output
pol.

Output
mode

Coincidence
counts

1 ∣V V ⟩ (0, 0, 0) ∣HH⟩⟨HH ∣ ∣HH⟩ ∣b⟩ L1R1

2 ∣HH⟩ ∣V V ⟩⟨V V ∣ ∣V V ⟩ ∣b⟩ L1R1

3 ∣HH⟩ (1, 0, 0) ∣V V ⟩⟨V V ∣ ∣V V ⟩ ∣b⟩ L1R1

4 ∣V V ⟩ ∣V V ⟩ ∣a′⟩ L2R2

5 ∣HH⟩ (1, 1, 0) ∣V V ⟩⟨V V ∣ ∣V V ⟩ ∣b⟩ L1R1

6 ∣V V ⟩ ∣HH⟩⟨HH ∣ ∣HH⟩ ∣b′⟩ L2R2

7 ∣HH⟩ (1, 1, 1) ∣HH⟩⟨HH ∣ ∣HH⟩ ∣a⟩ L1R1

8 ∣V V ⟩ ∣HH⟩ ∣b′⟩ L2R2

Table 5.2: This table summarizes the results of different ADC settings on the input
polarization in ESD-manipulation experiment when NOT operation is applied on both
the qubits. Out of these only five settings (S.N. 1, 2/3/5, 4, 7, and 8/6 ) give different
results.

properties:

• Fidelity with the ideal state = 0.7529

• Concurrence of the reconstructed state = 0.5237

• Purity of the reconstructed state = 0.6212

• Relative phase = 330○

The reconstructed state density matrix is given by Eq. (5.10) and corresponding

3D plot is shown in Fig. 5.18 below.

ρexp =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.504 0.009 − 0.022i −0.001 − 0.033i 0.242 + 0.120i

0.009 + 0.022i 0.007 0.008 − 0.009i 0.014 + 0.030i

−0.001 + 0.033i 0.008 + 0.009i 0.027 −0.008 + 0.018i

0.242 − 0.120i 0.014 − 0.030i −0.008 − 0.018i 0.462

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.11)
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Figure 5.18: QST result with ESD manipulation setup for ADC settings (0,0,0).

From the state purity and coherence term of the state in Eq. (5.11), it is evident

that the reconstructed state has significant phase decoherence. At this point, we

were using 810-10 nm bandpass filters before all the couplers. Since we had in-

troduced many optical components in the path-balanced ESD setup to get ESDM

setup, some microscopic path delay between clockwise and counter-clockwise

propagating components might have been introduced. The effect due to such

path differences can be minimized by using a narrow bandpass filter as discussed

in the next section.

5.5.5 Spectral filtering consideration

For λ = 810 nm, ∆λ = 10 nm (FWHM of the bandpass filter used for spectral

filtering the SPDC photons), the coherence length of the single photons is given

by

lc =
λ2

∆λ
= 66 µm (5.12)

And, coherence time of single photons is given by τc = lc/c = 219 fs, where c is the

speed of light in vacuum.

We had used 1/2" PBS (∼ 100 µm) in the H- and V-polarization paths which

had thickness tolerance of the order of 100 µm. Since the coherence length of

single photons was smaller than the optical path difference due to mismatch in

the thickness of 1/2" PBSs used in two paths of the DSI, the polarization ampli-

tudes didn’t recombine coherently at PBS, which resulted in partial mixing of the



5.5. Attempts towards manipulation of ESD using NOT operation on both the
qubits 156

two outgoing polarization amplitudes in the mode ∣b⟩. For a given relative de-

lay ∆t between the two arms of the interferometer, the coherence term will drop

as exp(−∆t/τc), where τc is the coherence time of single photons. Time taken by

light to travel 100 µm thick glass plate (n = 1.55) ∆t = 517 fs. This will lead to drop

in the coherence term from 0.5 to 0.333 for a maximally entangled state input to

DSIs.

Taking a cue from this analysis, we replaced the 810-10 nm BPF with a narrow

PBF 810-3nm from Semrock in front of the L1R1 couplers. After optimizing the

coincidence, performed QST for pump HWP at 22.5○ with ADC settings (0,0,0) in

the DSI and got:

• Fidelity with the ideal state = 0.9058

• Concurrence of the ideal state = 1

• Concurrence of the reconstructed state = 0.8183

• Purity of the state = 0.8319

• Relative phase φ = 102○

Real and imaginary parts of the density matrix are shown in Fig. 5.19 below.

Figure 5.19: QST results for pump HWP at 22.5○ with 810-03nm BPF in the L1R1

couplers for ADC HWPs at (0,0,0) in the DSIs.

Narrow spectral filtering (810-3 nm BPF) lead to an order of magnitude drop

in the coincidence counts but state properties significantly improved due to the
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increase in coherence time τc of the single photons. Therefore, it was decided to

use this filter for further coincidence optimization.

5.5.6 Current status and way forward

Currently, state reconstructed at the output ports of the ESDM setup has 90.58%

fidelity with respect to maximally entangled state. We aim to improve the fidelity

to better than 95% and then we will perform the ESD manipulation experiment so

that we can make a meaningful conclusion from such an experiment. For this pur-

pose, we have to ensure that there is no optical path differences between clock-

wise and counter-clockwise propagating polarization amplitudes only then they

would coherently recombine at the PBS and go to mode ∣b⟩. The drop in fidelity,

purity and Concurrence indicate that the coherent recombination of the polariza-

tion amplitudes is not taking place perfectly at the PBS in DSI. This can happen

either due to (i) imperfect spatial overlap of the two recombining polarization

amplitudes at PBS, (ii) losses due to the optical components seen by entangled

photons in their path in both the interferomters, or (iii) infinitesimal optical path

difference between clockwise and counter-clockwise propagating paths, or (iv)

due to cumulative effect of all the above reasons.

Since single photons are getting coupled into SMF and we get nearly equal

coupling (coincidence) for both ∣HH⟩ and ∣V V ⟩ polarization amplitudes, there is

a very little chance that imperfect spatial overlap of the two recombining polar-

ization amplitudes at PBS could be the reason for drop in state purity. Any losses

by individual optical components will of course contribute to drop in state pu-

rity, which cannot be avoided. However, further coincidence optimization can

be done by tweaking different optical mirrors in the DSI as well as outside for

zero-deg settings of the ADC HWPs to improve the state properties. Second rea-

sons could be the main contributor towards drop in state purity as we are using

1/2” PBS in the two arms, and we know that their thickness have a tolerance of

∼ 100 µm. By using suitable optical path compensation technique in each DSIs,

temporal delay can be minimized and therefore drop in state purity due to this

reason can be compensated. For this purpose, we can use a thin glass plate (say, 1
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mm thickness) in transmitted as well as reflected arms of each DSI, and by slightly

tilting one of the glass plates in transmitted or reflected arms of one of the DSI,

one can compensate for the microscopic path difference between the two arms of

the corresponding DSI.

These steps are being taken to improve the state fidelity for zero-deg setting of

the ADC HWPs in the DSI. We expect to improve the state fidelity at the output

modes to better than 95% (in the ESD experiment, for zero-deg setting of ADC,

state fidelity was ∼ 97%) and then data for ESD-manipulation experiment will be

taken in order to make a meaningful conclusion from such an experiment.
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Chapter 6

Entanglement protection in
higher-dimensional systems

The inevitable dissipative interaction of an entangled quantum system with its

environment causes degradation in quantum correlations present in the system.

This can lead to a finite-time disappearance of entanglement, which is known

as Entanglement Sudden Death (ESD). Here, we consider an initially entangled

qubit-qutrit system and a dissipative noise which leads to ESD, and propose a

set of local unitary operations, which when applied on the qubit, qutrit, or both

subsystems during the decoherence process, cause ESD to be hastened, delayed,

or avoided altogether, depending on its time of application. The physical imple-

mentation of these local unitaries is discussed in the context of an atomic system.

The simulation results of such ESD manipulations are presented for two different

classes of initially entangled qubit-qutrit systems. A prescription for generaliza-

tion of this scheme to a qutrit-qutrit system is given. In the end, we compare

other related techniques for entanglement protection in the noisy environment

such as weak measurement reversal and dynamic decoupling with our scheme.

6.1 Introduction

Quantum decoherence [1] is a ubiquitous and unavoidable phenomenon aris-

ing because of entanglement between quantum systems and their environment.

Entanglement is of fundamental importance in the studies of quantum founda-

tions and has great significance in quantum technologies. It is now seen as an in-
159
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dispensable resource in quantum information processing (QIP) for various tasks

such as quantum computation, teleportation, superdense coding, cryptography,

etc., which are either impossible or less efficient using classical correlations [2-4].

The inevitable dissipative interaction of an entangled quantum system with

its environment leads to an irreversible loss of single particle coherence as well as

degradation of entanglement present in these systems [5]. For some initial states,

in the presence of an amplitude damping channel (ADC), entanglement degrades

asymptotically, whereas for others it can disappear in finite time, also known

as early stage disentanglement or Entanglement Sudden Death (ESD), in litera-

ture [6-8]. Soon after its theoretical prediction, ESD was experimentally demon-

strated in atomic [9] and photonic [10] systems. The real world success of several

quantum information, communication, and computation tasks depends on the

resilience of entanglement from noises present in the environment, and longevity

of the entanglement. Thus, ESD poses a practical limitation on QIP tasks. There-

fore, the strategies which make the entanglement robust against the detrimental

effects of the noise are of practical interest in QIP.

Owing to the simplicity of two-qubit entangled systems and its usefulness as

a resource in QIP, there have been several theoretical proposals to combat deco-

herence and finite-time disentanglement in these systems [11-24]. Some of these

proposals have been experimentally demonstrated in atomic, photonic, and solid

state systems [25-34]. One of the entanglement protection schemes [21] consid-

ered a class of two-qubit entangled states which undergo ESD in the presence of

an ADC. For such systems, a Local Unitary Operation (LUO : Pauli σx operator

also known as NOT operation) has been proposed such that when it is applied on

one or both the subsystems during the process of decoherence, it can hasten, de-

lay, or completely avoid the ESD, all depending on the time when NOT operation

is applied. This proposal was later transformed into an all-optical experimental

setup to study the effect of LUOs on the disentanglement dynamics in a photonic

system [22]. Thus, providing an experimentally feasible architecture for the im-

plementation of ADC and the local NOT operation to suitably manipulate the

ESD in a controlled manner.
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Higher-dimensional entangled quantum systems (qudits, d ≥ 3) can offer prac-

tical advantages over the canonical two-qubit entangled systems in QIP. These

systems are more resilient to errors than their qubit counterpart in quantum cryp-

tography, and they offer practical advantages; for example, increased channel ca-

pacity in quantum communication, enhanced security in QIP protocols, efficient

quantum gates, and in the tests of the foundations of quantum mechanics [4]. It

is therefore important to study the effects of decoherence on these systems. En-

tanglement evolution has been studied in higher dimensional systems present in

the noisy environment, and despite the resilience of these systems to noise [35],

ESD is established to be ubiquitous in all dimensions of the Hilbert spaces [36,

37]. Some attempts have been made to locally manipulate the disentanglement

dynamics in qubit-qutrit [38, 39], and qutrit-qutrit [40-42] systems to retain the

entanglement for longer duration. The quantum interference between the two

upper levels of the qutrit can also be used to control the disentanglement dynam-

ics in higher-dimensional systems [38, 43].

Consider a practical scenario where Charlie prepares a bipartite entangled

state for some QIP task and he has to send the entangled particles to Alice and

Bob through a quantum channel which is noisy and can potentially cause disen-

tanglement before the particles reach the two parties. In this scenario, we ask the

following question: given a higher-dimensional bipartite entangled state which

would undergo ESD in the presence of an ADC, can we alter the time of dis-

entanglement by some suitable LUOs during the process of decoherence? As a

possible answer to this question, we explore the generalization of the proposal in

Ref. [21] for higher-dimensional systems, say qubit-qutrit or qutrit-qutrit system,

in the presence of an ADC. If such systems undergoes ESD, we propose a set of

LUOs, such that when applied on the system during the process of decoherence,

these operations can manipulate the disentanglement dynamics, in particular, de-

lay the time at which ESD occurs. Such a study was partially done in Ref. [38],

and here we generalize their scheme and propose a more general class of LUOs,

which can always suitably manipulate ESD for an arbitrary initially entangled

state. In the case of qubits, Ref. [21] found it to be NOT operation which is opera-
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tion corresponding to the Pauli σx operator. For qutrit, in this work, we propose a

set of LUOs, which allow flipping the population between different levels of the

qutrit. Depending on the combination of LUOs, and the time of their application,

this method is shown to be able to hasten, delay or completely avoid the ESD in

qubit-qutrit system also.

In the decoherence process, pure states evolve to mixed states. Therefore,

a computable measure of entanglement for mixed state is required to quantify

the entanglement. Negativity is such a measure, based on the Positive Partial

Transpose (PPT) criterion due to Peres and Horodecki [44, 45]. For 2⊗ 2 and 2⊗ 3

dimensional systems, all PPT states are separable and Negative Partial Transpose

(NPT) states are entangled. Here, Negativity is defined as the sum of the absolute

values of all the negative eigenvalues of the partially transposed density matrix

with respect to one of the subsystems.

While the enigmatic features of entanglement were predicted back in 1935

[46], its witnessing and quantification continues to be at the forefront of current

research. For higher-dimensional systems (d ⊗ D, d, D ≥ 3), yet there is no well

defined measure of entanglement and even PPT criterion is only a necessary but

not sufficient condition for separability. Negativity is a computable measure for

distillable entanglement but it cannot detect bound entanglement in higher di-

mensions. For these systems, we study negativity sudden death (NSD), whose

non-occurance guarantees asymptotic decay of entanglement. But for a 3 ⊗ 3

dimensional PPT state which has zero Negativity, we cannot comment on the

Separability and we need some other measure. For this purpose, we have used

matrix realignment method for detecting and quantifying entanglement [46-48]

after state is found to have zero negativity using PPT criterion. Realignment crite-

rion states that for any separable state ρ, the trace norm of the realignment matrix

⟨m∣⊗⟨µ∣ρR∣n⟩⊗∣ν⟩ = ⟨m∣⊗⟨n∣ρ∣µ⟩⊗∣ν⟩ never exceeds one. Therefore, if the realigned

negativity given by R(ρ) = max(0, ∣∣ρR∣∣ − 1) is non-zero then state ρ is entangled,

where ρRij,kl = ρik,jl. This criterion can detect some of the bound-entangled states

which may not be detected by PPT criterion.

Other schemes which aim to protect entanglement in a noisy environment
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include dynamic decoupling [49] and weak measurement (partial-collapse mea-

surement) and quantum measurement reversal [50]. Dynamic decoupling uses a

sequence of π-pulses to protect the quantum states from noise. This scheme can

potentially freeze the initial state and thereby preserve the quantum coherence

stroboscopically to infinite time. The weak measurement and reversal scheme is

based on applying a weak measurement prior to decoherence and then proba-

bilistically reversing this operation on the decohered state. Our proposed LUOs

alters the state in such a way that the decoherence effect on entanglement is mini-

mized, i.e., for the states which were initially undergoing ESD, either time of ESD

is delayed or it is averted altogether. Resource-wise, our scheme is simpler com-

pared to the aforementioned schemes but it does not restore the initial state after

the decoherence.

This chapter is organized as follows: In section (6.2), we briefly discuss the

physical model in which qubit-qutrit entangled system can be realized in an

atomic system and the natural presence of ADC in such a system. Kraus oper-

ators governing the evolution of quantum system in the ADC are given. We then

propose a set of LUOs for qubit, and qutrit for manipulating the ESD, and their

physical implementation for an atomic system is discussed. In section (6.3) and

(6.4), we present our calculations implementing the proposed LUOs on the two

different class of qubit-qutrit system and their results. In section (6.5), we briefly

comment on the generalization of this proposal to higher dimensions, taking an

example of two-qutrit system. In section (6.6), the results of ESD manipulations

are compared and contrasted for a given initial state with respect to the choice of

various LUOs. In the end, we conclude with the advantages and limitations of

our proposal for ESD manipulation with other existing schemes.

6.2 Physical model

Consider a hybrid qubit-qutrit entangled system in the presence of an ADC. The

qubit and qutrit can be realized by a two-level, and a three-level atom in V-

configuration (see Fig. 6.1), in an optical trap. The qubit-qutrit entangled state
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can be prepared by method discussed in Refs. [51, 52]. Afterwards, the entangled

atoms are put into two cavities separated far from each other - by distances larger

than the wavelength of the photons emitted from these atoms. The cavities are

taken to be at absolute zero temperature and in vacuum state. The spontaneous

emission due to atoms interacting locally with their cavities with electromagnetic

field in vacuum state, forms identical but independent ADC.

p

|0〉S

|1〉S

p1
p2

|0〉S

|1〉S

|2〉S

1

Figure 6.1: Two-level atom (qubit), and a three-level atom (qutrit) in V-configuration.
The parameters p, p1, and p2 denote the decay probabilities between the levels ∣1⟩S → ∣0⟩S
of the qubit, and ∣1⟩S → ∣0⟩S , and ∣2⟩S → ∣0⟩S levels of the qutrits, respectively. The qutrit
is taken to be in V-configuration such that the dipole transitions are allowed only between
the levels ∣1⟩S ↔ ∣0⟩S and ∣2⟩S ↔ ∣0⟩S .

The evolution of a qubit in the presence of an ADC is given by the following

quantum map:

∣0⟩S ∣0⟩E → ∣0⟩S ∣0⟩E ,

∣1⟩S ∣0⟩E →
√

1 − p∣1⟩S ∣0⟩E +
√
p∣0⟩S ∣1⟩E ,

(6.1)

where ∣0⟩S and ∣1⟩S are the levels of qubit, and ∣0⟩E and ∣1⟩E are vacuum state

and one photon Fock state of the cavity (environment), respectively. In the Born-

Markov approximation: p = 1−exp(−Γt), which is the probability of de-excitation

of the qubit from the higher level ∣1⟩S to the lower level ∣0⟩S . The subscripts ‘S’

and ‘E’ refer to the system and environment, respectively.

The quantum map of a qutrit (in V -configuration ) in the presence of an ADC

is given by

∣0⟩S ∣0⟩E → ∣0⟩S ∣0⟩E ,

∣1⟩S ∣0⟩E →
√

1 − p1∣1⟩S ∣0⟩E +
√
p1∣0⟩S ∣1⟩E ,

∣2⟩S ∣0⟩E →
√

1 − p2∣2⟩S ∣0⟩E +
√
p2∣0⟩S ∣1⟩E ,

(6.2)
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where ∣0⟩S , ∣1⟩S , and ∣2⟩S are three levels of the V-type qutrit. There are two de-

cay probabilities for such a qutrit corresponding to the transitions ∣1⟩ → ∣0⟩S and

∣2⟩S → ∣0⟩S , and given by p1 = 1 − exp(−Γ1t) and p2 = 1 − exp(−Γ2t), respectively.

Here, Γ1 and Γ2 represent the decay rate of levels ∣1⟩S , and ∣2⟩S , respectively.

The Kraus operators governing the evolution of the system in the presence of

ADC, for qubit (Mi) and qutrit ( Mi) are obtained by tracing over the degrees of

freedom of the environment from Eqs. (6.1) and (6.2) , respectively, and given by

M0 =
⎛
⎜
⎝

1 0

0
√

1 − p

⎞
⎟
⎠
, M1 =

⎛
⎜
⎝

0
√
p

0 0

⎞
⎟
⎠
. (6.3)

M0 =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0

0
√

1 − p1 0

0 0
√

1 − p2

⎞
⎟
⎟
⎟
⎟
⎠

, M1 =

⎛
⎜
⎜
⎜
⎜
⎝

0
√
p1 0

0 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, M2 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0
√
p2

0 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

. (6.4)

The Kraus operators for qubit-qutrit system (Mij) are obtained by taking ap-

propriate tensor products of the qubit and qutrit Kraus operators as follows,

Mij =Mi ⊗Mj ; i = 0,1, & j = 0,1,2. (6.5)

If initial state of the system is ρ(0) then evolution in the presence of ADC is

given by,

ρ(p) =
j=0,1,2

∑
i=0,1

Mijρ(0)M
†
ij. (6.6)

If such a system undergoes ESD, then manipulation of ESD is achieved by

applying LUOs (NOT operations) on qubit and/or qutrit at appropriate time t =

tn as shown in Fig. 6.2.

The NOT operation on qubit is Pauli spin operator σx. For qutrit, we propose

here a range of NOT operations between the two, or all the three levels of qutrit,

namely F01,F02 and trit-flip operations (F102 and F201) respectively, where

F01 =

⎛
⎜
⎜
⎜
⎜
⎝

0 1 0

1 0 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎠

, F02 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 1

0 1 0

1 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, F102 =

⎛
⎜
⎜
⎜
⎜
⎝

0 1 0

0 0 1

1 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, F201 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 1

1 0 0

0 1 0

⎞
⎟
⎟
⎟
⎟
⎠

.

(6.7)
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ρi

Qubit ADC NOT ADC

Qutrit ADC NOT ADC

ρf

Qubit

Qutrit

Alice

Bob

Charlie

t = 0 t = tn t′ = t− tn

1

Figure 6.2: Scheme for prolonging the entanglement in the presence of ADC. Initial state
ρi undergoes ADC decoherence then NOT operations are performed at t = tn and system
is left to evolve in the ADC. The clock measuring the time is reset at t = tn and time after
the application of NOT operation is measured by t′ = t − tn. Such a splitting of time is
essential for later discussion.

In an atomic system, the NOT operation on the qubit (σx) can be applied by a

π-pulse on the transition ∣0⟩S ↔ ∣1⟩S , which interchanges the population between

the levels ∣0⟩S and ∣1⟩S of the qubit. The NOT operation; F01 ( F02), on the qutrit

can be applied by a π-pulse on the transitions ∣0⟩S ↔ ∣1⟩S ( ∣0⟩S ↔ ∣2⟩S) of the

qutrit, which interchanges the population between the respective two levels. The

trit-flip operation; F102 (F201) on the qutrit, can be realized by a π-pulse applied on

the transition ∣1⟩S ↔ ∣0⟩S ( ∣2⟩S ↔ ∣0⟩S) followed by another π-pulse to interchange

the populations between ∣0⟩S and ∣2⟩S (∣0⟩S and ∣1⟩S). That is, by a series of two

π-pulses π∣1⟩S↔∣0⟩Sπ∣0⟩S↔∣2⟩S (π∣2⟩S↔∣0⟩Sπ∣0⟩S↔∣1⟩S ).

Mathematically, the application of NOT operation at p = pn can be represented

by

ρ(pn) = (U1 ⊗U2)ρ(p)(U1 ⊗U2)
† , (6.8)

where U1 = σx or I2, and U2 = F01, F02, F102, F201 or I3.

Let us label another set of Kraus operators (M ′
ij) with the parameter p replaced

by p′ (t replaced by t′, t′ = t − tn); p′ = 1 − exp(−Γt′), and of the form similar to

Eq. (6.5). These Kraus operators are applied to the state (6.8) to see the evolution
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of the system when it undergoes ADC after the application of LUO as follows:

ρ(p′, pn) =
j=0,1,2

∑
i=0,1

M ′
ijρ(pn)M

′†
ij . (6.9)

When both the LUOs are identity operations, i.e., U1 = I2 and U2 = I3, we have

the uninterrupted system evolving in the ADC. The state of the system in this

case is given by

ρ(p′, p) =
j=0,1,2

∑
i=0,1

M ′
ijρ(p)M

′†
ij . (6.10)

Our aim is to investigate whether the phenomenon of hastening, delay and

avoidance of ESD also occurs in higher-dimensional entangled systems or not?

For this purpose, we compare the Negativity of the system manipulated using

LUOs (6.9) with that of the uninterrupted system (6.10). For the purpose of our

analysis, we choose the decay probabilities for the qutrit as p1 = 0.8p and p2 = 0.6p,

where p is the decay probability of the qubit.

6.3 X-type qubit-qutrit entangled state: Entry in one
off-diagonal position

Let us consider the one-parameter qubit–qutrit entangled state given by,

ρ(0) =
x

2
[∣00⟩⟨00∣ + ∣01⟩⟨01∣ + ∣11⟩⟨11∣ + ∣12⟩⟨12∣]

+
1 − 2x

2
[∣02⟩⟨02∣ + ∣02⟩⟨10∣ + ∣10⟩⟨02∣ + ∣10⟩⟨10∣] ,

(6.11)

where 0 ≤ x < 1/3.

Assuming that both the subsystems, qubit as well as qutrit, suffer identical

but independent ADC, evolution of the system is given by Eq.(6.6). Evolution of

the entanglement vs. ADC parameter (p) for 0 ≤ x < 1/3 is shown in Fig. 6.3. The

entangled state (6.11) undergoes asymptotic decay of entanglement for 0 ≤ x ≤ 0.2,

and ESD for 0.2 < x < 1/3.

6.3.1 ESD in the presence of ADC

We choose x = 0.25 such that the initial state (6.11) undergoes ESD at p = 0.6168.

The plot of Negativity vs. ADC probability (p, p′) for the state (6.11) with a fixed
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Figure 6.3: Plot of Negativity vs. ADC probability for 0 ≤ x < 1/3 for the entangled state
(6.11). The system undergoes asymptotic decay of entanglement for 0 ≤ x ≤ 0.20, and
ESD for 0.20 < x < 1/3.

x-value is shown in Fig. 6.4. For p = 0, ESD occurs at p′ = 0.6168 and for arbi-

trary values for p, ESD occurs along the non-linear curve in pp′ plane as shown in

Fig. 6.4.

Figure 6.4: Plot of Negativity vs. ADC probability (p, p′) for x = 0.25 for the state (6.11).
It undergoes ESD at p = 0.6168 for p′ = 0, and the non-linear curvature in (p, p′) plane
shows that the survival probability of entanglement is non-additive when two ADC’s are
applied one after another.

6.3.2 σx applied to qubit and F01 operation applied to qutrit

The NOT operation (σx) is applied to the qubit, and F01 operation applied to

qutrit part of the state (6.11) at p = pn as in Eq. (6.9). The Fig. 6.5 shows the non-
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linear curvature in p′ vs. p or pn in ESD (red curve) and its manipulation (green

curve). The manipulation leads to avoidance of ESD for 0 ≤ pn ≤ 0.0615, delay for

0.0615 < pn < 0.1641, and hastening of ESD for 0.1641 < pn < 0.6168 as the green

curve lies below red curve in this range.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

p , pn

p'

Figure 6.5: Plot shows the non-linear curvature in p′ vs. p or pn in ESD (red curve)
and its manipulation (green curve) such that the NOT operation (σx) is applied on the
qubit and F01 operation applied on the qutrit at p = pn for x = 0.25. The manipulation
leads to avoidance for 0 ≤ pn ≤ 0.0615, delay for 0.0615 < pn < 0.1641, and hastening of
ESD for 0.1641 < pn < 0.6168 as the green curve lies below red curve in this range.

6.3.3 F01 operation applied to qutrit only

The operation F01 is applied to the qutrit part of the state (6.11) at p = pn as in

Eq. (6.9). The Fig. 6.6 shows the non-linear curvature in p′ vs. p or pn in ESD (red

curve) and its manipulation (green curve). The manipulation leads to avoidance

for 0 ≤ pn ≤ 0.2941, delay for 0.2941 < pn < 0.6168, and hastening of ESD does not

occur in this case.

The NOT operations σx ⊗ F102 and I2 ⊗ F102 applied on the state (6.11) lead to

same effect as σx ⊗ F01 and I2 ⊗ F01, respectively. The other combination of NOT

operations such as σx⊗F02, σx⊗F201, σx⊗ I2, I2⊗F02, and I2⊗F201 applied on the

state (6.11) give rise to only hastening of ESD in the entire range 0 < pn < 0.6168.

Let us now intuitively understand the disentanglement dynamics of the qubit-

qutrit system and the occurrence of ESD. The state (6.11) is entangled due to the

coherence terms ρ34 and ρ43 of the density matrix. The separability condition
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Figure 6.6: Plot shows the non-linear curvature in p′ vs. p or pn in ESD (red curve)
and its manipulation (green curve) such that operation F01 is applied on the qutrit at
p = pn for x = 0.25. The manipulation leads to avoidance for 0 ≤ pn ≤ 0.2941, delay for
0.2941 < pn < 0.6168, and hastening of ESD does not occur is this case.

depends on the instantaneous value of the quantity

N = 1
2 (ρ11 + ρ66 −

√
(ρ11 − ρ66)2 + 4ρ34ρ43).

If N is negative, the state (6.11) is entangled else separable. In the presence

of an ADC, coherence terms ρ34 and ρ43 decay as ∼
√

(1 − p)(1 − p2) and the term

ρ66 decays as ∼ (1 − p)(1 − p2). The population of qubit-qutrit ground state ρ11

changes as ρ11 + ρ44p + ρ22p1 + ρ55pp1 + ρ33p2 + ρ66pp2. The terms ρ34 (ρ43) and ρ66

decrease with time and ρ11 increases. Due to the cumulative evolution of all these

terms, the time (t = − 1
Γ loge(1 − p)) at which N becomes zero, is known as the

time of sudden death and the state (6.11) becomes separable afterwards. For p = 1

or p2 = 1 (t → ∞) system in Eq. (6.11) looses the coherence completely and for

p, p1, p2 = 1 qubit-qutrit system is found in the ground state ∣00⟩.

The physical reason behind the action of different LUOs resulting in hasten-

ing, delay, or avoidance of ESD for this class of state can be understood as follows:

when we apply the trit-flip operation F01 (for example) on the system (6.11) af-

ter it has evolved in the ADC, it changes the instantaneous population between

different levels of the qutrit in such a way that the elements of the density ma-

trix (i) ρ11 and ρ22, (ii) ρ44 and ρ55 get swapped, and (iii) the coherence term ρ34

(ρ43) change their position to ρ35 (ρ53). When this flipped state evolves in the

ADC, new coherence terms ρ(n)35 and ρ
(n)
53 (where terms with superscript ‘(n)‘ in-

dicate the density matrix elements after the application of LUOs) now decay as
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∼ (1−p)(1−p1)(1−p2), and new ρ
(n)
66 term decays as ∼ (1−p)(1−p2). The new term

ρ
(n)
11 evolves as ρ(n)11 + ρ

(n)
44 p+ ρ

(n)
22 p1 + ρ

(n)
55 pp1 + ρ

(n)
33 p2 + ρ

(n)
66 pp2. After the application

of LUOs, condition for ESD now becomes

N = 1
2 (ρ

(n)
11 + ρ

(n)
66 −

√

(ρ
(n)
11 − ρ

(n)
66 )

2
+ 4ρ

(n)
34 ρ

(n)
43 ) ,

which looks similar to the earlier condition for ESD but it depends on new

terms of the density matrix after the LUOs. The instantaneous population of dif-

ferent levels of the qubit-qutrit system depends on the decay rate of the different

levels of the qubit-qutrit system, the time when trit-flip operation is applied, and

time elapsed after the application of trit-flip operation. Again, due to cumulative

evolution of different terms of the density matrix, when N becomes zero, system

becomes separable. The basic idea is to choose correct combination of LUOs de-

pending on the decay rate of different levels of the qubit-qutrit system and the

time of application of LUOs such that the state after the flip-operation results in

the delay or avoidance of ESD.

6.4 X-type qubit-qutrit entangled system: Entry in the
other off-diagonal position

Let us consider another class of one-parameter qubit–qutrit entangled state given

by,

ρ(0) =
x

2
[∣00⟩⟨00∣ + ∣01⟩⟨01∣ + ∣11⟩⟨11∣ + ∣12⟩⟨12∣ + ∣00⟩⟨12∣

+ ∣12⟩⟨00∣] +
1 − 2x

2
[∣02⟩⟨02∣ + ∣10⟩⟨10∣] ,

(6.12)

where 1/3 < x ≤ 1/2.

Assuming that both the subsystems; qubit as well as qurit, suffer identical

but independent ADC, evolution of the system is given by Eq. (6.6). Evolution

of the entanglement vs. ADC parameter (p) for state (6.12) is shown in Fig. 6.7.

The entangled state undergoes ESD in the entire range 1/3 < x ≤ 1/2. We choose

x = 0.5 such that ESD occurs at p = 0.8452, and study the effect of NOT operation

(σx) applied to the qubit, and/or operations F01, F02 and trit-flip operation (F102,

F201 ) applied to the qutrit, in manipulating the ESD.



6.4. X-type qubit-qutrit entangled system: Entry in the other off-diagonal
position 172

Figure 6.7: Plot of Negativity vs. ADC probability (p) for 1/3 < x ≤ 1/2 for entangled
state (6.12). The system undergoes ESD in the entire range 1/3 < x ≤ 1/2.

6.4.1 ESD in the presence of ADC

We choose x = 0.5 such that the initial state (6.12) undergoes ESD at p = 0.8452.

The plot of Negativity vs. ADC probability (p, p′) for the state (6.12) is shown in

Fig. 6.8. For p = 0, ESD occurs at p′ = 0.8452 and for arbitrary values for p, ESD

occurs along the non-linear curve in pp′ plane as shown in Fig. 6.8.

Figure 6.8: Plot of Negativity vs. ADC probability (p, p′) for x = 0.5 for the state (6.12).
The system undergoes ESD at p′ = 0.8452 for p = 0 and vice-versa. For a non-zero p,
ESD happens along the curved path in the (p, p′) plane.

6.4.2 σx applied to qubit and F01 operation applied to qutrit

The NOT operation (σx) is applied to the qubit and operation F01 is applied to

the qutrit part of the state (6.12) at p = pn as in Eq. (9). The Fig. 6.9 shows the
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non-linear curvature in p′ vs. p or pn in ESD (red curve) and its manipulation

(green curve). The manipulation leads to avoidance for 0 ≤ pn ≤ 0.3586, delay for

0.3586 < pn < 0.4177, and hastening of ESD for 0.4177 < pn < 0.8452 as green curve

lies below the red curve in this range.
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Figure 6.9: Plot shows the non-linear curvature in p′ vs. p or pn in ESD (red curve) and
its manipulation (blue curve) such that the NOT operation (σx) is applied on the qubit
and F01 operation applied on the qutrit at p = pn for x = 0.5. The manipulation leads to
avoidance for 0 ≤ pn ≤ 0.3586, delay for 0.3586 < pn < 0.4235, and hastening of ESD for
0.4177 < pn < 0.8452 as green curve lies below the red curve in this range. .

6.4.3 σx operation applied to qubit only

The NOT operation (σx) is applied to the qubit part of the state (6.12) at p = pn

as in Eq. (6.9). The Fig. 6.10 shows the non-linear curvature in p′ vs. p or pn in

ESD (red curve) and its manipulation (green curve). The manipulation leads to

avoidance for 0 ≤ pn ≤ 0.2309, delay for 0.2309 < pn < 0.2964, and hastening of ESD

for 0.2964 < pn < 0.8452 as green curve lies below the red curve in this range.

6.4.4 F01 operation applied to qutrit only

The operation (F01) is applied only to the qutrit part of the state (6.12) at p = pn as

in Eq. (6.9). The Fig. 6.11 shows the non-linear curvature in p′ vs. p or pn in ESD

(red curve) and its manipulation (green curve). The manipulation of ESD leads to

avoidance for 0 ≤ pn ≤ 0.7143, and delay of ESD for 0.7143 < pn < 0.8452 as green

curve lies above the red curve but less than one in this range. The hastening of

ESD does not occur in this case.
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Figure 6.10: Plot shows the non-linear curvature in p′ vs. p or pn in ESD (red curve)
and its manipulation (green curve) such that NOT operation is applied only on the qubit
at p = pn for x = 0.5. The manipulation leads to avoidance for 0 ≤ pn ≤ 0.2309, delay for
0.2309 < pn < 0.2964, and hastening of ESD for 0.2964 < pn < 0.8452 as green curve lies
below the red curve in this range.
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Figure 6.11: Plot shows the non-linear curvature in p′ vs. p or pn in ESD (red curve)
and its manipulation (green curve) such that only F01 operation is applied on the qutrit
at p = pn for x = 0.5. The manipulation of ESD leads to avoidance for 0 ≤ pn ≤ 0.7143,
and delay of ESD for 0.7143 < pn < 0.8452 as green curve lies above the red curve but less
than one in this range. The hastening of ESD does not occur in this case.

6.4.5 F02 operation applied to qutrit only

The operation F02 is applied to the qutrit part of the state (6.12) at p = pn as in

Eq. (6.9). The Fig. 6.12 shows the non-linear curvature in p′ vs. p or pn in ESD (red

curve) and its manipulation (green curve). The manipulation leads to avoidance

for 0 ≤ pn ≤ 0.2032, delay for 0.2032 < pn < 0.2693, and hastening of ESD for

0.2693 < pn < 0.8452 as green curve lies below the red curve in this range.
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Figure 6.12: Plot shows the non-linear curvature in p′ vs. p or pn in ESD (red curve)
and its manipulation (green curve) such that only F02 operation is applied on the qutrit
at p = pn for x = 0.5. The manipulation leads to avoidance for 0 ≤ pn ≤ 0.2032, delay for
0.2032 < pn < 0.2693, and hastening of ESD for 0.2693 < pn < 0.8452 as green curve lies
below red curve in this range.

6.4.6 Trit-flip operation F201 applied to qutrit only

The trit-flip operation F201 is applied to the qutrit part of the state (6.12) at p = pn

as in Eq. (6.9). The Fig. 6.13 shows the non-linear curvature in p′ vs. p or pn in

ESD (red curve) and its manipulation (green curve). The manipulation leads to

avoidance for 0 ≤ pn ≤ 0.2059, delay for 0.2059 < pn < 0.2676, and hastening of ESD

for 0.2676 < pn < 0.8452 as green curve lies below the red curve in this range.
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Figure 6.13: Plot shows the non-linear curvature in p′ vs. p or pn in ESD (red curve)
and its manipulation (green curve) such that only trit-flip operation (F201) is applied on
the qutrit at p = pn for x = 0.5. The manipulation leads to avoidance for 0 ≤ pn ≤ 0.2059,
delay for 0.2059 < pn < 0.2676, and hastening of ESD for 0.2676 < pn < 0.8452 as green
curve lies below the red curve in this range.

The NOT operations σx ⊗ F102 and I2 ⊗ F102 applied on the state (6.12) lead to
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same effect as σx ⊗ F01 and I2 ⊗ F01, respectively. The other combination of NOT

operations such as σx⊗F02, and σx⊗F201 applied on the state (6.12) only give rise

to hastening of ESD in the entire range 0 < pn < 0.8452.

6.5 Generalization to qutrit-qutrit system

In the framework of ADC, the dissipative interaction of system and environment

causes the flow of population of the system from excited state to ground state.

Therefore any operation which reverses this effect will change the disentangle-

ment time. Thus, generalization of the above proposal to higher dimensions is

straight forward. For example, the form of unitary operations for two qutrits will

be same as in Eq. (6.7). But, the lack of a well defined entanglement measure for

mixed entangled states of dimension greater than six, makes it difficult to study

the disentanglement dynamics in these systems because even an initial pure en-

tangled state becomes mixed during the evolution.

For the purpose of our study, we use Negativity as a witness for entanglement,

as in general, qutrit-qutrit entanglement is not known to be characterized fully,

and that negativity is a sufficient but not necessary condition for entanglement.

Thus, if negativity undergoes asymptotic decay then this implies that ESD does

not happen. However, if negativity undergoes sudden death (NSD), this may

be suggestive of (but does not imply) ESD. Here, we take a = 1(p1 = ap) and

b = 0.75 (p2 = bp).

Let us consider an initially entangled two qutrit system in the presence of

ADC as given below.

ρ(0) =
x

3
(∣01⟩⟨01∣ + ∣02⟩⟨02∣ + ∣10⟩⟨10∣ + ∣12⟩⟨12∣ + ∣20⟩⟨20∣

+ ∣21⟩⟨21∣) +
1 − 2x

3
(∣00⟩⟨00∣ + ∣11⟩⟨11∣ + ∣22⟩⟨22∣

+ ∣22⟩⟨00∣ + ∣00⟩⟨02∣),

(6.13)

where 0 ≤ x < 1/3.

For two-qutrit system, Kraus operators are given by

Mij =Mi ⊗Mj ; i, j = 0,1,2. (6.14)
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Assuming that both the qutrits suffer identical but independent ADC, evolu-

tion of the system is given by,

ρ(p) = ∑
i,j=0,1,2

Mijρ(0)M†
ij. (6.15)

Evolution of the entanglement vs. ADC parameter (p) for 0 ≤ x < 1/3 is shown

in Fig. 6.14. The entangled state (6.13) undergoes asymptotic decay of Negativity

for 0 ≤ x ≤ 0.2281, and NSD for 0.2281 < x < 1/3.

Figure 6.14: Plot of Negativity vs. ADC probability for 0 ≤ x < 1/3 for the entangled
state (6.8). The system undergoes asymptotic decay of Negativity for 0 ≤ x ≤ 0.2281, and
NSD for 0.2281 < x < 1/3.

Let us label another set of Kraus operators (M′
ij) with the parameter p replaced

by p′ (t replaced by t′, t′ = t − tn); p′ = 1 − exp(−Γt′), and of the form similar to

(6.14), and apply it to the state (6.14) to get the state of the uninterrupted system

evolving in the ADC.

ρ(p′, p) = ∑
i,j=0,1,2

M′
ijρ(0)M

′†
ij. (6.16)

We choose x = 0.25 such that the initial state (6.13) undergoes ESD at p = 0.7596.

The plot of Negativity vs. ADC probability (p, p′) for the state (6.13) is shown in

Fig. 6.15. For p = 0, ESD occurs at p′ = 0.7596 and for arbitrary values for p, ESD

occurs along the non-linear curve in pp′ plane as shown in Fig. 6.15.

The NOT operation (F01) is applied to only one of the qutrits at p = pn as

follows,

ρ(1)(pn) = (F01⊗)I3)ρ(p)(F01⊗)I3)
†. (6.17)
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Figure 6.15: Plot of Negativity vs. ADC probability (p, p′) for x = 0.25 for the entangled
state (6.13). The system undergoes NSD at p′ = 0.7596 for p = 0 and vice-versa. For a
non-zero p, NSD occurs along the curved path in the (p, p′) plane.

Evolution of the system afterwards in ADC is given by,

ρ(1)(p′, pn) = ∑
i,j=0,1,2

M′
ijρ
(1)(pn)M

′†
ij. (6.18)

The Fig. 6.16 shows the non-linear curvature in p′ vs. p or pn in ESD (red curve)

and its manipulation (green curve). The manipulation leads to avoidance of NSD

for 0 ≤ pn ≤ 0.2306, delay for 0.2306 < pn < 0.7596, and hastening of NSD does not

occur for this choice of parameter.
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Figure 6.16: Plot shows the non-linear curvature in p′ vs. p or pn in NSD (red curve) and
its manipulation (green curve) such that the NOT operation (F01) is applied on only one of
the qutrits at p = pn for x = 0.25. The manipulation leads to avoidance for 0 ≤ pn ≤ 0.2306,
delay for 0.2306 < pn < 0.7596, and hastening of NSD does not occur in this case.

The F01 operation applied on both the qutrits leads to avoidance of NSD in the

entire range 0 ≤ pn ≤ 0.7596.



6.6. Summary and discussion 179

6.6 Summary and discussion

We have proposed a set of Local Unitary Operations (LUOs) for qubit-qutrit sys-

tem undergoing entanglement sudden death (ESD) in the presence of an ampli-

tude damping channel (ADC), such that when applied locally on one or both sub-

systems, then depending on the initial state, choice of the operation, and its time

of application, one can always suitably manipulate the ESD. We have considered

two different classes of initially entangled qubit-qutrit systems which undergo

ESD, and we find that for a given initial state, one can always find a suitable

combination of LUOs, such that when applied at appropriate time it can always

delay the time of ESD, and therefore facilitate the tasks which would not have

been possible under shorter entanglement times.

The results of different combinations of LUOs applied on the qubit-qutrit sys-

tem on the manipulation of ESD for two different initially entangled states are

summarized in the table 6.1 below. In some cases, ESD can be hastened, delayed,

as well as avoided, whereas in other cases, it can be only delayed and avoided,

or ESD can be only hastened. Due to symmetry in the population of initial entan-

gled state, the NOT operations σx ⊗ F102 and I2 ⊗ F102 applied on the either states

lead to same effect as σx ⊗ F01 and I2 ⊗ F01, respectively.

Based on the results tabulated above, the following LUOs are advisable: for

example, for state-II, σx on the first qubit and no action on the qutrit suffices to

guarantee avoidance. Since this is the simplest of all possible combination of

operations, this may be called the optimal in terms of gate operations. For state-

I, all operations allowing avoidance are two-sided. It is worth noting here that

although the noise is acting on both the subsystems, still even LUO applied on

only one of the subsystems can suitably delay or avoid the ESD as in the case of

a two-qubit system.

Such a scheme will find applications where two parties, say Alice and Bob,

share an entangled pair for some quantum information processing (QIP) task

and they know a-priori that ADC is present in the environment, and therefore

they can decide whether they are faced with the prospect of ESD. Then, they
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Operation State-I State-II

σx ⊗ F01 A, D, and H A, D, and H

σx ⊗ F02 only H only H

σx ⊗ F102 A, D, and H A, D, and H

σx ⊗ F201 only H Only H

σx ⊗ I3 only H A, D, and H

I2 ⊗ F01 only A and D only A and D

I2 ⊗ F02 only H A, D, and H

I2 ⊗ F102 only A and D only A and D

I2 ⊗ F201 only H A, D, and H

Table 6.1: Different combination of local unitary operations applied on the initial state-I
(Eq. 6.11) and state-II (Eq. 6.12) resulting in avoidance (A), delay( D), and hastening (H)
of ESD. Due to symmetry in the population of initial entangled state, the NOT operations
σx ⊗ F102 and I2 ⊗ F102 applied on the either states lead to same effect as σx ⊗ F01 and
I2 ⊗ F01, respectively

.

can locally apply one of these unitaries to delay or avoid the ESD. The proposed

scheme for preserving entanglement longer will also find application in entan-

glement distillation protocols.
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Chapter 7

Summary and future scope

We have reported our theoretical and experimental investigations towards Cre-

ation, characterization, and manipulation of quantum entanglement in a pho-

tonic system. We have studied two different aspects of quantum entanglement:

(i) A review study on the comparison between different Entanglement Measures

(EMs) for non-maximally entangled two-qubit pure states is done towards quan-

tification of entanglement in such states and then this study is extended to higher-

dimensional systems, (ii) Entanglement dynamics of a two-qubit system is stud-

ied in the presence of an Amplitude Damping Channel (ADC) and a scheme

based on local unitary operations is presented to protect entanglement from un-

dergoing Entanglement Sudden Death (ESD). This decoherence study is then ex-

tended to qubit-qutrit and qutrit-qutrit entangled systems and entanglement pro-

tection scheme is proposed for higher dimensional systems.

For the experimental study, a high-fidelity (∼ 98%) polarization-entangled

photon source based on type-I Spontaneous Parametric Down-Conversion (SPDC)

process is prepared and characterized using quantum state tomography. It is ob-

served that when thickness of each non-linear crystal in the paired-BBO crystal

geometry of type-I SPDC source was comparable to, or greater than, the coher-

ence length of the pump laser, it gave rise to the partial distinguishability of the

photons generated in the first and second crystal by their arrival time statistics

measurement. This lead to decoherence and thus drop in the amount of entan-

glement in the two-qubit system. Theoretical estimation of such a temporal delay

is done. For pre-compensating the delay and erasing the temporal distinguisha-
186
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bility, a birefringent temporal compensator is used to improve the quality of en-

tanglement in the generated bi-photon state. We have reported our experimental

observations on the effect of spectral filtering conditions in the SPDC process on

the quality of two-qubit entanglement.

Regarding the comparison between different EMs for the purpose of quantifi-

cation of the amount entanglement in non-maximally entangled two-qubit pure

states, we have defined suitable parameters which quantify the deviation of a

given non-maximally entangled state from maximally entangled states. In this

process, we found that different EMs give different deviations of a given non-

maximally entangled two-qubit pure state from maximally entangled state and

they can differ as much as 23.5% when Entanglement of Formation and Log-

Negativity are used as EMs. Then we briefly commented on such comparison

between EMs for higher-dimensional systems. While in the case of a bipartite

two-qubit entangled states, although different EMs show different deviations of

a given state from maximally entangled state, the EMs remain monotonic with re-

spect to each other. But in the bipartite qutrit case, different EMs not only provide

different estimations of the deviation of any non-maximally entangled state from

the maximally entangled state, but the EMs can also be non-monotonic with re-

spect to each other. In sum, the results of studies in this work bring out the need

for exploring different ideas for quantifying how close (far) a given entangled

state is to (from) the maximally entangled state and comparing the results ob-

tained by using such quantifiers with those based on different EMs. This leads

to the following question: Is there any fundamental criterion for assessing which

quantifier is the appropriate one to be used for addressing questions such as the

one posed in this work, or would such a criterion have to be operationally de-

fined essentially dependent on the specific context in which the entangled state is

used as a resource? A comprehensive study is required for shedding further light

on this issue as well as for gaining a deeper understanding of the comparison

between different EMs, taking into account the studies probing their respective

physical significance.

In our study of the evolution of entanglement in two-qubit systems in the
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presence of an ADC, we found that there are two class of states: one which un-

dergo Asymptotic Decay of Entanglement (ADE), and the other one where states

disentangle in finite time known as Entanglement Sudden Death (ESD). Then,

we proposed a scheme for manipulation of ESD using local NOT operation on

one or both the qubits of a bipartite entangled state to protect entanglement for a

longer time. It is worth noting that the action of local unitary operations on indi-

vidual subsystems cannot change the amount of entanglement in the system but

subsequent dynamics can be altered. We have theoretically shown that the phe-

nomenon of hastening, delay and avoidance of ESD occur depending on the time

of application of NOT operation. The next step was to set up the experiment for

the manipulation of ESD. In this direction, we have experimentally demonstrated

the phenomenon of ESD and ADE for two different class of initially entangled

states. Finally, we built the experimental setup to demonstrate the hastening, de-

lay and avoidance of ESD using NOT operation on both the qubits. We have dis-

cussed different constraints that need to be simultaneously taken care of in such

an experiment. We have outlined our endeavour in this direction and reported

preliminary results for zero-degree settings of the ESD-manipulation experiment.

An experimental realization of our proposal will be important for practical noise

engineering in quantum information processing and is underway.

Our proposal for manipulation of ESD has an advantage over decoherence

suppression using weak measurement and quantum measurement reversal and

delayed-choice decoherence suppression. There, as the strength of weak interac-

tion increases, the success probability of decoherence suppression decreases. On

the other hand, using our scheme we can manipulate the ESD, in principle, with

unit success probability as long as we perform the NOT operation at the appro-

priate ADC parameter value. Delay and avoidance of ESD, in particular, will find

application in the practical realization of quantum information and computation

protocols that might otherwise suffer due to a short lifetime of entanglement.

Also, it will have implications toward such control over other physical systems.

The advantage of the manipulation of ESD in a photonic system is that one has

complete control over the damping parameters, unlike in most atomic systems.
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Resource-wise, our scheme is simpler compared to the other two aforementioned

schemes but it does not restore the state after the decoherence back to initial state.

Regarding the theoretical extension of the idea of manipulation of ESD us-

ing local unitary operations to higher dimensional systems, we have considered

qubit-qutrit and qutrit-qutrit entangled systems evolving in the ADC. For the

states which undergo ESD, we have proposed a more general class of local population-

flip operators in the context of a bipartite atomic system. We have shown that

even in higher dimensional systems, ESD can be suitably manipulated and phe-

nomenon of hastening, delay, and avoidance of ESD is observed. We have com-

pared and contrasted pros and cons of entanglement protection in higher-dimensional

systems using our scheme with other existing schemes in the literature.

Future scope of this work may include looking into the entanglement pro-

tection in the presence of other noise models and more general noises that oc-

cur in real-world physical systems such as a combination of many of the noises

acting together. Further attempts can be made towards transforming the cur-

rent state-dependent entanglement protection scheme into a more general state-

independent scheme which would further benefit the real-world quantum infor-

mation processing. One can also explore the efficacy of such local unitary op-

erations on other quantum correlations such as quantum discord and geometric

discord evolving in the noisy environment.
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Appendix A

Availability of analysis code files and
experimental data

Mathematical analysis files, source codes, and experimental data of the experi-

ments reported in this thesis can be shared with interested readers upon reason-

able request. You may send your request for the same to me at asinghrri@gmail.com

with a cc to my supervisor Prof. Urbasi Sinha at usinha@rri.res.in.
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Appendix B

List of Abbreviations

ADC Amplitude Damping Channel

ADE Asymptotic Decay of Entanglement

AL Aspheric lens

BPF Band Pass Filter

CW Continuous Wave

BS Beam Splitter

DSI Displaced Sagnac Interferometer

EM Entanglement Measure

EOF Entanglement of Formation

ESD Entanglement Sudden Death

HWP Half Wave Plate

IF Interference Filter

LN Log Negativity

LOCC Local Operations and Classical Communication

LUO Local Unitary Operation

MLE Maximum Likelihood Estimation

N Negativity

NOT Pauli Operator(σx)

NPT Negative Partial Transpose

NSD Negativity Sudden Death
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PBS Polarizing Beam Splitter

PCC Pearson Correlation Coefficient

PPT Positive Partial Transpose

PT Partial Transpose

QIP Quantum Information Processing

QST Quantum State Tomography

QWP Quarter Wave Plate

SMF Single Mode Fiber

SPAD Single-Photon Avalanche Diode

SPDC Spontaneous Parametric Down Conversion
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