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Summary

Quantum gravity has been an outstanding problem in theoretical physics for many decades
now [1, 2, 3, 4, 5, 6]. The lack of phenomenology in this area has meant a proliferation
of theoretical ideas. These ideas offer different ways of tackling the problem of quantizing
the gravitational field. In the past, we have found ways to get glimpses of the final theory
by studying quantum fields in curved spacetime [7, 8]. This approach has led to the most
mathematically rigorous formulations of quantum field theory [9]. It has also led to such
well known results as Black Hole thermodynamics, particle production in FLRW cosmology,
inflation and the information loss paradox. These results have been shown to arise in a
variety of scenarios and from different kinds of calculations, further cementing their place as
essential features for a final theory despite the lack of phenomenological evidence.

There are also bottom up approaches that attempt to reach the continuum limit starting
from a discrete or quantum construction of the relevant degrees of freedom. Causal set
quantum gravity [10] is one such approach. It postulates that spacetime is an approximation
to an underlying, more fundamental structure - the causal set. This is a set of spacetime
events along with information about whether or not they are causally related. Theorems
proved by Hawking, King, Mccarthy and Malament [11, 12] indicate that this is the only
information needed to reproduce (up to conformal equivalence) the continuum spacetime
manifold. These ideas in the form of causal set theory were first proposed in 1987 [13].

In this thesis we study some kinematical aspects of quantum fields on causal sets. In
particular, we are interested in free scalar fields on a fixed background causal set. We present
various results building up to the study of the entanglement entropy of de Sitter horizons
using causal sets. We begin by obtaining causal set analogs of Green functions for this field.
First we construct the retarded Green function in a Riemann normal neighborhood (RNN)
of an arbitrary curved spacetime. Then, we show that in de Sitter and patches of anti-
de Sitter spacetimes the construction can be done beyond the RNN [14]. This allows us to
construct the QFT vacuum on the causal set using the Sorkin-Johnston construction [15]. We
calculate the SJ vacuum on a causal set approximated by de Sitter spacetime, using numerical
techniques. We find that the causal set SJ vacuum does not correspond to any of the
known Mottola-Allen α-vacua of de Sitter spacetime. This has potential phenomenological
consequences for early universe physics [16]. Finally, we study the spacetime entanglement
entropy [17] for causal set de Sitter horizons. The entanglement entropy of de Sitter horizons
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is of particular interest. As in the case of nested causal diamonds in 2d Minkowski spacetime,
explored in [18], we find that the causal set naturally gives a volume law of entropy, both for
nested causal diamonds in 4d Minkowski spacetime as well as 2d and 4d de Sitter spacetimes.
However, as in [18], an area law emerges when the high frequency modes in the SJ spectrum
are truncated. The choice of truncation turns out to be non-trivial and we end with several
interesting questions [19].

In chapter 1 we begin with a preliminary discussion of causal set theory and where it
falls in the broad spectrum of theories. We give various definitions associated with causal
sets and introduce quantum field theory on a causal set that will be used in the rest of the
thesis.

In chapter 2 we discuss why the retarded Green function is important to building a
quantum field theory on a causal set [20]. We examine the validity and scope of Johnston’s
models for scalar field retarded Green functions on causal sets in 2 and 4 dimensions [21]. As
in the continuum, the massive Green function can be obtained from the massless one, and
hence we first identify the massless Green function. We propose that the 2d model provides a
Green function for the massive scalar field on causal sets approximated by any topologically
trivial 2-dimensional spacetime. We explicitly demonstrate that this is indeed the case in
a Riemann normal neighborhood. In 4d, the model can again be used to provide a Green
function for the massive scalar field in a Riemann normal neighborhood which we compare
to Bunch and Parker’s continuum Green function [22]. We find that the continuum Green
function can be reproduced for Ricci flat spacetimes and when Rab ∝ gab i.e., for Einstein
spaces. Further, we show that the same prescription can also be used for de Sitter spacetime
and the conformally flat patch of anti-de Sitter spacetime. We suggest a generalization of
Johnston’s model for the Green function for a causal set approximated by 3-dimensional flat
spacetime.

In chapter 3 we present work related to the Sorkin-Johnston (SJ) vacuum in de Sitter
spacetime for free scalar field theory. For the massless theory we show that the SJ vacuum
can neither be obtained from the O(4) Fock vacuum of Allen and Folacci [23] nor from
the non-Fock de Sitter invariant vacuum of Kirsten and Garriga [24]. Using a causal set
discretization of a slab of 2d and 4d de Sitter spacetime, we show the causal set SJ vacuum
for a range of masses m ≥ 0 of the free scalar field. While our simulations are limited
to a finite volume slab of global de Sitter spacetime, they show good convergence as the
volume is increased. We find that the 4d causal set SJ vacuum shows a significant departure
from the continuum Mottola-Allen α-vacua [25]. Moreover, the causal set SJ vacuum is
well-defined for both the minimally coupled massless m = 0 and the conformally coupled
massless m = mc cases. This is at odds with earlier work on the continuum de Sitter SJ
vacuum where it was argued that the continuum SJ vacuum is ill-defined for these masses
[26]. We discuss an important tension between the discrete and continuum behavior of the
SJ vacuum in de Sitter and suggest that the former cannot in general be identified with the
Mottola-Allen α-vacua even for m > 0.

In chapter 4 we study de Sitter cosmological horizons as they are known to exhibit
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thermodynamic properties similar to black hole horizons [27]. In particular we study the
entanglement entropy of a quantum free scalar field in de Sitter spacetime using Sorkin’s
spacetime entanglement entropy (SSEE) formula. We use a causal set discretization of de
Sitter spacetime and the associated SJ vacuum state to calculate this SSEE numerically in
d = 2, 4. We also examine the SSEE in the causal set discretization of d = 4 Minkowski
spacetime for comparison. As in the earlier calculation of the SSEE for 2-dimensional nested
causal diamonds [18], the SSEE on the causal set is seen to follow a volume rather than an
area law, unless a truncation scheme is used on the spectrum of the spacetime commutator
that enters the calculation. While the 2-dimensional truncation scheme can be motivated
quite simply, this is not the case in the examples we study. We propose a few possible trun-
cation schemes and discuss their relative merits vis a vis the area law and complementarity.
While the former is satisfied by all the truncation schemes the latter is not.

In chapter 5 we conclude the thesis by tying up the themes and results that have ap-
peared in previous chapters. We emphasize the role of numerical and computational tools in
addressing some of these issues. Finally, we point to several open questions that have come
up and to potential avenues for further exploration.
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Recent observations of the microwave background indicate that the universe contains
enough matter to cause a time-reversed closed trapped surface. This implies the existence

of a singularity in the past, at the beginning of the present epoch of expansion of the
universe. This singularity is in principle visible to us. It might be interpreted as the

beginning of the universe.
S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time

In the beginning there was nothing, which exploded.
Terry Pratchett, Lords and Ladies
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Chapter 1

Introduction

Fundamental discreteness plays an important role in many theories of physics. In the last
century considerable effort has been put into formulating quantum descriptions of the dy-
namics of matter. Such a shift has been motivated by the discovery of the quantum nature
of matter based on considerable experimental evidence. General relativity (GR) is perhaps
the epitome of classical field theory. It describes the dynamics of the background on which
physics of matter plays out i.e., spacetime itself. However, the need to quantize the gravita-
tional field, the inherent difficulties not withstanding, has been based on attempts to solve
inconsistencies arising from GR as well as from working with quantum fields on classical
backgrounds. The phenomenological evidence in this direction is scant. Attempts at quan-
tum gravity (QG) have also been motivated by the need for a unifying framework in which
the largely algebraic framework of quantum fields and the geometric framework of spacetime
can be treated on equal footing [1, 2, 3, 4, 5, 6].

In the absence of concrete phenomenology, developing a theory requires choices that are
motivated by mathematical consistency, by results from other areas of physics or even by
aesthetic reasons. Understandably, this leads to several possibilities and various theories of
QG are an example of this proliferation of ideas. Basic ontological questions in QG like
what should be the degrees of freedom?, what is fundamental in GR - the metric or the
causal structure?, what should be the observables? etc. have multiple answers [28]. Broadly,
theories of QG fall into two categories - those that start from the continuum and use some
form of quantization and those that start with an underlying fundamental discreteness.
Causal set QG falls in the later category - it is a bottom-up approach that replaces the
continuum spacetime manifold with a discrete substructure called the causal set.

The ideas of spacetime discreteness have a rich history1 culminating in the seminal work
of Bombelli, Lee, Meyer and Sorkin [13] which laid out causal set theory (CST) in its present
form. A causal set is a locally finite, partially ordered set (poset) whose elements represent

1For details see [10] and the introduction in [21].
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spacetime events along with information about causal ordering between each pair of events2.
A causal set can be used to replace the spacetime manifold because causality is a building
block of Lorentzian geometry - a result based on powerful theorems proved by Hawking, King,
McCarthy and Malament [11, 12]. These theorems show that there is a bijection between
the conformal class of spacetime metrics and the causal ordering (a partially ordered set).

Theorem : If a chronological bijection exists between two d-dimensional spacetimes
which are both future and past distinguishing, then these spacetimes are conformally iso-
metric when d > 2.

It was shown by Levichev [29] that a causal bijection implies a chronological bijection
and hence the above theorem can be generalized by replacing “chronological” with “causal”.
Subsequently Parrikar and Surya [30] showed that the causal structure poset (M,≺) of
these spacetimes also contains information about the spacetime dimension. In other words,
geometric information (barring an overall volume factor) about a spacetime manifold is
embedded in the causal ordering of events3.

CST proposes that QG is the quantum theory of causal sets.

1.1 Causal Sets and Sprinkling

A causal set C is a partially ordered set together with an order-relation � that ∀x, y, z ∈ C
satisfies the following conditions:

1. Reflexivity: x � x

2. Antisymmetry: x � y � x⇒ x = y

3. Transitivity: x � y � z ⇒ x � z

4. Local finiteness: |{z ∈ C|x � z � y}| <∞

Here | · | denotes the cardinality of a set. The elements of C are spacetime events and the
order-relation � denotes the causal order between the events. If x � y we say “x causally
precedes y”, and we write x ≺ y if x � y and x 6= y. Causal relations on a Lorentzian
manifold (without closed timelike curves) obey conditions 1-3. Condition 4 ensures that
there are a finite number of events in any causal interval; this brings in discreteness.

Two useful ways of characterizing a causal set are the causal matrix C0 and the link
matrix L0 defined as

2For the formal definition see the next section.
3A non-technical discussion of this can be found in Geroch’s book General Relativity from A to B
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C0(x, x′) :=

{
1 if x′ ≺ x
0 otherwise

, L0(x, x′) :=

{
1 if x′ ≺ x and |(x, x′)| = 0
0 otherwise

,

where (x, x′) is the set of events that lie in the causal interval between x and x′ i.e., (x, x′) =
{a ∈ C |x′ ≺ a ≺ x}. Such an interval is called an Alexandrov set or causal diamond4. The
relation defined by the extra condition |(x, x′)| = 0 is called a link.

We define a k-chain of length k+ 1 between x′ and x in a causal set as a totally ordered
subset of C, {x1, x2, . . . , xk} such that x′ ≺ x1 ≺ x2 ≺ ....xk−1 ≺ xk ≺ x. For k ≥ 1, define
Ck(x, x

′) to be the number of k-chains between x′ and x when x′ ≺ x and zero when x′ 6≺ x.
The Ck’s are powers of the causal matrix:

Ck(x, x
′) = C0 · C0 · . . . C0︸ ︷︷ ︸

k+1

(x, x′) . (1.1)

A k-path of length k + 1 between x′ and x in C is a k-chain in which each relation is a link.
As above, for k ≥ 1, we define Lk(x, x

′) to be the number of k-paths between x′ and x when
x′ ≺ x and zero when x′ 6≺ x. The Lk’s are powers of the link matrix:

Lk(x, x
′) = L0 · L0 · . . . L0︸ ︷︷ ︸

k+1

(x, x′) . (1.2)

An antichain A is a totally unrelated subset of C i.e., a subset of C in which no 2 elements
are related to each other. An inextendible antichain is an antichain such that every element
e ∈ C/A is related to an element of A.

The nearest neighbours of an element x′ in C are those that are linked to it i.e., {x ∈
C |x′ ≺ x and |(x, x′)| = 0}. This construct can be used to divide a causal set into layers.
Starting with the minimal element (the one with no past nearest neighbours) we can define
the following layers

Li = {x ∈ C |x′ ≺ x and |(x, x′)| = i− 1}, i ≥ 1 (1.3)

The same construction can be carried out starting from the maximal element (the one with
no future nearest neighbours). These constructions are shown in Fig 1.1.

A causal set is more general than a spacetime manifold. More precisely, the space of
causal sets is dominated by the non-mainfoldlike Kleitmann-Rothschild orders [31]. In order
to obtain results from CST that have a meaningful interpretation in the continuum we must
work with causal sets that correspond to a spacetime manifold, hence we work with sprinkled
causal sets.

4Note that there maybe confusion when (x, x′) appears in an expression like C0(x, x′), in this case x, x′

are individual points being used as indices for the matrix C0 and do not represent the interval (x, x′). The
difference is clear from the context.
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(a) (b)

Figure 1.1: (a) An example of an antichain in red and a chain in blue is shown. (b) An
example of causal set with 20 elements containing 5 elements in the first layer with respect
to the minimal element, the corresponding links are also shown.

Sprinkling is the process of picking points randomly from a region of spacetime (M, g)
with a constant density ρ. To ensure that such a process is covariant i.e., the points picked
are not based on any specific coordinate system we use a random Poisson discretization
[32]. The probability of picking n points from a spacetime region of volume V , given a
fundamental discreteness scale ρ−1 is

PV (n) =
(ρV )ne−ρV

n!
(1.4)

which also gives us 〈n〉 = N = ρV . The causal ordering is inherited from the region’s
causal ordering restricted to the sprinkled points. The causal sets so obtained are said to
approximate (M, g) and we will denote this by C ∼ (M, g). Figure 1.1 is an example of a
sprinkled causal set in a region of M2.

We refer the reader to [33, 10] for more details on CST.

1.2 Quantum Fields on Causal Sets

Although the eventual goal of CST is to have a fully quantum description of the dynamics of
causal sets, it is useful to study the behaviour of quantum fields on fixed background causal
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sets. This is the analogue of studying quantum fields on fixed spacetime backgrounds. As
we will see, this not only allows us to explore a variety of issues but also throws up questions
that a theory of discrete spacetime must answer. This section will be an outline and more
detail can be found in [21, 20]. We will also describe the setup and precise analysis relevant
to this thesis in subsequent chapters.

For a Gaussian field we can specify a field theory by giving the correlation functions

〈φ(x)〉 and W (x, x′) = 〈φ(x)φ(x′)〉

were we set 〈φ(x)〉 = 0 by convention. The Wightman “function” W (x, x′) is therefore suf-
ficient; any n-point function can be determined from it using Wick’s rule. An analogous
condition for quantum fields can be found in [34]. In defining the theory through the Wight-
man function, we refer to a Gaussian theory directly instead of having to define a Gaussian
state5. This allows us to formulate the notion of a vacuum and its entanglement entropy
directly in terms of W (x, x′). These constructions applied to regions of de Sitter spacetime
in chapters 3, 4 form a large part of this thesis.

The fact that a Gaussian theory can be defined fully from W (x, x′) does not mean that
W can be specified freely. It must satisfy the condition∫

dV (x)f(x)W (x, x′)f(x′)dV (x′) ≥ 0, ∀f ∈ domain(W ) (1.5)

this condition, called positive semi-definiteness, can be taken as an axiom of quantum theory.
However, we note that given a state vector |0〉 in some Hilbert space the above result can
be derived as a theorem. It follows immediately from the positivity of ||ψ||2 = 〈ψ|ψ〉 where
|ψ〉 =

∫
dV (x)f(x) φ̂ |0〉.

We recall that the usual way of obtaining W in quantum field theory is as follows

�−m2 −→ G −→ ∆ −→ [φ̂, φ̂] −→ a, a† −→ |0〉 −→ W, (1.6)

where G is the retarded (or advanced) Green function and ∆ is called the Pauli-Jordan
function. In the intervening step [φ̂, φ̂] −→ a, a† we need to make a choice of positive
frequency modes and this involves a timelike killing vector in the spacetime region that we
consider. The alternate, shorter route that does not involve such a choice and is more suited
to causal sets is

G −→ ∆ −→ W. (1.7)

In chapter 2 we extend the Minkowski spacetime results of Johnston [21] to identify appro-
priate Gs for causal sets sprinkled in Riemann normal neighbourhoods in an arbitrary curved
spacetime as well as in regions of de Sitter and anti de sitter spacetime6. We also propose a
new Green function for the 3d Minkowski case.

5A discussion on how to go back and forth between these 2 is given in [20].
6All these results are for d = 2, 4.

14



In chapter 3 we use the Sorkin-Johnston (SJ) construction [15] to go from G to W for
the Minkowski and de Sitter cases. Through a numerical study on causal sets we find that
the vacuum obtained via the SJ construction is distinct from the standard Mottola-Allen
α-vacua in de Sitter.

Since the first calculation of entanglement entropy (EE) in a spacetime context, in partic-
ular for a black hole horizon [35], it has been an important part of QFT in curved spacetime
and approaches to QG. Historically, it has been customary to define EE using states (or
density matrices) on spatial slices but such a non-covariant definition is not adaptable to
causal sets. Only recently a covariant definition based entirely on ∆, W has been proposed
[17]. Once we obtain a W via (1.7) we can find the entanglement entropy on causal sets.
While working with black hole horizons using causal sets remains a challenge7, we can do
the next best thing and work with de Sitter horizons which are relevant in a cosmological
context. The study of the EE of de Sitter horizons is the subject of chapter 4.

We conclude this chapter with a review of the basics of de Sitter spacetime, mostly
following the discussion in [37].

1.3 de Sitter Spacetime

de Sitter spacetime dSd can be thought of as a surface in Md+1. This surface is characterized
by the constraint

−X2
0 +X2

1 + ...+X2
d = ηABX

AXB =
1

H2
, (1.8)

where A and B run from 0 to d. This is a hyperboloid in Md+1 with “radius” l ≡ 1
H

. This
is also, topologically, R × Sd−1, where the Sd−1 corresponds to a surface with constant X0.
This (d− 1)-sphere has a radius ≡ 1

H2 +X2
0 .

If we assign coordinates xa on the surface dSd, then corresponding to each point on the
surface we can define vectors XA(x), in Md+1. Each of these must satisfy (1). We can define
another useful quantity as follows:

Z(x, y) = H2ηABX
A(x)XB(y) = cos θ. (1.9)

We can think of this as an inner product between two d + 1-vectors that represent points
x and y on the surface dSd. If there is some angle θ between these two vectors in Md+1,
then the above expression can be written (in exact analogy with the usual “dot product”)
in terms of this angle, and the magnitude cancels out with the H2 in front.
Now for two points on the surface separated by an angle θ, the geodesic distance (in exact
analogy with a sphere) is given by d(x, y) = 1

H
θ, where 1

H
plays the role of radius. Therefore

7An interesting study of black holes in causal sets is [36].
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we have [25]

d(x, y) =
1

H
cos−1 Z(x, y). (1.10)

The advantage of this relation is that in general the geodesic distance is given by

d(x, y) =

∫ x

y

dµ

√
ηAB

dXA

dµ

dXB

dµ
, (1.11)

where XA(µ) is a parameterized geodesic between points x and y. In general, this integral
can be difficult to evaluate. However the closed-form expression of Z(x, y) allows it to be
trivially evaluated once coordinates are assigned to the surface dSd. The values Z > 1,
Z = 1 and −1 < Z < 1 correspond to pairs of points that can be joined by timelike, null,
and spacelike geodesics, respectively.

A useful set of coordinates to characterize global de Sitter spacetime are the hyperbolic
coordinates. In these, the metric takes the form

ds2 = −dτ 2 +
1

H2
cosh2(Hτ) dΩ2

d−1, (1.12)

where −∞ < τ < ∞ and Ωd−1 are coordinates on Sd−1. These coordinates are related to
those in (1.8) by

X0 =
1

H
sinh τ (1.13)

X i =
1

H
wi cosh τ, i = 1, ..., d,

where wi are coordinates on the sphere Sd−1:

w1 = cos θ1, (1.14)

w2 = sin θ1 cos θ2,

...

wd−1 = sin θ1... sin θd−2 cos θd−1,

wd = sin θ1... sin θd−2 sin θd−1,

and where 0 ≤ θi < π for 1 ≤ i ≤ d− 2 and 0 ≤ θd−1 < 2π.
∑d

i=1 (wi)
2

= 1 and

dΩ2
d−1 =

d∑
i=1

(
dwi
)2

= dθ2
1 + sin2 θ1dθ

2
2 + ...+ sin2 θ1... sin

2 θd−2dθ
2
d−1 (1.15)

is the metric on Sd−1.
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Another useful set of coordinates are the conformal/cylindrical coordinates obtained by
setting H dτ/ coshHτ = dT̃ in the above metric

ds2 =
1

H2 cos2 T̃

(
−dT̃ 2 + dΩ2

d−1

)
, (1.16)

where −π/2 < T̃ < π/2, which is conformal to the cylinder Sd−1 × [−π/2, π/2]. In these
coordinates the volume of a region of height 2T (i.e., conformal time T̃ ∈ [−T, T ]) and radius
l is given by

V (T, d) =
2πd/2ld

Γ(d
2
)

∫ T

−T
secd T̃ dT̃ . (1.17)

In our cases of interest,

V (T, 2) = 4πl2 tanT (1.18)

V (T, 4) =
4

3
π2l4 tanT (cos 2T + 2) sec2 T. (1.19)

The following are some other useful identities relevant to de Sitter spacetime that relate the
Ricci scalar R to other commonly used scales – the cosmological constant (Λ), the de Sitter
radius (l) and the Hubble constant (H):

R =
2d

d− 2
Λ = d (d− 1)H2 =

d (d− 1)

l2
, (1.20)

where Λ =
(d− 1)(d− 2)

2
H2. (1.21)

The critical mass 8 is

m∗ =
d− 1

2l
. (1.22)

In d = 4, R = 4Λ = 12H2 = 12/l2 and m∗ =
3

2l
.

Sprinkling into regions of Minkowski spacetime has been discussed elsewhere (see e.g.
[21]). Here we briefly describe the process for de Sitter spacetime.

A convenient coordinate system in which to do the sprinkling for de Sitter is the conformal
coordinate system of (1.16). This allows us to work with the simpler conformally related
metric in analyzing the causal structure of de Sitter spacetime. The sprinkling can be
done in two steps. In the first step we pick points randomly on the spatial part, i.e.,, the
sphere Sd−1. One simple way (by no means unique) to do this is to generate normalised d-
dimensional vectors. These will automatically lie on the surface of Sd−1. The corresponding

8For more details see [38].
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Figure 1.2: A sprinkling of N = 10000 elements into the metric of (1.16) for the time interval
−1.2 < T < 1.2.

spherical coordinates can be obtained by using the standard Cartesian to spherical coordinate
transformation.

In the second step we need to obtain the temporal part of the coordinates. As is evi-
dent from the metric, this isn’t uniformly distributed but depends on the conformal factor.
The effect of the conformal factor can be incorporated by defining a normalised probability
distribution with a probability density function equal to (H cosT )−d in the region of inter-
est. Picking points from this distribution will give us the temporal part of the coordinates.
Combining the coordinates from the two steps, we have the required sprinkling. A typical
sprinkling is shown in figure 1.2.
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Chapter 2

Scalar Field Green Functions

Understanding classical and quantum scalar field propagation on a fixed causal set is an
important problem in causal set quantum gravity [39, 21, 40, 41]. Although ignoring back
reaction and the quantum dynamics of the causal set background itself means that the
treatment of scalar field dynamics will be inconsistent in some way, we can hope to learn
something about causal set theory by studying this problem. Recent progress in defining
scalar quantum field theory on a causal set puts great importance on the retarded Green
function for the field on the causal set. Such a Green function can be used to obtain the
Feynman propagator, or equivalently the Wightman function, of a distinguished quantum
state on a causal set C, the Sorkin-Johnston state [42, 15]. Sorkin’s related construction of
a double path integral form of free scalar quantum field theory on a finite casual set is also
based on the retarded Green function [34].

In [39] Johnston found the massive scalar field retarded Green functions, Km(x, x′), for
causal sets approximated by d = 2 and d = 4 Minkowski spacetime [39, 21]. For each case,
he used a “hop-stop” ansatz in which the Green function equals a sum over appropriately
chosen causal trajectories between the two arguments of the Green function, with a weight
assigned for every hop between the elements of the trajectory and another for every stop
at an intervening element. Requiring that the continuum limit of the expectation value of
the causal set Green function over multiple sprinklings into Minkowski spacetime equals the
continuum retarded Green function then fixes these weights. Extending the scope of the
hop-stop ansatz to a larger class of spacetimes allows us to study causal set quantum field
theory further.

We begin by describing Johnston’s model in Section 2.1 and explain how it can be mo-
tivated by a spacetime treatment. We will see that the key is to identify the appropriate
retarded Green function for the massless field. This then leads to our proposed extensions
of the model in Section 2.2. For d = 2 we propose that Johnston’s definition of Km(x, x′)
can be used for a minimally coupled massive scalar field on a causal set approximated by
any topologically trivial spacetime. The proposal stems from the fact that the massless,
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minimally coupled scalar field theory is conformally invariant. In d = 2, for non minimal
coupling – i.e., with arbitrary coupling to the Ricci scalar – we show that the Johnston
Km(x, x′) is an appropriate retarded Green function in an approximately flat Riemann Nor-
mal Neighbourhood, up to corrections. In d = 4 we find that it is possible to extend the
Minkowski spacetime prescription to a Riemann normal neighbourhood (RNN), as well as
de Sitter spacetime and the conformally flat patch of anti de Sitter spacetime. In all cases,
the comparison with the continuum fixes the hop-stop weights. Our results are exact for
de Sitter and the globally hyperbolic patch of anti de Sitter spacetime, i.e., the limit of
the expectation value of the massless causal set Green function is the conformally coupled
massless Green function. In Section 2.3 we use this framework to propose a construction of
the retarded Green functions on d = 3 Minkowski spacetime. In section 2.4 we present our
conclusions and discuss some open questions.

2.1 The Model

Consider the massless scalar retarded Green function G0(x, x′) on a globally hyperbolic d
dimensional spacetime (M, g):

�xG0(x, x′) = − 1√
−g(x′)

δ(x− x′) . (2.1)

The massive retarded Green function, Gm, satisfies

(�x −m2)Gm(x, x′) = − 1√
−g(x)

δ(x− x′) , (2.2)

and can be written as a formal expansion

Gm = G0 −m2G0 ∗G0 +m4G0 ∗G0 ∗G0 + . . . =
∞∑
k=0

(−m2)kG0 ∗G0 ∗ . . . G0︸ ︷︷ ︸
k+1

(2.3)

where

(A ∗B)(x, x′) ≡
∫
ddx1

√
−g(x1)A(x, x1)B(x1, x

′) . (2.4)

Note that if G0(x, x′) is retarded (i.e., only nonzero if x′ is in the causal past of x) then so
is Gm(x, x′). Also note that since G0 is retarded, the convolution integrals are over finite
regions of spacetime. This relation can be reexpressed in the compact form

Gm = G0 −m2G0 ∗Gm . (2.5)
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Conversely G0 can be obtained from Gm via

G0 =
∞∑
k=0

(m2)kGm ∗Gm ∗ . . . Gm︸ ︷︷ ︸
k+1

(2.6)

and
G0 = Gm +m2Gm ∗G0 = Gm +m2G0 ∗Gm . (2.7)

Once we have the massless retarded Green function, we can write down a formal series for
the massive retarded Green function.

Now if we have a massless retarded Green function analogue, K0(x, x′), on a causal set
which is a sprinkling at density ρ into the d-dimensional spacetime, we can immediately
propose a massive retarded Green function Km(x, x′) on that causal set via the replacement∫ √

−g(x) ddx→ ρ−1
∑

causal set elements

, (2.8)

leading to

Km = K0 −
m2

ρ
K0 ∗K0 +

m4

ρ2
K0 ∗K0 ∗K0 + . . . =

∞∑
k=0

(
−m

2

ρ

)k
K0 ∗K0 ∗ . . . K0︸ ︷︷ ︸

k+1

(2.9)

where now the convolutions have become finite sums over causal set elements in the causal
interval (x, x′). The series terminates and is well-defined for each pair x and x′.

We will now show that Johnston’s hop-stop models for the massive retarded Green func-
tions on causal sets approximated by 2 and 4 dimensional Minkowski space are based on
natural causal set analogues of the massless Green functions .

2.1.1 d = 2 Minkowski spacetime

The massless retarded Green function in d = 2 Minkowski spacetime M2 is

G
(2)
0 (x, x′) =

1

2
θ(x0 − x′0)θ(τ 2(x, x′)) (2.10)

where τ(x, x′) is defined by

τ(x, x′) =
√

(x0 − x′0)2 − (x1 − x′1)2 when (x0 − x′0)2 ≥ (x1 − x′1)2

and

τ(x, x′) = i
√
−(x0 − x′0)2 + (x1 − x′1)2 when (x0 − x′0)2 < (x1 − x′1)2 . (2.11)
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θ is the Heaviside step function.

Now consider, on a causal set, the causal matrix C0(x, x′). The Poisson point process of
sprinkling at density ρ in 2 dimensional Minkowski spacetime gives rise to a random variable,
C0(x, x′) for every two points, x and x′ via the evaluation of C0(x, x′) on that causal set.
In this case, the random variable takes the same value – the expectation value – in each
realization. It was observed in [43] that this value is

〈C0(x, x′)〉 = 2G
(2)
0 (x, x′) . (2.12)

This leads to the proposal for a massless retarded Green function, K
(2)
0 (x, x′), on a d = 2

flat sprinkled causal set:

K
(2)
0 (x, x′) ≡ 1

2
C0(x, x′). (2.13)

We define a massive Green function K
(2)
m (x, x′) on C using this K

(2)
0 (x, x′) and (2.9).

Using Eq.(2.9) and k-chains on the causal set then gives

K(2)
m (x, x′) =

∞∑
k=0

(
−m

2

ρ

)k(
1

2

)k+1

Ck(x, x
′) , (2.14)

where the sum is written as an infinite sum but terminates for each pair x and x′.

For each two points x and x′ of M2 and each k the random variable Ck(x, x
′) is Ck(x, x

′)
evaluated on a sprinkled causal set including x and x′, and hence we have the random variable
K

(2)
m (x, x′):

K(2)
m (x, x′) ≡

∞∑
k=0

(
−m

2

ρ

)k(
1

2

)k+1

Ck(x, x
′). (2.15)

Its expectation value – for any sprinkling density – is equal to the continuum Green function
since

〈Ck(x, x
′)〉 = ρk(〈C0〉 ∗ . . . ∗ 〈C0〉︸ ︷︷ ︸

k+1

)(x, x′) (2.16)

and so

〈K(2)
m (x, x′)〉 =

∞∑
k=0

(
−m

2

ρ

)k(
1

2

)k+1

〈Ck(x, x
′)〉 (2.17)

=
∞∑
k=0

(−m2)kG
(2)
0 ∗G(2)

0 ∗ . . . G(2)
0︸ ︷︷ ︸

k+1

(x, x′) (2.18)

= G(2)
m (x, x′) . (2.19)
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In [39] K
(2)
m (x, x′) was expressed in terms of the hop and stop weights, a and b respectively:

K(2)
m (x, x′) =

∞∑
k=0

ak+1bkCk(x, x
′). (2.20)

This form was described by Johnston using a particle language as a sum over all chains
between x and x′: for each k-chain the hop between two successive elements is assigned the
weight a and the stop at each intervening element between x and x′ is assigned the weight b.
Now we see that the weight a = 1

2
is associated to each factor of K

(2)
0 – from the relationship

between K
(2)
0 and the causal matrix – and the weight b = −m2

ρ
to each convolution. In [39]

a momentum space calculation was used to find b, but as we have just seen the spacetime
formulation is sufficient to read off the value.

2.1.2 d = 4 Minkowski spacetime

In d = 4 Minkowski spacetime, M4, the retarded Green function for the massless field only
has support on the light cone:

G
(4)
0 (x, x′) =

1

2π
θ(x0 − x′0)δ(τ 2(x, x′)) , (2.21)

where

τ(x, x′) =
√

(x0 − x′0)2 − (x1 − x′1)2 − (x2 − x′2)2 − (x3 − x′3)2 when

(x0 − x′0)2 ≥ (x1 − x′1)2 + · · ·+ (x3 − x′3)2

and

τ(x, x′) = i
√
−(x0 − x′0)2 + (x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2 when

(x0 − x′0)2 < (x1 − x′1)2 + · · ·+ (x3 − x′3)2 . (2.22)

The causal set analogue is proportional to the link matrix. The expectation value of the
corresponding random variable L0(x, x′) in a Poisson sprinkling of density ρ is

〈L0(x, x′)〉 = θ(x0 − x′0)θ(τ 2(x, x′)) exp(−ρV (x, x′)), (2.23)

where V (x, x′) is the volume of the spacetime interval J−(x)∩J+(x′). Here J+(x) and J−(x)
denote 1 the causal future and past of x, respectively. In M4, V (x, x′) = π

24
τ 4(x, x′), so that

lim
ρ→∞

√
ρ

6
〈L0(x, x′)〉 = 2 θ(x0 − x′0)θ(τ 2)δ(τ 2) (2.24)

= θ(x0 − x′0)δ(τ 2) (2.25)

= 2πG
(4)
0 (x, x′) . (2.26)

1see [44] for example
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This therefore suggests that we take the massless Green function on a flat 4-d causal set to
be

K
(4)
0 (x, x′) =

1

2π

√
ρ

6
L0(x, x′) . (2.27)

The relationship with the continuum Green function is not so direct as in d = 2 since here it
is only in the continuum limit as ρ→∞ that the expectation value of K

(4)
0 over sprinklings

equals the continuum G
(4)
0 . We use this K

(4)
0 to construct a massive Green function K

(4)
m (x, x′)

via (2.9) as before

K(4)
m (x, x′) =

∞∑
k=0

(
−m

2

ρ

)k(
1

2π

√
ρ

6

)k+1

Lk(x, x
′) , (2.28)

where the sum terminates for each pair x and x′.

For each two points x and x′ of M2 and each k, the random variable Lk(x, x
′) is Lk(x, x

′)
evaluated on a sprinkled causal set including x and x′, and hence we have the random variable
K

(4)
m (x, x′):

K(4)
m (x, x′) ≡

∞∑
k=0

(
−m

2

ρ

)k(
1

2π

√
ρ

6

)k+1

Lk(x, x
′). (2.29)

The limit as ρ →∞ of its expectation value is equal to the series for the continuum Green
function since

〈Lk(x, x′)〉 = ρk(〈L0〉 ∗ . . . ∗ 〈L0〉︸ ︷︷ ︸
k+1

)(x, x′) (2.30)

and so

lim
ρ→∞
〈K(4)

m (x, x′)〉 = lim
ρ→∞

∞∑
k=0

(
−m

2

ρ

)k(
1

2π

√
ρ

6

)k+1

〈Lk(x, x′)〉 (2.31)

= lim
ρ→∞

∞∑
k=0

(−m2)k
(

1

2π

√
ρ

6

)k+1

〈L0〉 ∗ . . . ∗ 〈L0〉︸ ︷︷ ︸
k+1

(x, x′) (2.32)

=
∞∑
k=0

(−m2)kG
(4)
0 ∗G(4)

0 ∗ . . . G(4)
0︸ ︷︷ ︸

k+1

(x, x′) (2.33)

= G(4)
m (x, x′) . (2.34)

Johnston interpreted (2.27) as a sum over paths between x and x′. The hop-stop weights
can be read off from Eqn (2.29) as a = 1

2π

√
ρ
6

and b = −m2

ρ
, respectively.
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Figure 2.1: The causal trajectories in d = 2 and 4 dimensions.

2.2 Generalisations

The key to the above construction of a massive Green function is knowing the massless one.
We can repeat it if we can find the massless retarded Green function for causal sets sprinkled
into more general curved spacetimes.

Consider the more general scalar theory with nonminimal coupling with Green function
Gm,ξ(x, x

′) which satisfies

(�g −m2 − ξR)Gm,ξ(x, x
′) =

1√
−g(x)

δ(x− x′) . (2.35)

Gm,ξ(x, x
′) can be obtained from G0,ξ(x, x

′) using the same series expansion Eqn(2.3):

Gm,ξ =
∞∑
k=0

(−m2)kG0,ξ ∗G0,ξ ∗ . . . G0,ξ︸ ︷︷ ︸
k+1

. (2.36)

In the special case when the spacetime has constant scalar curvature R, then the ξR term
just modifies the mass and Gm,ξ(x, x

′) can be obtained from the minimally coupled massless
Green function G0,0(x, x′) using a series expansion Eqn(2.3) with m2 replaced by m2 + ξR.
In general, for constant R, we can relate the two Green functions

Gm′,ξ′ =
∞∑
k=0

(−m′2 − ξ′R +m2 + ξR)kGm,ξ ∗Gm,ξ ∗ . . . Gm,ξ︸ ︷︷ ︸
k+1

, (2.37)

for any (m, ξ), (m′, ξ′).

We seek analogous massive scalar Green functions, Km,ξ(x, x
′), for causal sets sprinkled

into curved spacetimes. We will see that this is possible in special cases.
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2.2.1 d = 2

Every d = 2 spacetime is locally conformally flat. The conformal coupling in d = 2 is ξ = 0,
i.e., conformal coupling is minimal coupling. If the spacetime is topologically trivial and
consists of one patch covered by conformally flat coordinates, then the minimally coupled
massless Green function equals the flat spacetime Green function (2.10).

Therefore, we propose that on causal sets sprinkled into such d = 2 spacetimes, the
massless minimally coupled causal set Green function, K

(2)
0,0(x, x′), is the flat one given by

Eqn (2.13) and therefore that K
(2)
m,0(x, x′) is the flat one given by Eqn (2.14):

K
(2)
m,0(x, x′) =

∞∑
k=0

(
−m

2

ρ

)k(
1

2

)k+1

Ck(x, x
′) , (2.38)

The argument that the expectation value over sprinklings of the corresponding random
variable will be the correct continuum Green function proceeds exactly as in the flat case:
(2.14)–(2.19). However it is formal and we will provide more concrete evidence. We will

verify directly that this K
(2)
m,0 does have the correct expectation value value over sprinklings

in an RNN.

In our calculation below as well as in Section 2.2.2, the RNN should be seen as providing
an intermediate scale at which the continuum description is still valid, and which is therefore
much larger than the discreteness scale. The reason to use the RNN is simply that the
calculations can be done explictly to leading order both in the causal set as well as the
continuum.

RNN in d = 2

Consider the RNN (O, g) with Riemann normal coordinates with origin x′. The metric at
x ∈ O can be expanded to first order about x′ in these coordinates as

gab(x) = ηab +
1

2!
∂c∂d gab(x

′)xcxd +O(x3). (2.39)

where ηab is the metric of Minkowski spacetime in inertial coordinates and ∂cgab(x
′) = 0. In

the RNN, |Rτ 2(x, x′)| << 1 and we work in an approximation where we drop terms involving
derivatives of the curvature or quadratic and higher powers of the curvature.

The d dimensional momentum space Green function in a RNN has been calculated by
Bunch and Parker [22]. To leading order the density

Gm,ξ(x, x
′) ≡ (−g(x))

1
4Gm,ξ(x, x

′) (2.40)
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satisfies the equation

(�η − (m2 + (ξ − 1

6
)R(x′))Gm,ξ(x, x

′) ≈ −δ(x− x′) , (2.41)

where �η = ηab∇a∇b and acts on the x argument. This has the momentum space solution

Gm,ξ(p) ≈
1

p2 +m2
− (ξ − 1

6
)R(x′)

1

(p2 +m2)2
. (2.42)

This solution was obtained iteratively using the expansion

Gm,ξ(p) = Gm,ξ,0(p) + Gm,ξ,1(p) + Gm,ξ,2(p) + . . . (2.43)

where Gm,ξ,0(p) = (k2 +m2)−1 is the flat spacetime Green function which is independent of ξ.
This expansion is valid when the Compton wavelength of the particle is much smaller than
the curvature scale, i.e., m2 >> ξR, a physically reasonable assumption. The spacetime
function can then be expressed as

Gm,ξ(x, x
′) ≈ GF

m(x, x′) +
1

2m
(ξ − 1

6
)R(x′) ∂mG

F
m(x, x′), (2.44)

where GF
m(x, x′) is the massive minimally coupled Green function in Md. The Green function

is then

Gm,ξ(x, x
′) ≈

(
1 +

1

12
Rab(x

′)xaxb
)
GF
m(x, x′) +

1

2m
(ξ − 1

6
)R(x′) ∂mG

F
m(x, x′). (2.45)

Now we specialise to d = 2. Using the d = 2 Minkowski spacetime solution for the
massive retarded solution

1

2
θ(x0)θ(τ 2)J0(mτ) , (2.46)

where τ = τ(x, x′) (2.11), the retarded massive Green function in (O, g) is given by

G
(2)
m,ξ(x, x

′) ≈ θ(x0)θ(τ 2)

[
1

2
J0(mτ) +

R(x′)τ 2

48
J2(mτ)− ξR(x′)τ

4m
J1(mτ)

]
. (2.47)

We begin by defining a potential causal set Green function motivated from the Minkowski
case

K(2)(a, b)(x, x′) ≡
∞∑
k=0

ak+1bkCk(x, x
′) (2.48)

for arbitrary weights a and b. We want to show that the corresponding random variable for
sprinklings into a RNN has the correct expectation value, (2.47) when a and b take their flat
space values a = 1

2
and b = −m2

ρ
.
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We can calculate 〈K(2)(a, b)(x, x′)〉 starting from Eqn (2.48) if we know 〈Ck(x, x
′)〉 in a

small causal diamond. This was calculated, to first order in curvature, in [45] for arbitrary
d ≥ 2. In d = 2 the expression is

〈Ck(x, x
′)〉 ≈ 〈Ck(x, x

′)〉η
(

1− R(x′)τ 2

24

k

k + 1

)
(2.49)

where 〈Ck(x, x
′)〉η = θ(x0)θ(τ 2)

1

Γ(k + 1)2

(
ρτ 2

2

)k
is the expectation value in flat space.

Using the series expansion of the Bessel functions we see that

〈K(2)(a, b)〉 ≈ θ(x0)θ(τ 2)
∞∑
k=0

ak+1bk
(
ρτ 2

2

)k
1

(Γ(k + 1))2

(
1− R(x′)τ 2

24

k

k + 1

)

≈ θ(x0)θ(τ 2)

[
aI0(τ

√
2abρ)− aR(x′)τ 2

24
I2(τ

√
2abρ)

]
. (2.50)

If we set a = 1
2
, b = −m2

ρ
we find

〈K(2)(
1

2
,−m

2

ρ
)(x, x′)〉 ≈ θ(x0)θ(τ 2)

[
1

2
J0(mτ) +

R(x′)τ 2

48
J2(mτ)

]
, (2.51)

which matches Eqn (2.47) for ξ = 0.

We further note that in the RNN since R(x′) ≈ R, a constant to this order of approxi-
mation, we can use the observation above that ξR can be treated as a contribution to the

mass. Putting a = 1
2

and b = − (m2+ξR)
ρ

in (2.50) and using m2 >> ξR, we obtain

θ(x0)θ(τ 2)

[
1

2
J0(τ

√
m2 + ξR) +

Rτ 2

48
J2(τ

√
m2 + ξR)

]

≈ θ(x0)θ(τ 2)

[
1

2

∞∑
n=0

(−1)n

(n!)2

(
τ

2

)2n

(m2 + ξR)n +
Rτ 2

48
J2(mτ)

]

≈ θ(x0)θ(τ 2)

[
1

2
J0(mτ) +

Rτ 2

48
J2(mτ)− ξRτ

4m
J1(mτ)

]
(2.52)

which agrees with Eqn (2.47). Thus, for a causal set sprinkled into an approximately flat

causal diamond in d = 2, Eqn (2.48) with a = 1
2

and b = − (m2+ξR(x′))
ρ

is approximately the
“right” massive causal set Green function for general coupling ξ.
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2.2.2 d = 4

RNN in d = 4

The approximate continuum retarded Green function in the RNN in d = 4 simplifies to

G
(4)
m,ξ(x, x

′) ≈ θ(x0)

[(
1

2π
δ(τ 2)− θ(τ 2)

m

4πτ
J1(mτ)

)(
1 +

1

12
Rab(x

′)xaxb
)]

(2.53)

− θ(x0)θ(τ 2)

(
ξ − 1

6

)
R(x′)

8π
J0(mτ), (2.54)

which reduces to the massless Green function

G
(4)
0,ξ(x, x

′) ≈ 1

2π
θ(x0)δ(τ 2)

(
1 +

1

12
Rab(x

′)xaxb
)
− θ(x0)θ(τ 2)

(
ξ − 1

6

)
R(x′)

8π
. (2.55)

Even this simplified expression is formidable to mimic in the causal set since not only does
it require the discrete scalar curvature [46] but also the components of the Ricci curvature
for which no expression is known. However, for conformal coupling ξ = 1

6
and Einstein

spaces with Ricci curvature Rab ∝ gab, (2.55) reduces to the Minkowski spacetime form
(2.21). Indeed, we only require that Rab(x

′) ∝∼ gab(x
′) upto the order we are considering.

This suggests that the flat spacetime massless causal set Green function (2.27) may give
the right continuum Green function. Since R is approximately constant in the RNN (and
exactly constant in an Einstein space) we can use the series in powers of the massless Green
function to propose the massive one for arbitrary ξ.

For the massless field let us calculate the expectation value of the link matrix, given
by (2.23). The spacetime volume in the RNN has corrections to the Minkowski spacetime
volume Vη(x, x

′) [47, 48, 49] which in d = 4 are

V (x, x′) ≈ Vη(x, x
′)

(
1− 1

180
R(x′)τ 2 +

1

30
Rab(x

′)xaxb
)
. (2.56)

To leading order then

〈L0(x, x′)〉 ≈ θ(x0)θ(τ 2)e−ρVη(x,x′)

(
1 +

ρVη(x, x
′)

180
R(x′)τ 2 − ρVη(x, x

′)

30
Rab(x

′)xaxb
)
. (2.57)

Since Vη(x, x
′) = π

24
τ 4(x, x′),

√
ρ〈L0(x, x′)〉 contains terms of the form

hn(ρ, τ) ≡ √ρ(cρτ 4)n exp(−cρτ 4), (2.58)

with n = 0, 1.
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We now show that given the function

hn(ρ, z) ≡ √ρ(cρz2)n exp(−cρz2), (2.59)

lim
ρ→∞

hn(ρ, z) =
Γ(n+ 1/2)√

c
δ(z). (2.60)

First, we evaluate the integral∫ ∞
−∞

dz hn(ρ, z) = 2
√
ρ

∫ ∞
0

dz (cρz2)ne−cρz
2

=
1√
πc

∫ ∞
0

dt (t)n−1/2e−t

=
Γ(n+ 1/2)√

πc
, (2.61)

where we made a change of variables t = cρz2. This result is independent of ρ.

Next, we integrate hn(ρ, z) with an analytic test function and take the limit ρ → ∞. If
f(z) is odd, the integral vanishes (this also happens with the delta function) and we can
restrict to even analytic functions

f(z) =
∞∑
k=0

akz
2k. (2.62)

For this,

lim
ρ→∞

∫ ∞
−∞

dz f(z)hn(ρ, z) = lim
ρ→∞

∞∑
k=0

ak

∫ ∞
−∞

dz z2k hn(ρ, z)

= lim
ρ→∞

2
∞∑
k=0

ak

∫ ∞
0

dz z2k√ρ(cρz2)ne−cρz
2

= lim
ρ→∞

2
∞∑
k=0

ak

√
ρ

(cρ)k

∫ ∞
0

dz (cρz2)n+ke−cρz
2

= lim
ρ→∞

∞∑
k=0

ak
Γ(n+ k + 1/2)√

c(cρ)k

= a0
Γ(n+ 1/2)√

πc
=

Γ(n+ 1/2)√
c

f(0).

Noting that n = 0 is the usual Gaussian integral, and that the behaviour with test functions
is one way to define a delta function [50], this proves Eqn (2.60).
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Using this result with z = τ 2, we find

lim
ρ→∞

√
ρ

2π
√

6
〈L0(x, x′)〉 ≈ 1

2π
θ(x0)δ(τ 2)

(
1 +

R(x′)τ 2

360
− Rab(x

′)xaxb

60

)
. (2.63)

The second term vanishes in general and so does the third term when Rab(x
′) ∝ gab(x

′) upto
this order, and we recover (2.21). Thus, for sprinklings into a RNN with Rab(x

′) ∝ gab(x
′)

to this order, the continuum limit of the expectation value of (2.27) is approximately the
correct value for the Green function of the conformally coupled massless field.

As in the 2d case we define

K(4)(a, b)(x, x′) ≡
∞∑
k=0

ak+1bkLk(x, x
′) , (2.64)

we propose that this is the appropriate causal set Green function for the massive field and
arbitrary coupling ξ in an RNN with Rab(x

′) ∝ gab(x
′) to this order, with a = 1

2π

√
ρ
6

and

b = −m2+(ξ− 1
6

)R

ρ
.

We are unable to verify this directly because there is no known closed form expression
for the expectation value of Lk, the number of k-paths for k ≥ 1, even in an RNN.

d = 4 de Sitter and anti de Sitter

In d = 4 for conformally flat spacetimes gab = Ω2(x)ηab the conformally coupled massless
Green function is related to that in M4 by

G0,ξc(x, x
′) = Ω−1(x)GF

0 (x, x′)Ω−1(x′), (2.65)

where ξc = 1
6

and GF
0 (x, x′) denotes the retarded massless Green function in M4. When gab

in addition has constant scalar curvature the massive Green function for arbitrary ξ can be
obtained from G0,ξc(x, x

′) using Eqn (2.36).

An example is the conformally flat patch of de Sitter spacetime

ds2 =
1

(1 +Hx0)2

(
−dx2

0 +
3∑
i=1

dx2
i

)
, (2.66)

where x0 is the conformal time (− 1
H
< x0 < ∞) and H =

√
Λ
3

with Λ the cosmological

constant. The conformally coupled massless retarded Green function is

G0,ξc(x, x
′) =

1

2π
θ(t− t′)δ(τ 2(x, x′))(1 +Hx0)(1 +Hx′0). (2.67)
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Since de Sitter is homogeneous, one can choose x′ to lie at the convenient location x′ = (0,~0)
so that

G0,ξc(x, x
′) =

1

2π
θ(x0)δ(τ 2(x, x′))(1 +Hx0). (2.68)

Taking our cue from the RNN calculation, we look to the link matrix L0(x, x′) whose
expectation value is given by Eqn (2.23). Taking x′ = (0,~0), we see that

lim
ρ→∞

√
ρ

π
〈L0(x, x′)〉 = θ(x0)θ(τ 2(x, x′))δ(

√
V (x, x′)). (2.69)

In order to evaluate this expression we need to find V (x, x′). In [48] this volume was calcu-
lated for a large interval when ~x = ~x′. However, it is the small volume limit that is relevant
to our present calculation. When x lies in an RNN about x′, the calculation in the previous
section suffices. However, we also need to consider intervals of small volume that lie out-
side of the RNN. These “long-skinny” intervals hug the future light cone of x′ and it is this
contribution to Eqn (2.69) that we will now consider.

In the following light cone coordinates

u =
1

2
(x0 − x3), v =

1

2
(x0 + x3), (2.70)

let u(x) = ε, v(x) = L, with α2 ≡ ε
L
<< 1. Since there is a spatial rotational symmetry

in de Sitter, we can also take x1 = x2 = 0. In order to simplify the calculation of V (x, x′),
we perform a boost about x′ in the x0 − x3 plane about x′ so that x̃ = (x̃0,~0). The boost
parameter is then β = x3

x0
≈ 1 − 2α. In these coordinates the conformal factor at a point

y = (y0, ~y) is

Ω̃2(ỹ) ≈ 1

(1 + A(ỹ0 + ỹ3))2
(2.71)

where A = 1
2
Hα. Further transforming to cylindrical coordinates (ỹ1, ỹ2, ỹ3) → (r, φ, ỹ3) we

can split V (x, x′) into two multiple integrals

VI(x, x
′) =

∫ − τ
2

0

dỹ0

∫ ỹ0

−ỹ0
dỹ3

∫ √ỹ20−ỹ23

0

rdr

∫ 2π

0

dφ

(
1 + A(ỹ0 + ỹ3)

)−4

(2.72)

VII(x, x
′) =

∫ τ

τ
2

dỹ0

∫ τ−ỹ0

−τ+ỹ0

dỹ3

∫ √(τ−ỹ0)2−ỹ23

0

rdr

∫ 2π

0

dφ

(
1 + A(ỹ0 + ỹ3)

)−4

(2.73)

with V (x, x′) = VI(x, x
′) + VII(x, x

′). Evaluating these expressions using τ 2 = 4Lε we find
that √

V (x, x′) =
1

2

√
π

6

τ 2

(1 + Aτ)
≈ 1

2

√
π

6

(
4Lε

1 +HL

)
, (2.74)
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which substituted into Eqn (2.69) gives

lim
ρ→∞

√
ρ

π
〈L0(x, x′)〉 = θ(t− t′)θ(τ 2(x, x′))

√
6

π
(1 +HL)δ(4Lε). (2.75)

In the small α limit the conformally coupled de Sitter Green function is

G0,ξc(x, x
′) ≈ 1

2π
(1 +HL)θ(x0)δ(4Lε) (2.76)

and hence

lim
ρ→∞

1

2π

√
ρ

6
〈L0(x, x′)〉 = G0,ξc(x, x

′). (2.77)

As in the RNN, defining

K(4)(a, b)(x, x′) ≡
∞∑
k=0

ak+1bkLk(x, x
′) , (2.78)

we propose that this is the appropriate causal set Green function for the massive field and

arbitrary coupling ξ in de Sitter spacetime for a = 1
2π

√
ρ
6

and b = −m2+(ξ− 1
6

)R

ρ
.

Although our calculation is restricted to the conformally flat patch of de Sitter spacetime,
the result applies to global de Sitter, for the following reason. Let x′ ≺ x in (global) de Sitter
spacetime. Consider a Lorentz transformation about x′ in the 5-dimensional Minkowski
spacetime in which the hyperboloid that is de Sitter spacetime is embedded, which brings
~x = ~x′. This transformation preserves the hyperboloid. One can then choose the conformally
flat patch of de Sitter with origin ~x′, and use the above construction. When x, x′ are not
causally related, the Green functions vanish in both cases. Thus the Green function for
global de Sitter is retarded if the conformally flat Green function is, and both satisfy the
same equations, because there is no “wrap-around” in de Sitter.

The causal set Green function we propose is well defined on a sprinkling into global de
Sitter. Moreover, as we have shown, its continuum limit matches that of the Green function
into the conformally flat patch and thence from the above discussion, also the Green function
of global de Sitter spacetime.

In anti de Sitter (adS) spacetime there exist pairs of events x′ ≺ x such that τ(x, x′) is
finite, but V (x, x′) is infinite. While it is possible to obtain a Poisson sprinkling into such a
spacetime, the resulting poset is not locally finite and hence not strictly a causal set. Such an
interval is moreover not globally hyperbolic and hence falls outside the scope of our analysis.
However, the interior of a conformally flat patch of adS (the so-called half-space) is globally
hyperbolic and moreover, V (x, x′) is finite for every x′ ≺ x in this region. Hence this patch
of adS has a causal set description.
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In the conformally flat patch the adS metric takes the form

ds2 =
1

(1 +Hx3)2

(
−dx2

0 +
3∑
i=1

dx2
i

)
, (2.79)

where we have off set the coordinates x3 → x3 + 1
H

in order to connect with the de Sitter

calculation. Again choosing x′ = (0,~0), we can write the massless Green function as

G0,ξc(x, x
′) =

1

2π
θ(x0)δ(τ 2(x, x′))(1 +Hx3). (2.80)

In the boosted coordinates, upto order α2, the conformal factor

Ω2(y) =
1

(1 +Hy3)2
≈ 1

(1 + A(ỹ0 + ỹ3))2
(2.81)

and is identical to that of de Sitter in the calculation above. Moreover, to this order,
(1+Hx3) = (1+H(L− ε)) ≈ (1+HL), so that

√
V (x, x′) is given by Eqn (2.74). The same

argument can then be carried through to show that the massive causal set Green function
for arbitrary ξ in the conformally flat patch of de Sitter is given by Eqn (2.78).

We have thus proved exact results in de Sitter spacetime and in a conformally flat patch
of anti de Sitter spacetime, namely that the expectation value of the causal set retarded
Green function

K0(x, x′) =
1

2π

√
ρ

6
〈L0(x, x′)〉 (2.82)

is equal to the continuum massless conformally coupled Green function in the limit ρ→∞.
In addition, we make the proposal that the limit of the expectation value of K(4)(a, b)(x, x′)
with the appropriate a and b is the continuum massive Green function for arbitrary conformal
coupling ξ.

2.3 Proposal for a Green function in M3

As a final illustration, we make a proposal for the causal set Green function in d = 3
Minkowski spacetime. In continuum flat spacetime in 3 dimensions the massless scalar
Green function is

G
(3)
0 (x, x′) = θ(t− t′)θ(τ 2)

1

2πτ(x, x′)
, (2.83)

where for now we ignore the singular behaviour at τ(x, x′) = 0. The causal set counterpart of
the proper time τ(x, x′) in Md was given by Brightwell and Gregory [51] to be proportional
to the length l(x, x′) of the longest chain (LLC) from x′ to x. Explicitly

lim
ρ→∞
〈l(x, x′)〉(ρV (x, x′))−1/d = md (2.84)
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where md is a dimension dependent constant bounded by

1.77 ≤ 21− 1
d

Γ(1 + 1
d
)
≤ md ≤

21− 1
d e (Γ(1 + d))

1
d

d
≤ 2.62. (2.85)

In Md, ρV (x, x′) = ζdτ
d(x, x′) with ζd a dimension dependent constant, so that

lim
ρ→∞

ρ−
1
d 〈l(x, x′)〉 = κd τ(x, x′) (2.86)

where κd ≡ md(ζd)
1/d. This suggests that the d = 3 massless Green function on C is

K0(x, x′) ≡ aH0(x, x′). (2.87)

where

H0(x, x′) ≡


1

l(x, x′)
if x′ ≺ x

0 otherwise.
(2.88)

This will give us the desired d = 3 Green function if it were also true that

lim
ρ→∞

〈
1

l(x, x′)

〉
ρ

1
3 =

1

κ3τ(x, x′)
(2.89)

then comparison with Eqn (2.83) gives a = ρ1/3 κ3

2π
= (

ρπ

12
)1/3m3

2π
.

While we do not have an analytical proof of Eqn (2.89), we present simulations here to
show that for large ρ, 〈 1

l(x,x′)
〉 → 1

〈l(x,x′)〉 and therefore it is indeed a good approximation.

Starting with Eqn (2.89) we see that

lim
N→∞

〈
1

l(x, x′)

〉(
N

V (x, x′)

) 1
3

=
1

m3 ζ
1/3
3 τ(x, x′)

(2.90)

where we have used ρ = N
V

= N
ζ3 τ3

and ζ3 = π
12

. Since the volume V (x, x′) is fixed, the limit
ρ→∞ is the same as N →∞ and hence this simplifies to

lim
N→∞

〈
1

l(x, x′)

〉
=

1

m3N1/3
(2.91)

Using Eqn (2.85) we see that

bl :=
1

1.77N1/3
≤ lim

N→∞

〈
1

l(x, x′)

〉
≤ 1

2.62N1/3
=: bu (2.92)
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where we have defined bl and bu as the lower and upper bounds respectively.

We calculate 〈 1
l(x,x′)

〉 and 1
〈l(x,x′)〉 for sprinklings into a causal diamond in M3, for N values

ranging from 100 to 50000 in steps of 100. For each N value we perform over 50 trials from
which the averages are calculated. Our results are shown in Figs (2.2a)-(2.2e).

In Fig (2.2a) we see that 〈 1
l(x,x′)

〉 is well within the bounds bl and bu. In Fig (2.2b) we
show the percentage errors defined by

δl :=
1

bl

(〈
1

l(x, x′)

〉
− bl

)
× 100 and δu :=

1

bu

(〈
1

l(x, x′)

〉
− bu

)
× 100

with respect to the lower and upper bounds. While there is a convergence for large N the
error does not go to zero for either of the bounds.

It is also useful to compare 〈 1
l(x,x′)

〉 to 1
〈l(x,x′)〉 since it is the theoretical bound on the

latter which we are using. As shown in (Fig (2.2c)) we find an almost perfect matching of
〈 1
l(x,x′)

〉 with 1
〈l(x,x′)〉 even at relatively small N values. We plot the percentage error in Fig

(2.2d) where

∆ :=

(〈
1

l(x, x′)

〉)−1(〈
1

l(x, x′)

〉
− 1

〈l(x, x′)〉

)
× 100

which is already very small for N ∼ 200 and dies down further as N grows.

Using the “FindFit” function in Mathematica we find that the best fit value for m3 is in
fact 1.854 for the range of N that we have considered. As can be seen in Figure (2.2e) the
errors for this fit are very small.

In order to extend this to the massive case, we need to ask what the analogue of the
convolution in (1.2) is. Because of the non-trivial weight 1

l(x,x′)
, we cannot simply count

chains to get Ck. The convolution

〈H0〉 ∗ 〈H0〉 = ρ

∫
d3x1〈H0(x, x1)〉〈H0(x1, x

′)〉 = 〈H1(x, x′)〉 (2.93)

where

H1(x, x′) =
∑
x1

H0(x, x1)H0(x1, x
′) =

∑
x1

1

l(x, x1)
C0(x, x1)

1

l(x1, x′)
C0(x1, x

′). (2.94)

counts instead the number of 1-chains weighted by the inverse of the length of the longest
possible chain in C between each successive pair of joints in the given chain. As in d = 2 the
trajectories are chains, but the Hk(x, x

′) are not obtained by merely counting chains; each
k-chain is weighted by the inverse of the length of the longest possible chain C between each
pair of joints in the given chain.
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(a) 〈 1
l(x,x′)〉 vsN

Figure 2.2: Fig (a) shows a comparison of 〈 1
l(x,x′)

〉 as a function of N , with the conjectured
upper and lower bounds.

Again defining

K(3)(a, b)(x, x′) ≡
∞∑
k=0

ak+1bkHk(x, x
′) , (2.95)

we propose that this is the appropriate causal set Green function for the massive field for
a = (ρπ

12
)1/3m3

2π
and b = −m2

ρ
.

In [21] a proposal for the d=3 Green function was made using the relationship between

τ(x, x′) and the volume V (x, x′), τ(x, x′) ∝ V (x, x′)
1
3 . Our proposal uses instead the causal

set analogue of τ(x, x′) directly. In the large ρ limit, one would expect both proposals to
give the same result.
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(b) Errors in 〈 1
l(x,x′)〉 with respect to bu, bl (c) Comparison of 〈 1

l(x,x′)〉 and 1
〈l(x,x′)〉

Figure 2.2: Fig (b) gives the percentage error estimation with respect to these bounds. Fig
(c) shows 〈 1

l(x,x′)
〉 and 1

〈l(x,x′)〉 vs N

(d) Error in 1
〈l(x,x′)〉 with respect to 〈 1

l(x,x′)〉 (e) Error in 〈 1
l(x,x′)〉 with respect to the Best Fit

Figure 2.2: Fig (d) shows the percentage error between 1
〈l(x,x′)〉 and 〈 1

l(x,x′)
〉. This rapidly

goes to zero as N increases. Fig (e) shows the difference between 〈 1
l(x,x′)

〉 and the best fit
with m3 = 1.854, this too goes to zero rapidly.
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2.4 Discussion

We showed that Johnston’s hop-stop model for a Green function on a causal set can be
generalized to an RNN in arbitrary curved spacetimes in 2 and 4 dimensions. In the 4d case
we also constructed the massless causal set Green functions for global de Sitter spacetime
and for a conformally flat patch of anti de Sitter spacetime and shown that they have the
right continuum limits. The corresponding massive cases can, in principle, be obtained by
evaluating a power series expansion. Finally, we proposed a potential Green function for the
3d Minkowski case and give numerical evidence in support of it.

The following are a few ideas that need to be explored -

� The M3 case can be extended to an RNN if we know the analytic form for the LLC
as we do for the chains. Alternatively, we could use Johnston’s proposal for the Green
function [21], which only uses C1 in the calculation.

� The causal set Green functions in d > 4 can also be obtained. Massless Green functions
in the continuum are derivatives of either 1

τ
or δ(τ 2) depending on whether d is odd

or even. Since derivatives of δ(τ 2) of any order can always be written as products of
δ(τ 2) and 1

τ
, the knowledge of the causal set analogues of these two quantities with

appropriate weights should suffice to write down the causal set Green function.

� We have ignored the causal set induced corrections to the retarded Green functions.
Given that causal set theory posits a fundamental discreteness, the ρ → ∞ limit is
only a mathematical convenience. Indeed it is the large ρ corrections to the continuum
Green function which are phenomenologically interesting. This has been explored in
[52] for cases of d = 2 and 4 Minkowski spacetime. Also, while our analysis has focused
on the expectation value of the causal set Green function, we have not analyzed the
fluctuations.

� The retarded Green function is the starting point for quantum field theory in causal
sets in its current form. It will be important to identify correct Green functions for
astrophysically important spacetimes like FLRW and black hole spacetimes.

� In this work we have used the continuum limit to identify which object in the causal
set will behave as the correct Green function. As mentioned in the M3 case, this object
may not be unique. If we want to think of the causal set as fundamental, we must
have a way to do this identification without reference to the continuum as well as a
way to reconcile multiple Green function candidates. Recent work based on the idea
of a preferred past shows the construction of discretized wave operators [53]. This may
help resolve the ambiguity.

We now have the appropriate causal set Green functions for an RNN in general curved
spacetimes as well as in dS and conformally flat patches of adS spacetimes. This makes it

39



possible to construct the Sorkin-Johnston vacuum. As mentioned in the introduction, this
is the next step in the construction of QFT on a causal set and has potential consequences
for phenomenology in the early universe. We will see that unlike the present chapter, an
analytic calculation will not be possible and we will rely largely on numerical studies.
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Chapter 3

The SJ Vacuum in deSitter Causal
Sets

As it is usually defined, the vacuum for QFT on a generic curved spacetime relies on a choice
of observer or equivalently a choice of mode functions, and is hence non-unique. In free scalar
quantum field theory (FSQFT), the Sorkin-Johnston or SJ vacuum [42, 34] is a proposal for
an observer independent vacuum which is unique. The idea is to begin with the covariantly
defined spacetime commutator or Peierls bracket

[Φ̂(x), Φ̂(x′)] = i∆(x, x′), (3.1)

where the Pauli-Jordan (PJ) function i∆(x, x′) ≡ i (GR(x, x′) − GA(x, x′) ) and GR,A(x, x′)
are the retarded and advanced Green functions. The PJ function can be viewed as the inte-
gral kernel of a self-adjoint operator i∆̂ on a bounded region V of spacetime. Its non-zero
eigenvalues thus come in positive and negative pairs, providing a natural and covariantly de-
fined mode decomposition into “SJ modes”. The positive part of the spectral decomposition
of i∆̂ is then defined to be the SJ Wightman or two-point function WSJ(x, x′).

It is therefore of interest to ask what new role, if any, the SJ vacuum plays in FSQFT in
cosmologically interesting spacetimes such as de Sitter. Using a particular limiting procedure,
it was argued in [26] that the SJ vacuum for global de Sitter spacetime can be identified with
one of the known Mottola-Allen α-vacua [54, 25] for each value of m2 = m2

p + ξR > 01 for
spacetime dimensions d ≥ 2, except for the conformally coupled massless case m2 = m2

c =
(d−2)
4(d−1)

R ≡ ξcR, where the SJ vacuum was argued to be ill-defined. Since there is no known

de Sitter invariant Fock vacuum for the minimally coupled massless case m = 0 [25], they
also suggest that the m = 0 SJ vacuum is ill-defined. While general infrared considerations
might be consistent with the absence of an m = 0 SJ vacuum, the situation for m = mc is
puzzling.

1Here mp is the physical mass. For a discussion on the meaning of mass in dS spacetime see [55].
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An important subtlety in the construction of the SJ vacuum is the use of a bounded
region V of spacetime in defining i∆̂. This operator is Hermitian on the space of L2 spacetime
functions, where

〈f, g〉 =

∫
V
dV f ∗(x)g(x) (3.2)

defines the L2 inner product and V is a finite volume region of the full spacetime (M, g).
Thus the SJ vacuum of (M, g) can be obtained only in the limit V → M. A pertinent
question is whether the SJ construction is sensitive to exactly when this limit is taken.

In the literature there have been two approaches to constructing the SJ vacuum arising
from the choice of when to take this “IR limit”. The first and more fundamental approach
is what we dub the “ab initio” calculation where the eigenfunctions and eigenvalues of
i∆̂ are obtained in the bounded region V . The SJ vacuum WSJ(x, x′) is obtained as the

positive part of i∆̂. If WSJ(x, x′) remains well-behaved when V → M then this gives the
SJ vacuum in (M, g). This is the approach followed by [56] for the massless FSQFT in
the 2d causal diamond in Minkowski spacetime. The SJ two-point function was moreover
shown to be Minkowski-like near the center of the causal diamond, with the expected 2d
logarithmic behaviour. The ab initio calculation is however computationally challenging
since it is non-trivial to calculate the spectral (or eigen) decomposition of i∆̂ explicitly.

Indeed, the spectral decomposition of i∆̂ is known in very few examples other than the 2d
causal diamond [57, 58, 59, 60].

The second, more computationally accessible approach, which we dub the “mode com-
parison” calculation, was adopted extensively in [26, 15]. The idea is to start with a set of
Klein Gordon (KG) modes {uq} in the full spacetime and restrict them to V . The SJ modes
{sk} in V are obtained from {uq} via a Bogoliubov transformation. The SJ modes are then
assumed to extend to the full spacetime only if the coefficients of this transformation are
well behaved in the IR limit. Furthermore, when the {sk} can themselves be identified with
a known set of KG modes, the SJ vacuum is identified with the corresponding known KG
vacuum in the full spacetime, rather than via an explicit calculation.

In these two calculations, the IR limit is taken differently. In the former, it is taken after
the finite SJ vacuum is constructed from the eigen decomposition in V , while in the latter, the
limit is taken after the mode comparison in the full spacetime restricted to V . In the 2d causal
diamond both calculations give the same result away from the boundaries [56, 15]. However,
this is in general not guaranteed and needs to be checked case by case. The subtlety of when
to take the limit was brought out in [57] for the case of ultrastatic spacetimes. There, the
finite V SJ vacuum was shown not to be equivalent to that constructed from a Hadamard
state, and in some cases, to be in an inequivalent representation altogether. However, in
taking the IR limit, both yield the same Hadamard vacuum. It is the aim here is to re-
examine the de Sitter SJ vacuum from the perspective that the nature of the SJ vacuum is
sensitive to the manner in which the IR limit enters its construction. This study is significant
for the definition of the SJ vacuum, since it is only if the ab initio calculation fails to survive
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the IR limit that we can definitively say that there is no SJ vacuum.

We begin with the two known m = 0 vacua in de Sitter2: the O(4) invariant Fock
vacuum of [23] and the de Sitter invariant non-Fock vacuum of [24]. In the spirit of the mode
comparison calculation, we show that the SJ modes cannot be obtained via a Bogoliubov
transformation from the modes that define these two vacua. The calculation is done in a
symmetric [−T, T ] slab of global de Sitter spacetime and the coefficients of the transformation
are seen to diverge as T → π/2 (the infinite volume limit). At present we do not have an
analytic ab initio calculation of the SJ modes in de Sitter spacetime. Instead we use a causal
set discretisation of a slab of de Sitter spacetime and obtain the causal set SJ vacuum via
the ab initio calculation. In the massive theory in 2d, our results are in keeping with the
findings of [26] and agree very well with the continuum Mottola-Allen α-vacua. On the other
hand, while the m = 0 SJ vacuum is well-defined, it appears to violate de Sitter invariance.
In the massive theory in 4d, our results show a substantial difference with the continuum
expressions of [26] and suggest that the causal set SJ vacuum, while de Sitter invariant,
differs from the Mottola-Allen α-vacua. For m = 0 and mc, interestingly, the SJ vacuum is
well-behaved, and also does not violate de Sitter invariance. In particular, at and around
m = mc, the SJ vacuum behaves as a continuous function of m, suggesting no singular
behaviour. While our numerical calculations are of course for a finite volume, by varying the
IR cutoff we find a convergence of the SJ vacuum, which supports our conclusions.

In Section 3.1 we review the SJ construction, emphasising the role of the IR cutoff. In
Section 3.2 we show that the m = 0 SJ modes in a slab of de Sitter spacetime can neither
be obtained from the O(4)-invariant Fock vacuum of [23] nor from the de Sitter invariant
non-Fock vacuum of [24] via a Bogoliubov transformation. In Section 3.3 we present our
results from numerical simulations using a causal set discretisation of a slab of de Sitter
spacetime. Our analysis begins with the massless FSQFT in 2d and 4d causal diamonds in
Minkowski spacetime. We show that the SJ vacuum looks like the Minkowski vacuum in a
smaller causal diamond within the larger one, both in 2d and 4d. The former is consistent
with the calculations of [56]. Next we calculate the SJ vacuum in slabs of 2d and 4d global
de Sitter spacetime in the time interval [−T, T ] for different values of m. We vary T as well
as the density ρ to look for convergence. We compare our results with the Mottola-Allen
α-vacua and show that while they agree well with the SJ vacuum (for m > 0) in 2d, they
differ significantly in 4d. We also examine the eigenvalues of the PJ operator in 2d and 4d
de Sitter as a function of m and find no significant changes around m = 0 and m = mc. In
section 3.4 we discuss the possibility of equations of motion on the causal set arising as a
byproduct of the SJ construction. In Section 3.5 we discuss the implications of our results.

Here we have used causal sets as a covariant discretisation of the continuum. In CST
however, this discrete substratum is considered more fundamental than the continuum. From
the CST perspective therefore the SJ de Sitter vacuum that we have obtained is physically
more relevant to QFT in the early universe than any continuum vacuum. Our result that

2There is also a de Sitter invariant and shift invariant vacuum defined in [61]. In this paper, we do not
impose shift invariance.
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the causal set SJ vacuum differs significantly from the continuum vacua therefore suggests
exciting new possibilities for CST phenomenology.

3.1 The SJ vacuum

We begin with a short introduction to the SJ vacuum construction for FSQFT in a general
globally hyperbolic, finite volume V region of spacetime (M, g) [34, 26, 56, 15, 20].

The Klein Gordon (KG) equation in (M, g) is(
�̂−m2

)
φ = 0, (3.3)

where �̂ ≡ gab∇a∇b, and the effective mass m2 = m2
p+ξR, where mp is the physical mass, R

is the scalar curvature of (M, g) and ξ is the coupling. Let {uq} be a complete set of modes
satisfying the KG equation in (M, g) and orthonormal with respect to the KG symplectic
form (or KG “norm”)

(f, g)KG =

∫
Σ

(f ∗∇ag − g∗∇af)dSa, (3.4)

where Σ is a Cauchy hypersurface in (M, g). The field operator can be expressed as a mode
expansion with respect to the set {uq}

Φ̂(x) ≡
∑
q

aquq(x) + a†qu
∗
q(x), (3.5)

with aq, a
†
q satisfying the commutation relations

[aq, a
†
q′ ] = δqq′ , [aq, aq′ ] = 0, [a†q, a

†
q′ ] = 0. (3.6)

The covariant commutation relations for the scalar field operator are given by the Peierls
bracket

[Φ̂(x), Φ̂(x′)] = i∆(x, x′), (3.7)

where the PJ function is

i∆(x, x′) ≡ i(GR(x, x′)−GA(x, x′)), (3.8)

with GR,A(x, x′) being the retarded and advanced Green functions, respectively. In terms of
the modes {uq}

i∆(x, x′) =
∑
q

uq(x)u∗q(x′)− u∗q(x)uq(x′), (3.9)
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and the two-point function associated with them is

W (x, x′) ≡
∑
q

uq(x)u∗q(x′). (3.10)

On the other hand the SJ state or equivalently the SJ two-point function WSJ(x, x′) for

FSQFT, which as we will see below is constructed from the positive eigenspace of i∆̂, is
defined most generally by the following three conditions [20]

i∆(x, x′) = WSJ(x, x′)−WSJ(x′, x),∫
V
dV ′

∫
V
dV f ∗(x′)WSJ(x′, x)f(x) ≥ 0, (Positive Semidefinite)∫

V
dV ′WSJ(x, x′)W ∗

SJ(x′, x′′) = 0, (Ground state or Purity) (3.11)

where the integrals are defined over a finite spacetime volume region V in the full spacetime
(M, g). In order to construct the SJ vacuum explicitly, the PJ function is elevated to an
integral operator in V

i∆̂ ◦ f ≡ i

∫
V

∆(x, x′)f(x′)dVx′ (3.12)

which acts on L2 functions in V and where

〈f, g〉 =

∫
V
dVx f

∗(x) g(x) (3.13)

is the L2 inner product. Since ∆(x, x′) is antisymmetric in its arguments, i∆̂ is Hermitian
on the space of L2 functions in V . Its non-zero eigenvalues, given by

i∆̂ ◦ s̃k(x) =

∫
V
dVx′ i∆(x, x′)s̃k(x′) = λks̃k(x) (3.14)

therefore come in pairs (λk,−λk), corresponding to the eigenfunctions (s̃+
k , s̃

−
k ) where s̃−k =

(s̃+
k )∗.3 This is the central eigenvalue problem in the ab initio calculation of the SJ vacuum.

It was shown in [20] that

Ker(�̂−m2
p) = Im(∆̂), (3.15)

where the operators are defined in V4. This means that the eigenvectors in the image of
i∆̂ (i.e., excluding those in Ker(i∆̂)) span the full solution space of the KG operator. One

3We adopt the notation that the s̃k are the un-normalised (with respect to the L2 norm) SJ eigenfunctions,
whereas the sk without the tilde are the normalised SJ eigenfunctions.

4In a spacetime of constant scalar curvature, m defined above is constant, and hence this result continues
to hold when mp is replaced by m.
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therefore has an intrinsic and coordinate independent separation of the space of solutions
into the positive and negative eigenmodes of i∆̂.5 The field operator thus has a coordinate
invariant or observer independent decomposition

Φ̂(x) =
∑
k

bksk(x) + b†ks
∗
k(x), (3.16)

where the SJ vacuum state is defined as

bk |0SJ〉 = 0 ∀k, (3.17)

and
sk =

√
λks̃

+
k (3.18)

are the normalised SJ modes which form an orthonormal set in Im(i∆̂) with respect to the
L2 norm

〈sk, sk′〉 = λkδkk′

〈s∗k, sk′〉 = 0. (3.19)

Using the spectral decomposition

i∆(x, x′) =
∑
k

sk(x)s∗k(x′)− s∗k(x)sk(x′), (3.20)

the SJ two-point function in V is the positive part of i∆̂

WSJ(x, x′) ≡
∑
k

sk(x)s∗k(x′). (3.21)

If WSJ(x, x′) remains well-defined as the IR cutoff is taken to infinity, this defines the SJ
vacuum in the full spacetime (M, g). The SJ construction from the eigenvalue problem
(3.14) through to (3.21) is the ab intio calculation referred to in the introduction.

Alternatively, one can also obtain the SJ modes via a mode comparison calculation.

Given the equality in (3.15) between Im(∆̂) and the KG solution space, there must exist a
transformation between the KG modes {uq} in V and the SJ modes {sk}, even though the
former need not be orthonormal with respect to the L2 inner product. Let

sk(x) =
∑
q

uq(x)Aqk + u∗q(x)Bqk, (3.22)

5This is not unlike the polarisation in geometric quantisation.
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where Aqk = (uq, sk)KG and Bqk = (u∗q, sk)KG. Further, if we act with i∆ on (3.22) and

use (3.9), we can also write Aqk =
1

λk
〈uq, sk〉 and Bqk = − 1

λk
〈u∗q, sk〉. Using the fact that

(3.20) and (3.9) must be equal, we get the algebraic relations∑
q

Aqk′A
∗
qk −Bqk′B

∗
qk = δkk′

∑
q

Bqk′Aqk −Aqk′Bqk = 0. (3.23)

Additionally, if the KG modes themselves satisfy the L2 orthonormality condition

〈uq, uq′〉 = δqq′ , 〈u∗q, uq′〉 = 0, (3.24)

then the above equations simplify considerably as shown in [15].6 It is important to note
that since the L2 norm is defined for finite V , the above calculations are limited to finite V .
Moreover, there are potential subtleties in identifying Ker(�̂ −m2) in V , starting from the
solutions in the full spacetime.

The question of course is whether the limits involved in the first and second approaches
(that is, whether finding the SJ modes before or after taking the infrared limit) commute.
A case in point is the 2d causal diamond in Minkowski spacetime where the SJ modes for
the massless scalar field are not simply linear combinations of plane waves, but also include
an important k dependent constant [56, 21], which is a solution for finite V . The two sets
of eigenfunctions of i∆ are

fk(u, v) = eiku − eikv (3.25)

gk(u, v) = eiku + eikv − 2 cos kL, (3.26)

where u and v are lightcone coordinates, and 2L is the side length of the diamond. The
eigenvalues are λk = L/k for both sets. For the f -modes, k is k = nπ/L with n = ±1,±2, ...
while for the g-modes k satisfies the condition tan(kL) = 2kL. In order to make contact with
the IR limit, W (x, x′) was studied in a small region in the interior of the larger diamond,
which to leading order was found to have the form of the (IR-regulated) 2d Minkowski
vacuum [56]. A similar conclusion was reached in [15] using the Bogoliubov prescription, and
hence in this simple example, the results seem to be independent of the limiting procedure.

3.2 The massless de Sitter SJ vacuum

In [26] the mode comparison calculation was used to find the SJ modes in de Sitter spacetime.
A restriction of the Euclidean modes [62] (which themselves are one of the α-modes) in global

6In assuming a discrete index q we are already working in a bounded region of spacetime.
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de Sitter to a finite slab V was used as the starting point. Assuming that these modes are
complete in Ker(�̂−m2) when restricted to V , they solve (3.23) to get the SJ modes {sk},
(3.22). These can in turn be identified with one of the other (restricted to V) α-modes
depending on the value of m, and thence the SJ vacuum is identified with the corresponding
α-vacuum in the IR limit for each m. Surprisingly, however, this identification fails in
the conformally coupled massless case, mc = (d−2)

4(d−1)
R, since the Bogoliubov transformation

breaks down. For this and the minimally coupled massless case, m = 0 (for which there is no
α-vacuum), it is suggested that the SJ prescription itself breaks down and that there is no
de Sitter SJ vacuum. In both these cases however, the SJ modes must be well-defined when
there is a finite T IR cutoff. Strictly, it is only if an ab initio calculation of the SJ two-point
functions fails to survive the IR limit that we can state that there is no SJ vacuum.

The KG modes for the massive scalar field in global de Sitter are the Mottola-Allen α-
modes which include the Euclidean modes as a special case. The mimimally coupled massless
scalar field is known not to admit a de Sitter invariant Fock vacuum (Allen’s theorem) [25].
We note here that the proof of this theorem relies heavily on the use of the KG inner product.

A question that poses itself then is: if an SJ vacuum for m = 0 did exist, would it violate
de Sitter invariance or the Fock condition? This question cannot be answered using Allen’s
theorem, because it does not apply to the SJ construction due to its use of the L2 inner
product. Starting with a Fock vacuum defined with respect to an orthonormal basis {φn(x)}
of the solution space of the KG equation, Allen shows that for the m = 0 case the symmetric
two-point function defined by

G
(1)
λ (x, x′) = 〈λ|Φ(x)Φ(x′)|λ〉 =

∑
n

φn(x)φ∗n(x′) + φ∗n(x)φn(x′) (3.27)

must satisfy
G(1)(x, x′) +G(1)(x, x̄′) 6= C everywhere (3.28)

for some C ∈ R, where x̄′ represents the antipodal point of x′. In [25] the de Sitter invariant
G(1)(x, x′) fails to satisfy the required condition (3.28), leading to the conclusion that the
assumption that it is a Fock vacuum is false. Importantly the proof of condition (3.28) relies
on the use of the KG inner product and it no longer holds when we use the L2 inner product
for the vacuum state construction.7

It is also worth mentioning at this point that because the L2 inner product is only defined
in a finite region of spacetime8, the entire prescription inherently breaks de Sitter invariance.
In the case of global de Sitter with an IR cutoff at [−T, T ], this is certainly the case. Since
the spatial part is compact we manage to preserve O(4) invariance. However, the idea is, as

7The use of the L2 inner product for the SJ modes suggests the possibility that the SJ vacuum exists in
a different sector of the theory.

8Allen’s theorem continues to hold in a finite region of spacetime as long as we choose this region to be
symmetric about τ = 0, where τ is the time in hyperbolic coordinates (1.12).
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in [26], to take the temporal cutoffs to infinity9 and make statements that have full de Sitter
invariance.

On the other hand, as in the 2d diamond, one might imagine that away from the bound-
aries, there is an approximate isometry that is retained. However, even if the PJ operator is
itself approximately invariant, this does not imply that the two-point function is, since the
latter is simply the positive part of the PJ operator. It is only if the isometries preserve the
positive and negative eigenspaces separately that this can be the case.

Let us address this question by asking if the known de Sitter violating vacuum, the so-
called O(4) vacuum [23] is related to the SJ vacuum via a Bogoliubov transformation as in
[26]. We work in the conformal coordinates (1.16)

ds2 =
1

H2 sin2 η
[−dη2 + dΩ2(χ, θ, φ) ], (3.29)

where we have shifted T̃ → η = T̃ + π/2 so that η ∈ [0, π] and (χ, θ, φ) are coordinates on
S3. The O(4) modes are

uklm(x) = HXk(η)Yklm(χ, θ, φ), (3.30)

where k = 0, 1, ...; l = 0, 1...k; m = −l,−l + 1, ...l − 1, l. For k = 0,

X0(η) = A0

(
η − 1

2
sin 2η − π

2

)
+B0, (3.31)

and for k 6= 0

Xk(η) = sin3/2(η)(AkP
3/2
k+1/2(− cos η) +BkQ

3/2
k+1/2(− cos η)), (3.32)

where P µ
ν (x), Qµ

ν (x) are independent, associated Legendre functions defined for real x ∈
[−1, 1] as in [63]:

P µ
ν (x) =

(
1 + x

1− x

)µ/2
2F1(−ν, ν + 1, 1− µ; (1− x)/2)

Γ(1− µ)
, (3.33)

Qµ
ν (x) =

π

2 sinµπ

(
P µ
ν (x) cosµπ − Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µν (x)

)
. (3.34)

Note that the k 6= 0 modes are the same as the Euclidean modes. The Yklm are spherical
harmonics that satisfy ∫

dΩ(χ, θ, φ)YklmY
∗
k′l′m′ = δkk′δll′δmm′ . (3.35)

9In the causal set case we cannot take these temporal cutoffs to infinity, but we try to reach an asymptotic
regime.
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The coefficients for k = 0 are A0 = −iα, B0 = (1/4+iβ)/α, where α, β ∈ R. The coefficients
for k 6= 0 are

Ak =

(−1 + i√
2

)√
π

4k(k + 1)(k + 2)
, Bk =

−2i

π
Ak. (3.36)

These O(4) modes are orthonormal with respect to the KG inner product but as men-
tioned in the last section, the Bogoliubov coefficients are defined by their L2 inner products
so we must evaluate these. We also need a choice of the finite spacetime region V for the L2

inner product, we consider a slab of dS spacetime such that η ∈ (a, b), the infinite volume
limit corresponds to a→ 0, b→ π. We have

〈uklm, uk′l′m′〉 = H2

∫
dVxX

∗
k(η)Xk′(η)Y ∗klmYk′l′m′

=
1

H2
δkk′δll′δmm′

∫ b

a

dη

sin4 η
X∗k(η)Xk(η)

= δkk′δll′δmm′Tk, (3.37)

〈u∗klm, uk′l′m′〉 =
(−1)k

H2
δkk′δll′δmm′

∫ b

a

dη

sin4 η
(Xk(η))2

= δkk′δll′δmm′Dk. (3.38)

The factor (−1)k in the second expression is due to the choice of spherical harmonics with
the special property Y ∗klm = (−1)kYklm [26]. These equations define Tk and Dk (Tk is real by
definition). Also note that Tk and Dk will necessarily blow up in the infinite volume limit.

The Bogoliubov coefficients to obtain the SJ modes (3.22) from these O(4) modes simplify
to

Aqk =
1

λk

∑
n

(
δqnTqAnk + δqnD

∗
qBnk

)
=

1

λk
(TqAqk +D∗qBqk)

Bqk = − 1

λk

∑
n

(δqnDqAnk + δqnTqBnk) = − 1

λk
(DqAqk + TqBqk), (3.39)

where the index q implicitly contains the l and m indices and δll′ , δmm′ are omitted from the
expressions. Inserting these expressions into (3.23) we find that∑

q

{(T 2
q − |Dq|2)(Aqk′A

∗
qk −Bqk′B

∗
qk)} = λ2

kδkk′∑
q

{(T 2
q − |Dq|2)(AqkBqk′ − Aqk′Bqk)} = 0. (3.40)
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A convenient parameterisation is

Aqk = δqk coshαk, Bqk = δqk sinhαk e
iβk . (3.41)

From (3.40) this gives

λk =
√
T 2
k − |Dk|2, (3.42)

which along with (3.39) implies that

λk coshαk = Tk coshαk +D∗k sinhαk e
iβk

or tanhαk e
iβk =

λk − Tk
D∗k

=
Tk − λk
|Dk|

ei(arg Dk+π). (3.43)

Defining rk ≡
Dk

Tk
, we see after some algebra and use of the double angle formula for tanh

that βk = arg rk + π and αk = 1
2

tanh−1 |rk|. Thus the Bogoliubov coefficients depend (via
αk and βk) only on rk, which can be finite in the infinite volume limit even if Tk and Dk

diverge. Note that if |rk| = 1, αk and therefore the Bogoliubov coefficients diverge. When
this happens the SJ vacuum cannot be obtained through a Bogoliubov transformation.

From (3.37) and (3.38) one can see that the Bogoliubov transformation does not mix
different k’s. In particular, it does not mix k 6= 0 modes with the k = 0 mode. We already
know from [26] that the Euclidean modes (which are the same as the O(4) modes for k 6= 0)
do not admit a well-defined Bogoliubov transformation to the SJ modes (|rk| = 1 for these
modes) in the infinite volume limit. It immediately follows that the transformation from the
O(4) modes to the corresponding SJ state is ill-defined, and an SJ state with O(4) symmetry
cannot be derived in this way. Next, we calculate these transformations explicitly. We also
find the k = 0 transformation which turns out to be the only well-defined one.

Evaluation of r0

We put in the values of A0, B0 and substitute η − π/2 = x, then

T0 =
2α2

H2

∫ b′

0

dx

cos4 x

{(
x+

sin 2x

2

)2

+ t

}
, (3.44)

D0 =
−2α2

H2

∫ b′

0

dx

cos4 x

{(
x+

sin 2x

2

)2

+ d

}
, (3.45)
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where t =
1

α4

(
1

16
+ β2

)
and d =

−1

α4

(
1

4
+ iβ

)2

. So we have

r0 =
D0

T0

= −ε+ d

ε+ t
where ε =

∫ b′

0

dx

cos4 x

(
x+

sin 2x

2

)2

∫ b′

0

dx

cos4 x

. (3.46)

These integrals are well-behaved at the lower limit and diverge as b′ → π/2, so we can
approximate them by their values near the upper limit. We get

lim
b′→π/2

ε =
π2

4
,

r0 = −π
2 + 4d

π2 + 4t
. (3.47)

which gives well defined Bogoliubov coefficients.

Evaluation of rk (k 6= 0)

Tk =
1

H2

∫ π

0

dη

sin4 η
sin3 η (A∗kP +B∗kQ)(AkP +BkQ) (3.48)

Here we have suppressed the indices and arguments on the Legendre functions P and Q. We

substitute − cos η = x⇒ sin η dη = dx and
dη

sin η
=

dx

1− x2
. We then get

Tk =
1

H2
(|Ak|2T (1)

k + (A∗kBk +B∗kAk)T
(2)
k + |Bk|2T (3)

k ),

where

T
(1)
k =

∫ 1

−1

dx

1− x2
(P

3/2
k+1/2(x))2 (3.49)

T
(2)
k =

∫ 1

−1

dx

1− x2
P

3/2
k+1/2(x)Q

3/2
k+1/2(x) (3.50)

T
(3)
k =

∫ 1

−1

dx

1− x2
(Q

3/2
k+1/2(x))2. (3.51)

Similarly Dk =
(−1)k

H2
(A2

kD
(1)
k + 2AkBkD

(2)
k +B2

kD
(3)
k ) with D

(i)
k = T

(i)
k .
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From the definitions of the associated Legendre functions we have10:

P
3/2
k+1/2(x) =

(
1 + x

1− x

)3/4
F (−k − 1/2, k + 3/2,−1/2; (1− x)/2)

Γ(−1/2)
(3.52)

Q
3/2
k+1/2(x) =

π

2
k(k + 1)(k + 2)

(
1− x
1 + x

)3/4
F (−k − 1/2, k + 3/2, 5/2; (1− x)/2)

Γ(5/2)
.

(3.53)

The above integrals become

T
(1)
k =

1

(Γ(−1/2))2

∫ 1

−1

dx
(1 + x)1/2

(1− x)5/2
F 2(−k − 1/2, k + 3/2,−1/2; (1− x)/2)

T
(2)
k =

πk(k + 1)(k + 2)

2Γ(−1/2)Γ(5/2)

∫ 1

−1

dxF (−k − 1/2, k + 3/2,−1/2; (1− x)/2)

× F (−k − 1/2, k + 3/2, 5/2; (1− x)/2)

T
(3)
k =

(πk(k + 1)(k + 2))2

(2Γ(5/2))2

∫ 1

−1

dx
(1− x)1/2

(1 + x)5/2
F 2(−k − 1/2, k + 3/2, 5/2; (1− x)/2).

All of the above integrals are divergent. However it turns out that the ratios T
(2)
k /T

(1)
k , T

(3)
k /T

(1)
k →

0, therefore we have

rk = (−1)k
A2
k

|Ak|2
= ei(argAk+kπ), (3.54)

whence we find that |rk| = 1 which implies that the Bogoliubov coefficients diverge.

In a similar manner, we also find that the modes that define the non-Fock but de Sitter
invariant vacuum of Kirsten and Garriga [24] are unable to produce an SJ vacuum via the
mode comparison method. The Kirsten and Garriga modes are closely related to the O(4)
modes, and in fact are identical to them for k 6= 0. For k = 0, we have

X0 =
H√

2

[
Q+

(
η − 1

2
sin 2η − π

2

)
P

]
. (3.55)

We use the same notation as in [24]. The coefficients of Q and P are solutions to the field
equation that satisfy the following commutation relations

[Q,P ] = i, [ak, Q] = [ak, P ] = 0, (3.56)

where ak are the annihilation operators associated to the k 6= 0 modes. Now we derive the
transformation between the Kirsten and Garriga modes and the SJ modes. Again, we find
that the k = 0 transformation is the only well-defined one.

10We will write F instead of 2F1.
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The PJ function in terms of the Kirsten and Garriga modes is

i∆(x, x′) = i
H2

2
(f(x)− f(x′)) +

∑
q

uq(x)u∗q(x
′)− u∗q(x)uq(x), (3.57)

where f(x) = ηx− 1
2

sin 2ηx− π
2
, and for simplicity q refers to the principle index and we will

omit the angular indices. The SJ modes then are

sk(x) =
1

λk
〈i∆(x, x′), sk(x

′)〉 =
∑
q

(
uq(x)Aqk + u∗q(x)Bqk

)
+ i

H2

2
Ck + i

H2

2
f(x)Dk, (3.58)

where uq are the O(4) modes and Aqk = 1
λk
〈uq, sk〉, Bqk = − 1

λk
〈u∗q, sk〉, Ck = 1

λk
〈f, sk〉, and

Dk = − 1
λk
〈1, sk〉. Using (3.58) we have the inner products

1

λk′
〈sk, sk′〉 =

∑
q

(
A∗qkAqk′ −B∗qkBqk′

)
+ i

H2

2
(C∗kDk′ −D∗kCk′) = δkk′ (3.59)

1

λk′
〈s∗k, sk′〉 =

∑
q

(Aqk′Bqk − AqkBqk′) + i
H2

2
(DkCk′ − CkDk′) = 0. (3.60)

Again using (3.58) and the definition of the coefficients, we have

Aqk =
1

λk

∑
n 6=0

(
〈uq, un〉Ank + 〈u∗q, un〉∗Bnk

)
+ i

H2

2λk
���

�:0〈uq, 1〉Ck + i
H2

2λk
���

�:0〈uq, f〉Dk, (3.61)

where the last two inner products vanish because q 6= 0 and 〈Yq, Y0〉 = 0, where the Y ’s are
spherical harmonics. Similarly,

Bqk = − 1

λk

∑
n 6=0

(
〈u∗q, un〉Ank + 〈u∗q, un〉∗Bnk

)
. (3.62)

The definitions of Aqk and Bqk for q 6= 0 and k 6= 0 are the same as in the O(4) case, and
they are therefore ill-defined.

Ck =
1

λk

∑
q

(
��

��:0〈f, uq〉Aqk +
�
��
�*0

〈f, u∗q〉Bqk

)
+ i

H2

2λk
〈f, 1〉+ i

H2

2λk
〈f, f〉 (3.63)

Dk = −i H
2

2λk
〈1, 1〉 − i H

2

2λk
〈1, f〉. (3.64)
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Let Ck = Dk = 0 for k 6= 011, and Aqk = Bqk = 0 for k = 012. We can then write
Aqk = δqk coshαk, Bqk = δqk sinhαke

iβk , and (3.59)-(3.60) become

−iH
2

2
(D∗0C0 − C∗0D0) = 1, (3.65)

C0D0 − C0D0 = 0. (3.66)

The constraint (3.66) is trivially satisfied, and (3.65) is satisfied if we choose

C0 =
i

Hα
eiθ, D0 =

α

H
eiθ (α, θ ∈ IR). (3.67)

Plugging these into (3.63) we get

2λ0

iH2

i

αH
= 〈f, 1〉 i

αH
eiθ + 〈f, f〉 α

H
eiθ. (3.68)

〈f, 1〉 vanishes, leaving

α2 =
2λ0

H2〈f, f〉 . (3.69)

Similarly, from (3.64) we get

α2 =
〈1, 1〉H2

2λ0

. (3.70)

Together (3.69) and (3.70) yield

α2 =

√
〈1, 1〉
〈f, f〉 = |const|, (3.71)

where const is a non-zero and finite constant. Hence C0 and D0 are finite and well-defined.

3.3 Causal Set SJ Vacuum from Simulations

While there is progress on finding the SJ modes via an ab initio calculation in some 2d as well
as higher dimensional examples [59, 60], the calculation in global de Sitter is considerably
more difficult. In the absence of this, we can still carry out numerical calculations13 using

11Justification for Ck = Dk = 0 when k 6= 0: If Ck = i
Hαk

eiθk , Dk = αk

H eiθk , then from (3.59) we need

that −iH2

2 (D∗kCk′ − C∗kDk′) = ei(θk′−θk) ∝ δkk′ . Therefore we must choose only one special value of k for
which Ck and Dk are not 0. From the equation in the second sentence of the next footnote, we see that this
special value of k is k = 0.

12Justification for Aqk = Bqk = 0 when k = 0: Let Aqk, Bqk 6= 0 for some q. Then (3.59) becomes

A∗q0Aq0 −B∗q0Bq0 − iH
2

2 (C0D
∗
0 − C∗0D0) = 1. But then 〈s0, sq〉 = λq

(
A∗q0Aqq −B∗q0Bqq

)
= 0. This is solved

by either a) Aq0 = − sinhαqe
−iβq , Bq0 = − coshαq, or b) Aq0 = 1/ coshαq, Ba0 = eiβq/ sinhαq. But neither

of these solutions yield vanishing 〈s0, s∗q〉. Therefore we must have Aqk = Bqk = 0.
13The bulk of the simulations for this work were done using Mathematica [64].
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causal sets to study the two-point function. Causal sets are not only a natural covariant
discretisation of the continuum, but also may contain important signatures of quantum
spacetime. This makes the ab initio results in the causal set even more interesting than the
ab initio results in the continuum.

Before we present the results, we carry out dimensional analysis that tells us the right
quantities to compare.

Dimensional analysis in the continuum

The retarded Green function satisfies the KG equation so we have14 [G] = 2− d = [∆]. The
eigenvalue equation for the PJ operator is

(i∆ fk)(x) =

∫
dVy i∆(x, y)fk(y) = λk fk(x). (3.72)

Therefore [λk] = 2. The SJ two-point function is the positive part of the PJ operator and is
given by

W (x, y) =
∑
k

λk f̃k(x)f̃ ∗k (y) (λk > 0), (3.73)

where f̃k are the normalised (in the L2 norm) eigenfunctions. So we have, [f̃k] = −d/2,
[W ] = 2− d.

Note: If we define the SJ modes as fSJk =
√
λk f̃k then we get [fSJk ] = 1− d/2.

Dimensional analysis in the causal set

We can get the dimension of the massless causal set Green function K0 by requiring that
[K0m

2/ρ] = 0, where [m2/ρ] = d− 2. This gives [K0] = 2− d = [G] = [i∆].

We use the following correspondence to define the analogs of integral operators in the
causal set ∫

dVy →
1

ρ

∑
y

. (3.74)

The eigenvalue equation is given by a matrix equation

1

ρ
i∆fk = λk fk . (3.75)

Here [λk] = 2. These eigenvalues can be compared with the continuum eigenvalues.15

14[ ] refers to length dimension.
15Typically the 1

ρ factor in (3.75) is omitted, which is why in the figures above showing the eigenvalues,
the causal set spectra are divided by ρ.
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As in the continuum, we have16 [f̃k] = −d/2 and [fSJk ] = 1−d/2. For the two-point func-
tion we have [W ] = 2− d. Therefore, W can also be compared directly with its counterpart
in the continuum.

We now present our numerical simulations for the causal set SJ vacuum in the causal dia-
monds in 2d and 4d Minkowski spacetime and slabs of 2d and 4d global de Sitter spacetime.
Where visible, error bars in the binned data reflect the SEM.

3.3.1 Causal Diamond in 2d Minkowski Spacetime

We begin by revisiting the analysis of WSJ for the massless FSQFT in a causal diamond in
2d Minkowski spacetime [56]. The IR-regulated Minkowski two-point function is

Re[Wmink] = − 1

2π
ln(x) + c1, x = τ or |d|, (3.76)

where c1 depends on the IR cutoff. In [56] it was shown that in a small subregion in the
center of the causal diamond (i.e., away from the boundaries)

c1 ≈ −
1

2π
ln(λeγ), (3.77)

where γ is the Euler-Mascheroni constant and λ ∼ 0.46/L, and where 2L is the side length
of the diamond.

In our simulations, we work in units where the volume (in 2d this is an area) of the
diamond is unity, L = 1/2, V = 4L2 = 1. Therefore, when we compare to the continuum
function (3.76), we set c1 ≈ −0.0786.

Our results are shown in figures 3.1-3.3 and agree with the ab initio construction of [56].
Figure 3.1 is a log-log plot of the positive causal set SJ eigenvalues, along with the positive
continuum eigenvalues (discussed at the end of Section 3.1). The two sets of eigenvalues are
in agreement up to a characteristic “knee” at which the causal set spectrum dips and ceases
to obey a power-law with exponent −1. There is a clear convergence of the spectrum with
causal set size N except that the knee is pushed to smaller eigenvalues as N increases.

16This normalisation is obtained by taking the dot product of the vector with itself, divided by the density.
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Figure 3.1: Log-log plot of the eigenvalues of i∆ divided by density ρ (except for the con-
tinuum), in the 2d causal diamond; m = 0.

Figure 3.2 shows scatter plots of Re[WSJ] for pairs of events that are causally and spacelike
related; it also shows the binned and averaged plots where the convergence becomes clear.
The convergence with N is very good and tells us that we are in the asymptotic regime. This
is the kind of convergence we will look for when either a comparison with the continuum is
not possible or when there is a marked discrepancy with the continuum. In order to compare
with the continuum, WSJ was calculated in [56] for pairs of points in a small causal diamond
in the center of the larger causal diamond and it was shown that WSJ agreed with the
Minkowski vacuum in (3.76). We carry out a similar comparison and the results are shown
in figure 3.3. This figure shows the scatter plots and the binned and averaged plots for
WSJ within a smaller diamond of side length 1/4 compared to that of the original diamond
it is concentric to. The continuum IR-regulated Minkowski curve is also plotted. These
plots confirm that away from the boundaries of the diamond Re[WSJ] indeed resembles the
Minkowski vacuum, as was shown analytically and numerically in [56].
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(a) Causal (b) Spacelike

(c) Causal (d) Spacelike

Figure 3.2: (a)-(b) represent Re[WSJ] vs. geodesic distance for a sample of 100000 randomly
selected pairs, in the 2d causal diamond; m = 0. (c)-(d) are plots of the binned and averaged
data with the SEM.
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(a) Causal (b) Spacelike

(c) Causal (d) Spacelike

Figure 3.3: (a)-(b) represent Re[WSJ] vs. geodesic distance for all pairs within a sub-diamond
with side length 1/4 of that the full diamond, in the 2d causal diamond; m = 0. (c)-(d)
are plots of the binned and averaged data with the SEM. In both cases, the continuum
IR-regulated Minkowski Wightman function (3.76) has also been shown.

3.3.2 Causal Diamond in 4d Minkowski Spacetime

Next we examine the massless FSQFT in a causal diamond in 4d Minkowski spacetime.
Unlike in 2d, we do not have an analytic ab initio calculation to compare with or refer to.
We will instead rely on convergence properties and comparisons with the continuum in a
small causal diamond within the larger one. Another difference with the 2d case is that the
causal set retarded Green function only agrees with the continuum one in the infinite density
limit. This was discussed above in chapter 2.

The 4d Minkowski two-point function is

Re[Wmink] =
1

4π2x2
, x = iτ or |d|. (3.78)

We work in units where the (top to bottom corner) height of the diamond is unity.
In figure 3.4 we plot binned and averaged values for the causal set retarded Green function
(2.27) along with its expectation value at finite density (2.23). The corresponding continuum
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Green function (2.21) has a delta function on the lightcone and is therefore infinitely sharply
peaked there. While this is not the case in the causal set, the discrepancy grows smaller as
the density is increased.

Figure 3.4: The binned and averaged plot for K0 vs. |τ | as N is varied, in the 4d causal
diamond. The black curve represents the expectation value (??) for N = 31k. We see an
excellent match.

In figure 3.5 we show the log-log plot of the SJ spectrum. This spectrum is qualitatively
similar to the spectrum in the 2d diamond, in that it obeys a power-law in the large eigenvalue
regime, while exhibiting a knee in the UV (smaller eigenvalue regime) where it dips. It
moreover converges well as N is increased, except near the knee which, as in the 2d diamond,
shifts to the UV as N increases. This suggests that we are in the asymptotic regime.

Figure 3.5: Log-log plot of the eigenvalues of i∆ divided by density ρ, in the 4d causal
diamond; m = 0.

In figure 3.6 we show the scatter and binned plots for Re[WSJ] as N is varied. The
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convergence with increasing density suggests that the larger N values are approaching the
asymptotic regime. The Minkowski two-point function (3.78) is also included in this plot
and it clearly does not agree with WSJ in the full diamond. The small distance behaviour
shows an interesting departure from the continuum, softening the divergences.

(a) Causal (b) Spacelike

(c) Causal (d) Spacelike

Figure 3.6: (a)-(b) represent Re[WSJ] vs. geodesic distance for a sample of 100000 randomly
selected pairs, in the 4d causal diamond; m = 0. (c)-(d) are plots of the binned and averaged
data with the SEM. In both cases, the continuum Minkowski Wightman function (3.78) has
also been shown in red.

Figure 3.7 shows the scatter and binned plots for a smaller causal diamond of side length
1/2 compared to the larger diamond it is in the center of. Although the agreement of WSJ

with Wmink is not as good as in 2d, we see that as N increases, there is a convergence of WSJ

to Wmink. This suggests that as in 2d, the 4d diamond also shows an agreement with the
Minkowski vacuum far away from the boundary.

Figure 3.8 shows the distribution of pairs of points in the diamond as a function of
the proper time and distance. From this plot one can see that there are many fewer pairs
of points at small and large proper distance and times than in the intermediate regimes.
Nevertheless, the scatter plots and the error bars on the binned plots do not show significant
deviation in these regimes.
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(a) Causal pairs (b) Spacelike pairs

Figure 3.8: Distribution of the number of causal and spacelike pairs n with magnitude of
the geodesic distance for N = 30k, in the 4d causal diamond.

(a) Causal (b) Spacelike

(c) Causal (d) Spacelike

Figure 3.7: (a)-(b) represent Re[WSJ] vs. geodesic distance for all pairs within a sub-diamond
with height 1/2 of the full diamond, in the 4d causal diamond; m = 0. (c)-(d) are plots
of the binned and averaged data with the SEM. In both cases, the continuum Minkowski
Wightman function (3.78) has also been shown.
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3.3.3 Slab of 2d de Sitter Spacetime

The simulations in the 2d and 4d causal diamond help set the stage for the simulations in
slabs of 2d and 4d de Sitter spacetime, which we turn to in this and the next subsection. As
in the causal diamond examples, we will look for convergence of the causal set calculation
with N to establish that we are in the asymptotic regime. The slab in de Sitter spacetime
lies within the region [−T, T ]17 and we will probe our results’ sensitivity to T . We will also
look for convergence with T at fixed ρ, to show that the results are independent of the cutoff.

The Wightman function for the Euclidean vacuum in d spacetime dimensions is given
by18

WE(x, y) =
Γ[h+]Γ[h−]

(4π)d/2`2Γ[d
2
]

2F1

(
h+, h−,

d

2
;
1 + Z(x, y) + iε sign(x0 − y0)

2

)
, (3.79)

where Z(x, y) is defined by (1.9), h± = d−1
2
±ν, ν = `

√
m2
∗ −m2, m∗ = d−1

2`
and 2F1(a, b, c; z)

is a hypergeometric function. The symmetric two-point function, or Hadamard function, for
any other Allen-Mottola α-vacuum is [26]

Hαβ(x, x′) = cosh 2αHE(x, x′) + sinh 2α [cos β HE(x̄, x′)− sin β∆(x̄, x′)], (3.80)

where x̄ is the antipodal point of x. The Wightman function is related to H by 2W = H+i∆.
We will make comparisons with the α-vacua found to correspond to the SJ vacuum in [26].
Since we work in even dimensions, these are α = 0 for m ≥ m∗ (yielding the Euclidean
vacuum), and

α =
1

2
tanh−1 | sin πν| and β = π[

d

2
+ θ(− sin πν)] (3.81)

for m < m∗.

In this subsection we consider 2d de Sitter spacetime, and work in units in which the de
Sitter radius ` = 1. In 2d, m∗ = 0.5, and the conformal mass mc = 0. Hence the minimally
coupled and the conformally coupled massless cases coincide. Our simulations span slabs of
different heights given by T values ranging from 1 to 1.5, while our N values range from 8k
to 36k. We show the log-log plots of the PJ spectrum for the massless m = 0 and for the
massive m = 2.3 cases in figure 3.9. As in the 2d diamond, the causal set spectrum exhibits a
characteristic knee. The spectrum converges very well for both sets of masses, with the knee
shifting to the UV as N increases, as expected. We also compare the causal set spectrum
with the finite T continuum spectrum obtained via the mode comparison method in [26]. As
shown in figure 3.9 this spectrum does not seem to agree with the causal set spectrum even
though the latter convergences with N .

17T is the cutoff in the conformal time defined in (1.16).
18The expression for WE in equation B.36 of [26] has a minor typographical error: the factor of 4π should

be raised to the power of d/2. See for example [65].
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(a) m = 0 (b) m = 2.3

Figure 3.9: Log-log plot of the positive eigenvalues of i∆ at T = 1, in 2d de Sitter. In the
massive case on the right we plot the largest 3500 positive eigenvalues and the corresponding
continuum eigenvalues from the finite T mode comparison results of [26].

In the simulations whose results we present below, we examine two masses in detail:
m = 0 and m = 2.319, and vary over both the slab height T as well as the density ρ. For
m = 2.3, as can be seen in the scatter plots of figures 3.11, 3.13 and 3.15, WSJ agrees very
well with the SJ vacuum expected from the calculation in [26] (the Euclidean vacuum).
Furthermore, it appears that WSJ for a given T is simply the restriction of WSJ for a larger
T . This is also in agreement with the simulation results of [26].

For the massless case, the scatter plots of WSJ in figures 3.10, 3.12 and 3.14 do not show
convergence, but instead fan out, as a function of the proper time and distance. As the
density decreases, for T = 1.56, N = 36k, the scatter plot figure 3.14 shows a clustering
into two distinct sets. This shows that WSJ may not just be a function of proper time and
distance, and hence may not be de Sitter invariant.

In figure 3.16 the binned and averaged plots for WSJ show very good convergence with N .
While this is consistent with the narrowing of the m = 2.3 scatter plots at higher densities,
the convergence for m = 0 is not (since the m = 0 scatter plots do not narrow much). Hence
both the scatter plots and the binned plots are important in determining convergence as well
as understanding the nature of WSJ .

19This is an arbitrary choice of mass with no special physical significance. It allows for comparisons with
[26] who use a similar mass in their 2d de Sitter causal set simulations.
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(a) Causal m = 0 (b) Spacelike m = 0

(c) Causal pairs (d) Spacelike pairs

Figure 3.10: N = 32000, T = 1, ρ = 1635.08, in 2d de Sitter. (a)-(b) represent Re[WSJ]
vs. geodesic distance for a sample of 100000 randomly selected pairs, and the red curve
represents the mean values with the SEM. (c)-(d) are plots of the distribution of pairs.

(a) Causal m = 2.3 (b) Spacelike m = 2.3

Figure 3.11: N = 24000, T = 1, ρ = 1226.31, in 2d de Sitter. The scatter plot is Re[WSJ] vs.
geodesic distance for a sample of 100000 randomly selected pairs. The red curve represents
the continuum WE from (3.79).
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(a) Causal m = 0 (b) Spacelike m = 0

(c) Causal pairs (d) Spacelike pairs

Figure 3.12: N = 36000, T = 1.5, ρ = 203.15, in 2d de Sitter. (a)-(b) represent Re[WSJ] vs.
geodesic distance for a sample of 100000 randomly selected pairs. The red curve represents
the mean values with the SEM. (c)-(d) are plots of the distribution of pairs.

(a) Causal m = 2.3 (b) Spacelike m = 2.3

Figure 3.13: N = 36000, T = 1.5, ρ = 203.15, in 2d de Sitter. Re[WSJ] vs. geodesic distance
for 100000 randomly selected pairs. The red curve represents the continuum WE from (3.79).
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(a) Causal m = 0 (b) Spacelike m = 0

(c) Causal pairs (d) Spacelike pairs

Figure 3.14: N = 36000,−1.56 < T̃ < 1.56, ρ = 30.93, in 2d de Sitter. (a)-(b) represent
Re[WSJ] vs. geodesic distance for a sample of 100000 randomly selected pairs. The red curve
represents the mean values (of the data) with the SEM. (c)-(d) are plots of the distribution
of pairs.

(a) Causal m = 2.3 (b) Spacelike m = 2.3

Figure 3.15: N = 36000, T = 1.56, ρ = 30.93, in 2d de Sitter. Re[WSJ] vs. geodesic distance
for a sample of 100000 randomly selected pairs. The red curve represents the continuum WE

from (3.79).
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(a) Causal m = 0 (b) Spacelike m = 0

(c) Causal m = 2.3 (d) Spacelike m = 2.3

Figure 3.16: Variation of binned and averaged Re[WSJ] with density at T = 1, in 2d de
Sitter.

3.3.4 Slab of 4d de Sitter Spacetime

Finally, we examine the 4d de Sitter SJ vacuum. Again, we work in units in which the de
Sitter radius ` = 1. In 4d, m∗ = 1.5 and mc =

√
2 ≈ 1.41.

In figure 3.17 we show the scatter plot of the causal set retarded Green function (2.78),
taking the conformally coupled massless case as an example. While the small τ discrepancy
with the continuum expression is expected and attributed to the local finiteness of the causal
set, the behaviour for large τ compares well with the continuum. Figure 3.18 shows the log-
log plot of the SJ spectrum for m = 0 and m = 2.3 for various N . We find that there is
excellent convergence with N in both cases, and again, as in the other cases we have seen,
there is a knee which shifts to the UV as N is increased. However, there is poor agreement
with the continuum values of the finite T spectrum calculated via the mode comparison
method in [26], as in the 2d case. In figure 3.19 we also show the spectrum for m varied
around m = 0 and m = mc ≈ 1.41. There is no unusual behaviour close to these masses.

69



Figure 3.17: K0 vs. |τ | for N = 32k, T = 1.42, ρ = 7.978,m = mc =
√

2, in 4d de Sitter.
The black curve represents the expectation value (??).

(a) m = 0 (b) m = 2.3

Figure 3.18: Log-log plot of the positive eigenvalues of i∆, in 4d de Sitter. In the massive case
on the right we plot the largest 6000 positive eigenvalues and the corresponding continuum
eigenvalues from the finite T mode comparison results of [26].

Figures 3.20 and 3.21 are sample scatter plots of WSJ for m = 0 and m = 2.3. In figure
3.22 we fix T for m = 0 and for m = mc ≈ 1.41 and vary N to check for convergence
with density; for smaller proper times and distances, the convergence is not as good as it is
for larger proper times and distances. For m = 1.41 we also plot the Wightman function
associated with the Euclidean vacuum WE in (3.79). WE does not compare well with the
causal set WSJ. Next, in figure 3.24 we fix the density ρ = 9 and check the convergence with
T , which we vary from 1.2 to 1.42. We find good convergence for various m values. However,
the Wightman function associated with the α-vacuum (3.80) as well as the Euclidean vacuum
WE once again do not compare well with the causal set WSJ for any of these masses. This
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is somewhat surprising, since the discrepancy occurs well away from the massless minimally
and conformally coupled cases.

(a) m = 0 (b) m = 1.41

Figure 3.19: Log-linear plot of the first 500 positive eigenvalues of i∆ at T = 1.42, ρ = 9, in
4d de Sitter.
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(a) Causal T = 1 (b) Spacelike T = 1

(c) Causal T = 1.2 (d) Spacelike T = 1.2

Figure 3.20: m = 0, N = 32000, in 4d de Sitter. Re[WSJ] vs. geodesic distance for 100000
randomly selected pairs, and the red curve represents the mean values with the SEM.

72



(a) Causal T = 1 (b) Spacelike T = 1

(c) Causal T = 1.2 (d) Spacelike T = 1.2

Figure 3.21: m = 2.3, N = 32000, in 4d de Sitter. Re[WSJ] vs. geodesic distance for a
sample of 100000 randomly selected pairs. The red curve shows the Euclidean two-point
function WE from (3.79).

Further, in figure 3.25 we look at WSJ for varying masses at fixed T = 1.42 and ρ = 9. We
find that WSJ looks like a continuous function of m even as m is varied around mc. Indeed,
the large distance behaviour for all the masses is exactly the same. At smaller distances, there
is an interesting bifurcation as m changes: Re[W ] is positive for small masses and negative
for large masses. This figure also shows the number of pairs as a function of distances. The
discrepancies in the small distance behavior could be attributed to the small number of pairs
there.

Our simulations thus strongly suggest that the causal set 4d de Sitter WSJ differs from
the Mottola-Allen α-vacua for all masses.
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(a) Causal m = 0, T = 1.3 (b) Spacelike m = 0, T = 1.3

(c) Causal m = 1.41, T = 1.4 (d) Spacelike m = 1.41, T = 1.4

Figure 3.22: Re[WSJ] vs. geodesic distance with varying density, in 4d de Sitter. The blue
curve shows the Euclidean two-point function as a reference.

(a) Causal m = 0 (b) Spacelike m = 0
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(a) Causal m = 0.7 (b) Spacelike m = 0.7

(c) Causal m = 1.41 (d) Spacelike m = 1.41

(e) Causal m = 1.5 (f) Spacelike m = 1.5

Figure 3.24: Re[WSJ] vs. geodesic distance with varying T for various m at ρ = 9, in 4d de
Sitter. The red and blue curves represent the corresponding continuum α- and Euclidean
two-point functions respectively. The inset figures represent the zoomed-out versions. In
(e)-(f), for m =

√
2 there is no corresponding α-vacuum, and in (g)-(h) the α-vacuum and

Euclidean vacuum coincide.
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(a) Causal T = 1.42 (b) Spacelike T = 1.42

(c) Causal T = 1.42 (d) Spacelike T = 1.42

(e) Causal pairs (f) Spacelike pairs

Figure 3.25: Re[WSJ] vs. geodesic distance with varying m at ρ = 9, in 4d de Sitter. (e)-(f)
show the distribution of pairs.
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3.4 Equations of Motion on the Causal Set

Before concluding this chapter we comment on another idea arising from the SJ construction
- the causal set analogs of the equations of motion in the continuum20. We saw that the
relation

Ker(�̂−m2
p) = Im(∆̂),

with the operators defined in V can be used to give a coordinate independent decomposition
of the field operator. We would like to explore if this relation can be used as an evolution
equation in the causal set. The region of interest in this discussion will be the causal diamond
in Md but in principle it is applicable to a globally hyperbolic region of any general spacetime.

Since the causal set is a discrete structure, a solution of the field equation (like the KG

equation) b is a column matrix with indices representing spacetime points. Since b ∈ Ker(�̂)

it also lies21 in Im(∆̂) therefore we must be able to write it as

bx =
r∑

k=1

akskx (3.82)

where skx span Im(∆̂) and r = dim(Im(∆̂)). We have used x as an index here instead of a
coordinate to emphasize that we are dealing with matrices and not functions. If can think of
this equation as an initial value problem by assigning known values to some “initial” points
in the causal set i.e., some values in the solution vector b can be assigned as initial values.

In the continuum, we assign initial data on either a Cauchy surface or an initial null
hypersurface. In order to define any meaningful initial value problem in the causal set we
must first find analogs of these 2 concepts. An inextendible antichain comes closest to the
idea of a Cauchy surface, however as shown in Fig 3.26 there can be relations in the causal
set that do not intersect an inextendible antichain, making it porus. We could however
consider artificially thickening this antichain by adding in more elements until we get rid
of this porosity. The analog for the initial null hypersurface can be the layer of nearest
neighbours of the minimal element L1 defined in Eq.(1.3). Consider an N -element causal
set, then bᵀ = (b1, b2, ....bN). As already mentioned, which of these are to be given as initial
data will depend on our choice. Here, let us assume that we initialize the first i elements, then
bᵀ = (b∗1, b

∗
2, ...b

∗
i , ...bN), where we used an asterix to denote known values. Now Eq.(3.82)

can be written as  b1
...
bN

 =

 s11 s21 . . . sr1
...

...
. . .

...
s1N s2N . . . srN


a1

...
ar

 (3.83)

20Approaches using the causal set analog of the d’Alembertian operator in the causal set have been studied
elsewhere [46, 66, 41, 53].

21in the discrete case the closure is irrelevant
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(a) (b)

Figure 3.26: (a) An inextendible antichain is marked in red and an example of a relation
that does not ”intersect” the antichain is shown. (b) A thickened region around the center
in D2

` , all points in a sprinkling that fall in this region have to be initialized to solve the
causal set initial value problem.

This equation can be now split into 2 sets - one with the known initial data (b∗1, b
∗
2, ...b

∗
i )

and the other with the unknowns (bi+1, ...bN). A natural way to proceed will be to use the
first set of equations to determine the coefficients ak and then use these in the second set to
determine the the remaining entries in b.

The first set contains r unknowns and i equations. The requirement that this set must
give unique solutions for (a1, a2, ...ar) already places strong constraints on i. We require that
i = r and that the rank of the now r × r square matrixs11 s21 . . . sr1

...
...

. . .
...

s1r s2r . . . srr


be r. If either i 6= r or the rank 6= r, we have either no solution or infinitely many solutions.

The first condition is a physical requirement which says that the number of initial values
that need to be given must be equal to the size of Im(∆̂). While it is hard to find this
number exactly, we appeal to the ideas in chapter 4 for an estimate. In D2

` we expect the

size of Im(∆̂) to be given in terms of the spatial volume and is22 ∼
√
N . Since we want

22See chapter 4 for details.
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to initialize ∼
√
N points in the solution b, we will also estimate how thick the “waist” of

diamond must be in order to accommodate these many points. Consider a region of height
h in the middle of D2

` , the area of such a region is given by h(1 − h/2). Since the density
ρ = N/V = 2N is fixed, we require that

h

(
1− h

2

)
× 2N =

√
N. (3.84)

The 2 solutions of this quadratic equation represent a horizontal strip along the x-axis and
a vertical strip along the t-axis. The physically relevant solution is the horizontal one and it
is given by

h =
1

2
√
N

+
1

16N
+O

(
1

N3/2

)
. (3.85)

We see that in the continuum limit N →∞ =⇒ h→ 0 and we recover the spatial Cauchy
surface. Therefore we see that in order to solve for b as an initial value problem we will have
to initialize all its components that lie in a region of thickness h around the center of D2

` .

A similar analysis can be carried out in the case where the initialization is to be done on
the initial null surfaces. There we will need to estimate how many layers from the minimal
element have to be initialized to get the required

√
N points.

The second condition rank6= r may be violated when there are either singleton elements
or non-Hegelian pairs in the causal set. A singleton element is one which is unrelated to any
other element in the causal set. Since they are causally disconnected form the main causal
set they can be assigned any value irrespective of the rest of the elements and should not
contribute to the equations of motion in any way. Non-Hegelian pairs are a set of elements
{e1, ...en} that are mutually unrelated and have identical (strict) causal relations to the rest
of the causal set. That is (u ≺ ei ≺ w) =⇒ (u ≺ ej ≺ w), ∀i, j = 1, ..., n. As far as the
causal set is concerned all such elements, having the same relation to the rest, can be treated
as one element and hence assigning values to such elements more than once is redundant.

3.5 Discussion

Our simulations suggest that the CST 4d de Sitter SJ vacuum for all masses, while de Sitter
invariant, is not equivalent to any of the Mottola-Allen α-vacua. Moreover, contrary to the
conclusions of [26] which are based on a mode comparison calculation, we find that the CST
SJ vacuum is well-defined both for m = 0 and m = mc in 2d and 4d de Sitter. In 2d, where
these two masses are equal, the CST SJ vacuum does not seem to be de Sitter invariant.
In 4d on the other hand, as already mentioned above, the massless (as well as m = mc) de
Sitter CST SJ vacuum is de Sitter invariant.

Our simulations are by necessity limited to a finite region of de Sitter, given by the IR
cutoff T and a finite density ρ. However, the convergence results we find are convincing
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and indicate that the CST SJ vacua will not change significantly as T → π/2 (the infinite
volume limit). The convergence with density is especially good at larger proper times and
distances. At smaller proper times and distances there is an approach to an asymptotic form,
though not exact convergence. Put together these results suggest that the CST SJ vacuum
converges to a continuum SJ vacuum with the two-point function approximately given by
figures 3.22 in Section 3.3.

Our results show a discrepancy with the results of [26] in 4d de Sitter spacetime. One
possibility, as with any numerical finding, is simply that our densities and T values are not
large enough to make the comparison. However, it seems an unlikely explanation given the
apparent convergence we have found with density and T . We believe that it instead arises
from the differences in how IR limits enter into the ab initio versus the mode comparison
calculations. Thus, our work strongly suggests that the SJ state for 4d de Sitter is an
altogether new de Sitter vacuum.

The SJ vacuum in de Sitter spacetime clearly requires further study. An analytic ab
initio calculation in the continuum is challenging, but perhaps can be carried out in a corner
of the parameter space23. The following ideas need to be explored further -

� Since the SJ state is the unique state that satisfies (3.11), each of the Mottola-Allen
α-vacua must violate at least one of the SJ conditions. This will shed some light on
our understanding of the difference between these vacua.

� The symmetry properties of the SJ vacuum can be tested by carrying out numerical
studies in distorted versions of the dS slab. One simple example would be to boost the
spacelike boundaries of the slab that we consider (i.e., use slant boundaries instead of
straight). Even though the SJ vacuum is covariant by construction, it could be the
case that using finite regions of spacetime breaks symmetries in more subtle ways.

� From the CST perspective, our results bring new light to questions of relevance to
early universe phenomenology. Given that the continuum is an approximation to an
underlying causal set, the natural vacuum for FSQFT on a 4d de Sitter-like causal set is
the SJ vacuum we have obtained. Since this CST SJ vacuum differs markedly from the
standard continuum 4d de Sitter vacua, it suggests that early universe phenomenology
could be very different from what one expects from standard continuum calculations.

� As per Allen’s theorem, the Mottola-Allen α-vacua are a complete set of dS invariant
vacua. As mentioned earlier, the SJ vacuum is not at odds with this result because of
technical differences in the construction. However, a general understanding of the SJ
vacuum from a representation theory perspective will help us understand the conse-
quences of various choices made during the construction (the choice of inner product
for example). Some work on this has been done by Fewster [68].

23An analytic form has been found recently [67]
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� The proposal for the equations of motion made in section 3.4 needs to be studied
in greater detail. First, it will improve our understanding of Eq. 3.15 as applied to
causal sets - this is the starting point of the SJ construction. Second, it will shed some
light on the relevance of the concept of an initial value problem, which is inherently
non-covariant, to causal set theory. Third, it gives us an alternate, algebraic approach
to the d’Alembertian approach. Fourth, it may help clarify the need for augmenting
Ker(i∆̂) (or truncating Im(i∆̂) ) in the causal set.

In the next chapter we study the entanglement properties of the SJ vacuum. In particular,
we consider dS event horizons and restrict WSJ to left and right Rindler wedges. This gives
us an entangled vacuum state and allows us to study the behaviour of its entanglement
entropy.
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Chapter 4

Spacetime Entanglement Entropy for
deSitter Horizons

Cosmological horizons in de Sitter (dS) spacetime share several key features with black hole
horizons [69, 70, 71], as first suggested in [27]. Classically, both can be associated with a
temperature, as well as an entropy proportional to the horizon area based on a mathematical
analogy with the laws of thermodynamics. Quantum mechanically, observers outside both
horizons can detect thermal radiation characterised by the horizon temperature. However
there are also key differences [72]. Most obvious is the fact that different observers in de
Sitter have different corresponding horizons. Moreover, the thermality of dS radiation is
not reflected in the stress energy tensor of the quantum state and is instead red-shifted by
the expansion. Despite this, the entropy-area relationship is robust and can moreover be
extended to all causal horizons [73].

The interaction of matter fields with black hole horizons also exhibits thermodynamic
features. As in the case of a black body, incoming radiation is scattered into thermal radiation
at around the black hole temperature [74]. In [75] Sorkin proposed that the dominant
contribution to black hole entropy can potentially come from the entanglement entropy
(EE) of a non-gravitational field. This EE was defined using the reduced density matrix of
the exterior region. An explicit calculation for a scalar field was carried out in [35] and seen
to give rise to an area law after imposing a UV cutoff. An area dependence arises naturally
from complementarity and is an important feature of EE. It has been shown to hold for a
diverse range of quantum systems [76].

Numerous researchers have since studied the connection between EE and black hole en-
tropy [77, 78, 79, 80]. In [81] Jacobson suggested that the “species puzzle” can be resolved by
showing that the renormalisation of the gravitational constant appearing in the Bekenstein-
Hawking entropy is similarly species dependent. In recent years, the idea of holographic EE
has gained considerable ground starting with the work of Ryu and Takayanagi [82]. The EE
in dS was first calculated in [83] and shown to exhibit the area law relation, both for a free
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massive field theory using the dS Euclidean vacuum, as well as for strongly coupled field
theories with holographic duals (see also [84]).

All these calculations of the EE use the density matrix specified on a partial Cauchy
hypersurface Σ, with the entropy attributed to its spacetime domain of dependence D(Σ).
However, it is desirable to define the EE in a more covariant language, since horizons are
intrinsically spacetime in character. In [17] Sorkin proposed a spacetime EE, which we
term the Sorkin Spacetime Entanglement Entropy or SSEE for short, defined for a Gaussian
free scalar field theory. The SSEE between a globally hyperbolic subregion O in a globally
hyperbolic compact1 spacetime region M and its causal complement is given by

S =
∑
µ

µ ln |µ|, WO(x, x′)v = iµ∆O(x, x′)v, ∆Ov 6= 0, (4.1)

where WO(x, x′) and i∆O(x, x′) denote the restrictions to O of the Wightman function
W (x, x′) = 〈0|φ(x)φ(x′)|0〉, and the Pauli-Jordan function i∆(x, x′) = [φ(x), φ(x′)], respec-
tively. Recently this formula has been shown to be valid up to first order in perturbation
theory for generic perturbations away from the free field Gaussian theory as well [85]; in
this case the Gaussian free field correlation functions are replaced with their perturbation-
corrected counterparts.

In [18] S was calculated for nested causal diamonds in d = 2 continuum Minkowski
spacetime M2, D2

` ⊂ D2
L, which are each the domain of dependence of nested spatial intervals

of lengths 2
√

2` and 2
√

2L, respectively, as shown in Figure 4.1. Rather than the Minkowski
vacuum, the calculation of [18] used the covariantly defined Sorkin-Johnston (SJ) vacuum
for free scalar fields [42, 20]. As in other calculations of EE, S can be calculated in the
continuum only after imposing a UV cutoff. The SJ vacuum offers the choice of a covariant
cutoff in the eigenspectrum of the Pauli-Jordan operator i∆̂ (the SJ spectrum), which is at
the heart of the SJ construction. Using this cutoff it was shown in [18] that the S satisfies
the expected d = 2 “area” law.

Since a causal set which is approximated by a continuum spacetime comes with a built-in
covariant spacetime cutoff, one might expect that the SSEE for a causal set doesn’t need
further regularisation. While it is finite for a finite causal set, it was shown in [86] that the
SSEE in the causal set version of the calculation in [18] obeys a spatial area law only after a
suitable “double truncation” of the causal set SJ spectrum both in D2

L and in D2
` . Without

this, the SSEE follows a spacetime volume law and thus violates complementarity.

The double truncation used in [86] was motivated by comparing the SJ spectra of the
continuum with that of the causal set in D2

L. The latter possesses a characteristic “knee” at
which the eigenvalues dramatically drop to small but non-zero values (see Figure 4.2). It is
roughly around this knee that the discrete and continuum spectra begin to disagree. Impor-

1The compactness condition on M is important in defining the SSEE, since the domain of the integral
operator i∆̂ is the space of compactly supported functions, while its range includes functions that are not
of compact support.

83



x

t

!

L

Figure 4.1: The causal completion or domain of dependence D of two line segments, one
contained within the other.

Figure 4.2: Log-log plot of the normalised SJ spectrum for the 2d causal diamond of side
length 2L = 1/

√
2, for both the continuum as well as for causal sets of size N .

tantly, while the formula for the SSEE (4.1) excludes solutions with strictly zero eigenvalues,
it does not exclude those with finite near zero eigenvalues, which characterise the post-knee
causal set SJ spectrum. These modes can be shown to contribute to large µ values in (4.1)
which then dominate the SSEE. If we include eigenfunctions v that lie in the kernel of i∆ but
not necessarily of W , this gives an infinite contribution to S, since the equation can only be
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satisfied for µ→∞ (this is also discussed in [87]). Thus, in the causal set, the contribution
from a v which is almost in the kernel, i.e., ||i∆v|| ≈ 0, lends itself to a very large (though
finite) value of µ, and hence to a much larger SSEE. Extending this work to gravitational
horizons is of course very important, not least because causal sets provide a covariant UV
cutoff, essential to the finiteness of EE.

We calculate the causal set SSEE for the dS horizon, for a conformally coupled, massless,
free scalar field in dimensions d = 2, 4 and for M4. We find that, as for nested causal diamonds
in M2, the SSEE obeys an area law only after a suitable double truncation, without which
it follows a spacetime volume law. The truncation scheme used in [86] used the explicit
analytic form of the SJ spectrum in the 2d flat spacetime causal diamond to motivate the
truncation in the causal set SJ spectrum. The analytic form of the SJ spectrum is however
not known more generally. We motivate the choice of truncation scheme for the dS causal
set SJ spectrum by requiring the causal set SSEE to satisfy both an area law as well as
complementarity. As we will see, satisfying both criteria is non-trivial.

Section 4.1 provides a background for our work. In Section 4.1.1 we begin with a dis-
cussion of area laws and complementarity. We define the two complementary Rindler-like
wedges in dS and the corresponding Bekenstein-Hawking area law which we might expect
to recover from the SSEE. In Section 4.1.2 we set up the calculation of the SSEE in a finite
causal set. In Section 4.1.3 we review the results of the calculation of SSEE for nested causal
diamonds in M2 [86] and the critical role played by the double truncation procedure in ob-
taining the area law. In Section 4.1.4 we propose generalisations of the truncation scheme
of [86] for general spacetimes, in the absence of analytic results on the SJ spectrum in the
continuum.2

In Section 4.2 we present the results of extensive numerical simulations for the causal
set SSEE for dS2,4 horizons and for nested causal diamonds in M4. Our investigations of
different truncation schemes show that an area law compatible with the Bekenstein-Hawking
entropy of the horizon is not easy to satisfy. Complementarity is guaranteed in dS, up to
Poisson fluctuations, by the fact that the Rindler-like wedges are identical in the continuum.
In the Minkowski case it turns out to be non-trivial. We present a few truncation schemes
and discuss their relative merits. In section 4.3 we comment briefly on causality violation
which is a consequence of the truncation procedure. We end with open questions in Section
4.4.

2The continuum SJ spectrum in the dS slab has been recently obtained [67], but not in the Rindler-like
wedge.
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4.1 Preliminaries

4.1.1 Complementary Regions in Global dS

Let (M, g) be a globally hyperbolic spacetime region and O a globally hyperbolic subregion
O ⊂ M. The SSEE of O is defined with respect to its causal complement O′, where
O′ ⊂ Oc ⊂M such that x ∈ O′ ⇔ x is spacelike to O. Since (M, g) is globally hyperbolic,
so is O′ and hence the EE of O′ can also be defined with respect to O, which is its causal
complement. O and O′ are said to be complementary to each other, where we now use the
term “complementarity” to denote causal complementarity. Figure 4.3 shows an example
of a smaller causal diamond D2

` nested inside a larger one D2
L in M2. The complement O′

to O ∼ D2
` is a union of two disconnected causal diamonds. In [18] and [86] the SSEE of

OO′ O′

Figure 4.3: A nested causal diamond O and its complement O′ in M2.

O with respect to O′ was calculated in the continuum and in the causal set, respectively.
Note that in the standard definition the spatial complementary regions ΣO and ΣO′ are
used to define EE, where ΣO denotes a partial Cauchy hypersurface of the region O in Σ, a
Cauchy hypersurface of (M, g). However, because O is globally hyperbolic, the “information
content” of ΣO is the same as that of O.

A feature of bipartite EE is that it satisfies complementarity, i.e., that the EE of O with
respect to its complement O′ is the same as that of O′ with respect to O. This in turn
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implies the area law since the two complementary regions only share a spatial boundary
separating them. The gross feature of this boundary is its “area” or d − 2 spatial volume,
which means that the EE satisfies an area law.3 Conversely, a scaling of the EE with the
spatial or spacetime volume of the region means that complementarity is not satisfied, since
in general the volumes of O and O′ can be unequal.

In dS, one wishes to calculate the SSEE between the two Rindler-like wedges which inter-
sect at the bifurcate horizon. As shown in the conformal diagram in Figure 4.4, associated
with any time-like observer o is a future/past horizon H± = ∂(J±(γo)) where γo is the world
line of o. The Rindler-like wedge Ro ≡ J+(γo) ∩ J−(γo)) has a boundary which intersects
H+ and H− at a bifurcate horizon, whose area is A = 4πl2 in 4d. Let us assume that the
observer is at the south pole oS. The Rindler-like wedge RoN associated with its antipode at
the north pole, oN , is then the complement of RoS . The SSEE we wish to calculate is from
the entanglement between these two identical Rindler-like wedges, which should therefore
also satisfy complementarity.
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Figure 4.4: The entangled Rindler-like wedges in dS corresponding to observers at the north
and south pole. The dashed lines correspond to the boundaries of the slabs we consider.

The EE for dS2 should have the same form as that for flat space. It contains a logarithmic

3The EE could also depend on the more detailed geometry of the boundary, but we will ignore this
possibility in our work. See [88] for a discussion on this.
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UV cutoff dependence and in the case with two boundaries is given by [78, 76]

S =
1

3
ln

(
l

a

)
+ b, (4.2)

where a is a UV cutoff and b a non-universal constant. For dS4, the entropy-area relation,
which is the same as the Bekenstein-Hawking entropy, is expected to be [27, 65]

S =
A

4`2
p

=
c3

4G~
A = πl2 (for G = ~ = c = 1). (4.3)

We will compare our results with the causal set analog of this formula and ask if the causal
set SSEE we find can account for the expected behaviour. It is understood that when (4.3)
is compared with the EE, the area of the entangled region in the EE is in units of the UV
cutoff so that the entropy is dimensionless.

4.1.2 Causal Set SSEE

Next, we set up the calculation of the horizon SSEE in a causal set approximated by dS.
For a particular realisation C, we denote by CO the sub-causal set approximated by the
subregion O ⊂M, and its cardinality by NO.

Since our calculations are numerical, we are limited by the size N and hence to finite
volumes V of dS . As in [16] we pick a symmetric “slab” of dS with T̃ ∈ [−T, T ], so that in
4d

Vslab =
4π2l4

3
f(T ), f(T ) = tanT

(
cos 2T + 2

)
sec2 T. (4.4)

The causal sets we obtain from this sprinkling therefore have finite N .

We can obtain the causal set analog for the Bekenstein-Hawking entropy (4.3) in d > 2 by
translating the continuum area to the discrete one using a factor of the density ρ as follows

〈S(c)〉 = ρ
2
d
A

4
. (4.5)

where we have set `2
p = 1. Using the slab volume (4.4) in dS4, this translates into the discrete

entropy

〈S(c)〉 =
1

2

√
3

f(T )

√
N. (4.6)

In d = 2, the discrete entropy is given by taking the cutoff a in (4.2) to be
√

1
ρ

=
√

V
N

.

In dS2, therefore, the discrete entropy should take the universal d = 2 form

S(c) =
1

6
lnN + b. (4.7)
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We now review the definition of the SSEE associated with a Gaussian scalar field on
a causal set C. We begin with the discrete Pauli-Jordan function i∆C(x, x′) which is the
difference between the causal set retarded and advanced Green functions GR,A(x, x′), for
x, x′ ∈ C, defined using the order relations in C. The SJ prescription then associates a
unique state, or Wightman function WC(x, x′) as the positive part of i∆C(x, x′). Next,
consider any causally convex subset CO ⊂ C and the restrictions i∆CO(x, x′),WCO(x, x′) of
i∆C(x, x′) and WC(x, x′) to CO. Importantly, although WC(x, x′) is a pure state, this is not
true of WCO(x, x′) which is not the positive part of i∆CO(x, x′). The simplest form4 that the
causal set SSEE S(c) takes is then

S(c) =
∑
µ

µ ln |µ|, WCO ◦ v = iµ∆CO ◦ v, ∆CO ◦ v 6= 0, (4.8)

where for x ∈ CO, ACO ◦ v(x) ≡∑x′∈C0
A(x, x′)v(x′). We will henceforth refer to the above

equation and its continuum counterpart as the SSEE equation and v and µ as generalised
eigenvectors and eigenvalues. Note that in adapting the continuum formula to the causal
set, we have retained the strict requirement that v cannot lie in the kernel of ∆CO .

An important aspect of the calculation of the EE is the introduction of a UV cutoff,
which renders it finite. An unregulated quantum field in the continuum consists of infinitely
many UV degrees of freedom which would yield an unbounded EE. When the regulated EE
satisfies an area law, it is proportional to the spatial area of the entangled regions in units
of the UV cutoff. This gives the scaling S ∝ a2−d (for d > 2), where a is the UV cutoff
in length dimensions and d is the spacetime dimension.5 This is also true in the case of
quantum theories with local interactions [90].

The causal set provides a natural cutoff length scale a = ρ−1/d ∝ N−1/d. Based on
this, the expected UV-dependence of the entanglement entropy S of a scalar field in various
dimensions is as shown in the table below, with (4.6) and (4.7) being special cases. Since the
leading area term in d = 2 is a constant (as the spatial boundary of the entangling region
is one or two points), one also considers the subleading contribution c1 ln a, where c1 is a
universal constant.6

If instead S(N) ∼ N , this means that S satisfies a spacetime volume rather than an area
law. Interestingly, we will see that this is what commonly happens in the causal set when
we compute the SSEE without any truncations.

4It is possible for example to have finite N corrections to this formula, which vanish in the continuum
limit.

5For a heuristic argument for why the EE will in general be proportional to the spatial area of the
entangling surface in units of the UV cutoff see [89].

6When the spatial boundary is a single point c1 = −1/6, and when it is two points c1 = −1/3.
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Spacetime Dimension S(a) S(N)

d = 2 c1 ln a+ const −c1 ln
√
N + const

d = 3 1/a N1/3

d = 4 1/a2
√
N

Table 4.1: The dependence of the entropy S on the UV length cutoff a and causal set size
N .

4.1.3 Review of Causal Set SSEE for Nested Causal Diamonds in
M2

In order to set the stage we review the results of [86] for causal sets approximated by the
nested causal diamonds D2

` ⊂ D2
L ⊂M2, with side lengths 2L > 2` (see Figures 4.1 and 4.3).

In this special case, one can make comparisons with the continuum results of [18] which
made use of the fact that the continuum SJ modes for D2

L are explicitly known [21]:

fk(u, v) = eiku − eikv | k =
nπ

L
, n ∈ Z±

gk(u, v) = eiku + eikv − 2 cos kL | k ∈ ker(tan(kL)− 2kL)

m→∞−−−→
(
m− 1

2

)
π

L
≈ mπ

L
, m ∈ Z±.

In the UV limit, i.e., for large k, the SJ spectrum takes the simple form λk = L
k

for both
sets of modes. In this limit, these modes moreover become linear combinations of the same
plane waves, but are out of phase. Thus the UV part of the SJ spectrum for both modes
can be characterised by an integer n, with k = nπ

L
.

For a causal set approximated by D2
L, the SJ spectrum was calculated using the d = 2

causal set retarded Green function [86]. Figure 4.2 shows a comparison of the continuum
and causal set SJ spectra for D2

L which match up to the characteristic “knee” mentioned in
the Introduction. As the sprinkling density ρ = N/V increases, the knee in the causal set
SJ spectrum occurs at larger k values.

The continuum SSEE was calculated in [18] for D2
` ⊂ D2

L using a cutoff a = 1/kmax and
shown to satisfy the expected “area” law of (4.2). However, the analogous calculation in the
causal set, yielded a volume law, S(c) ∝ N , rather than an area law [86].

This surprising feature, which is markedly different from the continuum result, can be
traced to the shape of the causal set SJ spectrum. As evident in Figure 4.2, beyond the knee
the causal set SJ spectrum contains a large number of near zero eigenvalues, which are absent
in the continuum. In the causal set SSEE, (4.8), the generalised eigenvector v is required to
lie outside the kernel of ∆CO . However, because of the nature of the causal set discretisation,
fluctuations near the cutoff scale ρ−1 can yield eigenvectors that are “almost” but not strictly
in the kernel. This is true in general of the discrete-continuum correspondence: as one gets
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closer to the spacetime discreteness scale ρ−1, the relative fluctuations get larger. Thus, it is
reasonable to expect that at such scales, the causal set SJ spectrum will deviate significantly
from the continuum.

Indeed, as shown in [86], truncating the SJ spectrum of both i∆C as well as i∆CO around
this knee has the effect of giving back the expected d = 2 “area law” as in the continuum.
Such a truncation can be motivated by appealing to the fact that the SJ modes fk, gk are
combinations of plane wave modes with wavenumber k = 2π

ν
, where ν is the wavelength.

The causal set discreteness then gives a natural choice for the minimum wavelength νmin ∼
ρ−1/2 = 2L/

√
N . Since k ∼ nπ

L
for large k, this suggests a truncation to retain as many modes

as nmax ∼
√
N . The dimensionless causal set SJ eigenvalue λcs is related to the dimensionful

continuum SJ eigenvalue λ by λcs = ρ
2
dλ. This means that λmin = L2

πnmax
corresponds to

λcsmin ∼
√
N

4π
when we truncate the SJ spectrum with nmax ∼

√
N .

The choice of
√
N modes can also be justified by appealing to another aspect of the

continuum picture. In the conventional spatial way of understanding a quantum field and
its EE, the field is quantised on a spatial Cauchy hypersurface and the contributions to the
EE come from the field modes on that Cauchy hypersurface. In the continuum we do not
expect to have more field modes contribute to the SSEE than in the spatial case, when we
are working with domains of dependence. While the space of our solutions dim(∆) = N is
larger, the space of independent solutions given by the Im(i∆) should remain the same as in
the spatial picture. We expect the latter to be given in terms of the spatial volume (here the
length) of the Cauchy hypersurface, so that the number of non-redundant solutions ∼

√
N

(where we have singled out the time-symmetric t = 0 diameter of the causal diamond).
Alternatively, since λ has a dimension of (length)2, we may assume that it is more generally

the product of an IR scale and a UV scale, λcsmin ∼ ρ
1
2L ∼

√
N . We note that since the number

of the eigenvalues is ∼ N , the reduction to
√
N modes is a very non-trivial restriction.

Thus, we have a number truncation characterised by nmax which gives the number of
(largest in magnitude) eigenvalues that are retained, or alternatively, a magnitude truncation
λcsmin which gives the minimum magnitude of the eigenvalues that are retained. These are
related in D2

L by

λcsmin =
N

4πnmax

, (4.9)

but this relation may not hold more generally.

Once the truncation scheme is decided, the truncation needs to be implemented twice.
This is the double truncation followed in [86] which we describe in some detail below for the
specific case of D2

` ⊂ D2
L. Our notation is a little heavy for the sake of clarity, but we will

shed it for simpler notation subsequently.

The first truncation nmax ∼
√
N or λcsmin ∼

√
N

4π
is on the SJ spectrum in D2

L, which
therefore also truncates the operator i∆t

L and therefore the SJ Wightman function WL to
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W t
L. After the first truncation the region beyond the knee in the SJ spectrum of i∆L is

removed, leaving behind a residual power law behaviour. Next, when i∆t
L is restricted

to D2
` , i.e., i∆t

`(x, x
′) ≡ ∆t

L(x, x′)|` the knee reappears once again in the spectrum of the
corresponding integral operator i∆t

` in D2
` . Hence a second truncation with n`max ∼

√
N` is

necessary in the spectrum of i∆t
`, which we denote by i∆tt

` . Finally, the restrictionW t
l ≡ W t

L|`
of W t

L to D2
` , must then be further projected onto this smaller (double) truncated subspace

of the eigenbasis of i∆t
`, to give us W tt

l . Note that i∆tt
` is not the operator obtained after

truncating the spectrum of the Pauli-Jordon operator i∆` in D2
` .

The reappearance of the knee in the spectrum of Im(i∆t
`) can be traced to the fact that

the Pauli-Jordan integral operators i∆̂L and i∆̂` are defined over different integral domains
and hence the spectrum of i∆̂` cannot be obtained from a restriction of that of i∆̂L. This
“non-locality” is an important feature of the SJ vacuum. Most importantly, without this
second truncation, the full set of “near zero” elements in Im(i∆t

`) is not removed and this
gives rise to a too-large SSEE.

This gives us a template for implementing the double truncation procedure more gener-
ally, for any CO ⊂ C. Thus, the first truncation is performed on the SJ spectrum of i∆̂C

to give the truncated operator i∆̂t
C , and its associated Wightman function W t

C(x, x′). The
restriction of the truncated Pauli-Jordan function i∆t

CO
(x, x′) = i∆t

C(x, x′)|CO corresponds

to an operator i∆̂t
CO

in CO, i.e., for x ∈ CO, i∆̂t
CO
◦ v(x) = i

∑
x′∈CO ∆t

CO
(x, x′)v(x′).

The second truncation is then performed on the spectrum of i∆̂t
CO

, which yields the

operator i∆̂tt
CO

, as well as the projection W tt
CO

of the restriction W t
C(x, x′)|CO to this second

truncated eigenbasis. Thus the double truncated SSEE version of (4.8) is

S(c) =
∑
µ

µ ln |µ|, W tt
CO
◦ v = iµ∆tt

CO
◦ v, ∆tt

CO
◦ v 6= 0, (4.10)

where tt denotes the double truncation procedure described above. We now drop the “tt”
superscript for simplicity of notation, and refer to the spectrum as either truncated or un-
truncated.

4.1.4 Generalised Truncation Schemes

In what follows, we discuss ways in which to generalise the truncation procedure in D2
L

without explicit knowledge of the SJ spectrum in the continuum. Out of the several pos-
sibilities, the ones that would closely mimic the continuum would be those that satisfy an
area law relation for the SSEE compatible with the Bekenstein-Hawking entropy, as well as
complementarity.

We consider causal sets obtained by sprinkling into the finite volume “slab” between
[−T, T ] in dS. As discussed in Section 4.1.1, the south and north Rindler-like wedges RoS
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and RoN are complementary to each other, and intersect only at the equator of the t = 0
3-sphere. In the dS slab, these regions have hyper-hexagonal boundaries (see Figure 4.4).
Both RoS and RoN are also time-symmetric and are the domains of dependence of time-
symmetric t = 0 Cauchy slices, which are the Southern and Northern hemispheres of the
3-sphere, respectively.

Since the SJ spectrum of the hyper-hexagon is not known, we cannot resort to compar-
isons with the continuum as in the nested diamonds. In the course of our investigations we
tried a very large number of different truncation schemes. Of these we focus on two particu-
lar schemes which we think are physically motivated and simple to generalise and moreover,
give an SSEE which satisfies an area law.

The first choice we make is an estimation of the number truncation nmax, inspired by
the nested d = 2 diamonds, where nmax =

√
N for each of the two sets of modes. This

was motivated by the fact that the number of modes should be proportional to the spatial
volume of a Cauchy hypersurface. A natural generalisation of this is

nmax = αN
d−1
d . (4.11)

Note that the identification of the spatial volume is neither uniquely nor covariantly defined,
and hence there is no unique choice of α; in particular one can deform the Cauchy hyper-
surface to one that has arbitrarily small spatial volume. In our investigations of the nested
causal diamonds in M4 (Section 4.2.3) we experimented with several values of α, including
that corresponding to the volume of the time symmetric slice. In the de Sitter case, this
latter factor turns out to be too large, leading to too small a truncation. As a result, we
focus here only on values of α which give the most reasonable results, i.e., α = 1, 2.

Our second choice is a new truncation scheme, which we dub the linear scheme. Since the
SJ spectrum in the causal set is a power law and therefore linear in the log-log plot, up to a
characteristic knee, it is reasonable to truncate the spectrum at the point where this linear
regime ends. This requires an estimation of the end of the linear regime in the log-log plot.
One method is to use the change in the slope of the logarithms of the data. We implement
this in the following way: First, the logarithms of each nth eigenvalue are taken along with
the logarithm of its label n. Then the slope of the line between each nearest neighbor pair7

of data points is computed. Due to fluctuations in the causal set data, these slopes also
fluctuate when going from one pair’s slope to the next, even in the (approximate) power law
regime. In order to smooth out these fluctuations, the slopes are binned and averaged. Then,
a smooth interpolating function is fit to the averaged slopes. This interpolating function can
then be used to track the drop in the slope and set the truncation number or magnitude. The
region of nearly constant (negative) slope m is first identified, and the estimation of the knee
corresponds to a drop to a more negative m′. A choice is then made of the fractional drop
δ = m−m′

m
to obtain the knee. We take the magnitude of the eigenvalue at this estimated

7An alternative method, which yields similar results, is to take the slopes of more than than a pair (say,
every 50) of nearest eigenvalues.
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knee as our magnitude truncation, or the number nmax (rounded to the nearest integer) at
which this happens as our number truncation. We have explored various choices of δ, also
allowing it to be different in the slab and in the Rindler-like wedge.

An advantage of the linear truncation over the generalised number truncation (4.11) is
that it is covariantly defined, without appealing to any features of a Cauchy surface and
the associated ambiguity of choosing a proportionality constant. There is of course the fine
tuning that comes with the choice of δ and the hope is to be able to find a suitable range of
values, as much as the quality of data allows.

Figure 4.5: Slopes of the log-log SJ spectrum in dS4. Data points are binned averages and
the curve is an interpolating function fit to the data.

In all the cases we study, the numerically generated causal set SJ spectrum can addition-
ally be used to estimate the power law behaviour of λcs as a function of n. Rescaling the
spectrum by ρ−

2
d collapses the data in the linear regime, so that

ρ−2/dλcs =
b

na
, (4.12)

where the exponent a and the constant b can be determined empirically. For D2
L, for example,

a = 1 and b = 1/(4π). For the dS2, dS4 slabs and associated Rindler-like wedges these values
are given in the following table, where the slab height has been chosen to be T = 1.2.

This also allows us to translate nmax (picked either by the number or linear truncation
method) into a magnitude truncation λcsmin for this choice of T . We have not however studied
the effect of varying T on the parameters a and b and whether or not the spectrum can be
collapsed to a universal form.
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Spacetime Slab Wedge
dS2 a ∼ 1, b ∼ 1.68 a ∼ 1, b ∼ 0.26
dS4 a ∼ 0.25, b ∼ 2.16 a ∼ 0.36, b ∼ 0.78

Table 4.2: The values of parameters a and b in (4.12) determined from the spectrum of i∆
in the regions considered.

4.2 Results

The simulations presented here were performed using Mathematica on an HP Z-8 workstation
with 320GB pooled RAM. For larger N values, a significant fraction of this pooled memory
was used in the simulation, when all the trials for fixed N are parallelised. The results
presented here are the culmination of extensive exploration of various truncation schemes,
including certain magnitude truncations not described in Section 4.1.4. Here we only present
results from the two described in Section 4.1.4 and for choices of α and δ which best satisfy
the criterion of an area law compatible with the Bekenstein-Hawking entropy. As mentioned
in Section 4.1.4, the two Rindler-like wedges are indentical and hence complementarity should
be automatically satisfied. In our investigations, we also calculated the SSEE for a causal
diamond in the slab spacetime, whose complement is not necessarily a causal diamond, but
for this work we present results only from the Rindler-like wedges, since these are of most
interest for the dS horizons. For completeness we also present the results for the nested
causal diamonds in M4.

4.2.1 dS2

In dS2, the two complementary regions RoS and RoN are each conformal to causal diamonds.
The simulation results we present are for a slab of dS2 of height T = 1.2 into which we sprinkle
causal sets with sizes 〈N〉 ranging from 2000 to 16000.

Figure 4.6 shows the dependence of the SSEE withN without truncating the SJ spectrum.
The SSEE clearly scales linearly with N and therefore obeys a spacetime volume law, as in
the case of the d = 2 nested diamonds [86].

Next we implement the truncation schemes discussed in Section 4.1.4 for the SJ spectrum
for a causal region of cardinality Ns. For each 〈N〉, we run 10 simulations for the number
truncation while we run 5 simulations for the linear truncation. For the latter, the estimation
of the linear regime is done for the SJ spectrum in the slab as well as for the SJ spectrum
in the Rindler-like wedges.

For the number truncation (4.11) we work with α values of 1 and 2, the latter being the
analogue of the 2d causal diamond truncation.8

8Note that while nmax in our review of the 2d causal diamond denoted the maximum number of modes of
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Figure 4.6: Untruncated SSEE vs. N in the dS2 slab of height T = 1.2 for the two Rindler-
like wedges RoS and RoN (shown in green and blue). The best fits are shown.

For the linear truncation scheme, different values of δ were explored. We found that the
one most compatible with the area law is δ ∼ 0.1 in both the slab and the Rindler-like wedge.

In Figure 4.7a we show the log-log plot of the untruncated causal set SJ spectrum of the
dS2 slab, with these three choices for truncation marked. All three clearly lie in the linear
regime, with the linear truncation being the closest to the knee. In Figure 4.7b we show the
log-log spectrum of the generalised eigenvalue equation before and after truncation. What
is striking is the drastic reduction in not only the number but also the magnitude of the
eigenvalues. It is this feature that seems to make it possible to recover an area law after
truncation.

Finally, in Figure 4.8 we show the SSEE calculated using the above three truncations
for both RoS and RoN . For each truncation, on the left we show the fit to the logarithmic
behaviour

S(c) = a lnN + b, (4.13)

(where the expected value of a is 1/6) and on the right, the fit to the volume behaviour
aN + b. The errors in the best fit parameters are given below these values. The fit and
corresponding uncertainities are found using the least square method. We see in all three
cases that the data has a high degree of scatter, which is also the case for the d = 2 nested
diamonds [86] and seems to be a characteristic of d = 2. All cases are reasonably consistent
with an area law, but the linear truncation is surprisingly more consistent with a volume
law. All cases also satisfy complementarity up to Poisson fluctuations.

From these results we conclude that the truncation that is closest to the expected EE

each family of f and g eigenfunctions, here we refer to it as the total number of eigenfunctions irrespective
of degeneracies. Hence the two-fold degeneracy of the 2d diamond amounts to keeping a total of 2

√
N

eigenvalues in the terminology henceforth.
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Figure 4.7: (a) The SJ spectrum for an N = 104 causal set sprinkled into the dS2 slab.
Three different truncations choices are marked. (b) The spectrum for the SSEE (4.8) with
and without these truncations.

values is the choice nmax = 2
√
N , with a and b values given in Figure 4.8b. This case gives

a ∼ 0.18 which is closest to the expected value of 1/6.

4.2.2 dS4

The dS4 slab is again taken to have height T = 1.2. We consider causal set sprinklings with
〈N〉 ranging from 2000 to 16000.

In Figure 4.9 we show the untruncated SSEE which again clearly scales linearly with N
and therefore obeys a spacetime volume law.

We present results for three choices of truncations, the number truncations nmax =
N

3
4 , 2N

3
4 and the linear truncation. We run 10 simulations for each fixed 〈N〉 for both

types of truncation. As in dS2, for the latter, the estimation of the linear regime is done for
the SJ spectrum in the slab as well as for the SJ spectrum in the Rindler-like wedges. We
find that a choice of δ ' 0.15 for both the slab and the Rindler-like wedge spectrum gives
the best results.

Note that since the knee is fairly sharp in the log-log spectrum, even a seemingly large
tolerance does not lead to very drastic changes in the spectrum but does change the SSEE
so obtained.

In Figure 4.10a we show the causal set SJ spectrum in the dS4 slab with the different
truncations marked, and in Figure 4.10b we show the generalised spectrum with and without
these truncations. Again the broad features are the same – the truncations lie in the linear
regime of the SJ spectrum and drastically cut down both the magnitude and number of the
generalised spectrum. However, the differences in the generalised spectrum post truncation
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(a) Number truncation with nmax = N
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(b) Number truncation with nmax = 2N
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(c) Linear truncation

Figure 4.8: SSEE vs. N with three different choices of truncation in dS2. The green and blue
represent the data for the two Rindler-like wedges. A comparison of the two fits a lnx + b
and ax+ b is shown on the left and the right for each choice of truncation.
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Figure 4.9: Untruncated SSEE vs. N in a dS4 slab of height T = 1.2 for the two Rindler-like
wedges RoS and RoN (shown in green and blue). The best fits are shown.
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Figure 4.10: For N = 10k in dS4, (a) is the spectrum of i∆ with different truncations marked,
and (b) is a plot of the solutions of the generalised equation (4.8) for these truncations.

are more marked in d = 4.

The area law for the SSEE for dS4 is given by

S = a
√
N + b. (4.14)

With T = 1.2, we expect a ∼ 0.17 for the Bekenstein-Hawking entropy for the dS horizon
(4.6). In Figure 4.11 we show the results for the SSEE. We note that interestingly, the scatter
is far less than in d = 2, which makes the results easier to interpret.

In all cases we see that an area law and complementarity are compatible with the data,
but that the linear truncation scheme is also compatible with a volume law. The number
truncations nmax = N

3
4 , and nmax = 2N

3
4 give a much more convincing area law.
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A comparison with the Bekenstein-Hawking formula however shows that all the values
of a in Figure 4.11a exceed the expected value of a = 0.17. So even though an area law is
obtained, it is one that contains more entropy than expected. For nmax = N

3
4 the SSEE is

about 5 times larger, and the difference is even greater for nmax = 2N
3
4 .
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(a) Number truncation with nmax = N
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(b) Number truncation with nmax = 2N
3/4
s

Perhaps this is not surprising because we do not know the proportionality constant α in
(4.11), although it is reasonable to expect an α of order 1. The linear truncation gives an
SSEE area law that is closer to the expectation, although the coefficient again is in excess.

4.2.3 Nested Causal Diamonds in M4

Here we present some results for nested causal diamonds in M4 which is a non-trivial exten-
sion of the M2 case.

We consider a similar set up to M2, namely nested causal diamonds D4
` ⊂ D4

L ⊂M4. The
causal complement O′ ⊂ D4

L of D4
` is connected and is the domain of dependence of a d = 3
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Figure 4.11: SSEE vs. N with different choices of truncation in dS4. The green and blue
represent the data for the two Rindler-like wedges. A comparison of the two fits a

√
x + b

and ax+ b is shown on the left and the right for each choice of truncation.

O

O′

Figure 4.12: A nested causal diamond O and its complement O′ in 3d.

open ball with a concentric spherical hole. We show this connectivity in Figure 4.12, where
one of the dimensions has been suppressed.
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In D4, the entropy-area relation S = A/4 of (4.3) is

S = πr2, (4.15)

where r is the radius of the smaller diamond. The expression in the causal set, (4.5), is

S(c) =

√
3π

2
(r/R)2

√
N, (4.16)

where R is the radius of the larger diamond. In our simulations we set r/R = 0.6, therefore
we expect S ≈ 0.78

√
N .

We consider a number truncation with nmax = N3/4 in all regions, as well as a number
truncation with nmax = N3/4 in D4

L and D4
` while n′max = 2N3/4 in the complement of D4

` .
The motivation for the factor of 2 in the latter number truncation is that the relative spatial
volume of the subset of the t = 0, time-symmetric Cauchy slice that lies in the complementary
region is around twice as large as the subset that lies in D4

` . We also consider the linear
truncation with m′ = −0.25− |ε| and ε = 0.05 (or δ = 0.2) in all regions.

In the simulations, we consider 〈N〉 values ranging from 4000 to 18000. For each 〈N〉 we
consider 5 realizations.
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Figure 4.13: For N = 10k, (a) is the spectrum of i∆ with different truncations marked, and
(b) is a plot of the solutions of the generalised equation (4.8) for these truncation schemes.

In Figure 4.13a we show the SJ spectrum for D4
L, and where the truncations we consider

lie. We also show the SSEE eigenvalues µ in Figure 4.13b for one realization. The causal
set SSEE without truncation is shown in Figure 4.14 and can be seen to obey a spacetime
volume law as anticipated.

Next, we show in Figure 4.15 how the SSEE is modified with the application of the
various truncations. An area law is recovered with the two number truncations nmax ∝ N3/4,
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Figure 4.14: SSEE vs. N without truncation. Green represents the data for D4
` and blue

represents its complementary region. The best fits are shown.
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3/4
s
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(b) Number truncation with n′max = 2nmax = 2N
3/4
s
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(c) Linear truncation

Figure 4.15: SSEE vs. N with different truncations. Green represents the data for D4
` and

blue represents its complementary region. A comparison of the two fits a
√
x+ b and ax+ b

is also shown. Here n′max is the number truncation in the region complementary to D4
` .

while the linear truncation is more consistent with a volume law. This is similar to what
we found in the dS cases we studied above. The area law coefficients in most cases are ∼ 1
and are therefore close to the expected value 0.78. What is more challenging and non-trivial
here, compared to the dS cases, is achieving complementarity. The geometries of D4

` and its
complement are very different (see Figure 4.12) and therefore the truncations ought to take
this difference into account.

As we can see by comparing Figures 4.15a and 4.15b, it is correct to truncate the comple-
mentary region more than D4

` . The SSEE can get closer to satisfying both complementarity
and the expected area law coefficient if one appropriately tunes the proportionality constant
in nmax ∝ N3/4. As discussed in the main text, we do not have a covariant argument by
which to uniquely set this proportionality constant. In the absence of such an argument, we
do not pursue tuning the constant(s).

4.3 Violation of Causality

Before concluding, we mention another unavoidable consequence of truncation. The matrix9

∆ is constructed from GR and GA, this contains ∆xy = 1 if y ≺ x, ∆xy = −1 if x ≺ y and 0
otherwise. When we truncate the eigenbasis of i∆ the new Pauli-Jordan matrix ∆tr contains
new entries which are non-zero even when x and y are unrelated i.e., there is a violation of
causality.

As an example consider a random causal set obtained by sprinkling 6 points in D2
` . The

9We ignore the i for now as it is irrelevant for this discussion.
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eigenvalues of i∆ are {2.876,−2.876, 0.851,−0.851, 0, 0}, as a sample truncation we retain
only the higher value. Below we show what happens to ∆ post truncation

0 0 0 1 1 1
0 0 0 1 0 1
0 0 0 1 0 1
−1 −1 −1 0 0 1
−1 0 0 0 0 1
−1 −1 −1 −1 −1 0


truncation−−−−−−→


0 0.13 0.13 1.09 0.56 1.09

−0.13 0 0 0.83 0.39 0.96
−0.13 0 0 0.83 0.39 0.96
−1.09 −0.83 −0.83 0 −0.26 1.09
−0.56 −0.39 −0.39 0.26 0 0.83
−1.09 −0.96 −0.96 −1.09 −0.83 0


The extra numbers that appear in ∆ post truncation are small and come with ± signs. A

Figure 4.16: A sample causal set with 15 elements along with the relations is shown. The
red lines on the right are the extra relations that are introduced due to the truncation of i∆.

possibility is to think of these as fluctuations arising from the truncation of an individual
causal set. Since the continuum will correspond to an ensemble of causal sets this kind of
fluctuation could “average” out to zero. Of course we would have to specify what is meant by
averaging. Each time we sprinkle, not only the number of points but the points themselves
are different hence it cannot be a simple average of matrix entries. Even if such an averaging
procedure could be devised and these extra relations be shown to average to zero it does not
tell us why we need the truncation in the first place. As we have seen, truncation seems to
be an essential ingredient in making sense of the SSEE.

Finally, in the context of the equations of motion on the causal set, we can also interpret
the truncation as augmenting the Ker(i∆). The is motivated from the fact that in the

continuum we expect the set of solutions of �̂ to be a very small subset of its domain. The
remaining part of the domain is spanned by its image. From (3.15) this would imply that
the Ker(i∆) is much larger than its image. Hence by truncating the spectrum of i∆ we are
in fact increasing the size of its kernel. To quantify these ideas and put them on stronger
footing would require a thorough study from all these directions.
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4.4 Discussion

Numerical studies such as the one we have carried out in this paper have shown that an excess
in the coefficient of the SSEE area law due to the small eigenvalues of the SJ spectrum is a
common occurrence, and thus generically gives rise to a volume rather than an area law. Here
we have presented evidence that the causal set SSEE for dS2,4 horizons satisfies a volume
rather than an area law, when the full causal set SJ spectrum is used.

On implementing certain double truncation schemes on the SJ spectrum, inspired by
the D2

L case, we show that area laws can be obtained, which also, as expected, satisfy
complementarity. In this sense, the properties of the causal set SSEE obtained in [86] for
the nested causal diamonds D2

` ⊂ D2
L appear to be universal.

Out of the many truncation schemes explored in dS2, the number truncation nmax = 2
√
N

gave results most compatible with the Bekenstein-Hawking entropy, though even in this case,
the coefficient of the SSEE area law is in excess by ∼ 8%. In dS4, the linear truncation gave
the best results, but the coefficient is in excess of the expected value for the dS4 horizon by
∼ 30%. In M4, the number truncation n′max = 2nmax = 2N

3/4
s gave the best results, the

larger concern in this case being the clear lack of complementarity.

The following ideas need to be explored further -

� An important question is whether this over-estimation of the area law coefficient is
generic or whether it can be removed by fine tuning the values of α and δ and bettering
our data. In our investigations, several choices of these parameters have been scanned,
with the values presented here being the most optimal in terms of the area law and data
compatible with complementarity. While the possibility always exists of further fine-
tuning, or using a different truncation scheme, this is not necessarily helpful without
further physical understanding. One might of course also resort to the possibility that
N is not large enough and what we are seeing are finite size effects. In light of the fact
that bigger and faster computers are always on the horizon, this can be checked, but
as mentioned before, we are perhaps at the optimal values, given current limitations
on available RAM. We believe these studies suggest a deeper origin to these questions
which cannot be fully understood by further numerical studies alone.

� In all cases we find an over-estimation of the SSEE area law coefficient in the truncated
case and the volume law in the untruncated case. A possible reason for this could lie
in the fact that the causal set dS SJ vacuum is distinct from the known Mottola-
Allen vacua in the continuum. The SSEE (4.8) does not specify a choice of vacuum.
However, the SJ vacuum is the only way we know how to define a vacuum in the causal
set, while in the continuum, it is a unique covariant choice. Does this modified discrete
vacuum then imply a profound change in our understanding of the Bekenstein-Hawking
entropy? If so, how can this be compatible with effective field theory descriptions of
horizon entropy?
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� Even if a truncation scheme could be found that does not lead to an overestimation,
the truncation procedure comes with its own additional questions. As discussed in
section 4.3, in the nested causal diamonds in M2, the truncation leads to a violation of
causality. Such a violation needs to be explained and it points to the need for a deeper
understanding of the truncation process.

� What also needs to be understood better is the untruncated volume law and the na-
ture of the extra contributions that lead to it. The fact that the SSEE obeys a volume
law without truncation seems to arise from the non-locality of the causal set. As dis-
cussed in [90] systems with long-range order exhibit volume rather than area laws. The
non-locality in a causal set, which enables an element near the past boundary to be
linked to one near the future boundary, is fundamental to the discrete-continuum cor-
respondence. Localising influences near sets of measure zero, even if they are genuine
horizons, are not commensurate with this feature. Thus, a volume law seems partic-
ularly convincing in causal set theory. However, since area laws are a fundamental
feature of General Relativity, which causal set theory must approximate, locality must
be emergent, and with it, an area law for the SSEE.

� While the causal set offers a ready covariant spacetime cutoff, the recovery of an area
law for the SSEE is highly non-trivial for the case of dS. Suggestions in [87] for a
deeper understanding from an Algebraic QFT perspective need to explored further.
Recently the continuum dS SJ spectrum in the slab has been found analytically [67],
and offers us a possible route to calculating the continuum dS SSEE, and hence finding
a more physically motivated truncation.

It is possible that the detailed nature of the UV physics cannot come from causal sets
that are manifold-like at all scales and that the modification to dS on the smallest of scales
can have an effect on the SJ spectrum and in turn on the SSEE. This conjectured modified
UV behaviour may be the missing ingredient, but we are far from an understanding of what
this might be.
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Chapter 5

Conclusions

The overarching theme of this thesis is quantum field theory of a free scalar on fixed causal
sets approximated by Minkowski and de Sitter spacetimes. We begin with the construction of
causal set retarded Green functions on curved backgrounds. We extended previous results to
a Riemann normal neighbourhood and to regions of de Sitter (dS) and anti de Sitter (adS)
spacetime. We then use the Sorkin-Johnston (SJ) construction to go from the retarded
Green function to the Wightman function W . This construction does not require a choice
of timelike Killing vector and hence is a covariant way to define the vacuum via W . We
find that the vacuum so obtained in a symmetric slab of dS spacetime is not one of the well
known Mottola-Allen α-vacua and discuss why this might be the case. The analysis was
done on a causal set in a finite region of dS and our results show asymptotic convergence.
Finally we use Sorkin’s covariant spacetime entanglement entropy formulation to compute
the entanglement entropy associated with dS horizons. We find that the entropy satisfies a
volume law which can be traced to the non-locality inherent in the causal set. However, we
were also able to identify that this contrast with the continuum may be due the difference in
the spectrum of the Pauli-Jordan (PJ) operator. By truncating this spectrum appropriately
we recover an area law. Finally, we compare this entropy to the Bekenstein-Hawking entropy.

This work is an exploration of ideas that have been proposed in causal set quantum
gravity over the last 3 decades. Specifically, ideas related to working with quantum fields
on fixed background causal sets. Our focus here has been on causal sets approximated by
de Sitter spacetime. Although we have been able to show several results starting from first
principles, it has also thrown up other, deeper questions about the nature of fundamental
discreteness and the discrete-continuum correspondence. We have discussed these questions
in detail in the thesis. We also reiterate some of the broader questions here

� There are multiple candidates for a Green function in a causal set and it is impossible
to choose one without an explicit comparison with the continuum. If we consider
causal sets to be more fundamental then we must have an inherent choice based on
some physical principle. Recent work on the construction of discretized wave operators
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based on the idea of a preferred past may help resolve some ambiguities [53].

� In continuum dS spacetime, the α-vacua are the complete set of available dS invariant
vacua. A new vacuum that doesn’t fall in this family may have phenomenological
consequences for early universe cosmology. However, our result is obtained in a finite
region and the comparison is only asymptotic. There are also basic differences in the
construction of the SJ vacuum (the L2 inner product and discreteness) and we need a
better analytic understanding of it.

� The SJ construction is entirely covariant and does not explicitly rely on the symmetries
of spacetime. However when we work with causal sets in a finite region we may be
breaking these symmetries, at least near the boundaries. As we have suggested, this
might be the reason for the difference between the SJ vacuum and the α-vacua. A
study on the status of symmetries while working with causal sets in finite regions of
spacetime is needed. One way to do this is to use non-symmetrical boundaries for the
slab i.e., instead of the spacelike boundaries of the slab we could use slanted or boosted
boundaries. Any boundary effects will reflect in the form of W . Other deformations
of the boundaries can also be considered.

� It is important to understand the thermal properties of the SJ vacuum. In the context
of horizons such descriptions always reveal important geometric properties of the un-
derlying region. In this context a comparison of the SJ vacuum with known thermal
vacua should be helpful.

� The spacetime entanglement entropy arising from causal sets is a volume dependent
quantity and, apart from the need to compare with the continuum, there is no funda-
mental reason why it must follow an area law. This disconnect between the causal set
volume law and the continuum area law needs a satisfactory explanation.

� A truncation is needed in the spectrum of the PJ operator in order to get an area
law for the entanglement entropy. This truncation can be traced back to the question
of equations of motion on the causal set. Although we have tried several ways of
implementing the truncation, there is no clarity on the need for it or a reason to pick
one way over another. The choice of truncation as well as the initial value formulation
on causal sets need to be studied further.

� Numerical studies of Sorkin’s spacetime entanglement entropy in dS2,4 and in M4 give
us area laws with coefficients larger than what we expect from known results. We expect
that the entanglement entropy may account for a part of the horizon entropy, it may
be an underestimate because we consider only the free scalar field. An overestimate
signals a flaw in our understanding.

To conclude, we comment on the relevance of computational results in quantum gravity.
Unlike many other areas of physics, the problem of quantum gravity is aggravated by the
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lack of phenomenology. In such a scenario, to check new hypothesis, we are dependent on
indirect tools like mathematical consistency, low energy limits, analog models etc. Recently,
emphasis has been on using computational methods in QG [91] - numerical relativity toolkits,
Monte Carlo for evaluating the path integral in various approaches, AI in pattern recognition
and dynamics etc. These methods give us (1) a chance to test scenarios that are analytically
intractable, (2) intuition about phenomenon like black hole entropy which are not directly
observable. It is possible that major insights in quantum gravity will be along the directions
indicated by numerical results.
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