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Abstract

The nuclear star clusters (NSCs) orbiting massive blackholes (MBHs) at the centres
of many galaxies are the densest known stellar systems, where the number density of
stars can exceed those in globular clusters by a factor of 1000. The morphologies
and kinematics of NSCs are varied (Seth et al., 2006), and questions concerning
their dynamical evolution form the subject of this thesis. These are motivated by
observations of the inner regions of the nearest two NSCs: the lopsided nuclear disc
of M31 (Lauer et al., 1993), and the Milky Way NSC with its spheroid of old stars
(Genzel et al., 2010) and a remnant disc of young stars (Yelda et al., 2014). The
thesis explores the gravitational dynamics and kinetics of NSCs within the radius of
influence of the MBH. The research presented is the first application of the general
theory of secular dynamics and kinetics by Sridhar & Touma (2016a,b, 2017).

Secular dynamics and kinetics

We study NSCs consisting of N⋆ ≫ 1 stars, of total mass M , orbiting a MBH of
mass M• ≫ M . Hence the NSC is a Keplerian stellar system with the mass ratio
ε = M/M• ≪ 1 as the natural small parameter for studying dynamical problems.
Since the gravitational force due to the Keplerian potential of the MBH dominates,
stellar orbits can be thought of as Keplerian ellipses over the short orbital period,
Tkep. The orbital elements of these ellipses vary over the longer secular timescale,
Tsec ∼ Tkep/ε, due to other sources of gravity like cluster self-gravity, external tidal
fields and general relativistic effects.

The long term, or secular, evolution of orbits can be followed by averaging the
dynamics over the fast Keplerian orbital phase, a standard method in planetary
dynamics deriving from Gauss. Secular dynamics conserves the semi-major axis
of every Keplerian elliptical orbit. Each star can be thought of as a Gaussian
Ring, which is a Keplerian ellipse of constant semi-major axis (with the stellar
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mass distributed uniformly in time along the ellipse) whose other orbital elements
deform over times Tsec. Then secular dynamics, thermodynamics and kinetics are all
about the study of mutual gravitational interactions between N⋆ ≫ 1 precessing and
deforming Gaussian Rings.

Since the Keplerian energy of every orbit is conserved, the rings can only exchange
angular momenta. According to Rauch & Tremaine (1996) mutual gravitational
torquing can lead to a state of relaxation in the distribution of angular momentum
over different orbits. They estimate that this Resonant Relaxation (RR) would occur
over a timescale, Tres ∼ N⋆ Tsec. In contrast classical two-body relaxation (where
there are energy exchanges as well) proceeds over the longer timescale T2b ∼ Tres/ε,
which can be greater than the Hubble time. Over timescales much shorter than
Tres, secular evolution is effectively collisionless and the NSC may be thought of
as consisting of an infinite number of stars, each of infinitesimal mass, the whole
having a fixed total mass M . Angular momentum exchange is mediated by the mean
self-gravitational field of the NSC. As an example of the kind of dynamical questions
that can be studied, within the theoretical framework of Sridhar & Touma, consider
the following which is the subject of Part IA:

Keplerian stellar discs orbiting a nuclear MBH are probably ubiquitous. The
best studied cases are the Keplerian discs at the centre of the Milky Way
and M31. The former has a disc of young stars that could have formed in a
fragmenting, circular accretion disc around the MBH. Then we expect that
the initial stellar orbits should have small eccentricities and the same sense
of rotation (i.e. no counter-rotation) about the MBH. But Yelda et al. (2014)
found that the mean eccentricity of the stellar orbits is ē ≃ 0.27. Is this largish
value the result of secular instabilities?

The thesis consists of two parts, divided into collisionless and collisional secular
dynamics.

Part I. Collisionless dynamics of stellar cusps and discs

A. Secular Collisionless Instabilities of Keplerian Stellar Discs (Chapter 2).

B. Deformation of the Galactic Centre stellar cusp due to the gravity of a growing
gas disc (Chapter 3).
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(a) t = 0 Gyr (b) t ≃ 0.06 Gyr (c) t ≃ 4.05 Gyr

Fig. 1 Evolution of a waterbag band in eccentricity plane: (a). The initial axisymmetric
system with narrow range of eccentricities; (b). The linear collisionless regime of evo-
lution with appearance of m = 4 unstable mode; (c). The collisionlessly relaxed nearly
axisymmetric state with a wide spread in eccentricities. (Figure courtesy Mher Kazandjian)

Part II. Resonant Relaxation of Keplerian stellar discs

A. Numerical exploration of the Fokker-Planck equation for an axisymmetric Keplerian
disc (Chapter 4)

B. Inclusion of gravitational polarization in the Fokker-Planck equation (Chapter 5).

Part I. Collisionless dynamics of stellar cusps and discs

A. Secular Instabilities of Keplerian Stellar Discs

Kaur K., Kazandjian M. V., Sridhar S., Touma J.R. 2018,

MNRAS(https://doi.org/10.1093/mnras/sty403)

We present idealized models of razor–thin, axisymmetric, Keplerian stellar discs
around an MBH, and study non-axisymmetric secular instabilities in the absence of
either counter-rotation or loss cones. This is done by combining analytical methods
from Sridhar & Touma (2016a) with numerical simulations derived from Touma et al.
(2009). The discs we consider are prograde monoenergetic waterbags, whose phase
space distribution functions are constant for orbits within a range of eccentricities
(e) and zero outside this range.

The linear normal modes of waterbags are composed of sinusoidal disturbances of
the edges of distribution function in phase space. Waterbags which include circular
orbits (polarcaps) have one stable linear normal mode for each azimuthal wavenumber
m. The m = 1 mode always has positive pattern speed (in the same sense as the
stars orbit the MBH) and, for polarcaps consisting of orbits with e < 0.9428, only
the m = 1 mode has positive pattern speed. Waterbags excluding circular orbits
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(bands) have two linear normal modes for each m, which can be stable or unstable.
We derive analytical expressions for the instability condition, pattern speeds, growth
rates and normal mode structure. Both m = 1 and m = 2 modes are always stable,
whereas modes with m ≥ 3 can be unstable. Narrow bands are unstable to modes
with a wide range in m.

Numerical simulations confirm linear theory and follow the non-linear evolution
of instabilities. Long-time integration suggests that instabilities of different m grow,
interact non-linearly and relax collisionlessly to a coarse-grained equilibrium with a
wide range of eccentricities. These non-axisymmetric instabilities provide a pathway
for transition from one axisymmetric state to another, accompanied by collisionless
relaxation of eccentricities. The Figure 1 shows the evolution of a waterbag band
undergoing m = 4 instability in the linear regime, and the final collisionlessly relaxed
state.

B. Deformation of the Galactic Centre stellar cusp due to the gravity of
a growing gas disc

Kaur K., Sridhar S. 2018, MNRAS (https://doi.org/10.1093/mnras/sty612)

The nuclear star cluster surrounding the massive black hole at the Galactic Centre
consists of young and old stars, with most of the stellar mass in an extended, cuspy
distribution of old stars. The compact cluster of young stars was probably born in
situ in a massive accretion disc around the black hole (Levin & Beloborodov, 2003).
We investigate the effect of the growing gravity of the disc on the orbits of the old
stars, using an integrable model of the deformation of a spherical star cluster with
anisotropic velocity dispersions.

A formula for the perturbed phase space distribution function is derived using
linear theory, and new density and surface density profiles are computed. The
cusp undergoes a spheroidal deformation with the flattening increasing strongly
at smaller distances from the black hole. The Figure 2a showcases the density
deformation (ρ1) isocontours – ρ1 is positive close to the equatorial plane of the
disc (for 57.37◦ < θ < 122.63◦) and negative otherwise. The Figure 2b shows the
intrinsic axis ratio of density and surface density (as seen from different lines of sight)
isocontours against the major axis; the axis ratio is nearly 0.8 at the distance of
0.15 pc from MBH. Stellar orbits are deformed such that they spend more time near
the disc plane and this explains the resultant flattening of the cluster. Linear theory
accounts only for orbits whose apsides circulate. The non-linear theory of adiabatic
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Fig. 2 Deformation of Star Cluster :(a). Density deformation (ρ1)– Solid curves are for
ρ1 > 0, and dashed curves are for ρ1 < 0; the dotted straight line at θ = 57.37◦ is for
ρ1 = 0. Here rc = 1 pc. The structure of deformation implies flattened morphology for
deformed cluster. (b). Axis ratios for density (ρ) and surface density (Σ) isocontours, for
different line-of-sight inclinations i0. The distance along the horizontal axis is in parsec.

capture into resonance is needed to understand orbits whose apsides librate. The
mechanism is a generic dynamical process, and it may be common in galactic nuclei.

Part II. Resonant Relaxation of Keplerian stellar discs

A. Numerical exploration of the Fokker-Planck equation

Manuscript under preparation

We present a numerical code for the solution of the Fokker-Planck equation,
derived by Sridhar & Touma (2017), for razor-thin, axisymmetric, monoenergetic
Keplerian stellar discs. The resonant relaxation (RR) current density depends on the
behaviour of the distribution function (DF), f(ℓ), in its entire domain, ℓ ∈ [−1, 1],
where ℓ is the normalized angular momentum of a stellar orbit (as in Part IA). Hence
the Fokker-Planck equation is a self-consistent, integral partial differential equation
(pde). The RR current is driven by apsidal resonances; for the current at ℓ to be
non-zero, there should exist ℓ′ such that the corresponding apse precession rates (Ω),
satisfy the resonant condition Ω(ℓ′) = Ω(ℓ). We employ a “conservative” scheme for
discretization of the integral pde. The cumulative DF is interpolated with a cubic
spline, providing a smooth continuation of the DF within the grid and ensuring
the conservation of norm upto high precision. The apse precession rate for highly
eccentricity rings is very small, and completely vanishes when ℓ = 0. As a result
there is in general a region in ℓ-space around ℓ = 0 for which apsidal resonances
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do not occur, local currents vanish and hence the DF in the region remains frozen.
Due to the presence of this non-resonant region and diffusion of angular momentum
outside it, there is an accumulation of mass just near the boundary of the region.
The end states turn out to be dynamically stable to non-axisymmetric modes. It is
important to check the thermal stability of these states by numerical simulations,
which will be pursued in future.

B. Inclusion of gravitational polarization in the Fokker-Planck equation

Manuscript under preparation

The above numerical study of RR of Keplerian axisymmetric discs is based on
the Fokker-Planck equation derived by Sridhar & Touma (2017), where the effects of
“gravitational polarization” were ignored. Here we derive the first-order polarization
corrections to the RR current density. As earlier, it turns out that the polarization
current is non-zero only in the presence of apsidal resonances, and hence the net
current vanishes in the region of non-resonance. We also present a class of exact,
stationary solutions of the Fokker-Planck equation that are not entropy maximizing
DFs. Linear dynamical stability (which occurs on the secular timescale) of a subclass
of DFs can be demonstrated analytically, and numerically for some other cases. It is
not yet clear whether these DFs are also thermally stable (thermal instability occurs
over the much longer RR timescale). Further progress requires comparison with
numerical simulations and efforts to derive a Fokker-Planck equation for the RR
evolution of non-axisymmetric discs.
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Chapter 1
Introduction

Centres of galaxies host extreme astrophysical environments. Accumulation of mass
in the deep gravitational potential wells at the galactic centres is thought to lead
to the extreme conditions required for the growth of massive black holes (MBHs).
MBHs accreting gas and stars are the central engines powering quasars and active
galactic nuclei (AGNs) (Rees, 1984; Krolik, 1999). MBHs are also inferred in nearby
galaxies by dynamical modelling of stellar kinematics (Kormendy & Richstone,
1995; Kormendy & Ho, 2013). The central MBHs have a wide range of masses
∼ 105 − 1010 M⊙. Orbiting the MBHs are densely-packed nuclear star clusters
(NSCs), whose dynamics and kinetics is the subject of this thesis.

Characteristics of NSCs: NSCs have stellar densities ∼ 103 times that of globular
cluster cores (Böker et al., 2004), making them the most crowded stellar systems
in the universe (Walcher et al., 2005; Misgeld & Hilker, 2011; Norris et al., 2014).
Their half-light radii are typically of the order 3-5 pc, as revealed by Hubble Space
Telescope (HST) observational studies (Böker et al., 2002; Georgiev & Böker, 2014).
Their stellar masses span a wide range ∼ 106 − 108 M⊙(Norris et al., 2014). Owing
to multiple episodes of star formation, these systems generally have diverse stellar
populations corresponding to different generations of stars (Walcher et al., 2006;
Rossa et al., 2006; Seth et al., 2006; Lyubenova et al., 2013). Their metallicities are
in general higher than that of globular clusters, which consist of older populations
of stars (Walcher et al., 2006; Rossa et al., 2006; Puzia & Sharina, 2008; Paudel
et al., 2011). Interestingly, both the central MBHs and NSCs respect certain scaling
relations with their host galaxies. These scaling relations are with regard to their
masses (Scott & Graham, 2013; Georgiev et al., 2016) and stellar populations or
colors (Turner et al., 2012). The relations suggest co-evolution of the combined
central MBH - NSC with the host galaxy.
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Formation of NSCs: NSCs likely retain a record of the accretion history of the
central MBH. As gas falls towards the centre of galaxy, it might form a massive
accretion disc about the MBH, which can undergo fragmentation in its outer cool
regions forming stars (Levin & Beloborodov, 2003). The compact stellar disc of young
stars at the Galactic Centre (see § 1.1.1), and inner compact disc (corresponding to
P3; explained later in § 1.1.2) in M31 nucleus are two classic candidates for in situ
star formation in NSCs. As a result, some distinct morphological characteristics arise,
and the young blue stellar structures are observed to have compact flatter or more
oblate geometries, compared to the redder and extended stellar spheroids composed
of older generation of stars (Seth et al., 2006; Carson et al., 2015). Recurrent gas
inflow and star formation events (Bekki et al., 2006; Bekki, 2007; Antonini et al.,
2015) lead to multiple stellar populations. The studies of NSCs to reconstruct the
complex star formation history, also help to probe the formation and growth of
central MBH. Other competing mechanism of formation of these star clusters can be
infalling star clusters (formed in the outer regions) due to dynamical friction, leading
to their merger adding to the NSC (Tremaine et al., 1975; Capuzzo-Dolcetta, 1993;
Capuzzo-Dolcetta & Miocchi, 2008a,b; Agarwal & Milosavljević, 2011; Antonini,
2013; Gnedin et al., 2014; Arca-Sedda & Capuzzo-Dolcetta, 2014). It is believed that
both these scenarios can occur and contribute to the growth of NSCs (Hartmann
et al., 2011; Neumayer et al., 2011; Turner et al., 2012; De Lorenzi et al., 2013;
Feldmeier et al., 2014; den Brok et al., 2014; Antonini et al., 2015). Also, there is the
hybrid scenario of infalling and merging of gas-rich clusters (Guillard et al., 2016).

Co-existence of MBHs and NSCs: The exploration of a sample of nearby galaxies
by Neumayer & Walcher (2012) suggests that the massive galaxies with total stellar
mass ≳ 1012 M⊙ have tendencies to host only MBH at their centres, while smaller
galaxies with total stellar mass ≲ 1010 M⊙ generally host only NSCs. The interme-
diate stellar mass range 1010 − 1012 M⊙ galaxies tend to contain NSC with MBH at
their centre. In this thesis, we focus on the stellar dynamics of an NSC within the
radius of influence of its central MBH. Orbital structure, overall cluster morphology,
gravitational instabilities, and collisional evolution resulting in orbital relaxation
– form the main part of the subject-matter presented. The morphology controls
the gas and stellar dynamics in the region and hence, the feeding of the central
MBH. Relaxation effects due to “stellar collisions” are important to understand the
mutual angular momentum exchanges, and can be the key to interpret the tidal
disruption event (TDE) rates (Rauch & Tremaine, 1996; Rauch & Ingalls, 1996;
Madigan et al., 2018; Wernke & Madigan, 2019) and stellar feeding of MBH (Bahcall
& Wolf, 1976; Hopman & Alexander, 2006a,b). Many relativistic dynamical studies
predict the event rates of stellar binary black hole (BBH) mergers and extreme-mass
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ratio inspirals (EMRIs), leading to gravitational wave emission detectable by aLIGO1

and LISA2 (Kupi et al., 2010; Merritt et al., 2011; Bar-Or & Alexander, 2016; Stone
et al., 2017; Hamers et al., 2018).

Stellar Dynamics in the vicinity of an MBH: The earliest studies of stellar
dynamics investigated feeding of stars to an MBH through two-body relaxation and
proposed the formation of cuspy stellar density profile around the central MBH
(Bahcall & Wolf, 1976; Cohn & Kulsrud, 1978). Young (1980) studied the collisionless
formation of a stellar cusp due to the adiabatic growth of the MBH. Goodman &
Binney (1984) explored changes in stellar orbital distribution as a result of the
growth of the MBH. The studies by Gerhard & Binney (1985) demonstrated the
destruction of box orbits in the inner parts of a triaxial galaxy hosting an MBH. The
detailed photometric and kinematic observations of galaxy centres by state of the
art telescopes (Very Large Telescope (VLT), Keck Telescope, HST) have resolved the
region of influence of central MBH for some nearby galaxies (the Galaxy and M31).
The double nucleus of M31 (Lauer et al., 1993) was explained as a lopsided eccentric
disc of stars on aligned Keplerian orbits about a central MBH by Tremaine (1995).
Rauch & Tremaine (1996) proposed the phenomenon of resonant relaxation driving
the collisional evolution of stellar system surrounding MBH. These two pioneering
works ushered an era of numerical studies on dynamics and statistical mechanics of
stellar systems within the region of influence of an MBH. Sridhar & Touma (2016a,b)
(henceforth ST16a,b) provided a theoretical framework for both the collisionless and
collisional evolution of NSCs. This thesis consists of some of the first applications of
ST16a,b.

In this chapter, we discuss the motivations and basic theoretical framework for
the work presented in later chapters. In § 1.1, we describe some interesting features
of the two nearest NSCs belonging to the Galaxy and M31. In § 1.2, the secular or
long-term dynamics of a star cluster within the region of influence of central MBH,
is introduced. § 1.3 and § 1.4 summarize the collisionless and collisional secular
dynamics respectively, and the formalism of ST16a,b. The structure of the thesis is
outlined in § 1.5.

1.1 Nearby Nuclear Star Clusters

The thesis investigates stellar dynamics of an NSC orbiting an MBH, in the region
where gravitational potential of the MBH dominates. Unfortunately these compact

1Advanced Laser Interferometer Gravitational-Wave Observatory
2Laser Interferometer Space Antenna
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regions are not yet resolved by even the present biggest telescopes for most of the
galactic nuclei. Here, we discuss the characteristics of the two nearest NSCs for
which the region of influence of MBH is well-resolved.

1.1.1 Milky Way NSC

The Galactic centre source Sgr A∗ is thought to be an MBH with mass of about
4×106 M⊙. This is surrounded by an NSC of 2.5×107 M⊙ with a half-light radius of
about 4 pc, consisting of late-type (old, > 1 Gyr) stars (Genzel et al., 2010; Schödel
et al., 2014; Boehle et al., 2016; Gillessen et al., 2017). There also exists a less
massive cluster of early-type (young, < 10 Myr) stars within ∼ 0.5 pc (Buchholz
et al., 2009; Do et al., 2009; Bartko et al., 2010; Fritz et al., 2016). Recent work
has refined our knowledge of the distribution of the old stars (Gallego-Cano et al.,
2018; Schödel et al., 2018). Within about 3 pc of the MBH the density profile of
resolved faint stars and sub-giants and dwarfs (inferred from diffuse light) is cuspy,
and well-described by a single power-law. But red clump and brighter giant stars
have a similar cuspy profile only beyond a projected radius of about 0.3 pc, inside
which they display a core-like surface density profile.

Fig. 1.1 Galactic NSC: Stellar distribution within [Left] ∼ 1 pc and [Right] ∼ 0.08 pc
distance from MBH (denoted by a “+”). Early-type stars are shown in blue, while late-type
stars are in red. The circle on the right encloses S-star cluster. [Figure from Genzel et al.
(2010)]

There are about 200 young stars in a compact cluster of size ≲ 0.5 pc around the
MBH, including WR stars, O, B type main sequence stars, giants and supergiants
(Allen et al., 1990; Krabbe et al., 1991; Ghez et al., 2003; Paumard et al., 2006; Bartko
et al., 2010; Do et al., 2013). Stellar orbits have a range of eccentricities, inclinations
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and orientations, with about 20% in a clockwise disc that extends between about
0.03 − 0.13 pc, with mean eccentricity ∼ 0.3 (Yelda et al., 2014). Outside ∼ 0.13
pc, the orbital planes are much more scattered. It has been suggested that the
young stars were probably born in situ in a starburst event in a massive, fragmenting
accretion disc around the MBH (Levin & Beloborodov, 2003).

The distribution of O/WR stars of the young stellar disc has a sharp cut-off
at ∼ 0.03 pc (∼ 1′′). But, the distribution of B-type stars continues further inside
this radius, and is called the S-star cluster. There are nearly 40 stars within the
central arcsecond, whose orbitals parameters have been determined, and employed
to further constrain the MBH mass and its distance from the sun (Gillessen et al.,
2017). Spectroscopic studies give the ages of the B-type stars to be within 6-400
Myr (Eisenhauer et al., 2005; Genzel et al., 2010). Their orbital structure has
been constrained by various studies (Schödel et al., 2003; Eisenhauer et al., 2005;
Ghez et al., 2005; Gillessen et al., 2009, 2017). The orbital planes are nearly
isotropically distributed, and eccentricity distribution favours high eccentricity orbits.
The timescales of two-body relaxation are too long in the region, and cannot explain
this apparently relaxed orbital distribution of young stars. Many studies (Perets &
Gualandris, 2010; Madigan et al., 2011; Antonini & Merritt, 2013; Hamers et al.,
2014) have tried to understand the orbital distribution of S-stars as arising from the
more efficient secular mechanism of resonant relaxation (Rauch & Tremaine, 1996),
discussed in the § 1.2.

1.1.2 M31 NSC

Observations from balloon–borne telescope Stratoscope II (Light et al., 1974) first
revealed the asymmetric nucleus of M31, with its off-centred peak brightness. Then
HST photometric observations (V and I band) by Lauer et al. (1993) showed a
double-nucleus with two distinct peaks in surface brightness images. The brighter
peak P1 is ∼ 2 pc away from the fainter one named P2, which nearly coincides
with the centre of the host bulge. Ultraviolet excess detected in the vicinity of P2
suggested the presence of an MBH (Dressler & Richstone, 1988; Kormendy, 1988;
King et al., 1995). Later, HST spectroscopy (Lauer et al., 1998) resolved a peak P3
shining in ultraviolet, embedded within the P2 region (on the side of P1 along the line
joining P1 and P2). This compact feature was modelled as a compact rotating disc
of young massive A-type stars about a central MBH of mass ∼ 1.4× 108 M⊙ (Bender
et al., 2005).
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Fig. 1.2 Triple nucleus of M31: P1-P2 double nucleus made up of relatively old stars
(mainly in V and I bands) is shown in orange; P3 composed of young stars appears as a
central peak in U band shown in blue. The figure shows the central 11′′

.65× 11′′
.65 square

of the M31 nucleus. [Figure from Lauer et al. (1998)]

Tremaine (1995) interpreted the P1-P2 double nucleus as an eccentric disc of
K-type stars (Lauer et al., 1993, 1998) moving on nearly Keplerian elliptical orbits
whose apsides are closely aligned in direction. The stars orbiting Keplerian ellipses
move slowly near their apoapses and hence, the bright off-centred peak P1 can be
interpreted as the location of the apoapses of stellar orbits. The fainter P2 is probably
close to the periapses of the elliptical orbits where the stellar velocities are highest.
The spectroscopic studies of Bender et al. (2005) also lend further support to the
eccentric disc model. The velocity dispersion peak lies in the P2 region (opposite
to side of P1) indicative of the location of periapses. The rotation curve (Dressler
& Richstone, 1988; Kormendy, 1988; Bacon et al., 1994; van der Marel et al., 1994;
Bender et al., 2005) is nearly symmetric about P2, indicating the close-proximity of
P2 to the dynamical centre of the nucleus.

The triple nucleus of M31 hosts two nested discs – (a). the inner circular disc
corresponding to P3 lying within ∼ 0.8 pc, (b). the outer lopsided disc corresponding
to P1-P2 extending to roughly 8 pc. The discs are nearly coplanar and orbit the
MBH in the same sense (Bender et al., 2005). A kinematic axisymmetric disc model
of inner disc of young stars gave an MBH mass ∼ 1.4× 108 M⊙ (Bender et al., 2005).
The discovery of the intriguing lopsided double nucleus P1-P2 by Lauer et al. (1993)
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and the subsequent eccentric disc model of Tremaine (1995), initiated an era of stellar
dynamical studies in the vicinity of MBH. Many extensions of the eccentric disc
model were explored and lopsided dynamical equilibria were constructed (Statler,
1999; Bacon et al., 2001; Salow & Statler, 2001, 2004; Sambhus & Sridhar, 2002;
Peiris & Tremaine, 2003; Brown & Magorrian, 2013). Kazandjian & Touma (2013)
gave a model for self-consistent stellar dynamical origin of the double nucleus. They
simulated linearly unstable counter-rotating stellar discs, and studied the growth
and evolution of instabilities. After the initial growth of a lopsided m = 1 mode
(where m is the azimuthal wavenumber), there is non-linear evolution saturating to
a massive lopsided uniformly precessing disc, embedded in a triaxial star cluster.
These models qualitatively resemble both photometric and kinematic features of the
M31 nucleus. The authors proposed mergers of stellar nucleus with counter-rotating
star clusters (infalling from outer regions due to dynamical friction) as a possible
origin mechanism for the double nucleus.

Note that there exist some nearby galaxies which are observed to host lopsided
nuclei (Lauer et al., 1996, 2005; Gültekin et al., 2011) similar to M31. Lauer
et al. (2005) observed a sample of 65 early-type galaxies and ∼ 20% of them, have
observational features consistent with lopsided galactic nuclei.

1.2 Secular Dynamics of Keplerian Star Clusters

We consider an NSC of mass M orbiting an MBH of mass M• ≫ M . The cluster
consists of N⋆ ≫ 1 stars, whose dynamics is governed by the combined gravitational
field of the MBH, other stars in the NSC and massive external perturbers (if present).
Within the radius of influence rin of the MBH (Binney & Tremaine, 2008), the
Keplerian potential dominates, because the regions of interest are far outside the
Schwarzschild radius r• = 2GM•/c

2, and hence general relativistic effects can be
neglected. Hence, these systems can be termed as Keplerian star clusters within the
spatial domain defined by r• ≪ r ⩽ rin.

The orbits of the constituent stars of the Keplerian star cluster would be closed-
orbit confocal Keplerian ellipses, if the weaker gravitational potential of the star
cluster (and also other possible perturbers) is entirely neglected. As a result of
the weak gravitational forces due to cluster’s self-gravity and external perturbing
masses (and possibly weak general relativistic effects), these Keplerian elliptical
orbits deform and precess over timescales much longer than Keplerian orbital period.
This long-term or slow dynamics of Keplerian elliptical orbits of the Keplerian star
cluster is termed secular dynamics.
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In order to eliminate the fast Keplerian motion, the dynamics is averaged over
the fast Keplerian orbital phase. This method comes from Gauss in the field of
planetary dynamics, and hence is called Gauss averaging (Murray & Dermott, 1999).
This is mathematically implemented by averaging the system Hamiltonian over the
fast Keplerian phase as discussed in § 1.2.3. The corresponding physical picture
implies that a star (point mass) is spread over its Keplerian elliptical orbit such that
resulting linear mass density is inversely proportional to the local Keplerian velocity.
The resultant elliptical rings, called as Gaussian Rings, precess and deform over
secular timescales that are longer than Kepler orbital times. A well known property
of the secular dynamics is the conservation of the semi-major axes of Gaussian Rings,
while they undergo secular precession and deformation. Gauss averaging leads to
reduced dynamics, because one of variables (i.e. the fast Keplerian orbital phase) is
averaged over and hence, disappears from the problem.

In the averaged dynamics, the system can be considered to be made up of N⋆

Gaussian Rings (instead of point mass stars). The mass ratio ϵ = M/M• ≪ 1 is
the natural small parameter of the problem. The Keplerian orbital times TKep =
2π
√
a3/(GM•) corresponding to a Gaussian Ring of semi-major axis a. In the

collisionless limit of dynamics, the Ring precession due to the mean-gravitational
potential of the cluster, occurs over long secular timescale Tsec ∼ TKep/ϵ (Sridhar
& Touma, 1999, 2016a). The collisional effects of granularity of the system and
stochastic interactions among discrete Gaussian Rings become significant over still
longer times. Rauch & Tremaine (1996) (hereafter called RT96) proposed the
collisional mechanism of resonant relaxation (RR) which leads to the relaxation of
the angular momentum distribution of the system over the RR timescale Tres ∼ N⋆Tsec

(RT96, ST16b). These two limits of secular dynamics are discussed further in the
§ 1.3 and § 1.4.

Secular dynamics occurs in five-dimensional (three-dimensional) Ring phase space
for Keplerian star cluster of general morphology (planar disc structure). The Ring
space variables are discussed below along the lines of ST16a.

1.2.1 Ring Space Variables

Three-Dimensional System: Let r and u be the relative position and velocity of a
star with respect to (wrt) the central MBH. Instead of the physical space variables
{r,u}, the dynamics of Keplerian stellar system assumes its simplest form in the
Delaunay variables, which are a set of action angle variables for the exact Keplerian
potential. Since the Keplerian stellar system is a perturbed Kepler problem, it is
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Fig. 1.3 Orbital elements of a Gaussian Ring in three-dimensions: The orbital motion of
star is in anti-clockwise sense about the MBH located at the origin. N and N ′ are the
ascending and descending nodes; P is periapse of the Ring.

more physically illuminating to use the Delaunay variables, which can be expressed
simply in terms of the physical orbital elements {a, e, i, w, g, h} of a star orbiting
along a Gaussian Ring. Here a is the semi-major axis of the Ring, with e eccentricity,
and i inclination of its orbital plane wrt the reference xy-plane. h is the longitude
of ascending node wrt reference x-axis, and g is the argument of periapse wrt the
ascending node. Here i and h fix the orbital plane of the Ring, while g measures the
orientation of the Ring in the orbital plane itself. These orbital elements are shown
in Figure 1.3. The mean anomaly w = Ωkep tp measures the fast Keplerian phase
covered in the time tp elapsed since periapse passage of the star (orbiting along the
Ring), where Ωkep =

√
GM•/a3 is the Keplerian orbital frequency.

Below we give the three-dimensional Delaunay Variables explicitly in terms
of these physical variables (Plummer, 1960; Murray & Dermott, 1999; Binney &
Tremaine, 2008):

I =
√
GM•a , w (1.1a)

L = I
√

1− e2 , g (1.1b)
Lz = L cos i , h . (1.1c)

On the left side {I, L, Lz} are the actions and on the right side {w, g, h} are
their conjugate angles. I is a measure of the Keplerian energy of a Ring EKep =
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−GM•/(2 a) = −(GM•)2/(2 I2), L is the magnitude of angular momentum and Lz

is the z-component of angular momentum of the Ring. Since the fast Keplerian
phase w is averaged over in secular dynamics, the Ring space is five-dimensional
with the Ring variables R ≡ {I, L, Lz, g, h} for systems with general morphology.
The motion of a Ring is confined to the four-dimensional subspace, I = constant.
But this motion is governed by the gravitational attraction of Rings of different I.

Two-Dimensional System: A planar Keplerian stellar system is composed of Gaussian
Rings lying in the xy-plane (say). It requires only four orbital elements {a, e, w, g}
to specify the full dynamical state of a star. Three of these elements a , e and w

have the same physical meaning as in the three-dimensional case. But g now refers
to the longitude of periapse wrt to the reference x-axis. These orbital elements are
shown in Figure 1.4. The two-dimensional version of the Delaunay Variables (ST16a)
is given as:

I =
√
GM•a , w (1.2a)

L = σI
√

1− e2 , g (1.2b)

where σ = 1 (−1) for anti-clockwise (clockwise) orbital motion of the star about
the MBH. Here L is the angular momentum of a Ring which, unlike the three
dimensional case, can be positive or negative. For planar discs, the Ring space is
three-dimensional with the Ring variables R ≡ {I, L, g}, and motion of a Ring is
confined to the two-dimensional, I = constant, surface.

1.2.2 Transformation to Delaunay Variables

The first step of Gauss averaging is the representation of the physical space variables
{r,u} in terms of the Delaunay variables.

Three-Dimensional System: The position vector r = (x, y, z) can be expressed in
terms of the orbital elements as (Plummer, 1960; Murray & Dermott, 1999; Sambhus
& Sridhar, 2000):


x

y

z


=



CgCh − CiShSg −SgCh − CiShCg SiSh

CgSh + CiChSg −SgSh + CiChCg −SiCh

SiSg SiCg Ci





a(Cη − e)

a
√

1− e2 Sη

0


(1.3)
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Fig. 1.4 Orbital elements for a Gaussian Ring in two-dimensions: P represents the periapse
of Keplerian orbit of a star around the MBH (located at origin).

where S ≡ sine and C ≡ cosine of the angles given as subscripts. Here η is the
eccentric anomaly and is related to the mean anomaly by w = (η − e sin η). The
eccentricity e =

√
1− L2/I2 and inclination i = cos−1(Lz/L). The radial distance

from the MBH is r =
√
x2 + y2 + z2 = a(1 − e cos η). The velocity vector u can

be expressed in terms of Delaunay variables by using the definitions of the action
variables:

I = GM•√
−2Ekep

= GM•

[2GM•

r
− u2

]−1/2
(1.4a)

L = |r×u| (1.4b)

Lz = (r ×u) · ẑ . (1.4c)

Two-Dimensional System: The position vector r = (x, y) for a planar system can be
expressed as (ST16a):

x = a (Cη − e)Cg − σ a
√

1− e2 Sη Sg (1.5a)

y = a (Cη − e)Sg + σ a
√

1− e2 Sη Cg (1.5b)
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where σ = Sign(L) and is positive (negative) for the anti-clockwise (clockwise)
circulation of star along the Ring as defined earlier. Here g is the longitude of
periapse measured from the reference x-axis in a counter-clockwise sense. The
velocity vector u is again given by the definitions of two-dimensional Delaunay
actions:

I = GM•√
−2EKep

= GM•

[2GM•

r
− u2

]−1/2
(1.6a)

L = (r×u) · ẑ . (1.6b)

After expressing the system Hamiltonian in terms of Delaunay variables using
the suitable transformations given above, the averaging over the fast Keplerian phase
w is done, as illustrated below for a test Ring.

1.2.3 Introducing Averaged Dynamics

Here we demonstrate the method of Gauss averaging for the dynamics of a test
Gaussian Ring evolving under the gravity of a Keplerian stellar system of general
morphology.

The Hamiltonian HRe(r,u) for the corresponding test star in six-dimensional
real phase space {r,u} is:

HRe(r,u) = u2

2 −
GM•

r
+ ΦRe(r) (1.7)

where ΦRe is the sum of the cluster potential and the tidal potential of a static
massive external perturber. The first step is the canonical transformation to Delaunay
variables. Using the equation (1.4), the first two terms reduce to the Kepler Energy
EKep = −GM•/(2 a) = −(GM•)2/(2 I2) which is a function of only the action I.
The third term ΦRe can be expressed as a function of all six Delaunay variables
{I, L, Lz, w, g, h} using the equation (1.3). Then we average the Hamiltonian wrt
the fast orbital phase w giving the orbit-averaged Hamiltonian:

H(R) =
∮ dw

2π HRe = −1
2

(
GM•

I

)2
+ Φ(R)

where Φ(R) =
∮ dw

2π ΦRe(r) .

(1.8)
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Since the averaged Hamiltonian H is independent of the fast angle w, the conjugate
action I is conserved. Therefore, the first term representing the Keplerian energy is
constant, and can be dropped from the Hamiltonian. Then the Hamiltonian reduces
to H ≡ Φ. Hence, the Gaussian Ring evolves under the orbit-averaged gravitational
potential of the star cluster (and possible external perturbers). The Hamiltonian
equations of motion for averaged/secular dynamics are:

I =
√
GM•a = constant , (1.9a)

dL
dt = − ∂H

∂g
,

dg
dt = ∂H

∂L
, (1.9b)

dLz

dt = − ∂H
∂h

,
dh
dt = ∂H

∂Lz

. (1.9c)

A Gaussian Ring precesses changing its orientation in space due to evolving variables
{Lz, h, g}, and deforms due to evolving eccentricity e =

√
1− L2/I2, while its semi-

major axis a remains constant. Sridhar & Touma (1999) employed Gauss averaging
for secular dynamics of Keplerian star clusters and explored the nature of the more
ordered dynamics of stellar orbits within the radius of influence of the MBH. The
problem acquires greater complexity when the collective self-gravitational response
of the NSC is taken into account.

1.3 Secular Collisionless Dynamics

In the collisionless limit, the stellar system is approximated as a smooth mass
distribution, composed of an infinite number of Gaussian Rings, each of infinitesimal
mass, i.e. N⋆ →∞ and m⋆ → 0, such that the total stellar mass M = N⋆m⋆ remains
constant. The Rings precess and deform under the effect of the mean gravitational
potential of the cluster arising from the smooth mass distribution. This collisionless
behaviour appears as a continuous precession and deformation of Rings over the
secular time Tsec = TKep/ϵ; ϵ = M/M• being the small parameter as defined earlier
in § 1.2.

The double nucleus of M31 discovered by Lauer et al. (1993) was interpreted by
Tremaine (1995) as an eccentric disc of stars moving on aligned Keplerian orbital
ellipses. The pioneering idea led to further detailed numerical modelling of M31
lopsided nucleus as an asymmetric Keplerian stellar disc in several later works
described in § 1.1. Secular orbital dynamics, linear collisionless instabilities, non-
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linear collisionless evolution or violent relaxation, mode excitation by external masses
were the main lines of enquiry over the next three decades.

1.3.1 Development of Secular Collisionless Dynamics

Orbital dynamics: Sridhar & Touma (1997a,b); Merritt & Valluri (1999) worked
out stellar orbits for galactic-type potentials with a central MBH. Motivated by
the lopsided nuclei of M31 and NGC 4486B, Sridhar & Touma (1999) studied a
family of planar, non-axisymmetric potentials, and their orbital structure. They
identified two orbital families – lenses with librating Gaussian Rings and loops with
circulating Rings – for lopsided Keplerian discs. They also found a family of loop
orbits which are lopsided in the sense of the disc potential. The work explicitly
displayed the underlying ordering of dynamics in the region of influence of the
MBH and emphasized the importance of the secular conservation of a. The orbital
structure for three-dimensional Keplerian stellar systems with triaxial morphology
were explored by Sambhus & Sridhar (2000), Poon & Merritt (2001) and Merritt &
Vasiliev (2011). A family of centrophilic orbits was recognized, which could bring
stars close to the MBH. Merritt (2013) provides a review for these studies. It also
gives an account on general relativistic precession due to MBH in the post-Newtonian
limit.

Collisionless equilibria and linear stability: The simplest dynamical modelling
of NSCs deals with the construction of stable collisionless equilibria. The steady state
distribution functions (DFs) satisfying the criterion of stability to small perturbations
are constructed. The long-range nature of gravity complicates the analysis for even
simple morphologies giving integro-differential equations. The stability studies are
mainly confined to the two-dimensional Keplerian discs and spherical Keplerian star
clusters.

Sridhar et al. (1999) studied the secular lopsided m = 1 mode of a dynamically
cold Keplerian stellar disc, employing Laplace-Lagrange theory (Murray & Dermott,
1999) which is historically used mainly in planetary context. Lee & Goodman
(1999) explored non-linear m = 1 single-armed stationary spiral density waves in
Keplerian gaseous discs. They derived dispersion relation, angular momentum flux
and propagation velocity in the tight-winding limit by employing variational methods.
Tremaine (2001) recognized that the Laplace-Lagrange theory used by Sridhar et al.
(1999) is valid only for discs with no orbit crossing. He formulated a generic approach
to linear modes, and showed that stellar discs were stable to m = 1 lopsided modes
in the Wentzel-Kramers-Brillouin (WKB) limit; an integral eigenvalue problem for a
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‘softened gravity’ disc was also solved to determine linear secular modes. Jalali &
Tremaine (2012) studied the linear perturbations of Keplerian discs, and solved the
linearized collisionless Boltzmann equation (CBE) and Poisson’s equation to find
eigen-frequencies and shapes of modes. The m = 1 and m = 2 emerged as the two
prominent secular modes. They illustrated the excitation of secular modes due to
the fly-by of a massive perturber.

Touma (2002) derived the Laplace-Lagrange theory for softened gravity discs,
and showed that a small fraction of counter-rotating stars is sufficient to make an
axisymmetric Keplerian disc linearly unstable to m = 1 modes. He also proposed
that the merger of a counter-rotating cluster with the NSC as a possible origin
mechanism for M31 lopsided nucleus. The study also confirmed the stability of
prograde systems in agreement with previous results. Sambhus & Sridhar (2002)
showed that some fraction of stars should be on counter-rotating orbits to explain
the observed properties of the M31 nucleus.

Tremaine (2005) investigated the secular stability of non-rotating spherical Ke-
plerian star clusters and razor-thin axisymmetric discs. He found that DFs which
are decreasing function of angular momentum magnitude are stable. For the DFs
which are increasing function of angular momentum magnitude and have an empty
loss cone, all spherical systems are only neutrally stable and razor-thin discs are
generally unstable to lopsided m = 1 instability. These discs are non-rotating and
have DFs which are even functions of the angular momentum, which means equal
fractions of prograde and retrograde stars. The instability result was proved using
the Goodman (1988) variational principle. Polyachenko et al. (2007) studied the
monoenergetic (i.e. all Rings with equal semi-major axes) Keplerian star clusters
composed of nearly radial orbits. The authors showed the existence of loss-cone
instabilities given the retrograde apse precession (opposite to fast Keplerian orbital
motion) of Rings in the system. Spherical systems, with DFs as non-monotonic
functions of angular momentum, turned out to be unstable for spherical harmonics
l ≥ 3. Discs with a fraction of counter-rotating stars were found to be unstable to
all azimuthal wave-numbers m. Sridhar & Saini (2010) investigated m = 1 secular
instability for dynamically hot counter-rotating softened gravity discs. The linear
modes were analyzed in the WKB limit, and precession frequencies and growth rates
were explicitly computed. They constructed global modes for non-rotating discs,
with equal fractions of counter-rotating stars. The study was generalized by Gulati
et al. (2012), who studied global modes by solving the integral eigenvalue problem
for these discs, and calculated precession frequencies and growth rates.
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Non-linear evolution: Bacon et al. (2001) performed N -body simulations for
long-lived and uniformly precessing m = 1 modes in a thin Keplerian stellar disc.
They constructed collisionlessly relaxed end states, which resemble the observed
lopsided surface density profile and asymmetric mean velocity profile for M31 nucleus.
Jacobs & Sellwood (2001) also constructed long-lived non-linear m = 1 lopsided
modes in annular stellar discs by numerical simulations. Touma et al. (2009) applied
the algorithm proposed by Gauss to construct a numerical code for solving the
secular evolution of a finite number of interacting Gaussian Rings by softened
gravity. They demonstrated the growth of unstable m = 1 mode for counter-rotating
Keplerian discs, followed by non-linear evolution to a uniformly precessing lopsided
collisionless equilibrium. Touma & Sridhar (2012) used a two-population secular
collisionless Boltzmann equation to study the non-linear evolution of the counter-
rotating instability. They also explored the resultant uniformly precessing lopsided
configurations for their stability properties. Kazandjian & Touma (2013) performed
N -body simulations of counter-rotating axisymmetric thick discs, and demonstrated
collisionless relaxation to a lopsided massive disc embedded in a less massive and
diffuse triaxial cluster. The three-dimensional final state was found to be consistent
with the observed kinematic features of the M31 double nucleus.

ST16a formulated a general theory of non-linear secular evolution, by orbit
averaging the CBE over the fast Keplerian orbital phase using the method of multiple
timescales (Bender & Orszag, 1978). The NSC is described by a DF in the (reduced)
five-dimensional Ring phase space, and its evolution is described by a secular CBE
which includes the orbit-averaged effects of self-gravitational cluster potential, an
external gravitational potential and general relativistic effects due to MBH upto
1.5 post-Newtonian order. Linear perturbation theory was formulated to study
the secular stability of Keplerian star clusters. They also constructed some simple
collisionless dynamical equilibria by employing a secular version of Jean’s Theorem
and discussed their basic physical characteristics. They analyzed the linear secular
stability of some simple DFs for spherical clusters and razor-thin axisymmetric discs.
They found that the axisymmetric discs with DFs as monotonic function of angular
momentum, are linearly stable to all secular modes.

The collisionless studies included in Part I of the thesis, employ the formulation
given by ST16a, which is described below.
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1.3.2 Secular Collisionless Theory

The Ring space for a general Keplerian stellar system is five-dimensional, with
coordinates R ≡ {I; L, Lz, g, h}. For a discussion on two-dimensional Keplerian
stellar discs, refer to § 2.1 of Chapter 2. Here we discuss the general three-dimensional
case.

For secular studies, it is natural to define a slow time variable τ = ϵ× time. For
a given τ , the state of a Gaussian Ring is specified by the Ring variables R. Each of
the N⋆ →∞ Rings of the system is represented as a point R in the five-dimensional
Ring space. The mass distribution of Rings is described by a single-Ring probability
DF F (R, τ) = F (I; L, Lz, g, h, τ) which is normalized as:

∫
dRF (R, τ) =

∫
dI dL dLz dg dh F (I; L, Lz, g, h, τ) = 1 . (1.10)

A Gaussian RingR(τ) evolves under the orbit-averaged secular Hamiltonian, H(R, τ ) =
Φ(R, τ ) + Φext(R, τ ). Here the Ring potential Φ(R, τ ) due to cluster is equal to the
(scaled) orbit-averaged self-gravitational cluster potential. Φext(R, τ) is the (scaled)
orbit-averaged gravitational potential experienced by a Gaussian Ring due to an
external massive perturber. The Ring potential Φ(R, τ) is:

Φ(R, τ) =
∫

dR′ Ψ(R, R′)F (R′, τ) (1.11)

where
Ψ(R, R′) = −GM•

∮ ∮ dw
2π

dw′

2π
1

|r − r′| (1.12)

is the scaled interaction potential of two Gaussian Rings. It is straightforward to
verify that Φ(R, τ) is equal to ϵ−1 times the orbit-averaged self-gravitational potential
of the NSC.

Using equation (1.12) in (1.11), and upon slight manipulation, we have:

Φ(R, τ) = M•

M

∮ dw
2π

(
−GM

∫
dR′ dw′

2π
F (R′, τ)
|r − r′|

)
(1.13)

Transformation from real space variables {r, u} to Delaunay variables is a canonical
transformation, which respects the conservation of the phase space volumes and
hence, dr′ du′ = dR′ dw′/2π . Thus, the probability conservation during coordinate
transformation implies, the real space DF FRe(r′, u′, t) = F (R′, τ ); here t represents
the real time. Upon transforming to real space variables, the expression within
parenthesis “( )” in equation (1.13), equals the real space self-gravitational cluster
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potential ΦRe(r, t). Also, employing the definition of mass ratio ϵ, we have:

Φ(R, τ) = 1
ϵ

∮ dw
2π ΦRe(r, t) = Φ

ϵ
(1.14)

from equation (1.8). Similarly, Φext(R, τ) is the (scaled) orbit-averaged real space
gravitational potential due to an external perturber.

Ring orbits R(τ) are determined by the following Hamiltonian equations of
motion:

I =
√
GM•a = constant , (1.15a)

dL
dτ = − ∂H

∂g
,

dg
dτ = ∂H

∂L
, (1.15b)

dLz

dτ = − ∂H
∂h

,
dh
dτ = ∂H

∂Lz

. (1.15c)

This represents a Hamiltonian flow in R-space which is restricted to an I = constant
four-surface, and carries the DF F (R, τ) with it. The evolution of the DF F (R, τ)
is determined by the secular CBE:

∂F

∂τ
+[F,H] = 0 , [F,H] =

(
∂F

∂g

∂H

∂L
− ∂F
∂L

∂H

∂g

)
+
(
∂F

∂h

∂H

∂Lz

− ∂F
∂h

∂H

∂Lz

)
(1.16)

where [F,H] represents a four-dimensional Poisson Bracket wrt (L, g) and (Lz, h)
action-angle pairs. Note that H has an integral dependence on F , as evident from the
equation (1.11). Hence, the secular CBE is an initial value, integral partial differential
equation (pde), which governs the collisionless evolution of the DF F (R, τ) over the
secular timescales Tsec.

A collisionless equilibrium has DF F0(R) for which ∂F0/∂τ = 0 and hence
[F0, H0] = 0. Here H0(R) = Φ0(R) + Φext(R), with Φ0(R) equal to the scaled self-
gravitational cluster potential corresponding to the stationary DF F0(R). Φext(R)
is a time-independent external gravitational potential. It is important to note that
these collisionless equilibria are stationary only over timescales of order ∼ several Tsec,
but undergo the collisional evolution as mutual interactions among finite number of
constituent Gaussian Rings accumulate over longer collisional times Tres ∼ N⋆ Tsec.

The secular version of Jeans Theorem, derived in ST16a, implies that the sta-
tionary state DF F0(R) depends upon the phase space variables R only through
the time-independent isolating integrals of motion of Hamiltonian H0(R), and any
function of time-independent isolating integrals of H0(R) is a stationary solution
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of secular CBE. In secular dynamics, a general Keplerian stationary state always
has at least two isolating integrals, I and H0(R). Equilibria respecting symmetries
(spherical, axisymmetric) provide extra integrals of motion (L, Lz), so a richer variety
of equilibria are allowed in secular dynamics, when compared with general stellar
dynamics. ST16a constructed some simple collisionless equilibria with symmetric
spatial geometries and discussed their physical characteristics.

Let us consider a system in collisionless equilibrium defined by the DF F0(R)
and corresponding Hamiltonian H0(R) = Φ0(R) + Φext(R). Let Φ1,ext(R, τ) be a
weak time-dependent external potential perturbing the system with |Φ1,ext| ≪ |H0|.
The system responds by developing a small deformation F1(R, τ), so the total DF
F (R, τ) = F0(R) + F1(R, τ). The total self-gravitational potential is Φ(R, τ) =
Φ0(R) + Φ1(R, τ), where:

Φ1(R, τ) =
∫

dR′ Ψ(R, R′)F1(R′, τ) . (1.17)

The Hamiltonian of the deformed system isH(R, τ ) = H0(R)+Φ1(R, τ )+Φ1,ext(R, τ ).
The system evolves by secular CBE given in equation (1.16). Since the quantities F1,
Φ1 and Φ1,ext are small in magnitude, the linear treatment of problem reduces CBE
to its linearized form,

∂F1

∂τ
+ [F1, H0] = [Φ1 + Φ1,ext, F0] . (1.18)

The above linearized CBE (LCBE) is an integral pde for the integral dependence
of Φ1 on F1, evident in the equation (1.17). If the external perturber is absent, i.e.
Φ1,ext = 0, the LCBE determines the linear dynamical stability of F0. The above
equation reduces to a homogeneous integral pde and modal analysis leads to an
integral eigenvalue equation. If the solution F1(R, τ) grows in magnitude with time,
the initial stationary state is unstable. The general analysis with Φ1,ext ̸= 0 gives the
linear response of the system to the perturber. In Chapter 2 and 3, the LCBE is
used to study these dynamical aspects.

1.4 Secular Collisional Dynamics

The collisionless equilibria, described in the previous section, evolve over times much
longer than Tsec, due to the granularity of mass distribution of real stellar systems
with finite N⋆ ≫ 1. This collisional evolution occurs over much longer RR timescales
Tres ∼ N⋆Tsec.
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Classical two-body relaxation (Chandrasekhar, 1942, 1943a,b; Binney & Tremaine,
2008) considers an infinite homogeneous sea of stars where the stars move on straight
line orbits. This results in the diffusion of both energy and angular momentum.
But for Keplerian star clusters, stellar velocities inside the region of influence of the
MBH are large, so the coherence timescales for gravitational interactions among
two stars are typically less than Keplerian orbital timescales TKep. This makes the
two-body relaxation timescales T2b much larger than it would be in the absence of
the MBH; in many galactic nuclei T2b exceeds the Hubble time. RT96 proposed the
more efficient mechanism of RR (mentioned in § 1.2) which leads to a stochastic
exchange of angular momentum between pairs of stellar orbits, viewed as Gaussian
Rings. Stars that have lost net angular momentum would be on more eccentric orbits,
making them susceptible to close interactions with MBH. This can lead to direct
stellar feeding of MBH, tidal disruption of stars, EMRIs of compact stellar remnants
emitting low frequency gravitational waves (GWs) and a host of other interesting
phenomena (Alexander, 2017).

Degeneracy of the pure Kepler problem forms the basis of RR. The radial and
azimuthal orbital frequencies are equal leading to a closed elliptical orbit (fixed
Gaussian Ring). Since the dynamics of a Keplerian star cluster can be thought of as
a perturbed Kepler problem, the precession and deformation of Gaussian Rings occur
over longer secular times Tsec. Hence the coherence time for gravitational torquing
between two Rings is of order Tsec ≫ TKep. This extended period of interplay or
coherence between Gaussian Rings makes RR more efficient than classical two-body
relaxation. The two-body relaxation timescales T2b are order-of-magnitude greater
than the RR timescales Tres with the approximate relation, Tres ∼ ϵT2b, as shown by
RT96.

RR being driven by secular gravitational interactions between discrete Gaussian
Rings, does not lead to exchanges in Keplerian energies, because I =

√
GM•a is an

integral of motion in secular dynamics. Hence unlike classical two-body relaxation,
there is no energy relaxation among stars by RR. RT96 demonstrated the enhanced
rates of angular momentum relaxation both through order-of-magnitude estimates
and simulations. They suggested that the inner regions of galactic nuclei might be
relaxed in angular momentum, but not in energy. It is a bit complicated to describe
the relaxation of angular momentum, being a vector quantity. They presented
approximate analytical studies in the two extreme limits – scalar RR dealing with
the diffusion of the magnitude of angular momentum (or eccentricities of Gaussian
Rings), and vector RR dealing with the diffusion of direction of angular momentum
(or orbital planes of Gaussian Rings). Scalar RR emerges as a consequence of apsidal
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resonances, while vector RR is due to nodal resonances among precessing Gaussian
Rings. Nearly spherical Keplerian systems have stellar orbits with nodal precession
much slower than even the slow apse precession. Hence, in this subset of systems,
RT96 found that vector RR occurs on relatively shorter timescales ∼ N

−1/2
⋆ Tres.

1.4.1 Development of the theory of Resonant Relaxation

We review briefly the development of the theory of RR, following the pioneering
work of RT96. RT96 did N -body simulations and N -wire/Ring simulations (with
Gaussian Rings as constituents), and also constructed a random walk model for
RR. Most of the later works dealt with numerical simulations, and analytical works
employed stochastic models deriving their parameters from simulations.

Hopman & Alexander (2006a,b) investigated MBH feeding driven by RR, similar
to earlier studies based on two-body relaxation (Bahcall & Wolf, 1976). They solved
a Fokker-Planck equation for the distribution of energies, including an RR sink term
based on the RT96 model. According to the authors, RR affects mainly the tightly
bound orbits closer to the MBH, and dynamics of larger orbits are not much affected.
They constrained the MBH feeding rate, and the event rates of EMRIs and TDEs.
They applied their results to the Galactic S-star cluster, and the young and old
populations of our Galaxy’s NSC and found them consistent with observed stellar
kinematics. Gürkan & Hopman (2007) employed the wire/Ring approximation of
RT96 in simulations to compute RR torques among stars. They determined the RR
timescales as a function of orbital eccentricities, and found that RR is more efficient
for high eccentricity orbits, compared with near-circular Rings. Kupi et al. (2010)
studied small scale N -body simulations to parameterize RR strength, and explored
the effect of RR on event rates of EMRIs. They concluded an increase in event rate
compared with that predicted on the basis of two-body relaxation alone.

Madigan et al. (2011) constructed an autoregressive moving average model for
RR, calibrated by extensive N -body simulations. They applied this model to study
RR by Monte Carlo simulations of a stellar cluster around an MBH. Their results
showed a stellar cored distribution, attributed to tidal disruption of stars close to
the MBH. Also, they studied the RR of stellar orbits originating from disruption
of binaries, usually considered as possible formation channel for the S-star cluster.
They found that the resultant eccentricities of resonantly relaxed stellar orbits are
higher, compared with the observed orbits of S-star cluster.

Kocsis & Tremaine (2011) explored vector RR by constructing an analytical
model based on Laplace–Lagrange theory. They studied vector RR of a stellar disc
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embedded in a spherical star cluster, paying attention to possible warping, with
the aim of explaining the young stellar distribution within 0.5 pc of the Galactic
MBH. Kocsis & Tremaine (2015) studied vector RR of a spherical star cluster by
numerical simulations, wherein each star is replaced by an annulus of mass obtained
by averaging over both orbital motion and apsidal precession. RR evolution is
driven by interactions among these annuli, and was modelled as a random walk of
orbit normals of annuli on a sphere. They found a high efficiency of vector RR for
high eccentricity orbits, because the corresponding overlapping annuli exert stronger
torques on each other.

Touma & Tremaine (2014) constructed Boltzmann-type maximum entropy equilib-
rium DFs for Keplerian stellar discs, composed of Gaussian Rings of equal semi-major
axes. This is possible for the case of Keplerian star clusters in general for the existence
of a compact phase space (unlike general self-gravitating stellar systems), due to
conservation of semi-major axes in secular dynamics. They solved for microcanonical
axisymmetric thermal equilibria and studied their dynamical and thermodynamic sta-
bility. Some of these equilibria are thermally unstable to non-axisymmetric lopsided
modes, with the corresponding lopsided and uniformly precessing thermal states.

Merritt et al. (2011) performed relativistic N -body simulations (in post-Newtonian
limit) of Keplerian stellar system around a Schwarzschild MBH. The dominant
relativistic apsidal precession leads to quenching of RR in the inner regions of the
cluster. This suppressed rate of capture of stars by MBH greatly reduces the event rate
of the inspirals (EMRIs). There is a maximum possible eccentricity (“Schwarzschild
Barrier”) approachable by a resonantly relaxing Gaussian Ring corresponding to a
fixed semi-major axis. The authors proposed dynamical mechanisms for stars to cross
this barrier. EMRI formation is strongly inhibited due to the barrier, and resultant
event rates are suppressed by factor of ∼ 10 − 100 compared to non-relativistic
studies.

Bar-Or & Alexander (2014) studied relativistic stellar dynamics of a Keplerian
star cluster around a Schwarzschild MBH by constructing a statistical framework for
RR where the background potential is described as a correlated Gaussian noise. They
derived a Fokker–Planck equation, and confirmed the existence of Schwarzschild
barrier. Bar-Or & Alexander (2016) investigated the relativistic dynamics of a
Keplerian star cluster in a steady state by Monte-Carlo simulations, and evaluated
the steady rate of loss of stars on direct plunge and inspiral orbits relevant to TDEs
and EMRIs.

Hamers et al. (2014) performed post-Newtonian, restricted N -body simulations
to study the stars close to (both inside and outside) the Schwarzschild barrier, in the
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context of the S-star cluster. They considered three types of relaxation - non-resonant
(for high eccentricity orbits), resonant (for low eccentricity orbits) and anomalous.
They evaluated diffusion coefficients for a Fokker-Planck equation and constructed
the steady state distribution of angular momentum. Merritt (2015a) constructed an
algorithm to solve a Fokker-Planck equation in energy-angular momentum space,
which includes the diffusion coefficients for the different types of relaxation proposed
by Hamers et al. (2014), and energy loss due to emission of GWs. Merritt (2015b,c)
applied this method to calculate steady state solutions and associated steady rates
for TDEs and EMRIs.

In contrast to the ad hoc statistical modelling of earlier works, ST16b gave an
analytical framework for RR of Keplerian stellar systems, by using the kinetic theory
of Gilbert (1968). Gilbert’s theory takes into account gravitationally interacting real
stellar orbits in a general star cluster potential. ST16b extended the Gilbert’s kinetic
equation to include an MBH potential, and then orbit averaged the extended kinetic
equation over the fast Keplerian orbital phase, by the method of multiple scales.
The RR kinetic equation, thus obtained corresponds to a Keplerian stellar system of
generic morphology and orbital structure. Sridhar & Touma (2017) (hereafter ST17)
applied the general theory of ST16b to study RR of an axisymmetric stellar disc.

Hamers et al. (2018) investigated the evolution of a stellar binary black hole (BBH)
orbit taking into account Lidov-Kozai (LK) dynamics and vector RR (modelled by a
statistical approach). The central MBH can excite eccentricity of mutual/inner orbit
of the binary by the LK mechanism, trigging close encounters between the black
holes potentially leading to GW emission detectable by aLIGO. This LK driven
orbital excitation is effective only for high inclinations of binary orbit wrt its orbit
around the MBH. The vector RR can excite the orbital inclination of the binary
orbit, driving the binary into an “LK-effective” regime. They carried out Monte
Carlo simulations to calculate the resultant increase in the rate of BBH mergers.
They concluded that vector RR driven LK mechanism could be effective in elevating
event rates only for MBHs of smaller masses (M• ∼ 104M⊙).

Bar-Or & Fouvry (2018) studied scalar RR as a diffusion process by modelling
the cluster potential as random correlated noise. They evaluated the related diffusion
coefficients of scalar RR, for a spherically symmetric system. Fouvry et al. (2018)
studied RR evolution of razor-thin axisymmetric Keplerian stellar disc by solving a
kinetic equation (equivalent to that derived by ST16b; for details see § 1.4.2). They
studied mass segregation for multiple mass stellar populations in this framework.
They recovered the “Schwarzschild barrier” resulting from high relativistic apse
precession of Gaussian Rings.
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Below we describe briefly the collisional theory of ST16b and discuss some of its
physical properties.

1.4.2 Formalism for Secular Collisional Theory

ST16b constructed a first-principles theory of RR by building on the O(1/N⋆) kinetic
theory of Gilbert (1968). Gilbert’s theory accounts for actual stellar orbits while
considering gravitational interactions among stars in a general star cluster. Such
an approach is essential for secular studies of Keplerian star clusters, because the
orbits are far from being straight lines as assumed in the framework of the classical
two-body relaxation. Gilbert’s theory is an 1/N⋆ expansion of the Bogoliubov–Born–
Green–Kirkwood–Yvon (BBGKY) equations of physical kinetics or non-equilibrium
statistical mechanics. The order unity terms correspond to collisionless theory
(i.e. the CBE); while collisional terms appear at O(1/N⋆). This also explains the
approximate relation for the RR timescale Tres ∼ N⋆Tsec.

ST16b first extended Gilbert’s work to include the Kepler potential of an MBH.
This was followed by the transformation to Delaunay variables, and averaging of
the extended Gilbert’s equations over the fast Keplerian orbital phase by using the
method of multiple scales of ST16a. This resulted in a kinetic equation for the RR
(or collisional) evolution of Keplerian star clusters over times Tres. RR is a result
of angular momentum exchange between the pairs of Rings that are in apsidal and
nodal resonances. The formulation makes it clear that the separation between ‘scalar’
and ‘vector’ RR is, basically, an artificial one, and exists for only the special case
of a spherically symmetric cluster. The resonantly relaxing system can be thought
of as passing through the intervening collisionless (quasi)equilibria over times Tres.
The irreversible collisional evolution is driven by the two-Ring correlations which
accumulate by direct and collective interactions of Gaussian Rings.

The kinetic equation (in BBGKY form) governing the RR evolution of a Keplerian
stellar system, described by single-Ring DF F (R, τ), is given as:

∂F

∂τ
+
[
F , H − Φ(R, τ)

N⋆

]
= C[F ] , (1.19)

where
C[F ] = 1

N⋆

∫ [
Ψ(R,R′) , F (2)

irr (R,R′, τ)
]

dR′ (1.20)

is the ‘collision integral’ and (1/N⋆)F (2)
irr is the irreducible part of the two–Ring

correlation function. The correlation function can be expressed in terms of Ring
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wake function W as:

F
(2)
irr (R,R′, τ) = W (R|R′, τ)F (R′, τ) + W (R′ |R, τ)F (R, τ)

+
∫
W (R|R′′, τ)W (R′ |R′′, τ)F (R′′, τ) dR′′ , (1.21)

where wake function W (R|R′, τ) describes the wake of Ring R′ at the phase space
location R at time τ . The correlation function is the sum of the wake of R′ at R
(1st term); the wake of R at R′ (2nd term) and the product of the wake of R′′ at R
and R′, summed over all R′′ (3rd term).

ST16b derived an equation for the wake function W (R|R′, τ) by applying the
gedanken experiment of Rostoker (1964) and Gilbert (1968) to the secular case. The
approach focuses on evaluating the cumulative deformation due to the discrete Ring
R′ (at τ), taking into account its entire orbital history. R′(τ ′) represents the orbit
of the Ring R′ (at τ) for τ ′ ≤ τ . The perturbation of the DF due to a single Ring
can be treated in linear regime, and is expressed as:

F1(R, τ ′) = −F (R, τ ′)
N⋆

+ δ(R−R′(τ ′))
N⋆

+ W (R|R′(τ ′), τ ′)
N⋆

. (1.22)

The first term signifies the removal of one of the N⋆ Rings from smooth DF; the
second term accounts for the insertion of this Ring in the orbit written as R′(τ ′); the
third term is the wake function which represents the response of the system to the
previous two operations of Ring removal and insertion. The evolution of this linear
perturbation can be studied by employing the LCBE of equation (1.18), giving the
following pde for the wake function:

∂W

∂τ ′ + [W (R|R′(τ ′), τ ′) , H(R, τ ′) ] + [F (R, τ ′) , Φw(R,R′(τ ′), τ ′) ]

= [ Φp(R,R′(τ ′), τ ′) , F (R, τ ′) ] , for τ ′ ≤ τ . (1.23)

Here Φw is the gravitational potential due to the wake:

Φw(R,R′, τ ′) =
∫
W (R′′ |R′, τ ′) Ψ(R,R′′) dR′′ , Ring wake potential

(1.24)
and takes into account the collective gravitational interactions (gravitational polar-
ization) among the Rings R and R′. This can be thought of as the gravitational
potential due to the wake of the Ring R′ at the phase space location R.
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Φp is the difference between the ‘bare’ inter–Ring interaction potential Ψ and
the mean–field potential Φ of equations (1.12) and (1.11):

Φp(R,R′, τ ′) = Ψ(R,R′) − Φ(R, τ ′) , Ring perturbing potential . (1.25)

The equation (1.23) should be solved with the ‘adiabatic turn–on’ initial condition,
W (R|R′(τ ′), τ ′)→ 0 as τ ′ → −∞ . The right side of the equation (1.23) represents
the ‘source term’ for the wake, because if it were absent W = 0 would be a solution
that is compatible with the initial condition.

For RR evolution, one needs to simultaneously solve the kinetic equation (1.19)
and the wake equation (1.23). Using equation (1.21) for the correlation function, the
RR kinetic equation (1.19) can be cast in the following form:

∂F

∂τ
+
[
F , H − Φ(R, τ)

N⋆

]
= Cdis[F ] + Cfluc[F ] , (1.26a)

Cdis[F ] = 1
N⋆

∫
[ Ψ(R,R′) , F (R, τ)W (R′ |R, τ) ] dR′ , (1.26b)

Cfluc[F ] = 1
N⋆

∫
F (R′, τ) [ Ψ(R,R′) + Φw(R,R′, τ) , W (R|R′, τ) ] dR′ . (1.26c)

where the collision integral has been divided into a dissipation part Cdis[F ] and a
fluctuation part Cfluc[F ]. The O(1) terms of the above kinetic equation correspond
to the CBE of equation (1.16). The subtraction of Φ/N⋆ in the Poisson Bracket
implies that the gravity of only other (N⋆ − 1) Rings is responsible for the evolution
of a Ring. The collisional terms appear only at the order 1/N⋆ on the right side of
the equation (1.26a). This implies that, generically, the long term collisional or RR
evolution of the system occurs over times Tres ∼ N⋆Tsec.

The theory is valid for Keplerian stellar systems of generic geometries and orbital
structures. ST17 applied the general theory of ST16b to an axisymmetric stellar
disc. The neglect of gravitational polarization and simple orbital structure due to
axisymmetry allowed the explicit evaluation of collision integrals. They derived
the kinetic Fokker-Planck equation governing evolution of the resonantly relaxing
disc. They worked out the secular version of the H-Theorem for these systems, and
showed that the Boltzmann entropy never decreases during RR evolution driven
by the kinetic equation. They constructed extremum entropy states employing the
method of Lagrange multipliers, resulting in Boltzmann type thermal equilibrium
DFs.
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In Chapter 4, we review the results of ST17 and simplify them further in the
monoenergetic limit. We then present a numerical algorithm to solve for the RR
evolution of a fully self-gravitating monoenergetic axisymmetric Keplerian disc. In
Chapter 5, we extend the formulation of ST17 for an axisymmetric Keplerian disc to
include gravitational polarization.

1.5 Structure of the Thesis

This thesis presents work on the secular dynamics of NSC in two parts.

Part I deals with the collisionless dynamics of stellar discs and cusps, and consists
of Chapters 2 and 3. Linear secular instabilities and further non-linear evolution are
demonstrated in Chapter 2, for a class of simple models (called waterbags) for an
axisymmetric disc with Gaussian Rings of equal semi-major axes (monoenergetic
case). We speculate on the implications for the young stellar disc at the Galactic
centre. In Chapter 3, we calculate the linear deformation of an initially spherical
Keplerian star cluster under the gravitational pull of an adiabatically growing massive
gas disc. This is of relevance to the oblate spheroidal deformation of the NSC at the
Galactic centre.

Part II is concerned with the collisional phenomenon of RR of axisymmetric discs,
and consists of Chapters 4 and 5. In Chapter 4, we construct an algorithm “RR code”
to solve the RR kinetic equation of ST17 for monoenergetic axisymmetric Keplerian
stellar discs, and present the results for an initial DF. The Chapter 5 extends the
formulation of RR of axisymmetric Keplerian discs by developing a framework to
include the gravitational polarization in an iterative manner.

We conclude in Chapter 6 with a brief discussion of the way forward.





Part I

Collisionless Dynamics





Chapter 2
Secular Collisionless Instabilities
of Keplerian Stellar Discs

NSCs of the Milky Way and M31 are the most closely observed and well-studied
galactic nuclei. Each of them possesses a Keplerian stellar disc around an MBH.
Since the black hole’s gravity dominates the force on stars, Toomre Q ≫ 1, so
an axisymmetric Keplerian disc is expected to be linearly stable to axisymmetric
perturbations on Keplerian orbital timescales TKep. Even when a disc is stable to all
modes on these short timescales, it may be unstable to modes that grow over the much
longer secular timescale Tsec of apse precession. Secular, canonical deformations of a
flat, razor-thin axisymmetric Keplerian disc must necessarily be non-axisymmetric,
so we will assume that the azimuthal wavenumber of the perturbations m ̸= 0. So,
axisymmetric Keplerian discs can host only non-axisymmetric secular instabilities; a
good example is presented by the counter-rotating m = 1 instability, which may be
applicable to the nuclear disc of M31 (Touma, 2002; Kazandjian & Touma, 2013).
Stellar discs with DFs even in the angular momentum and empty loss cones (i.e. DF
is zero at zero angular momentum) may be unstable to m = 1 modes (Tremaine,
2005). In § 1.3.1 of Chapter 1, we give a more complete account of previous studies
related with the lopsided m = 1 secular mode. Monoenergetic discs (all Gaussian
Rings with equal semi-major axes) dominated by nearly radial orbits could be prone
to loss cone instabilities of all m, if there is some amount of counter-rotating stars
(Polyachenko et al., 2007).

This gives rise to a natural question: can prograde, axisymmetric discs support
secular instabilities, even when counter-rotation and loss-cone are absent? The
answers available in the literature pertain to the stability of razor-thin discs. Tremaine
(2001) proved that a Schwarzschild DF is stable to modes of all m in the tight-winding
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limit. This was generalized by ST16a who proved that a DF which is a strictly
monotonic function of the angular momentum at fixed semi-major axis (i.e. at
fixed Keplerian energy), is stable to modes of all m. However, these results are
insufficient to address the general question, which could be relevant to the history of
the clockwise disc of young stars at the centre of the Milky Way (also see § 1.1.1).
If these stars formed in a fragmenting, circular gas disc around the MBH (Levin &
Beloborodov, 2003), the initial stellar orbits should have small eccentricities and the
same sense of rotation (i.e. no counter-rotation) about the MBH. But Yelda et al.
(2014) found the mean eccentricity of the stellar orbits ē ≃ 0.27. Is this largish value
of mean eccentricity the result of secular instabilities? In this chapter, we investigate
this question by presenting the simplest models of stellar discs orbiting MBHs, whose
secular instabilities can be studied explicitly. This is done by combining analytical
methods from ST16a with numerical simulations derived from Touma et al. (2009).
The work presented is based on the paper Kaur et al. (2018).

In § 2.1 we present the framework of secular collisionless dynamics of ST16a
for Keplerian stellar discs. This is an extension of § 1.3.2 of Chapter 1, where the
formalism for general three-dimensional systems is given. Using the stability result
of ST16a as a guide, we motivate the search for DFs that are either non-monotonic
or not strictly monotonic in the angular momentum. Then we specialize our analysis
to monoenergetic discs in § 2.2. The phase space of a monoenergetic disc is the
two-dimensional surface of a sphere (see Figure 2.1). Drawing on earlier work in
plasma physics we introduce the simplest of prograde, axisymmetric DFs, which
correspond to ‘waterbags’. The phase space DF of a waterbag is constant for orbits
whose eccentricities lie within a certain range, and zero outside this range. These
are of two types of waterbags: polarcaps, which include circular orbits, and bands,
which exclude circular orbits – see Figure 2.2. The linear stability analysis of these
systems leads to normal modes which are composed of sinusoidal disturbances of the
edges of DF in the phase space. For each m ̸= 0, a polarcap has one stable normal
mode, whereas a band has two normal modes that may be stable or unstable. In
§ 2.3 we present numerical simulations of an unstable and a stable band; these give
an immediate picture, both in real space and phase space, of linear and non-linear
evolution. The linear stability problem for a band is formulated and solved in § 2.4.
Then § 2.5 explores instabilities further, drawing detailed comparisons between linear
theory and numerical simulations, as well as following the long-time collisionless
evolution of an unstable band. Conclusions are presented in § 2.6.
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2.1 Secular Collisionless Dynamics of Keplerian
Stellar Discs

Our model system is a razor-thin flat stellar disc of total mass M orbiting an MBH of
mass M• ≫M . This is a Keplerian stellar disc with the mass ratio ε = M/M• ≪ 1
being a small parameter. The disc is composed of N⋆ ≫ 1 number of stars, which are
treated in the secular picture as Gaussian Rings precessing and deforming under the
average self-gravitational potential over the secular times Tsec ∼ TKep/ϵ≫ TKep. As
detailed in Chapter 1, ST16a describes the average behaviour of dynamical quantities
over times Tsec , by systematically averaging over the fast Keplerian orbital phase.
Hence the natural measure of time in secular theory is τ = ε× time, the ‘slow’ time
variable. The state of a Gaussian Ring at any time τ can be specified by giving its
three-dimensional Ring variables, R = {I, L, g}, where I =

√
GM•a = constant

which is a measure of the Keplerian energy, L is the specific angular momentum
which is restricted to the range −I ≤ L ≤ I, and 0 ≤ g < 2π is the longitude
of the periapse; see § 1.2.1 of Chapter 1. Ring space (or R-space) is topologically
equivalent to R3, with I the ‘radial coordinate’, arccos (L/I) the ‘colatitude’, and g

the ‘azimuthal angle’. A disc composed of N⋆ stars, each of mass m⋆ = M/N⋆, is a
collection of N⋆ points in R-space. The simplest description of a stellar disc uses the
single-Ring probability DF, F (R, τ) = F (I, L, g, τ), which is normalized as,

∫
dR F (R, τ) =

∫
dI dL dg F (I, L, g, τ) = 1 . (2.1)

Over times much shorter than the resonant relaxation times, Tres ∼ N⋆Tsec,
the graininess of the Ring-Ring interactions has negligible effects and the stellar
system can be thought of as collisionless. Formally, the collisionless limit corresponds
to assuming that the system is composed of an infinite number of stars, each of
infinitesimal mass, the whole having a mass M equal to the total stellar mass. Then
each star is like a test-Ring, whose motion is governed by the secular Hamiltonian,
Φ(I, L, g, τ), which is equal to the (scaled) self-gravitational disc potential, given as:

Φ(I, L, g, τ) =
∫

dI ′ dL′ dg′ Ψ(I, L, g, I ′, L′, g′)F (I ′, L′, g′, τ) , (2.2)

where
Ψ(I, L, g, I ′, L′, g′) = −GM•

∮ ∮ dw
2π

dw′

2π
1

|r − r′| (2.3)

is the (scaled) interaction potential between two planar Gaussian Rings. Here
r = (x, y) and r′ = (x′, y′) are the position vectors of the two stars orbiting the



34 Secular Collisionless Disc Instabilities

respective Gaussian Rings, with respect to the MBH. The physical variables (r, r′)
are transformed first to Delaunay variables using equation (1.5). Here w and w′ are
the mean anomalies of the stars representing the Keplerian orbital phase on their
respective Gaussian Rings. Ring orbits are determined by the Hamiltonian equations
of motion:

I =
√
GM•a = constant , dL

dτ = − ∂Φ
∂g

,
dg
dτ = ∂Φ

∂L
. (2.4)

This is a Hamiltonian flow in R-space which is restricted to the I = constant two-
sphere. The flow carries with it the DF, whose evolution is governed by the secular
CBE:

∂F

∂τ
+ [F , Φ]Lg = 0 , where [F , Φ]Lg = ∂F

∂g

∂Φ
∂L
− ∂F

∂L

∂Φ
∂g

(2.5)

is the two-dimensional Poisson Bracket in (L, g)-space. Φ itself depends on F through
the R′-space integral of equation (2.2). Therefore equation (2.5), together with the
secular Hamiltonian of equation (2.2), defines the self-consistent initial value problem
of the secular time evolution of the DF, given an arbitrarily specified initial DF
F (I, L, g, 0). A general property of this time evolution is the following: since the
I of any Ring is constant in time, the probability for a Ring to be in (I, I + dI)
is a conserved quantity. In other words the probability distribution function in
one-dimensional I-space, defined by

P (I) =
∫
dL dg F (I, L, g, τ) , (2.6)

is independent of τ , as can be verified directly using the CBE of equation (2.5).

2.1.1 Axisymmetric Equilibria and Linear Stability

Secular collisionless equilibria are DFs that are time-independent and self-consistent
solutions of the CBE. They can be constructed using the secular Jeans theorem of
ST16a, which states that F must be function of the isolating integrals of motion of
the secular Hamiltonian, as stated earlier in § 1.3.2. An axisymmetric equilibrium
DF is independent of g and can be written as F = (2π)−1F0(I, L) , because I and
L are two isolating integrals of motion of the axisymmetric Hamiltonian, Φ0(I, L).
Equation (2.2) gives Φ0 self-consistently in terms of F0 :

Φ0(I, L) =
∫

dI ′ dL′ F0(I ′, L′)
∮ dg′

2π Ψ(I, L, g, I ′, L′, g′) . (2.7)
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Note that Ψ(I, L, g, I ′, L′, g′) depends on the apses only in the combination |g − g′|,
so the integral over g′ is independent of g . The equations of motion (2.4) for a Ring
become very simple in an axisymmetric disc:

I = constant , L = constant , dg
dτ ≡ Ω0(I, L) = ∂Φ0

∂L
. (2.8)

The semi-major axis and eccentricity of a Ring are constant, with the apsidal longitude
precessing at the constant angular frequency Ω0(I, L).

The time evolution of perturbations to an axisymmetric equilibrium DF can be
studied by considering the total DF to be F = (2π)−1F0(I, L) + F1(I, L, g, τ ), where
the perturbation F1 contains no net mass:

∫
dI dL dg F1(I, L, g, τ) = 0 . (2.9)

If Φ1(I, L, g, τ ) is the self-gravitational potential due to F1, then the total Hamiltonian
is Φ = Φ0(I, L) + Φ1(I, L, g, τ). By substituting for F and Φ in the CBE (2.5), and
using [F0 ,Φ0]Lg = 0, we can derive the equation governing the time evolution of F1.
For small perturbations |F1| ≪ F0 this is the linearized CBE (LCBE):

∂F1

∂τ
+ Ω0

∂F1

∂g
= 1

2π
∂F0

∂L

∂Φ1

∂g
, (2.10a)

Φ1(I, L, g, τ) =
∫

dI ′ dL′ dg′ Ψ(I, L, g, I ′, L′, g′)F1(I ′, L′, g′, τ) . (2.10b)

The LCBE is a linear (partial) integro-differential equation for F1, and determines
the linear stability of the axisymmetric DF, F0(I, L).

An axisymmetric perturbation F1(I, L, τ) gives rise to a Φ1(I, L, τ) that is also
independent of g. Then the LCBE (2.10) implies ∂F1/∂τ = 0, whose physical solution
is F1 = 0, because an axisymmetric perturbation cannot change the angular momen-
tum of a star. Hence it is only non-axisymmetric, or g-dependent, perturbations
that are of interest in secular theory. Since τ and g appear in the LCBE only as
(∂/∂τ) and (∂/∂g) we can look for linear modes of the form F1 ∝ exp [i(mg − ωτ)],
where m ̸= 0 is the azimuthal wavenumber. Using only the general symmetric
properties of Ψ(R,R′), the following result was proved in ST16a for DFs that are
strictly monotonic functions of L:

• Stationary, axisymmetric discs with DFs F0(I, L) are neutrally stable (i.e. ω is real)
to secular perturbations of all m when ∂F0/∂L is of the same sign (either positive
or negative) everywhere in its domain of support, −I ≤ L ≤ I and Imin ≤ I ≤ Imax .
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As noted in ST16a these secularly stable DFs can have both prograde and retrograde
populations of stars because −I ≤ L ≤ I . The discs have net rotation and
include physically interesting cases, such as a secular analogue of the well-known
Schwarzschild DF. To investigate secular instabilities, the above stability result
motivates us to look at axisymmetric discs with DFs, F0(I, L), that are either
non-monotonic or not strictly monotonic functions of L at fixed I.

One way to proceed would be to develop stability theory, using the symmetry
properties of Ψ(R,R′), as ST16a did. But the present work deals with the more
specific goal of constructing the simplest class of disc models that permits quantitative
study of the onset and growth of linear non-axisymmetric instabilities. In order to
do this one must be able to calculate physical quantities such as the apse precession
frequency Ω0(I, L), using equations (2.7) and (2.8). This requires using an explicit
forms for Ψ, for a physically motivated model of a stellar disc.

2.2 Monoenergetic Discs

2.2.1 Collisionless Boltzmann equation

Ψ(I, L, g, I ′, L′, g′) depends on the apses only in the combination |g− g′|, and can be
developed in a Fourier series in (g − g′). When the spread in the semi-major axes of
the disc stars is comparable to the mean disc radius, the Fourier coefficients are, in
general, complicated functions of (I, L, I ′, L′) – although for numerical calculations
it is straightforward to calculate them on any grid in this four dimensional space.
Analytical approximations are available if restrictions are placed on L and L′, such
as both the Rings being near-circular and well-separated (the ‘Laplace–Lagrange’
limit of planetary dynamics) or both Rings being very eccentric, corresponding to
the ‘spoke’ limit of Polyachenko et al. (2007). But secular dynamics and statistical
mechanics are really about the exchange of angular momentum of stars at fixed
semi-major axes, so it seems preferable if we do not place such severe restrictions on
L or L′. Let us consider discs with a small spread in semi-major axes; since this is
equivalent to a small spread in Keplerian orbital energies, the disc may be called
nearly monoenergetic. Having nearly the same semi-major axes, any two Rings either
cross each other or come very close to each other, so Ψ(R,R′) can be large, even
infinite, in magnitude. For nearly-circular Rings the dominant contribution was
worked out by Borderies et al. (1983), and we use this below in the monoenergetic
limit.
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In a nearly monoenergetic disc most pairs of Rings intersect each other. It is
useful to consider the strictly monoenergetic limit, I = I0 =

√
GM•a0, when every

Ring intersects every other Ring. Since all Rings have the same semi-major axis a0,
they also have the same Keplerian orbital period, TKep = 2π(a3

0/GM•)1/2 . Hence it
is convenient to use a dimensionless slow time variable, t = τ/TKep = time/Tsec , to
study the dynamics of monoenergetic discs. The state of a Ring at time t can be
specified by giving its periapse, g, and the dimensionless specific angular momentum
ℓ = L/I0 . Since −1 ≤ ℓ ≤ 1, the motion of any Ring is restricted to the unit sphere
(Figure 2.1) on which ℓ = cos (colatitude) and g = azimuthal angle are canonical
coordinates. For a monoenergetic disc F takes the form:

F (I, L, g, τ) = δ(I − I0)
I0

f(ℓ, g, t) . (2.11)

Then equation (2.1) implies the following normalization for f :
∫

dℓ dg f(ℓ, g, t) = 1 . (2.12)

Hence f(ℓ, g, t) is the (dimensionless) DF for monoenergetic discs on the (ℓ, g) phase
space of Figure 2.1. The eccentricity of a Ring, e =

√
1− ℓ2, is equal to the length of

the projection of the corresponding position vector on the sphere’s equatorial plane.
The eccentricity vector (or Lenz vector) is defined as e = (ex, ey) with ex = e cos g
and ey = e sin g. We can think of (ex, ey, ℓ) as a right-handed Cartesian coordinate
system, with the Ring phase space realized as the unit sphere, e2

x + e2
y + ℓ2 = 1 .

The formula of Borderies et al. (1983) for the normalized Ring-Ring interaction
potential, ψ(ℓ, ℓ′, g − g′), takes the following attractive form given in Touma &
Tremaine (2014):

ψ(ℓ, ℓ′, g − g′) =
(
GM•

2πa0

)−1
Ψ(I0, I0ℓ, g, I0, I0ℓ

′, g′) = −8 log 2 + log |e− e′|2 .
(2.13)

For a derivation, see Appendix A.1. This expression for ψ is, strictly speaking, valid
only when e, e′ ≪ 1 . But Touma & Tremaine (2014) have shown that this formula
for ψ serves as a good approximation for all values of e and e′, and used this fact to
study axisymmetric and non-axisymmetric secular thermodynamic equilibria; they
also provide an improved fitting formula but we do not use this. Henceforth in
this chapter we take equation (2.13) as the basic ‘law of interaction’, between any
two Rings in a monoenergetic disc. Using equation (2.11) in (2.2) we see that the
mean-field self-gravitational potential, φ(ℓ, g, t) = Φ(I0, I0ℓ, g, τ) is given in explicit
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Fig. 2.1 Phase space of a monoenergetic disc. Each star in the disc is represented by point
on the unit sphere (shown in red), with canonical coordinates (ℓ, g). The latitudes are
lines of constant ℓ, and longitudes are lines of constant g. The projection of (ℓ, g) onto the
equatorial plane gives the eccentricity vector e = (ex, ey).

form as:

φ(ℓ, g, t) = GM•

2πa0

∫
dℓ′ dg′ ψ(ℓ, ℓ′, g − g′)f(ℓ′, g′, t)

= −4GM•

πa0
log 2 + GM•

2πa0

∫
dℓ′ dg′ log |e− e′|2 f(ℓ′, g′, t) . (2.14)

We have already cast the independent variables (ℓ, g, t) in dimensionless form.
Equations (2.4), governing the dynamics of a Ring, can now be written in the
following dimensionless form:

dℓ
dt = − ∂H

∂g
,

dg
dt = ∂H

∂ℓ
, (2.15)

where

H(ℓ, g, t) = TKep

I0
φ(ℓ, g, t) =

(
GM•

2πa0

)−1
φ(ℓ, g, t)

=
∫

dℓ′ dg′ log |e− e′|2 f(ℓ′, g′, t) + constant

(2.16)

is the dimensionless secular Hamiltonian.
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These equations of motion imply the natural Poisson Bracket on the (ℓ, g) unit
sphere:

[ f , H ] = ∂f

∂g

∂H

∂ℓ
− ∂f

∂ℓ

∂H

∂g
. (2.17)

Substituting equation (2.11) in (2.5) we obtain the following CBE governing the
self-consistent evolution of the DF:

∂f

∂t
+ [ f , H ] = 0 . (2.18)

Equations (2.15)–(2.18) provide a complete, dimensionless description of the secular
collisionless dynamics of monoenergetic Keplerian discs.

2.2.2 Linear Stability of Axisymmetric Equilibria

In the study of axisymmetric equilibria and their linear, non-axisymmetric per-
turbations it is useful to have at hand the Fourier expansion of the Ring–Ring
interaction potential, log |e− e′|2, that appears in the definition of the Hamiltonian
in equation (2.16). From equation (C.2) of Touma & Tremaine (2014) we have,

log |e− e′|2 = log
[
e2 − 2ee′ cos(g − g′) + e′2

]
= log

(
e2

>

)
− 2

∞∑
m=1

1
m

(
e<

e>

)m

cos [m(g − g′)] , (2.19)

where e< = min (e, e′) and e> = max (e, e′).

Any DF of the form f = (2π)−1f0(ℓ) , which is normalized as
∫ 1

−1 dℓ f0(ℓ) = 1 ,
represents an axisymmetric equilibrium. Using equation (2.19) in (2.16), we have
the corresponding axisymmetric Hamiltonian:

H0(ℓ) =
∫ 1

−1
dℓ′ log

(
e2

>

)
f0(ℓ′) (2.20)

=
∫ |ℓ|

0
dℓ′ log

(
1− ℓ′2

)
{f0(ℓ′) + f0(−ℓ′)}+ log

(
1− ℓ2

) ∫ 1

|ℓ|
dℓ′ {f0(ℓ′) + f0(−ℓ′)} ,

where we have dropped a constant term. The apse precession frequency is given:

Ω0(ℓ) = dH0

dℓ = − 2 ℓ
1− ℓ2

∫ 1

|ℓ|
dℓ′ {f0(ℓ′) + f0(−ℓ′)} . (2.21)

Some general properties of Ω0 are: (i) Since the product ℓ.Ω0(ℓ) ≤ 0, the apse
precession of a Ring is always opposite to the faster Keplerian orbital motion; (ii) As
ℓ→ 0 we have Ω0(ℓ)→ −2ℓ, so highly eccentric Rings precess very slowly; (iii) In
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the limit of circular Rings ℓ→ ±1, and Ω0(ℓ)→ ∓{f0(1) + f0(−1)} goes to a finite
limit.

When the axisymmetric equilibrium is perturbed the total DF is f(ℓ, g, t) =
(2π)−1f0(ℓ) + f1(ℓ, g, t), and the corresponding self-consistent Hamiltonian is H0(ℓ) +
H1(ℓ, g, t). Substituting these in the monoenergetic CBE (2.18) and linearizing, we
obtain the LCBE governing the evolution of f1 :

∂f1

∂t
+ Ω0(ℓ)

∂f1

∂g
= 1

2π
df0

dℓ
∂H1

∂g
, (2.22a)

where H1(ℓ, g, t) =
∫

dℓ′ dg′ log |e− e′|2 f1(ℓ′, g′, t) . (2.22b)

We seek solutions of the form f1(ℓ, g, t;m) = Re {f1m(ℓ) exp [i(mg − ωmt)]} and
H1(ℓ, g, t) = Re {H1m(ℓ) exp [i(mg − ωmt)]} where, without loss of generality, we take
m to be a positive integer. Equation (2.22b) givesH1m =−2π/m

∫ 1
−1dℓ′(e</e>)mf1m(ℓ′).

Then the LCBE reduces to the following equation,

[ωm −mΩ0(ℓ) ] f1m(ℓ) = df0

dℓ

∫ 1

−1
dℓ′

(
e<

e>

)m

f1m(ℓ′) , (2.23)

which is an integral eigenvalue problem, for the eigenvalues ωm and corresponding
eigenfunctions f1m(ℓ). This equation is a special case of equation (75) of ST16a,
which is valid for a general axisymmetric disc. Proceeding in a manner similar to
ST16a, it is straightforward to prove the stability result: all DFs f0(ℓ) that are
strictly monotonic functions of ℓ are linearly stable. This raises again the question
of the stability of DFs that are not strictly monotonic in ℓ. Since this question is
now posed in the context of equation (2.23) – which is given in explicit form – we
can proceed to explore it quantitatively. Among all the DFs that are not strictly
monotonic functions of ℓ, the simplest are probably the ‘waterbag’ DFs which are
discussed below.

2.2.3 Waterbags and the Linear Stability Problem

A monoenergetic waterbag is a region of the unit sphere phase space of Figure 2.1
within which the DF takes a constant positive value and is zero outside this region.1

Time evolution that is governed by the CBE of equations (2.16)–(2.18) conserves
both the area of the region as well as the value of the DF. Hence the dynamical
problem reduces to following the evolution of the contour(s) bounding the region.

1The “waterbag” model was originally developed for the Vlasov equation by Berk et al. (1970).
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(a) Polarcap with ℓ1 = 0.8 and ℓ2 = 1 (b) Band with ℓ1 = 0.7 and ℓ2 = 0.9

Fig. 2.2 Two types of prograde waterbags

Analogous to the contour dynamics of fluid vortices on a sphere (Dritschel, 1988), the
deformation of the contour(s) defining a waterbag stellar disc can be very complicated.

Axisymmetric equilibria

An axisymmetric monoenergetic waterbag has a DF, f0(ℓ), that takes a constant
positive value for ℓ ∈ [ℓ1, ℓ2], and is zero outside this interval. Since our primary
interest in this chapter concerns the stability of discs in which stars orbit the MBH
in the same sense, we assume that 0 ≤ ℓ1 < ℓ2 ≤ 1. The normalized DF for such a
‘prograde waterbag’ is:

f0(ℓ) =


1

ℓ2 − ℓ1
for ℓ1 ≤ ℓ ≤ ℓ2 ,

0 otherwise.
(2.24)

There are two different cases, corresponding to ℓ2 = 1 (Polarcap) and ℓ2 < 1 (Band)
– see Figure 2.2. It can be seen that bands have DFs that are non-monotonic in ℓ,
whereas polarcaps have DFs that are not strictly monotonic in ℓ. Hence the stability
result, stated below equation (2.23), does not apply to either of these systems. But
their stability properties can be determined completely, as we show below.

The waterbag DF describes a circular annular disc composed of stars with
eccentricities e =

√
1− ℓ2 ∈ [e2, e1], where ei =

√
1− ℓ2

i for i = 1, 2 . The inner and
outer radii of the disc are rmin = a0(1− e1) and rmax = a0(1 + e1) are determined by
the most eccentric Rings in the disc. The surface density profile, Σ0(r), is obtained
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(a) Surface density (b) Apse precession rate

Fig. 2.3 Physical features of waterbags: Solid and dashed lines are for the polarcap and
band of Figure 2.2, respectively. The broken dashed line is for a broad band, to be studied
later.

by integrating f0(ℓ) over the velocities, as is done in Appendix B. This gives

Σ0(r) =



sin−1 [ℓ2/ℓ0(r)] − sin−1 [ℓ1/ℓ0(r)]
2π2a2

0(ℓ2 − ℓ1)
, |r − a0| ≤ a0e2

cos−1 [ℓ1/ℓ0(r)]
2π2a2

0(ℓ2 − ℓ1)
, a0e2 < |r − a0| ≤ a0e1

0 , a0e1 < |r − a0|

(2.25)

where ℓ0(r) =
√

2r/a0 − r2/a2
0 . Surface density profiles are plotted in Figure 2.3a

for the polarcap and band of Figure 2.2, and also a broad band (ℓ1 = 0.1 , ℓ2 = 0.9 ),
whose stability is studied later. We note that the Σ0(r) profiles of a polarcap and a
band are very different: the former has a single maximum at the centre of the disc,
whereas the latter has a characteristic double-horned shape.

The apse precession frequency Ω0(ℓ) can be determined by using equation (2.24)
in (2.21). For a polarcap,

Ω0(ℓ) =


− 2 ℓ

(1− ℓ2) , 0 ≤ |ℓ| ≤ ℓ1

− 2 ℓ
(1 + |ℓ|)(1− ℓ1)

, ℓ1 < |ℓ| ≤ 1 ,
(2.26)
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and for a band,

Ω0(ℓ) =



− 2 ℓ
(1− ℓ2) , 0 ≤ |ℓ| ≤ ℓ1

− 2 ℓ
(1− ℓ2)

(
ℓ2 − |ℓ|
ℓ2 − ℓ1

)
, ℓ1 < |ℓ| ≤ ℓ2

0 , ℓ2 < |ℓ| ≤ 1 .

(2.27)

Even though the waterbag itself occupies only the interval [ℓ1, ℓ2] we calculate Ω0(ℓ)
for all ℓ ∈ [−1, 1], because it gives the apse precession frequency of any test-Ring
that may be introduced into the system. Ω0 is an antisymmetric function of ℓ, as
can be seen in Figure 2.3b. For a polarcap Ω0 is non zero when ℓ = ±1, whereas for
a band Ω0(ℓ) vanishes for all |ℓ| > ℓ2.

Stability to non-axisymmetric modes

An arbitrary collisionless perturbation of a waterbag can be described as a deformation
of its boundaries. From Figure 2.2 we see that a polarcap has just one boundary at
ℓ = ℓ1 whereas a band has two boundaries, at ℓ = ℓ1 and ℓ = ℓ2. Non-axisymmetric
perturbations of the boundaries can be resolved as a Fourier series in the apsidal
longitude g. Figure 2.4 shows a m = 3 deformation of the polarcap and band of
Figure 2.2, where m is the azimuthal wavenumber of perturbation.

Polarcaps are linearly stable to all non-axisymmetric modes. In order to prove this
we note that, for a polarcap, df0/dℓ = (1− ℓ1)−1δ(ℓ− ℓ1). Substituting this in the
integral equation (2.23) we obtain:

[ωm −mΩ0(ℓ) ] f1m(ℓ) = δ(ℓ− ℓ1)
1− ℓ1

∫ 1

−1
dℓ′

(
e<

e>

)m

f1m(ℓ′) , (2.28)

where Ω0(ℓ) is given by equation 2.26. The physical solution is f1m(ℓ) = Am δ(ℓ− ℓ1),
where Am is a complex amplitude. Using this in equation (2.28) we obtain the
eigenvalue,

ωm = mΩ0(ℓ1) + 1
1− ℓ1

. (2.29)

Since ωm is real for all m = 1, 2, . . . and 0 ≤ ℓ1 < 1, all normal modes are stable and
purely oscillatory. For each m there is a normal mode with

f1(ℓ, g, t;m) = Re {Amδ(ℓ− ℓ1) exp [im(g − λPt)]} , (2.30)
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Fig. 2.4 m = 3 normal mode for Polarcap and Band. The panels on the left show the
deformed polarcap (Upper panel) and band (Lower panel) DFs. The panels on the right
are for the corresponding probability densities, n(ex, ey) = ℓ−1 ×DF , in the (ex, ey) plane.
Since the DF is constant within the deformed boundaries, n ∝ 1/

√
1− e2 .
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Fig. 2.5 Mode precession frequency for Polarcaps. The intersections of the vertical dashed
line with the λP curves gives the spectrum of the normal modes of the polarcap of Figure 2.2.
Only the m = 1 normal mode has positive precession for all values of ℓ1.

where
λP(m, ℓ1) = ωm

m
= − 2 ℓ1

(1− ℓ2
1)

+ 1
m(1− ℓ1)

(2.31)

is the precession frequency of the m-lobed, sinusoidal deformation of the polarcap
boundary. The first term on the right side is just the apse precession frequency in the
unperturbed polarcap, and is negative. The second term comes from the self-gravity
of the deformation, which is positive. The competition between these two terms
results in the following interesting features of λP(m, ℓ1) , as can be seen in Figure 2.5:

• For a polarcap with given ℓ1, λP is a decreasing function of m . This is because
the self-gravity of the deformed edge is smaller for bigger m, due to mutual
cancellation from its lobes and dips. In the limit m → ∞ this vanishes
altogether and λP → Ω0(ℓ1).

• The m = 1 mode always has prograde precession, with λP = 1/(1 + ℓ1) .

• Modes with m = 2, 3, . . . precess in a prograde sense for 0 ≤ ℓ1 < 1/(2m− 1) ,
and in a retrograde sense for 1/(2m − 1) < ℓ1 ≤ 1 . λP vanishes when a
polarcap is such that ℓ1 = 1/(2m − 1) for some m; then it has a stationary
time-independent deformation with m lobes.

• For ℓ1 > 1/3, only the m = 1 mode has positive pattern speed.
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Bands have richer stability properties because, for each m, there are two normal
modes (as shown in § 2.5). Each of these is composed of sinusoidal disturbances of the
two edges – see the lower panels of Figure 2.4 for a representation of a m = 3 mode.
For bands df0/dℓ = {δ(ℓ− ℓ1)− δ(ℓ− ℓ2)}/∆ℓ , where ∆ℓ = (ℓ2 − ℓ1) . Substituting
this in equation (2.23) we obtain the following integral equation:

[ωm −mΩ0(ℓ) ] f1m(ℓ) = δ(ℓ− ℓ1)− δ(ℓ− ℓ2)
∆ℓ

∫ 1

−1
dℓ′

(
e<

e>

)m

f1m(ℓ′) , (2.32)

where Ω0(ℓ) is given by equation (2.27). Hence the eigenfunctions are of the form:

f1m(ℓ) = Am1 δ(ℓ− ℓ1) + Am2 δ(ℓ− ℓ2). (2.33)

where Am1 and Am2 are complex amplitudes. When equation (2.33) for f1m(ℓ)
is substituted in equation (2.32) the integral equation reduces to a 2 × 2 matrix
eigenvalue problem. This is the simplest no-trivial linear stability problem in secular
dynamics that can be studied analytically in detail – see § 2.4. Before doing this
we present numerical simulations of an unstable band and a stable band, so the
reader may have an immediate picture of the time evolution going beyond the linear
evolution of small disturbances.

2.3 Numerical Exploration of Waterbag Stability

The N -Ring numerical simulations of waterbag bands were performed by Mher
Kazandjian and Jihad Touma for a range of system parameters (ℓ1, ℓ2). The full list
is given in Table 2.1 of § 2.5. The last entry has ℓ2 = 1, so is a polarcap and not a
band. It is included in the table as a limiting case of a class of broad bands. Here
we discuss the stability of the two bands whose Σ0(r) and Ω0(ℓ) profiles feature in
Figure 2.3: one is the band waterbag_1_s0 with (ℓ1 = 0.7, ℓ2 = 0.9), and the other
is the broad band waterbag_2_s0 with (ℓ1 = 0.1, ℓ2 = 0.9).

We simulate a planar system of N⋆ Rings, each of which has the same semi-major
axis a0 and mass m⋆ , orbiting a MBH of mass M• . The total disc mass M = N⋆m⋆

is chosen to be much smaller than M• , so ε = M/M• ≪ 1 and the secular timescale,
Tsec = ε−1Tkep , is much longer than the Kepler orbital period. Each Ring can be
thought of as a point on the unit sphere phase space of Figure 2.1, with coordinates
(ℓi, gi) for i = 1, 2, . . . , N . The projection of the points onto the equatorial plane
gives N⋆ eccentricity vectors, ei = ei(cos gi x̂+ sin gi ŷ), where ei =

√
1− (ℓi)2 is the
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eccentricity. Then the normalized secular energy of the whole system is:

H = 1
N⋆

∑
i,j
j>i

log
∣∣∣ei − ej

∣∣∣2 , (2.34)

which serves as the N -Ring Hamiltonian for secular dynamics on the sphere:

dgi

dt = ∂H
∂ℓi

,
dℓi

dt = −∂H
∂gi

(for i = 1, 2, . . . , N⋆) , (2.35)

where t = time/Tsec is, as earlier, the dimensionless time variable. The Hamiltonian
equations can be rewritten compactly as:

dei

dt = 2
N⋆

N⋆∑
j=1
j ̸=i

(ei − ej)× ℓi

|ei − ej|2
(2.36)

where ℓi = ℓi ẑ. These vectorial equations are similar to those presented in Touma
et al. (2009), with the difference that our interaction Hamiltonian is unsoftened
and logarithmic. The equations were solved using a Bulirsch-Stoer integrator, with
relative and absolute tolerances equal to 10−8. Our fiducial system has the following
parameters:

• The disc is composed of N⋆ = 1000 Rings.

• Semi-major axis of each Ring is a0 = 1 pc.

• Black hole mass M• = 107 M⊙, giving a Kepler orbital period TKep = 0.03 Myr.

• Disc mass M = 103 M⊙, so ε = 10−4 and the secular timescale Tsec = 0.3 Gyr.

The typical relative errors for energy and angular momentum in the simulations of
bands listed in Table 2.1 are ∼ 10−6.

The evolution of the two bands, waterbag_1_s0 and waterbag_2_s0, is shown in
Figure 2.6 and Figure 2.7, respectively. The upper two panels are for the surface mass
density in the the xy-plane, and the lower two panels show the Rings represented as
1000 points on the (ex, ey) plane.2 We begin with initial conditions corresponding to
the two bands of Figure 2.3. The following overall features can be noticed:

• For waterbag_1_s0 a non-axisymmetric m = 3 instability grows; it is seen very
clearly around 0.3 Gyr and, by ∼ 0.6 Gyr, there are distinct signs of nonlinear
evolution.

2Since we are dealing with prograde discs, all the points have positive ℓi .
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Fig. 2.6 Evolution of the unstable band waterbag_1_s0. Upper two rows show the surface
density in real space (with distances measured in parsec), and the lower two rows show
the distribution in the eccentricity plane at the same respective time. The m = 3 mode is
clearly visible as three overdensity lumps in the surface density plots and as a triangular
feature in the eccentricity plane. Note that the time (in years) is indicated inside the
panels.
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Fig. 2.7 Evolution of the stable broad band waterbag_2_s0. Upper two rows show the
surface density in real space (with distances measured in parsec), and the lower two rows
show the distribution in the eccentricity plane at the same respective time. Note that the
time (in years) is indicated inside the panels.



50 Secular Collisionless Disc Instabilities

(a) waterbag_1_s0 (b) waterbag_2_s0

Fig. 2.8 Evolution of mode amplitudes am(t).

• In contrast the broad band waterbag_2_s0 is seen to be stable over a timescale
of 5 Gyr.

Dynamical behaviour can be characterized in more detail by looking at mode
amplitudes, am(t) , which were evaluated by computing Fast Fourier Transforms
over annuli of the projected mass density. These are plotted in Figure 2.8a for
waterbag_1_s0 and Figure 2.8b for waterbag_2_s0. The main features are:

• For waterbag_1_s0 the initially unstable mode has m = 3, and this remains
dominant until about 0.6 Gyr. Later there is growth of other modes, especially,
m = 1 and m = 2.

• Modes of all m maintain a low amplitude for waterbag_2_s0. We note that
sampling noise, which is unavoidable in the initial conditions, was such that
a m = 2 mode had a greater initial amplitude than the other modes (see
Figures 2.8b). The m = 2 mode is seen to be stable and precessing in Figure 2.7.
Interactions of some stars with the m = 2 mode has, presumably, scattered
them in phase space. Whereas a study of this mode-particle scattering is
beyond the scope of present work, simulations with a larger number of particles
will help clarify the nature of this process.

In the next section we present a detailed account of the linear stability of bands. We
will also discuss how linear theory accounts for the behaviour of waterbag_1_s0 and
waterbag_2_s0.
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2.4 Linear Stability of Bands

A normal mode of a band has the form f1(ℓ, g, t;m) = Re {f1m(ℓ) exp [i(mg − ωmt)]},
where ωm is a complex eigenfrequency. Since a normal mode is composed of sinusoidal
disturbances of the two edges of the phase space DF, the corresponding eigenfunction
is of the form, f1m(ℓ) = Am1 δ(ℓ − ℓ1) + Am2 δ(ℓ − ℓ2), where Am1 and Am2 are
complex amplitudes – see equation (2.33). When this is substituted in the integral
equation (2.32), it reduces to the following 2× 2 matrix eigenvalue problem:


1

∆ℓ +mΩ0(ℓ1)
1

∆ℓ

(
e2

e1

)m

− 1
∆ℓ

(
e2

e1

)m

− 1
∆ℓ +mΩ0(ℓ2)




Am1

Am2

 = ωm


Am1

Am2

 . (2.37)

Here ∆ℓ = (ℓ2 − ℓ1) , and equation (2.27) gives Ω0(ℓ1) ≡ Ω1 = −2ℓ1/(1 − ℓ2
1) and

Ω0(ℓ2) = 0. The solutions for the eigenfrequency and the ratio of edge disturbance
amplitudes are,

ω±
m = mΩ1

2 ± 1
∆ℓ

√√√√ [
1 + m∆ℓΩ1

2

]2

−
(
e2

e1

)2m

, (2.38a)

(
Am2

Am1

)±
= −

[
1 + m∆ℓΩ1

2

] (
e1

e2

)m

±
√√√√ [

1 + m∆ℓΩ1

2

]2 (
e1

e2

)2m

− 1 .

(2.38b)

A number of properties of linear modes follow:

• For each m = 1, 2, . . . there are two normal modes denoted by ‘±’. Each normal
mode is made up of two edge disturbances corresponding to the DF boundaries
ℓ = ℓ1 and ℓ = ℓ2.

• The eigenfrequencies, ω±
m , are either real or complex conjugates of each other.

If they are both real then both the normal modes are stable with pattern
speed λ±

P = ω±
m/m. When the eigenfrequencies are complex conjugates, then

one normal mode grows exponentially (an instability) and the other decays
exponentially, with both modes having the same pattern precession frequency.

• From equation (2.38a) we see that the condition for instability is:

(
1 − ℓ2

2
1 − ℓ2

1

)m/2

>

∣∣∣∣∣ 1− m (ℓ2 − ℓ1) ℓ1

1− ℓ2
1

∣∣∣∣∣ . (2.39)
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• It can be verified that the above inequality cannot be satisfied for any 0 ≤ ℓ1 <

ℓ2 < 1 , when m = 1, 2 . So all bands have stable m = 1 and m = 2 modes, and
only modes with m = 3, 4, . . . can be unstable.

• The unstable band waterbag_1_s0 has ℓ1 = 0.7 and ℓ2 = 0.9. The stable
broad band waterbag_2_s0 has ℓ1 = 0.1 and ℓ2 = 0.9. Using these values
of (ℓ1, ℓ2) in equation (2.39) it can be verified that (i) waterbag_1_s0 has
precisely two unstable modes, for m = 3 and m = 4 ; (ii) For waterbag_2_s0
modes of all m are stable. This is in agreement with the numerical simulations
discussed in § 2.3.

• The inequality condition (2.39) defines a region of instability in the (ℓ1, ℓ2)
parameter plane, for each value of m. These are displayed in Figure 2.9 for
m = 3, 4, 5, 6 . As m increases the crescent-like region of instability expands.

(a) m = 3 (b) m = 4

(c) m = 5 (d) m = 6

Fig. 2.9 Instability region in (ℓ1, ℓ2) plane for m = 3, 4, 5, 6 .
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2.4.1 Structure of Normal Modes

Stable modes: When inequality (2.39) is not satisfied the two normal mode
eigenfrequencies ω±

m , given by equation (2.38a), are both real with pattern speeds
λ±

P = ω±
m/m . The DF of the normal modes is:

f±
1 (ℓ, g, t;m) = Re

{
A±

m1 exp [im(g − λ±
P t)] δ(ℓ−ℓ1)+A±

m2 exp [im(g − λ±
P t)] δ(ℓ−ℓ2)

}
.

(2.40)
The four complex amplitudes, A±

m1 and A±
m2 , are related by equation (2.38b), which

implies that (Am2/Am1)± are real whenever ω±
m are real. When the ratio is posi-

tive/negative, the normal mode is an in-phase/out-of-phase combination of the two
sinusoidal edge disturbances. Moreover the product (Am2/Am1)+ (Am2/Am1)− = 1 ,
which implies (i) If the ‘+’ mode is an in-phase (or out-of-phase) combination of the
two edge disturbances so is the ‘−’ mode, and vice versa; (ii) If disturbance at one
of the edges makes a dominant contribution to the ‘+’ mode, then the other edge
disturbance makes a dominant contribution to the ‘−’ mode. To summarize, a stable
‘±’ mode is either an in-phase or out-of-phase superposition of the edge disturbances,
with generally unequal amplitudes. The pattern speeds, λ±

P , of the ‘±’ modes are
generally unequal.

Unstable modes: When inequality (2.39) is satisfied the two normal mode eigen-
frequencies ω±

m given by equation (2.38a), are complex conjugates of each other. We
write ω±

m = mλP ± iωI, where λP is the pattern speed and ωI > 0 can be thought as
the growth rate of the ‘+’ mode, or as the damping rate of the ‘−’ mode; we will
refer to ωI as the growth rate. Equation (2.38a) gives:

λP = Ω1

2 = − ℓ1

1− ℓ2
1

(2.41a)

ωI =

√√√√ 1
∆ℓ2

(
1− ℓ2

2
1− ℓ2

1

)m

−
(

1
∆ℓ −

mℓ1

1− ℓ2
1

)2

. (2.41b)

The pattern speed is negative and depends only on ℓ1 . On the other hand the growth
rate depends on all of (ℓ1, ℓ2,m).

Equations (2.38a) and (2.38b) imply that whenever ω±
m are complex conjugates,

(Am2/Am1)± are also complex conjugates. Moreover the magnitude of the amplitude
ratio, |(Am2/Am1)±| = 1 , so we can write (Am2/Am1)± = exp [±imθm], where

θm = 1
m

cos−1

(1− ℓ2
1

1− ℓ2
2

)m/2 (
mℓ1 ∆ℓ
1− ℓ2

1
− 1

) , (2.42)
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(a) ℓ2 = 0.9 (b) ∆ℓ = 0.1

Fig. 2.10 Growth rate ωI variation with m: a). Left panel corresponds to waterbags with
fixed ℓ2 = 0.9 b). Right panel for waterbags of fixed thickness ∆ℓ = 0.1

is the relative phase shift between the two edge disturbances composing a normal
mode. Then the DF of the growing and damping normal modes of a given m is given
by the following superposition of the two edge disturbances:

f±
1 (ℓ, g, t;m) = exp [±ωI t] Re

{
A±

m exp [im(g − λPt)] δ(ℓ− ℓ1)

+ A±
m exp [im(g ± θm − λPt)] δ(ℓ− ℓ2)

}
, (2.43)

where A±
m is a complex amplitude that is common to both edge disturbances. In

contrast to a stable mode, an unstable ‘±’ mode is a superposition of the edge
disturbances with a relative phase shift but equal amplitudes, and a pattern speed
λP = Ω1/2 which is the same for both ‘±’ modes.

In order to get an idea of the dependence of the growth rate as a function of the
parameters, (ℓ1, ℓ2,m) we plot in Figure 2.10 the growth rate as a function of m for
different values of ∆ℓ and ℓ2 . For fixed ℓ2 = 0.9 and three different values of ∆ℓ, we
see that bands with smaller ∆ℓ are unstable over a larger range of m, with higher
maximum growth rates occurring at larger m. For fixed ∆ℓ = 0.1 and three different
values of ℓ2, the maximum growth rates are similar but occur at smaller m for larger
ℓ2 .

We note that waterbag_1_s0 has unstable modes for m = 3, 4 with the m = 3
mode having the higher growth rate, ωI ∼ 0.72Tsec

−1 ≃ 2.4 Gyr−1; this is consistent
with the initial growth of the m = 3 mode in Figure 2.6 and 2.8a. In the next section
we present a more detailed comparison of numerical experiments with linear theory.
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2.5 Evolution of Instabilities

Kazandjian and Touma ran a suite of numerical simulations of waterbag bands, with
parameters listed in the Table 2.1. The primary goal is to put the linear theory of
the previous section to stringent tests, and is explored through the upper (Set I) and
lower (Set II) groups shown in Table 2.1:

• Set I consists of five cases, of which two – the unstable band waterbag_1_s0
and the stable band waterbag_2_s0 – have already been discussed.

• Set II is a detailed test of the linear theory prediction of the transition from
instability to stability of a band with fixed ℓ1 = 0.8, as ℓ2 is varied over a range
of values.

System Name ℓ1 ℓ2 Tend Stable ?

waterbag_1_s0 0.7 0.9 2.5 no
waterbag_2_s0 0.1 0.9 9.4 yes
waterbag_3_s0 0.8 0.9 10.0 no
waterbag_4_s0 0.85 0.9 6.17 no
waterbag_5_s0 0.7 0.97 8.79 yes

waterbag_ℓ1_0.8_ℓ2_0.81 0.8 0.81 1.8 no
waterbag_ℓ1_0.8_ℓ2_0.82 0.8 0.82 10.0 no
waterbag_ℓ1_0.8_ℓ2_0.83 0.8 0.83 12.5 no
waterbag_ℓ1_0.8_ℓ2_0.84 0.8 0.84 13.3 no
waterbag_ℓ1_0.8_ℓ2_0.85 0.8 0.85 1.65 no
waterbag_ℓ1_0.8_ℓ2_0.86 0.8 0.86 34.2 no
waterbag_ℓ1_0.8_ℓ2_0.87 0.8 0.87 0.28 no
waterbag_ℓ1_0.8_ℓ2_0.88 0.8 0.88 5.9 no
waterbag_ℓ1_0.8_ℓ2_0.89 0.8 0.89 5.9 no
waterbag_ℓ1_0.8_ℓ2_0.90 0.8 0.90 41.2 no
waterbag_ℓ1_0.8_ℓ2_0.91 0.8 0.91 20.0 no
waterbag_ℓ1_0.8_ℓ2_0.92 0.8 0.92 10.8 no
waterbag_ℓ1_0.8_ℓ2_0.93 0.8 0.93 6.4 no
waterbag_ℓ1_0.8_ℓ2_0.94 0.8 0.94 44.0 no
waterbag_ℓ1_0.8_ℓ2_0.95 0.8 0.95 38.7 no
waterbag_ℓ1_0.8_ℓ2_0.96 0.8 0.96 18.4 no
waterbag_ℓ1_0.8_ℓ2_0.97 0.8 0.97 5.1 no
waterbag_ℓ1_0.8_ℓ2_0.98 0.8 0.98 211 yes
waterbag_ℓ1_0.8_ℓ2_0.99 0.8 0.99 16.3 yes
waterbag_ℓ1_0.8_ℓ2_1.00 0.8 1.00 19.0 yes

Table 2.1 List of all the numerical simulations. The upper five cases correspond to Set I and the
lower ones to Set II. The total duration of each simulation, Tend, is given in units of Gyr; it is of
order a few secular times and differs from case to case.
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2.5.1 Set I

Of the five cases in Set I, waterbag_1_s0 and waterbag_2_s0 have been discussed
earlier. waterbag_5_s0 is stable according to linear theory, and the simulation results
confirmed this, showing stable evolution similar to waterbag_2_s0. We now consider
two new unstable bands, waterbag_3_s0 and waterbag_4_s0. In Table 2.2 we list
the predictions of linear theory for these two bands, including also waterbag_1_s0
whose instability was discussed earlier. For each band all its unstable modes are
identified, and the growth rate and pattern speed of the most unstable mode (m0)
are computed using equations (2.41b) and (2.41a).

Simulations of waterbag_3_s0: From Figure 2.11 we see that a m = 4 pattern
emerges by ∼ 0.06 Gyr, which is in agreement with linear theory. Non-linear
interactions, mainly with the unstable m = 5 mode, lead to distortions of the pattern.
This can be seen clearly in Figure 2.13a which plots the mode amplitudes am versus
time: the m = 4 mode has the maximum amplitude until ∼ 0.2 Gyr, after which the
m = 5 mode begins to dominate.

Simulations of waterbag_4_s0: From Figure 2.12 we see that a m = 6 pattern
emerges by ∼ 0.03 Gyr, which is in agreement with linear theory. Non-linear
interactions with other unstable modes lead to distortions of the pattern. This can
be seen clearly in Figure 2.13b which plots the mode amplitudes am versus time: the
m = 6 mode dominates until ∼ 0.2 Gyr, after which there seems to be non-linear
interactions among many modes.

Table 2.3 shows the general agreement between linear theory and simulations.

Fastest growing mode
System name Unstable m m0 ωI,max(Gyr−1) λP0(rad Gyr−1)

waterbag_1_s0 3,4 3 2.4 -4.57
waterbag_3_s0 3,4,5 4 8.5 -7.41
waterbag_4_s0 3 - 7 6 20.6 -10.21

Table 2.2 Theoretical predictions for the unstable bands of Set I.

Fastest growing mode
System name m0 (Theory) m0 (Simulations) Agreement

waterbag_1_s0 3 3 yes
waterbag_3_s0 4 4 yes∗

waterbag_4_s0 6 6 yes∗

Table 2.3 Comparison between linear theory and simulations for the unstable bands of Set I. ∗ There is
good agreement for waterbag_3_s0 for t < 0.2 Gyr, and for waterbag_4_s0 for 0.05 < t < 0.15 Gyr.
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Fig. 2.11 Similar to Fig. 2.6, but for waterbag_3_s0. An m = 4 pattern emerges by
∼ 0.06 Gyr.
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Fig. 2.12 Similar to Fig. 2.6, but for waterbag_4_s0. An m = 6 pattern emerges by
∼ 0.03 Gyr.
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(a) waterbag_3_s0 (b) waterbag_4_s0

Fig. 2.13 Evolution of mode amplitudes am. (a) waterbag_3_s0, (b) waterbag_4_s0.

2.5.2 Set II

The narrowest band in Table 2.1 is waterbag_ℓ1_0.8_ℓ2_0.81, with ∆ℓ = 0.01 .
According to linear theory this band is unstable to a wide range of modes with
m = 3 − 57, with m = 36 having the fastest growth rate. Figure 2.14 shows the
evolution of this narrow band, whose initial evolution shows an instability dominated
by m ∼ 36 mode, in agreement with linear theory.

Linear theory also predicts a transition from instability to stability when the
lower boundary is held fixed at ℓ1 = 0.8 and the band is made broader by increasing
ℓ2. This transition occurs at ℓ2 = ℓcrit ≃ 0.963 : bands with ℓ2 < ℓcrit are unstable
to various modes whereas broader bands with ℓcrit < ℓ2 < 1 are stable for all m. In
order to test this precise prediction, we ran a total of 20 simulations increasing ℓ2

in steps of 0.01, from 0.81 to 1, and looked for signs of instabilities. From the last
column of Table 2.1 we see that the simulations confirm linear theory, with the small
difference that the transition seems to happen when ℓ2 crosses 0.97, instead of the
predicted value of 0.963.

2.5.3 Collisionless Relaxation

Here we discuss the long-term evolution of an unstable band, that goes well beyond
the applicability of linear theory. The point of interest is in the collisionless relaxation
to a state with a wide spread in eccentricities.

As instabilities unfold and non-linear interactions between modes dominate, what
can we expect of evolution over long times? We have earlier in this section followed
the short-time evolution of the unstable band waterbag_3_s0, with its initial growth
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Fig. 2.14 Similar to Fig. 2.6, but for waterbag_ℓ1_0.8_ℓ2_0.81. A high m pattern
emerges by ∼ 0.02 Gyr.
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of a dominant m = 4 mode over ∼ 0.06 Gyr, followed by the rise of a m = 5 mode
around ∼ 0.2 Gyr lasting until at least ∼ 0.34 Gyr. What happens after this? Here
we follow the evolution for ∼ 4 Gyr.

Figure 2.15 shows both the initial and final states of waterbag_3_s0. When
compared with the intermediate states of Figure 2.11, the final state appears more
axisymmetric. The final state also has a wider range of eccentricities than the initial
state. It consists of a nearly circular high density ring, surrounded by a lower-density
halo of particles with a wide range of eccentricities. The strong non-axisymmetric
instabilities that plagued the initial state seem to have saturated, leaving behind a
relaxed, coarse-grained state that is approximately axisymmetric and steady in time.
The secular precessional timescale for the initial state is Tsec ∼ 0.8 Gyr, so the total
duration of the run, 4 Gyr is about 5Tsec. This is too short a duration for a collisional
process like resonant relaxation to be effective. Hence what we have witnessed must
be collisionless relaxation, where non-axisymmetric instabilities provide the pathway
for transition from one axisymmetric state to another.
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(a) Initial state (b) Relaxed state at 4.05 Gyr

Fig. 2.15 Collisionless relaxation of waterbag_3_s0.
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2.6 Conclusions

Mono-energetic waterbags are the simplest models of low mass stellar discs around
an MBH. We studied, analytically and numerically, the stability of initial states that
are prograde and axisymmetric. These waterbags have a DF, f0(ℓ), which is constant
when 0 ≤ ℓ1 ≤ ℓ ≤ ℓ2 ≤ 1, and zero when ℓ is outside this range. There are two
types of waterbags, polarcaps with ℓ2 = 1 and bands with ℓ2 < 1. The linear stability
problem can be solved simply: for each m the growth rates of instabilities, pattern
speeds of stable and unstable modes and the complete normal mode structure have
been determined explicitly as functions of (ℓ1, ℓ2), the waterbag parameters.

• Polarcaps have one stable normal mode for each m, with the noteworthy
feature that the m = 1 mode always has positive pattern speed. For a polarcap
consisting of orbits with eccentricities e < 0.94, only the m = 1 mode has a
positive pattern speed.

• Bands have two normal modes for each m, and can be either stable or unstable.
Very narrow bands (with ℓ1 ≃ ℓ2) are unstable to modes with a wide range in
m, whereas broad bands approaching a polarcap (with ℓ2 ≃ 1) are stable.

The evolution of instabilities was also explored through numerical simulations,
which can span both linear and non-linear regimes. A variety of numerical experiments
were performed which demonstrated good agreement with linear theory. Long-time
integration showed the growth of instabilities of different m that interacted with
each other non-linearly, then saturated and later relaxed collisionlessly into a quasi-
steady state, with a wider range of eccentric orbits than the initial state. This
suggests secular non-axisymmetric instabilities could provide pathways for stars to
exchange angular momentum via the mean self-gravitational field, and spread out in
eccentricities.

It is straightforward to extend our study to include external gravitational sources
(such as nuclear density cusps or distant perturbers) and general relativity, as
described in ST16a. But one clearly needs to go well beyond our simple models in
order to study real systems, like the disc of young stars at the Galactic centre. We
need to consider more general DFs and include orbits with a range of semi-major
axes and inclinations. But self-gravitational dynamics poses difficult problems and
secular dynamics is still in its infancy, so we need to build the tools step by step;
describing the collisionless relaxation of even an unstable band remains a challenge
for dynamists.



Chapter 3
Galactic Centre Stellar Cusp
Deformation due to a Gas Disc

The Galactic centre (GC) NSC is an extended distribution of old stars of mass
∼ 2.5 × 107 M⊙ with a half-light radius of about 4 pc (Genzel et al., 2010). The
first high angular resolution observations seemed to imply that the old stars were
distributed in a density cusp (Genzel et al., 2003; Schödel et al., 2007). But when
the contamination of light from the young stars was accounted for, the old giant
population appeared to have a core-like, rather than a cuspy, surface density profile
(Buchholz et al., 2009; Do et al., 2009; Bartko et al., 2010; Fritz et al., 2016). Recent
work by Gallego-Cano et al. (2018); Schödel et al. (2018) has refined our knowledge
of the distribution of the old stars. Resolved faint stars (from deep star counts)
and sub-giants and dwarfs (inferred from diffuse light) have a cuspy density profile,
which is well-described by a single power-law within ∼ 3 pc of central MBH. But
the density profile of red clump and brighter giant stars rises toward the centre in a
cuspy manner, but becomes core-like within about 0.3 pc. Some of these features of
the GC NSC were discussed in § 1.1.1.

The compact young stellar distribution within 0.5 pc is believed to have formed
in situ in a massive accretion disc around the MBH (Levin & Beloborodov, 2003). If
this is the case then the young star cluster has evolved dynamically since its birth
in the accretion disc. Repeated passages of the red clump and brighter giant stars
through the dense inner parts of the accretion disc could have robbed them of their
envelopes, rendering the innermost stars invisible; this would explain the difference
between the core-like profiles of the old giants and the cuspy profiles of old stars
lacking extended envelopes (Amaro-Seoane & Chen, 2014). In contrast the accretion
disc’s gravitational field will deflect the orbits of all old stars in the same manner.
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What is the gravitational response of an old stellar cusp to the accumulation of gas
in an accretion disc around the MBH?

In this chapter we address this question by constructing a simple model of the
process within the radius of influence of the MBH, rinfl ≃ 2 pc. The work presented
is based on the paper Kaur & Sridhar (2018). The problem is stated in § 3.1 for
a non-rotating, spherical stellar cusp with anisotropic velocity dispersions, which
experiences gravitational perturbations due to a growing gas disc; we argue that disc
growth is slow compared to typical apse precession periods of cusp orbits. In § 3.2
we cast the dynamical problem in terms of the secular theory of ST16a, which is its
natural setting. In § 3.3 we derive a formula for the linear perturbation to the phase
space DF: the magnitude of the perturbation is largest for orbits that are highly
inclined with respect to the disc plane; it is positive when the angle between the
lines of apsides and nodes is less than 45◦ and negative otherwise. This is explained
in terms of the secular, adiabatic dynamics of individual orbits in the combined
gravitational potentials of the cusp and disc. Linear theory accounts only for orbits
whose apsides circulate. The non-linear theory of adiabatic capture into resonance is
needed to understand orbits whose apsides librate. In § 3.4 we use the formula for the
DF to compute the oblate spheroidal deformation of the three dimensional density
profile of the cusp, as well as the surface density profiles for different viewing angles.
We conclude in § 3.5 with a discussion of linear stability, extensions to rotating and
axisymmetric cusps, and that the process studied in this paper may be common in
galactic nuclei.

3.1 Statement of the problem

We are interested in describing stellar dynamics within 1 pc of a MBH of mass
M• = 4× 106 M⊙. Let r and u be the position vector and velocity of a star, relative
to the MBH. Since this region is well inside rinfl ≃ 2 pc, the dominant gravitational
force on a star is the Newtonian 1/r2 attraction of the MBH. Hence the shortest
timescale associated with a stellar orbit of semi-major axis a is its Kepler orbital
period, TKep(a) ≃ 4.7× 104 a3/2

pc yr where apc = (a/1 pc).

3.1.1 The unperturbed stellar cusp

This is assumed to be spherically symmetric about the MBH, with a density profile

ρc(r) = (3− γ)Mc

4πrc3

(
rc

r

)γ

. (3.1)
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For the GC cusp γ = 1.23 ± 0.05 , and Mc = 106 M⊙ is the stellar mass within a
radius rc = 1 pc of the MBH (Gallego-Cano et al., 2018; Schödel et al., 2018). The
gravitational potential due to the cusp (γ ̸= 2) is

φc(r) = GMc

(2− γ)rc

(
r

rc

)2−γ

, (3.2)

where a constant additive term has been dropped. The cusp’s spherically sym-
metric gravitational field will make the apsides of Kepler orbits precess in a retro-
grade sense in their respective orbital planes. The typical apse precession period is
T c

pr(a) ∼ (M•/Mca)TKep(a), where Mca = Mc a
(3−γ)
pc is the mass in cusp stars inside

a sphere of radius a. Then T c
pr(a) ∼ 1.8× 105 a(γ−3/2)

pc yr. Within a parsec the apse
precession period is always longer than the Kepler orbital period. We assume that
the distribution of these precessing orbits is such that, at every point in space, the
mean velocity vanishes but the velocity distribution is anisotropic. This anisotropy
is characterized by the parameter β(r) = 1 −

(
σ2

θ + σ2
ϕ

)
/2σ2

r , where the σ’s are
velocity dispersions along the three principal directions of a polar coordinate system
centred on the MBH. When β(r) is negative(positive) the velocity distribution is
tangentially(radially) biased.

The cusp is described by a probability DF, fc(r,u), in the six dimensional phase
space, {r,u}. For a non-rotating system with anisotropic velocity dispersion, the
Jeans theorem implies that the unperturbed DF is a function of the energy per unit
mass, E = u2/2 − GM•/r + φc(r) , and the magnitude of the angular momentum
per unit mass L = |r×u| (Binney & Tremaine, 2008). Let us consider the double
power-law DF,

fc(r,u) =


A

2π (−E)m Ln , E < 0

0 , E > 0 ,
(3.3)

which is composed entirely of bound orbits; m > 0 for the DF to be continuous
at E = 0. For r ≤ 1 pc the Kepler potential of the MBH dominates the cluster
potential, so E ≃ Ek = u2/2 − GM•/r = Kepler energy is a good approximation.
Henceforth we will consider the DF of equation (3.3) to be a function of Ek and L.
The reason we begin with a two–integral (anisotropic) DF, fc = F (Ek, L), rather
than an isotropic DF, F (Ek), is the following. We have to deal with the response of
a Keplerian stellar system over timescales that are much longer than Kepler orbital
periods. The Kepler energy, Ek, is a secular invariant for processes that vary on
(secular) times scales of the order of the apse precession periods, or longer. So a DF
of the form, F (Ek), would remain unchanged when perturbed by secularly varying
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gravitational potentials. Therefore we need to begin with at least a two–integral DF,
in order to study non–trivial secular response.

There is one relation among the three parameters (A,m, n) due to the normaliza-
tion of the DF,

∫
fc dr du = 1 . The density is obtained by integrating the DF over

velocity space: ρc(r) = Mc
∫
fc du , which is straightforward to do in the standard

manner (Binney & Tremaine, 2008). Comparing with equation (3.1) gives two more
relations between (A,m, n) and (rc, γ). It is convenient to choose the independent
parameters as (rc,m, n) and write:

A = 3− γ
4π 2n+1

2 B(n
2 +1, 1

2)B(m+1, n+3
2 ) rc3−γ (GM•)γ+n

, (3.4)

γ = 2m− n+ 3
2 ,

where B(p,q) is the Beta function. It is also straightforward to calculate the velocity
anisotropy, β = −n/2, which is now constant. We note that for the density to be
finite, n > −2 (or β < 1), which puts an upper limit on how radially biased the
double power-law DF of equation (3.3) can be.

3.1.2 The perturbing gas disc

Levin & Beloborodov (2003) proposed that the young stars at the GC were formed
in situ, in a massive accretion disc around the MBH. As gas accumulated in the
accretion disc it became gravitationally unstable in efficiently cooling regions with
Toomre Q ≲ 1, and fragmented into massive stars (Nayakshin, 2006; Levin, 2007). A
thin gas disc that is supported by external irradiation prior to fragmentation can have
a steep surface density, Σd(R) ∝ R−3/2 according to Levin (2007). This is consistent
with the steep surface density profile of the clockwise disc of young stars that lies
within about 0.13 pc of the MBH (Paumard et al., 2006; Lu et al., 2009; Bartko et al.,
2009; Yelda et al., 2014). We assume that the mass of the progenitor gas disc grew in
time from some small value to a maximum value, just before the birth of the young
stars. We need to choose a mass model representing an axisymmetric, thin accretion
disc with surface density profile, Σd(R) ∝ R−3/2. The gravitational potential of this
mass model should be of a simple form, to enable explicit computation of the secular
perturbation it exerts on the orbits of the old cusp stars. We found the following
two-component model to be a suitable three dimensional density distribution:

ρd(r, θ, t) = 2
11π

Md(t)
r3

d

(
rd

r

)5/2 [
δ
(
θ − π

2

)
+ 9

16(1− |cos θ|)2
]
, (3.5)
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where Md(t) is the mass inside a sphere of radius rd = 1 pc at time t. The disc
consists of two components: within a sphere of radius r, about 73% of its mass is in a
razor-thin component confined to the equatorial plane; about 27% is in an extended
but flattened corona. It is straightforward to verify that the gravitational potential
due to ρd(r, θ, t) is:

φd(r, θ, t) = − 8
11
GMd(t)

rd

(
rd

r

)1/2
[

9 (33 + cos2 θ)
100 − | cos θ|

2

]
. (3.6)

We are interested in determining the perturbation caused by the time-dependent
disc potential of equation (3.6) to the DF of equation (3.3). In order to do this we
assume that Md(t) grows monotonically on a timescale, Tgrow, to its maximum value,
Mdm, just before the birth of the young stars. We now estimate Mdm and Tgrow:

Disc mass: A circumnuclear disc (CND), composed of molecular clouds, orbits
the MBH at distances ∼ 1.5− 5 pc (Gatley et al., 1986; Guesten et al., 1987;
Yusef-Zadeh et al., 2001). The CND is presumably a remnant of the outer parts
of the gas disc. If we assume that the total mass — but not the necessarily its
distribution — in the annulus has not changed much over the last Myr, then
we can estimate Mdm as follows. Since Σd(R) ∝ R−3/2, the gas mass within
R is ∝ R1/2, so we set Mdm

(√
5−
√

1.5
)

= MCND . Estimates of MCND range
from 104 M⊙ (Etxaluze et al., 2011; Requena-Torres et al., 2012) to 106 M⊙

(Christopher et al., 2005). Adopting a mid-value, MCND ∼ 105 M⊙ , we infer
that Mdm ∼ 105 M⊙ , which is similar to the value suggested by Nayakshin &
Cuadra (2005).

Growth time: Tgrow depends on the agency that removes angular momentum
from the gas flow at a radius of about a parsec. If it is accretion disc ‘α-
viscosity’ then Tgrow ∼ TKep(1 pc)/(αξ2), where α ∼ 0.3 for gravitationally
induced turbulence (Gammie, 2001) and ξ ≲ 0.1 is the half-opening-angle of the
thin disc; this gives Tgrow ≳ 1.5× 107 yr. If angular momentum is lost through
non-axisymmetric gravitational perturbations then Tgrow ∼ TKep(1 pc)/δφ is the
flow timescale, where δφ is the fractional non-axisymmetry in the gravitational
potential at a radius of a parsec. Even for the pronounced m = 1 asymmetry
of the nuclear disc of M31, δφ ∼ 10−3 − 10−2 (Chang et al., 2007). Hence we
expect, in either case, that Tgrow ≳ 107 yr for the GC accretion disc.
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3.1.3 Adiabatic nature of the perturbation

The perturbation due to the disc contributes to both apsidal and nodal precession. We
can estimate the perturbation by imagining gas of total mass, Mdm = 105 M⊙ , to be
distributed spherically symmetric with density profile ∝ r−5/2 , instead of being highly
flattened as given by equation (3.5). Such a spherically symmetric approximation
to the perturbation does not cause nodal precession but contributes to retrograde
apse precession over times, T d

pr(a) ∼ (M•/Mda)TKep(a), where Mda = 105 a1/2
pc M⊙

is the disc mass inside a sphere of radius a. Then T d
pr(a) ∼ 2 × 106 apc yr is

an increasing function of a. This should be compared with the retrograde apse
precession period due to the cusp stars, T c

pr(a) ∼ 2 × 105 a−1/4
pc yr (for a fiducial

value of γ = 5/4), which is a decreasing function of a. Since the apse precession
due to gas and stars are both retrograde, the net precession frequency is the sum
of the individual frequencies. The corresponding precession period then provides
the natural timescale for secular dynamics, Tsec(a) = T c

pr(a)T d
pr(a)/

[
T c

pr(a) + T d
pr(a)

]
.

These different timescales, together with the short Kepler orbital period, TKep(a),
are plotted in Figure 3.1. As can be seen, the net precession period, Tsec(a), is
dominated by the disc mass for a < 0.16 pc and by the cusp mass for a > 0.16 pc.
This precession period attains its maximum value of about 2× 105 yr within 1 pc,
which is much shorter than the estimate of Tgrow ≳ 107 yr, the growth time of the
disc. Hence the perturbation may be assumed to be adiabatic.1

1Our estimates of apse precession periods accounted only for the sizes of stellar orbits (i.e.
semi-major axes a), but not for orbital eccentricities. Highly eccentric orbits precess very slowly
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3.2 Secular collisionless dynamics

We have three well-separated timescales in the problem. These are the short Kepler
orbital period, TKep(a) ≃ 4.7× 104 a3/2

pc yr; the long timescale of disc growth, Tgrow ≳

107 yr; and the intermediate secular time scale, Tsec(a) ≲ 2× 105 yr: we always have
TKep(a)≪ Tsec(a)≪ Tgrow for a ≤ 1 pc . In order to study the evolution of the cusp
DF over times greater than Tsec(a), we can average the orbit of every star over the
rapidly varying Kepler orbital phase. The appropriate framework to do this is the
secular theory of collisionless evolution (ST16a), which is described in § 1.3.

3.2.1 The cusp-disc system

We are now in a position to formulate our problem in terms of the above description
of secular collisionless dynamics.

The unperturbed cusp: The secular DF for the spherical unperturbed cusp is

F0(I, L) = 2π fc(Ek, L) = A (GM•)2 m Ln

2m I2 m
, (3.7)

where we have used equation (3.3). The corresponding (scaled) orbit-averaged
potential, Φc(I, L), is related to F0 through equation (1.11)-(1.12), but we do
not need to use this; it is easier to orbit-average equation (3.2). Then we get
Φc(I, L) = (M•/Mc)

∮
φc(r) dw/2π , is proportional to a hypergeometric function,

but the following approximate expression will suffice for our purposes:2

Φc(I, L) = GM•

(2− γ) rc

(
a

rc

)2−γ

(1 + αγ e
2) , where αγ =

23−γ Γ(7
2 − γ)√

π Γ(4− γ) − 1 .

(3.8)
This formula is exact for γ = 1, and a good approximation for our fiducial value,
γ = 5/4. Φc(I, L) acts as the Hamiltonian for secular dynamics so the apse precession
frequency, dg/dτ = Ωc(I, L), is:

Ωc(I, L) = ∂Φc

∂L
= − 2αγ

2− γ Ωkep(rc)
I3−2 γ

(GM• rc)
3
2 −γ

L

I
, (3.9)

where Ωkep(rc) = (GM•/r
3
c)1/2 is the Kepler frequency for an orbit of semi–major

axis rc. Since Ωc ∝ −a(3/2−γ)√1− e2 , the (retrograde) apse precession is fastest for

– see equation (3.9) – and the adiabatic approximation is not valid for these; this is discussed in
§ 3.3.2.

2Both the exact expression and the approximation are given in equations (4.81) and (4.82) of
Merritt (2013).
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near-circular orbits and and slowest for highly eccentric orbits. Moreover for γ < 3/2,
which is of interest to us, orbits of smaller a precess slower.

Orbit-averaged disc perturbation: Φd(I, L, Lz, g, τ)=(M•/Mc)
∮
φd(r, θ, t)dw/2π

can be written in terms of Elliptic integrals for the potential of equation (3.6), as given
in Appendix C. The following approximation, which is convenient for calculations,
has a maximum fractional error ≲ 2% :

Φd = 16GM•

11π rc
µ(τ)

√
rd

a

− 9
100
√

1 + e E(k)
(

33 + sin2 i

2

)
+

sin i
2

(
1 + a0e

2 + b0e
4 + c0e

6
)
−
(
λ

2 sin i− 9
100 sin2 i

)(
ate

2 + bte
4 + cte

6
)

cos 2g
 ,

(3.10)

where k =
√

2e/(1 + e), E(k) is the complete elliptic integral of second kind defined
in equation (C.3), and a0 = −0.0742572, b0 = 0.0417887, c0 = −0.0672152, λ =
0.848835, at = 0.495367, bt = −0.492259, ct = 0.703998. Here µ(τ)=[Md(τ)rc/Mcrd]
is a time-dependent small parameter characterizing the strength of the disc pertur-
bation relative to the cusp: µ(τ)→ 0 as τ → −∞ and µ takes its largest value of
0.1 when Md = 105 M⊙.

Secular evolution of the cusp DF: The spherical cusp DF of equation (3.7)
responds to the time-dependent, axisymmetric disc potential of equation (3.10).
The DF of the axisymmetrically deforming cusp must be independent of the nodal
longitude h, and takes the general form, F (I, L, Lz, g, τ). Let Φ(I, L, Lz, g, τ) be the
(scaled) self-gravitational potential, which is related to F through equation (1.11).
The secular Hamiltonian is,

H(I, L, Lz, g, τ) = Φ(I, L, Lz, g, τ) + Φd(I, L, Lz, g, τ) . (3.11)

Since both F and H are independent of h, the CBE of equation (1.16) simplifies to,

∂F

∂τ
+ ∂H

∂L

∂F

∂g
− ∂H

∂g

∂F

∂L
= 0 . (3.12)

Both I =
√
GM•a and Lz = I

√
1− e2 cos i are secular integrals of motion, even

though H is time-dependent. If H were time-independent, it is itself a third inte-
gral of motion; in contrast to un-averaged stellar dynamics, all time-independent,
axisymmetric secular dynamics is integrable (Sridhar & Touma, 1999). Then the
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secular Jeans theorem (ST16a) implies that a steady state F must be function of
(I, Lz, H). We need to solve the problem for an adiabatically varying H.

3.3 Adiabatic response of the stellar cusp

The time-dependence of H is due to disc growth over times, Tgrow ≳ 107 yr, that
are much longer than Tsec ≲ 2 × 105 yr. In this case H is not conserved, but
the principle of adiabatic invariance can be used to calculate a new action, J =∮
L(H, I, Lz, g, τ) dg/2π , that is conserved for orbits that are far from a separatrix,

and undergoes a probabilistic change which can be calculated for orbits encountering
a separatrix (Goldreich & Peale, 1966; Henrard, 1982); the corresponding evolution
of the DF was worked out in Sridhar & Touma (1996) – see § 3.3.2 for a more
detailed discussion of these points. The non-linear, axisymmetric, adiabatic response
is an integrable and solvable problem. We derive an explicit formula for the linear
response of the DF, due to the growing disc potential while neglecting the change in
the cusp potential, as discussed below. This is used in the next section to calculate
the density deformation. Then we study orbital structure: this provides a physical
interpretation of the linear deformation, clarifies the limits of linear theory and sets
the stage for the non-linear theory of adiabatic deformation.

3.3.1 Linear adiabatic response

The unperturbed cusp has DF F0(I, L) and Hamiltonian H0 = Φc(I, L). As the disc
grows the cusp DF is F = F0(I, L) + F1(I, L, Lz, g, τ), with the corresponding new
Hamiltonian H = H0 + H1 where H1 = Φd(I, L, Lz, g, τ) + Φ1(I, L, Lz, g, τ). Here
Φ1 is the (scaled) self-gravitational potential due to F1, and related to it through the
Poisson integral of equation (1.11):

Φ1(I, L, Lz, g, τ) =
∫
F1(I, L, Lz, g, τ) Ψ(R,R′) dR′ . (3.13)

From the discussion of timescales in § 3.1.3, we expect that disc perturbation is
small for a ≳ 0.2 pc. Substituting for F and H in the CBE of equation (3.12),
and keeping only terms linear in the small quantities, {F1,Φd,Φ1}, we obtain the
linearized collisionless Boltzmann equation (LCBE) governing the evolution of F1 :

∂F1

∂τ
+ Ωc(I, L) ∂F1

∂g
= ∂F0

∂L

∂

∂g
{Φd + Φ1} . (3.14)
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The price to be paid for linearization is that we will not be able to describe capture
into resonance (which is discussed later in § 3.3.2).

Since Φ1 is given as an integral over F1, the LCBE is a linear integro-differential
equation for the unknown F1. Calculating even this linear response requires substan-
tial numerical computations. For a first cut at the problem we proceed by dropping
Φ1 (the likely effect of this would be to underestimate the response of the cusp).
Then the right side of equation (3.14), (∂Φd/∂g), represents only the known driving
due to the disc, and the LCBE reduces to a linear partial differential equation.
Further simplification occurs because of the adiabaticity of the problem, which was
established in § 3.1.3: the first term on the left side, (∂F1/∂τ), is smaller than
the second term, Ωc(∂F1/∂g), by a factor (T c

pr/Tgrow) ∼ 2× 10−2. Hence, dropping
∂F1/∂τ , we can integrate over g to find F1. 3 The physical solution cannot have a
g-independent part because such a deformation is not allowed through collisionless,
secular Hamiltonian deformations in phase space. Therefore

F1(I, L, Lz, g, τ) = 1
Ωc(I, L)

∂F0

∂L

[
Φd − ⟨Φd⟩g

]
, (3.15)

where ⟨Φd⟩g =
∮

Φd dg/2π . Using the purely g-dependent part on the right side of
equation (3.10), together with equations (3.9) and (3.7), we obtain the following
explicit expression:

F1 = D(τ)
(GM•rc)3/2

rc

a
(1− e2)(

n
2 −1) (ate

2 + bte
4 + cte

6
)(λ

2 sin i− 9
100 sin2 i

)
cos 2g ,

where D(τ) = 4n (2− γ)(3− γ)
11π2 αγ 2(γ+n) B(n

2 +1, 1
2)B(m+1, n+3

2 )

√
rd

rc
µ(τ) . (3.16)

The secular linear deformation has been written in terms of physical variables, instead
of Delaunay variables, so we can read-off its general properties:

1. F1 ∝ a−1 is independent of the cusp power-law index because γ cancels out
in the ratio, Ω−1

c (∂F0/∂L), in equation (3.15). The magnitude of F1 increases
with decreasing a because the perturbing gas density rises steeply at small
radii. Linear theory requires that |F1| ≪ |F0| ∝ a3/2−γ, so applies at small a
only when γ > 5/2. For the shallow cusp we consider, γ ≈ 5/4, equation (3.16)
would not correctly represent the perturbation at small a.

3Since |Ωc| ∝ a(3/2−γ)√1− e2 decreases as a decreases (for γ < 3/2), and e increases, this
assumption is not valid for small and/or highly eccentric orbits. But we need to account for
non-linear effects long before we face this limitation of the adiabatic approximation in the linear
theory itself. This is discussed later in this section.
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2. The magnitude of F1 is an increasing function of the inclination, i , because
F1 is proportional to the g-dependent part of the disc potential, whose effect
increases with inclination.

3. For n ≤ 2, the magnitude of F1 is an increasing function of the eccentricity, e .
For n > 2 orbits with intermediate values of e contribute the most, because
the unperturbed cusp has very tangentially biased velocity dispersions.

4. Since F1 ∝ cos 2g it is positive/negative for orbits whose angles between their
lines of apses and nodes is lesser/greater than 45◦. F1 is positive and maximum
for g = (0◦, 180◦), and negative and minimum for g = (90◦, 270◦).

Of the four properties the first three pertain to the magnitude of F1. The fourth
item alone determines the sign of F1, and hence the flattening of the cusp. In order
to understand this physically it is necessary to work out the broad characteristics of
the individual orbits making up the stellar system. This also enables an appreciation
of what is involved in calculating non-linear, adiabatic response.

3.3.2 Orbital structure and non-linear theory

The Hamiltonian governing orbital structure is H(I, L, Lz, g, τ) = Φc + Φd. Using
equations (3.8) and (3.10) we have:

H = GM•

rc

 1
(2− γ)

(
a

rc

)2−γ

(1 + αγe
2) + 16µ(τ)

11π

√
rd

a

{
−9
100
√

1 + eE (k)
(

33 + sin2 i

2

)

+sin i
2

(
1 + a0e

2 + b0e
4 + c0e

6
)
−
(
λ

2 sin i− 9
100 sin2 i

)
(ate

2 + bte
4 + cte

6) cos 2g
} .

(3.17)

As we discussed at the end of § 3.2, this time-dependent Hamiltonian always has
two integrals of motion, I =

√
GM•a and Lz = I

√
1− e2 cos i. Therefore the

eccentricity and inclination execute coupled oscillations: when e increases i decreases,
while a = constant. In order to say more about orbits we need some information on
the time-dependence of H, which arises through the parameter µ(τ).

‘Time-frozen’ Hamiltonian: Were µ(τ) = constant, H would be time-independent,
and is itself the third integral of motion. Orbital dynamics can be visualized by
first fixing some values of (I, Lz), and drawing isocontours of H in the (L, g) phase
plane, for L ≥ |Lz|. For µ = 0 we have H = Φc(I, L), so the isocontours are just
L = constant horizontal lines. For µ ≠ 0 the isocontours have a more complicated
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Fig. 3.2 Isocontours of H(I, L, Lz, g) in the (L, g) phase plane, in units of GM•/rc, for
µ = 0.1 and a = 0.5 pc. The exact expressions for Φc, given in equation (4.81) of Merritt
(2013), and Φd, given in equation (C.13), have been used.

topology: these are displayed in Figure 3.2 for µ = 0.1 (its maximal value), a = 0.5 pc
and two different values of Lz. The orbital structure shares the following generic
features of secular dynamics in time-independent, axisymmetric potentials around a
MBH (Sambhus & Sridhar, 2000; Merritt, 2013):

Circulating orbits, for which g advances by 2π over one period. These can
be thought of as perturbations of the L = constant orbits of the µ = 0 case,
exhibiting periodic oscillations of both L and g. The perturbations need not
necessarily be small, but they are small enough so that the basic topology of
the orbit remains unchanged.

Librating orbits, for which g librates periodically about g = (π/2, 3π/2). These
populate two ‘islands’ parented by two elliptic fixed point orbits (marked by
the dots), which correspond to Kepler ellipses of fixed (a, e, i, g) whose nodes
precess at a steady rate.

Two Separatrix orbits (dashed lines) that meet at the hyperbolic fixed points
at g = (0, π). These partition the phase plane into circulating and librating
orbits. The period of a separatrix orbit is infinite, as apse precession slows
down terminally near the fixed points.

Adiabatically varying Hamiltonian: When µ(τ) varies slowly with time, H is
no longer an integral of motion. At early times µ → 0 so H → Φc(I, L), which
is just the unperturbed cusp. All orbits circulate at constant L, corresponding to



3.3 Adiabatic response of the stellar cusp 75

0.0 0.5 1.0 1.5 2.0 2.5 3.0

g

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−
ġ
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Fig. 3.3 Apse precession rates for three circulating orbits in the phase plane of Figure 3.2a,
for H = 0.70, 0.74, 0.77.

retrograde apse precession at the constant rate Ωc(I, L) of equation (3.9). As µ(τ)
increases two islands appear around the elliptic fixed points, together with their
separatrices. As µ(τ) increases the separatrices expand and the islands grow until
their areas attain a maximum when µ = 0.1 . There are two cases to consider:

(1) Adiabatic invariance and linear theory: For circulating orbits that do
not ever encounter the growing separatrices, µ(τ) may be considered to be slowly
varying. Then J =

∮
L(H, I, Lz, g, τ) dg/2π is an adiabatic invariant, so we have

three secular integrals of motion, (I, Lz, J). The secular Jeans theorem implies that
the full, non-linear DF is of the form F (I, Lz, J). The linear response calculation
of § 3.3.1 is a particular case, valid for those circulating orbits that remain close to
an unperturbed L = constant orbit. In this case F = F0(I, L) + F1(I, L, Lz, g, τ),
where F0 and F1 are given in equations (3.7) and (3.16). We can now understand
the general form of F1, by following individual circulating orbits.

From Figure 3.2 and the conservation of Lz = L cos i, we see that both L and i

take their smallest values at g = (0◦, 180◦), and their largest values at g = (90◦, 270◦).
Figure 3.3 shows the (retrograde) apse precession rate, ġ = ∂H/∂L, as a function of
g, for three circulating orbits taken from the left panel of Figure 3.2. Apse precession
is slowest at g = (0◦, 180◦), and fastest at g = (90◦, 270◦). Since the orbit spends
the most time where it precesses slowest, we expect a positive perturbation to the
DF near g = (0◦, 180◦), when the orbit also attains its maximum eccentricity and
minimum inclination. Precisely the opposite behaviour obtains near g = (90◦, 270◦).
All of these contribute to an over-density in the perturbation close to the disc plane,



76 Cusp deformation due to a gas disc

and an under-density away from the disc plane, thereby flattening the cusp. Indeed
the density deformation ρ1, shown in Figure 3.4a, has this expected form.

(2) Adiabatic capture and non-linear theory: When a circulating orbit
encounters one of the growing separatrices, it will be captured into the respective
island and become a librating orbit. We now discuss the generic situation, which
includes cases when one or both separatrices shrink.

Adiabatic invariance is broken in the vicinity of a time-dependent separatrix,
both on the librating and circulating sides. This is because the orbital periods
are formally infinite on the separatrices, and there is a band of actions around the
separatrices for which the orbital periods are longer than the time of variation of
the self-consistent Hamiltonian. This band, which includes the unstable fixed points,
is very narrow in the adiabatic limit. But for orbits within it, the movement of
the separatrices is not slow, and the dynamics within the band is chaotic because
the orbit–separatrix encounter is very sensitive to the phase of the encounter. The
behaviour of the orbit has been described in probabilistic terms in the planetary
dynamics literature (Goldreich & Peale, 1966; Henrard, 1982); i.e. in terms of the
probabilities of capture into, or escape from the islands of libration. Sridhar & Touma
(1996) reconsidered this general problem in terms of the collisionless behaviour of a
distribution of particles, and showed that the capture/escape probabilities can be
calculated, without doing the detailed non-linear dynamics of the encounter of an
orbit with a separatrix. We note their main results, and discuss it in the context of
our problem:

• Let f be the fine-grained DF of the particles that obeys the CBE, whose
Hamiltonian (which could be self-consistent or not) allows for a resonant island
bounded by separatrices, which distort over timescales much longer than generic
orbital periods (by generic we mean orbits that do not lie in the narrow band
discussed above). Even if f was a smooth function to begin with, the chaotic
orbit-separatrix encounter discussed above results in the post-encounter DF
acquiring extremely fine-grained structure within the narrow band around the
separatrix.

• We begin by noting that, at any given time, the band around the separatrices
is very narrow. Then the fine-grained structure is essentially reflected in a
rapid dependence of f as a function of the instantaneous angle variable. Hence
it seems natural to introduce a coarse-grained DF, f̄ , which equals f averaged
over the instantaneous angle variable.
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• By using the conservation of the total mass in the coarse-grained DF, f̄ ,
Sridhar & Touma (1996) derived the evolution of f̄ in phase space at any given
time: (i) Away from the separatrices f̄ retains its adiabatic invariant form,
for both circulating and librating orbits; (ii) In the immediate vicinity of the
separatrices, f̄ undergoes changes, as listed in Table 1 of their paper. These
rules are consistent with the classical expressions for capture probabilities,
derived in planetary dynamics.

• The rules governing the changes in f̄ near the separatrices are such that all
entropy (or H) functions associated with it grow in time (in contrast all entropy
functions computed with respect to the fine-grained DF, f , are conserved
during collisionless evolution). Hence the coarse-grained evolution is both
mixing and irreversible, which should not be surprising because the nonlinear
dynamics within the band around the separatrices is chaotic.

In the context of the cusp-disc problem studied in this chapter, the islands grow
monotonically from vanishingly small sizes in the distant past. Hence every librating
orbit was once a circulating orbit that was captured by the growing separatrices. Since
the DF inside the islands is built up over time by capturing circulating orbits, the DF
for the librating orbits depends on the entire time evolution of the system, in contrast
to the case discussed above when J was conserved. The secular adiabatic evolution of
an axisymmetric system — even when the self-gravity of the perturbation is included

— is an integrable problem. So the full non-linear problem, with application of the
rules from Sridhar & Touma (1996), can be computed in a definite manner, but this
is beyond the scope of work presented here.

3.4 Spheroidal flattening of the cusp

Here we compute the deformation of the three dimensional density, and the surface
density as seen from different viewing angles. The density perturbation can be
calculated by integrating F1 of equation (3.16) over velocity space. This can be
carried through analytically (see Appendix D), and the result is:

ρ1(r, θ, τ) = Mc

2π

∫
F1(I, L, Lz, g, τ) du = 3− γ

4π Cn,γ(τ) Mc

rc3

(
rc

r

)5
2

Θ(θ) , (3.18)
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Fig. 3.4 Cusp deformation: Isocontours of three dimensional densities, for γ = 5/4 and
n = 1/2. [Left Panel] Solid curves are for ρ1 > 0, and dashed curves are for ρ1 < 0; the
dotted straight line at θ = 57.37◦ is for ρ1 = 0. [Right Panel] Isocontours of the total
density, ρ, showing an oblate spheroidal deformation.

where Θ(θ) = λ

2π
[
E(sin θ) − 2 cos2 θK(sin θ)

]
− 9

400(1 − 3 cos2 θ) ;

Cn,γ(τ) = 16n (2− γ)B(n, γ)
11π 2(γ− 1

2) αγ

√
rd

rc
µ(τ) . (3.19)

Here B(n, γ) is a function of the indices, (n, γ), of the unperturbed spherical cusp,
as given in equation (D.13). It should be noted that the dependence of ρ1 on r and
θ is independent of (n, γ).

This expression for ρ1 is valid only when the F1 of equation (3.16) is a reasonable
approximation. This would be true for many of the circulating orbits of Figure 3.2
but not for the librating orbits that are trapped in the islands, as discussed in the
previous section. For any (I, Lz) the librating orbits occur for the lowest values of L,
so linear theory cannot be expected to work well when the unperturbed cusp has
radially anisotropic velocity dispersions. But the GC cusp is probably tangentially
anisotropic, with β ≈ −1/4 for r < 2 pc (Feldmeier-Krause et al., 2017), so we can
expect the linear theory result of equation (3.18) to be a useful first approximation.

Figure 3.4a shows the isocontours of ρ1 in the (R, z) meridional plane, for γ = 5/4
and n = −2β = 1/2, for which B(1/2, 5/4) = 2.41. The density perturbation ∝ r−5/2

rises steeply with decreasing r, similar to the density of the perturbing disc, ρd. It
is positive close to the equatorial plane of the disc (for 57.37◦ < θ < 122.63◦) and
negative otherwise, a property that is independent of the cusp parameters (n, γ).
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Fig. 3.5 Surface density profile, Σ(X, Y ) in units of Mc/rc
2, for two different viewing angles.

Distances are measured in units of rc.

This behaviour is consistent with what we expected from the orbital dynamics
discussed in the previous section. Figure 3.4b plots the isocontours of the total
density, ρ(r, θ) = ρc + ρ1. These reveal an oblate spheroidal deformation of the
spherical cusp. The flattening increases steeply with decreasing r, with the axis ratio
∼ 0.8 at ∼ 0.15 pc — see Figure 3.6. We also computed Σ(X, Y ), the surface density
profile of the deformed cusp, by integrating ρ(r, θ) along different lines of sight upto
a distance of 3 pc from the MBH, because this corresponds to the break-radius of
the cusp (Gallego-Cano et al., 2018). Figure 3.5 shows the isocontours of Σ on the
sky plane for io = 45◦ and io = 90◦, where io is the angle between the line of sight
and the disc normal. The flattening increases steeply with decreasing r, similar to
the density profile; the edge-on view (io = 90◦) shows maximal flattening, as can be
seen from Figure 3.6.

3.5 Discussion and Conclusions

We have presented a simple model of the deformation of a spherical stellar cusp
(with anisotropic velocity dispersion) around a MBH, due to the growing gravity of
a massive, axisymmetric accretion disc, for parameter values appropriate for the GC
NSC. The mechanism is generic and may be common in galactic nuclei.

We argued that the disc grows over times that are much longer than the typical
apse precession period of cusp stars within a parsec of the MBH. The dynamical
problem is difficult to solve in general stellar dynamics. But within rinfl ≃ 2 pc,
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the dominant gravitational force on a star is the Newtonian 1/r2 attraction of the
MBH, and the semi-major axis of every star is an additional conserved quantity
for evolution over several apse precession periods (Sridhar & Touma, 1999). We
used the secular theory of ST16a to construct an integrable model of the adiabatic
deformation of the cusp DF. Although the non-linear, self-consistent problem is
integrable, the full solution requires a lot of numerical computations. In order to
get an idea of the nature of the deformation, we used linear secular theory to obtain
an analytical expression for the DF perturbation due to the ‘bare’ effect of the disc.
We explored orbital structure, which enables us to not only understand the physical
properties of the linear deformation, but also to bound the limits of linear theory
and discuss non-linear effects. The circulating orbits of linear theory are such that
stars tend to spend more time near the equatorial plane of the disc, when their
orbital eccentricity is maximal; this takes them closer to the inner, dense parts of
the gas disc, an effect that could enhance the stripping of the envelopes of red giants
(Amaro-Seoane & Chen, 2014).

Orbital structure also reveals the limits of linear theory, which does not apply to
orbits whose apsides librate around 90◦ or 270◦. For any given I and Lz, these orbits
occupy regions of the highest eccentricities. Their DF depends on the entire orbital
history — in contrast to the orbits of linear theory which respect adiabatic invariance

— and requires computations based on the non-linear theory of adiabatic capture into
resonance. For an initially tangentially anisotropic velocity dispersion, which seems
to be the case for the GC NSC on scales < 2 pc from the MBH (Feldmeier-Krause
et al., 2017), the relative number of eccentric orbits is small. Hence linear theory
should do well as a first approximation for semi-major axes in the range 0.16− 1 pc.
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Secular stability is an important issue, which we now review in the light of earlier
results for the linear dynamical stability of non-rotating spherical DFs, F0(I, L). For
the lopsided l = 1 linear mode Tremaine (2005) showed that DFs with (∂F0/∂L) < 0
are secularly stable, whereas DFs with (∂F0/∂L) > 0 are either stable or neutrally
stable when F0 = 0 at L = 0 (i.e. an empty loss-cone). The latter applies to the
tangentially anisotropic case, n = 1/2, we have considered in this paper. Polyachenko
et al. (2007) considered mono-energetic DFs, F0(I, L) = δ(I − I0)f(L), dominated
by nearly radial orbits. They found linear secular instabilities for l ≥ 3 when f(L)
is a non–monotonic function of L. Relaxing the restriction to nearly radial orbits,
Polyachenko et al. (2008) concluded that the non-monotonicity of the DF as a
function of L is the main requirement for this (empty) loss-cone instability to l ≥ 3
modes. The cusp DFs of equation (3.7) are monotonic functions of L for n ̸= 0, and
may be expected to be stable in this sense; when n = 0, the DF is a function only of
I and cannot be changed by any secular process because I is a secularly conserved
quantity. So we are somewhat assured that the unperturbed cusp is likely to be
linearly stable. But this does not imply that an axisymmetric deformation, forced by
a disc of small (but not infinitesimal) mass, is necessarily stable; it could runaway in
an axisymmetric manner, or be vulnerable to the growth of non-axisymmetric modes.
To investigate this aspect, we need to first include the effect of the self-gravity of the
perturbation on its own evolution, and then explore the problem through N -body
simulations.

The density perturbation corresponding to the linear deformation results in an
oblate spheroidal deformation of the formerly spherical cusp. The flattening increases
steeply with decreasing distance from the MBH; the intrinsic axis ratio ∼ 0.8 at
∼ 0.15 pc. Surface density profiles for different viewing angles were presented. The
appearance will depend on the assumed plane of the gas disc, and one could consider
this for the GC NSC. The planes of the young stellar disc close to the MBH, and
the CND farther away, have a high mutual inclination (Paumard et al., 2006). It
is possible that the young stars were formed nearly coplanar with the CND and
underwent dynamical evolution, also being perturbed by the CND (Šubr et al., 2009).
The ionizing radiation from the hot young stars also seems to have pushed gas out
from beyond 0.5 pc, and this would tend to decrease the spheroidal deformation we
calculated at these distances. But a distinct possibility is that the accretion disc
itself was warped.

The gravitational perturbation of a warped gas disc would cause a non-axisymmetric
deformation of the spherical cusp, so our calculation needs to be extended to account
for this. We considered an unperturbed spherical stellar cusp with anisotropic velocity
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dispersion, because we wanted to begin with the simplest generic case.4 Chatzopoulos
et al. (2015) constructed a self-consistent, flattened and rotating DF, f(E,Lz), for
the GC old stellar cusp. For r < rinfl, this implies an unperturbed secular DF of the
form, F0(I, Lz). Such a DF is immune to all secular axisymmetric perturbations,
because I and Lz are conserved quantities for every stellar orbit. However, F0(I, Lz),
would respond to the non-axisymmetric perturbation of a warped gas disc, because
the Lz of every orbit would then evolve with time, even though I remains constant.
The deformed cusp would then not be axisymmetric, a feature explored recently
through triaxial modelling of the GC NSC (Feldmeier-Krause et al., 2017).

4An isotropic secular DF, F0(I), cannot undergo any secular change, either through collisionless
perturbations or through resonant relaxation, because I is a secular invariant.
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Chapter 4
Resonant Relaxation
of Keplerian Stellar Discs

Secular collisionless dynamics of a Keplerian stellar system is driven by the mean
gravitational potential of the (approximated) smooth mass distribution. Inherent
graininess due to the finite N⋆ number of stars in a real stellar system, leads to its
collisional evolution over longer timescales. RT96 proposed the efficient mechanism
of resonant relaxation (RR) driving angular momentum relaxation of these systems
over RR timescales Tres ∼ N⋆Tsec. RR could be important for astronomical events
associated with stellar dynamics in the region of influence of an MBH, like tidal
disruption of stars (Rauch & Ingalls, 1996; Madigan et al., 2018), capture of stellar
mass compact objects by the MBH leading to extreme mass ratio inspirals (EMRIs)
(Merritt et al., 2011; Bar-Or & Alexander, 2016), and stellar feeding of the MBH
(Hopman & Alexander, 2006a,b). In § 1.4.1, we discussed the development of RR
theory. Due to ubiquity of nuclear stellar discs, M31 and Milky Way being the most
well-studied examples, we investigate the RR of a planar Keplerian stellar system in
Part II of the thesis.

ST16b presented a kinetic theory of RR for Keplerian stellar systems of general
geometry, which is summarized in § 1.4.2. ST17 derived in explicit form the RR
kinetic equation for razor-thin axisymmetric discs, in the absence of gravitational
polarization. Being a planar study, this only involves scalar RR driven by apsidal
resonances among the constituent Rings. They worked out the wake of a Gaussian
Ring in terms of angular momentum exchanged with the rest of the Rings of the
system. The resulting RR kinetic equation is a Fokker-Planck equation, whose
functional form explicitly shows that only Rings in apsidal resonances contribute
to the RR current. They also derived some statistical properties of the system and
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showed that Boltzmann entropy never decreases during RR evolution. Thermal
equilibria are the maximum entropy states with DFs of Boltzmann form.

In this chapter, we apply the results of ST17 to study the explicit RR evolution
of an axisymmetric Keplerian disc, consisting of Gaussian Rings of equal semi-major
axes (monoenergetic limit). This is done by constructing a numerical algorithm,
called “RR code”, to solve the RR kinetic equation. We present the RR kinetic
equation for an axisymmetric Keplerian disc from ST17 in § 4.1. Then in § 4.1.1, we
specialize to a monoenergetic axisymmetric disc and derive a reduced form of the
RR kinetic equation. We choose the log-interaction potential of equation (A.14) for
gravitational interactions among the constituent Gaussian Rings of the system (as in
Chapter 2), and give explicit expressions for different physical quantities, like the
apse precession rate Ω and the interaction kernel K which are introduced in the same
section. We discuss some interesting properties of RR probability current density J ,
which is driven by apsidal resonances among the Rings. In § 4.1.2, we show that the
apsidal resonances among the Rings of the same angular momentum do not contribute
to the RR current. This gives rise to a region in phase space, corresponding to high
eccentricity Rings, for which there exist no resonances (see Figure 4.1b). Then in
§ 4.1.3, we present conserved quantities, such as the total mass, angular momentum
and energy of the monoenergetic disc in their normalized forms. In § 4.1.4, we present
the Boltzmann entropy (from ST17) for the monoenergetic case. In § 4.1.5, we find
the stationary states for the RR kinetic equation for which corresponding currents
vanish, and compare them with the thermal equilibria deduced from ST17. In § 4.2,
we present the algorithm (RR code) used to solve the RR kinetic equation (4.11).
The details of the method for locating the resonance points in angular momentum
space are given in § 4.2.2. We present the results of the RR code for an example DF
in § 4.3. We conclude in § 4.4.

4.1 Formalism

A razor–thin axisymmetric disc of mass M composed of N⋆ ≫ 1 number of Gaussian
Rings is considered in xy–plane. The centre of the disc coincides with an MBH of
mass M• ≫ M such that the mass ratio ϵ = M/M• ≪ 1 is a small parameter of
the problem. A planar Gaussian Ring is characterized by three-dimensional Ring
space variables {I, L, g} (see § 1.2.1). I =

√
GM•a relates to its semi-major axis

a. L = σI
√

1− e2 is its angular momentum per unit mass with σ = +1(−1) for
anticlockwise (clockwise) sense of orbital motion of the star around the MBH (e
being the eccentricity of the Ring). Here g is the longitude of periapse measured
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wrt x-axis. τ = ϵ×time is the slow time variable, convenient for studying the
secular dynamics of the system. For the limit N⋆ ≫ 1, a dynamical state of the
axisymmetric planar system can be represented by a one-Ring distribution function
(DF) f̃(I, L, τ)/(2π) in Ring phase space. From the normalization property of
equation (2.1),

∫
dIdL f̃(I, L, τ) = 1. Note that this normalization is valid at all

times, because the MBH is not considered a sink of stars.

The interaction potential Ψ(I, L, g, I ′, L′, g′) between two planar Gaussian Rings
{I, L, g} and {I ′, L′, g′} is given by equation (2.3). Due to spatial isotropy, the
dependence of Ψ on g and g′ occurs as |g − g′|. It is useful to consider the Fourier
series of Ψ:

Ψ(I, L, g, I ′, L′, g′) =
+∞∑

m=−∞
C̃m(I, L, I ′, L′) exp [im(g − g′)] (4.1)

where C̃m’s denote the Fourier coefficients. Detailed symmetry properties of the
two–Ring interaction potential Ψ and its Fourier coefficients C̃m’s are discussed in
§ 6.2 of ST16a. Employing the above Fourier series for Ψ in equation (2.2), the mean
self-gravitational potential Φ̃(I, L, τ) of the disc is given as:

Φ̃(I, L, τ) =
∫

dI ′dL′ C̃0(I, L, I ′, L′)f̃(I ′, L′, τ) . (4.2)

For an isolated non-relativistic disc, Φ̃ is also the Hamiltonian of the secular dynamical
problem. Orbits of Gaussian Rings in an axisymmetric collisionless equilibrium are
already described by the equation (2.8) of § 2.1.1. The orbits are uniformly precessing
Gaussian Rings with the apse precession rate Ω̃(I, L, τ) = ġ = ∂Φ̃/∂L. The time–
dependence of Ω̃(I, L, τ) is over the long-term RR timescale Tres and hence, on
the shorter collisionless timescales Tsec, Ω̃ can be considered to be stationary. For
axisymmetry, eccentricities of the precessing Rings are conserved, and hence the
collisionless orbits are rigidly and uniformly precessing Gaussian Rings.

On the longer RR timescales Tres, discrete interactions among the Rings become
important, and the system evolves by RR. ST17 derived the following RR kinetic
equation for axisymmetric Keplerian discs giving the RR evolution of the probability
DF f̃(I, L, τ):

∂f̃

∂τ
+ ∂J̃

∂L
= 0 , (4.3)

where J̃(I, L, τ) is the probability density current in (I, L)–plane. J̃(I, L, τ) gives the
flow of Gaussian Rings in L direction; I is a conserved quantity in secular dynamics.
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The current J̃ is given explicitly as:

J̃ = 1
N⋆

∫
dI ′ dL′ δ(Ω̃′ − Ω̃)K̃(I, L, I ′, L′)

{
f̃
∂f̃ ′

∂L′ − f̃ ′ ∂f̃

∂L

}
(4.4)

where f̃ ≡ f̃(I, L, τ), f̃ ′ ≡ f̃(I ′, L′, τ) and the apse precession rates Ω̃ ≡ Ω̃(I, L, τ)
and Ω̃′ ≡ Ω̃(I ′, L′, τ). The above kinetic equation corresponds to equations (53)–(54)
of ST17. The interaction kernel K̃(I, L, I ′, L′) measures the strength of interaction
between the Rings (I, L) and (I ′, L′), and is given as:

K̃(I, L, I ′, L′) = 2π
∞∑

m=1
mC̃m(I, L, I ′, L′)2 . (4.5)

It is evident from the equation (4.4) that the δ(Ω̃′ − Ω̃)K̃(I, L, I ′, L′) forms
the part of the integrand which is symmetric under the interchange of two Rings
(I, L) ←→ (I ′, L′); while the factor in “{. . .}” forms an anti-symmetric part. The
δ-function implies that the current at the location (I, L) is non-zero if and only if
there exists some other point (I ′, L′) satisfying the resonance condition Ω̃(I ′, L′, τ) =
Ω̃(I, L, τ). In other words, the current at the point (I, L) is contributed only by
the Rings whose apsides are precessing at the same rate. This explicitly shows that
scalar RR is driven by apsidal resonances.

Since the DF f̃(I, L, τ) depends upon the phase space variables I and L (and
not on g), which remain conserved over the collisionless timescales Tsec for an ax-
isymmetric Keplerian disc, f̃(I, L, τ) corresponds to a (quasi)collisionless equilibrium
by the secular Jeans Theorem (Binney & Tremaine (2008), ST16a). The kinetic
equation (4.3) describes the evolution of the system through a sequence of quasi-
stationary states (collisionless equilibria) f̃ over timescales Tres, given that the f̃
forms a stable dynamical equilibrium. If the system reaches some unstable state, the
instability will grow and saturate over the shorter secular timescales Tsec, and again
the long term RR evolution would take over.

For further details on physical kinetics of an axisymmetric Keplerian stellar disc,
refer to the § 5.2 of ST17. Now we descend to the special case of a monoenergetic
axisymmetric disc for the rest of this chapter.

4.1.1 Reduction to a Monoenergetic Axisymmetric Disc

In a monoenergetic disc, all the N⋆ Rings have equal semi-major axes a0, and hence
I = I0 =

√
GM•a0. It is convenient to deal with the dimensionless variables – the



4.1 Formalism 89

normalized angular momentum ℓ = L/I0 = ±
√

1− e2 ∈ [−1, 1] and normalized slow
time t = Ωkepτ/(2πN⋆) = time/Tres. We define the probability DF f(ℓ, t) in ℓ-space
which is related to f̃(I, L, τ) as:

f̃(I, L, τ) = f(ℓ, t)δ(I − I0)
I

. (4.6)

Using the above expression in the normalization equation for f̃ , we get
∫ 1

−1 dℓ f(ℓ, t) =
1 . Now, we define the normalized two-Ring interaction potential ψ(ℓ, ℓ′, g − g′) and
the corresponding Fourier coefficients Cm(ℓ, ℓ′), that are related to their general
counterparts as:

Ψ = GM•

2πa0
ψ; C̃0 = GM•

2πa0
C0 and C̃m = GM•

2πa0
Cm . (4.7)

Using the above relations in the expression for Φ̃ in the equation (4.2), the normalized
mean potential Φ(ℓ, t) is given as:

Φ̃ = GM•

2πa0
Φ ; Φ(ℓ, t) =

∫
dℓ′ f(ℓ′, t)C0(ℓ, ℓ′) . (4.8)

Using the above expression in the definition of Ω̃ = ∂Φ̃/∂L, we define the normalized
apse precession rate Ω(ℓ, t) as:

Ω(ℓ, t) = 2πΩ̃(I, L, τ)
ΩKep

; and hence Ω = ∂Φ
∂ℓ

(4.9)

where ΩKep is the common Keplerian orbital frequency for all Rings with semi-major
axis a0. Likewise, we use the normalized Fourier coefficients of equation (4.7) in
equation (4.5) and define the normalized interaction kernel K(ℓ, ℓ′) as:

K̃(I, L, I ′, L′) =
(
GM•

2πa0

)2
K(ℓ, ℓ′) ; and hence K(ℓ, ℓ′) = 2π

∞∑
m=1

mCm(ℓ, ℓ′)2 .

(4.10)

Using the equations (4.6), (4.9) and (4.10) in the equations (4.3)–(4.4), we get the
following form of RR kinetic equation for the monoenergetic axisymmetric disc:

∂f

∂t
+ ∂J

∂ℓ
= 0 (4.11a)

where probability density current J(ℓ, t) in ℓ–space is given as:

J(ℓ, t) =
∫ 1

−1
dℓ′ δ(Ω− Ω′)K(ℓ, ℓ′)

{
f
∂f ′

∂ℓ′ − f
′∂f

∂ℓ

}
. (4.11b)
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Here f ≡ f(ℓ, t), f ′ ≡ f(ℓ′, t), Ω ≡ Ω(ℓ, t) and Ω′ ≡ Ω(ℓ′, t). From expression (4.10),
it is evident that K(ℓ, ℓ′)→ 0 if either/both of the Rings are circular i.e. ℓ or/and ℓ′ →
±1. This implies that circular Rings do not contribute to the current in the entire
domain of ℓ ∈ [−1, 1] even if they satisfy the resonance condition. Also, the currents
at the boundaries J(ℓ = ±1, t) = 0 throughout the evolution of the system. This
can be physically understood as a circular Ring has an axisymmetric geometry and
hence, cannot exert a net torque on a confocal and coplanar Gaussian Ring. The
reverse argument is also true – other Rings cannot exert torque on circular Rings
due to the same symmetry.

Interaction Potential: In order to proceed further to study the evolution of an initial
DF fin(ℓ) by the RR kinetic equation (4.11), we need to consider some explicit
form of the two-Ring interaction potential ψ(ℓ, ℓ′, g − g′) and evaluate its Fourier
coefficients Cm(ℓ, ℓ′)’s.

We choose the two-Ring log interaction potential (Borderies et al., 1983; Touma
& Tremaine, 2014), derived in Appendix A.1,

ψ = −8 log 2 + log |e− e′|2 (4.12)

where e ≡ e(cos g, sin g) and e′ ≡ e′(cos g′, sin g′) correspond to the eccentricity
vectors of the Gaussian Rings under consideration. We have already employed the log
potential for investigating the stability properties of axisymmetric monoenergetic discs
in Chapter 2. The corresponding Fourier coefficients are given as in equation (A.16):

C0(ℓ, ℓ′) = −8 log 2 + log e2
> ; Cm(ℓ, ℓ′) = − 1

|m|

(
e<

e>

)|m|

(4.13)

where e< = min(e, e′) and e> = max(e, e′); e =
√

1− ℓ2 and e′ =
√

1− ℓ′2 are
eccentricities of the Rings. Using C0 from the above equation in the definition of
Ω given in equation (4.8)-(4.9), the apse precession frequency Ω(ℓ, t) attains the
following explicit form:

Ω(ℓ, t) = −2ℓ
1− ℓ2

[
1−

∫ |ℓ|

−|ℓ|
dℓ′ f(ℓ′, t)

]
(4.14)

as already expressed in the equation (2.21). For the limiting case of circular Rings
as ℓ→ ±1, Ω(±1, t)→ ∓{f(1, t) + f(−1, t)} and hence, the circular Rings have a
finite apse precession rate given the non-zero value of f(±1) for a generic DF. We
discussed a few properties of Ω(ℓ, t) below the equation (2.21) (Ω ≡ Ω0 in the context
of the collisionless studies of Chapter 2).
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Fig. 4.1 A typical initial (a) Gaussian DF f(ℓ, t = 0), with its (b) apse precession Ω(ℓ, t = 0)
(in the units of Tsec

−1) and (c) current J(ℓ, t = 0) profiles. (d) The negative half of ℓ
space is zoomed on, to observe the small magnitude currents and delineate the region of
non-resonance. Later we study the evolution of this DF in § 4.3.

The interaction kernel for the log-potential is evaluated in Appendix A.2.1 leading
to the final form of equation (A.17), and is given as:

K(ℓ, ℓ′) = −2π log
1−

(
e<

e>

)2
 (4.15)

where e< and e> have the same definitions as earlier. It is clear from the above
expression that the kernel K vanishes if one/both of the Rings are circular. The
above expression also implies the singularity of the interaction kernel as ℓ′ → ℓ. To
avoid these singularities in the numerical calculations of RR code, we use the softened
log potential of equation (A.18) and the corresponding softened interaction kernel of
equation (A.25). We will discuss these singularities in more detail in § 4.1.2.

The δ-function in the current J-integral of equation (4.11b), implies that the
current J(ℓ, t) gets contributions from those Rings ℓ′ whose apse precession satisfies
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the resonance condition Ω(ℓ′, t) = Ω(ℓ, t). This leads to the following form for the
current:

J(ℓ, t) =
∑

j

′ K(ℓ, ℓrj)∣∣∣∣∣∂Ω
∂ℓ

∣∣∣∣∣
ℓrj

{
f
∂frj

∂ℓrj

− frj
∂f

∂ℓ

}
(4.16)

where ℓrj are the resonant points of ℓ satisfying the condition Ω(ℓrj, t) = Ω(ℓ, t). Here
frj ≡ f(ℓrj, t). The prime over the summation (Σ′) indicates that ℓrj ̸= ℓ and hence,
the self contribution from ℓ does not add to the current J(ℓ, t); this is demonstrated
in § 4.1.2. Hence, the current J(ℓ, t) vanishes if there is not any resonant point for ℓ.

In Figure 4.1, we present the precession rate Ω(ℓ, t = 0) and current J(ℓ, t = 0)
profiles for a typical Gaussian DF, given in equation (4.52). As seen from the
Ω–profile (Figure 4.1b) there is a region of non-resonance around ℓ = 0 within which
there are no resonant pair of points; this is enclosed within dashed vertical lines.
Such a region exists due to extremely slow precession rates of high e Rings, with
Ω(ℓ = 0, t) = 0, which prevent them from having resonances since Ω(±1, t) is finite
or non-zero in general (for finite f(±1, t)). Hence, the currents in this region vanish
(see Figure 4.1c) and the DF f(ℓ, t = 0) remains frozen in this region at an initial
time t = 0. In § 4.3, this DF is evolved by the RR code and the resulting profiles
are shown in the Figure 4.2. For this particular choice of initial DF, the region of
non-resonance expands in ℓ-space with time as DF evolves; see Figure 4.2b.

4.1.2 Self-Contribution to RR Current

Here we demonstrate that the self-resonant contribution from a generic point ℓ to
its current J(ℓ, t) vanishes. This fact is incorporated in the equation (4.16) where
the resonances ℓrj’s contributing to the current J(ℓ, t) satisfy ℓrj ̸= ℓ. Without loss
of generality, we consider only the positive half of ℓ-space (ℓ > 0) for discussion in
this section, because the anti-symmetric property of Ω(ℓ, t) (along with ℓΩ(ℓ) < 0)
ensures that resonances lie in the same half-space, and the resonance pairs would be
just inverted in sign for negative half-space. The apses of all the Rings corresponding
to ℓ (but generally with different g’s) precess at the same rate Ω(ℓ, t) and hence
the resonance criterion is satisfied. This suggests that in principle there should
be a contribution from the term ℓrj = ℓ. From equation (4.16), we can write the
self-resonant term of the current explicitly as:

Jsr(ℓ, t) = Lim
ℓ′→ℓ

K(ℓ, ℓ′)∣∣∣∣∣∂Ω
∂ℓ

∣∣∣∣∣
ℓ′

{
f
∂f ′

∂ℓ′ − f
′∂f

∂ℓ

}
. (4.17)
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It is evident from the above equation that the antisymmetric term in the parenthesis
“{ }” vanishes as ℓ′ → ℓ, and the equation (4.15) implies that the interaction kernel
K(ℓ, ℓ′)→ +∞ in this limit. We need to determine whether their product is zero,
finite or infinite. So, to evaluate Jsr, we substitute ℓ′ = ℓ+ ∆ℓ where ∆ℓ→ 0. The
kernel can be simplified as:

K(ℓ, ℓ′) =

 −2π (log [ℓ2 − ℓ′2]− log [1− ℓ′2]) ; ℓ > ℓ′

−2π (log [ℓ′2 − ℓ2]− log [1− ℓ2]) ; ℓ < ℓ′
(4.18)

which further reduces in the intended limit, upto the leading order in small parameter
∆ℓ, as:

Lim
∆ℓ→0

K(ℓ, ℓ+ ∆ℓ) =

 −2π (log [−2ℓ∆ℓ]− log [1− ℓ2]) , ∆ℓ < 0

−2π (log [2ℓ∆ℓ]− log [1− ℓ2]) , ∆ℓ > 0

= −2π
(

log
[

2ℓ
1− ℓ2

]
+ log |∆ℓ|

) (4.19)

and hence diverges logarithmically. The antisymmetric term in the limit becomes:

Lim
∆ℓ→0

{
f
∂f ′

∂ℓ′ − f
′∂f

∂ℓ

}
ℓ′=ℓ+∆ℓ

=
f ∂

2f

∂ℓ2 −
(
∂f

∂ℓ

)2
∆ℓ . (4.20)

Hence the limiting expression for self-contribution Jsr for generic points, which do
not correspond to the extrema of Ω-profile (i.e. ∂Ω/∂ℓ ̸= 0), takes the following form
and vanishes as ∆ℓ→ 0,

Jsr(ℓ, t) = −2π
∣∣∣∣∣∂Ω
∂ℓ

∣∣∣∣∣
−1
f ∂

2f

∂ℓ2 −
(
∂f

∂ℓ

)2
 Lim

∆ℓ→0
∆ℓ log |∆ℓ| → 0 . (4.21)

Now we investigate the case of an extremum point ℓ0 in the Ω-profile for which
(∂Ω/∂ℓ)ℓ0 = 0. For this case, we have:

(
∂Ω
∂ℓ

)
ℓ′=ℓ0+∆ℓ

= ∂2Ω0

∂ℓ2
0

∆ℓ (4.22)

upto the leading order in the small parameter ∆ℓ where Ω0 ≡ Ω(ℓ0). Using the above
expression in the equation (4.21), we have the following form of the self-resonant
contribution to current:

Jsr(ℓ0, t) = −2π
∣∣∣∣∣∂

2Ω0

∂ℓ2
0

∣∣∣∣∣
−1
f0

∂2f0

∂ℓ2
0
−
(
∂f0

∂ℓ0

)2
 Lim

∆ℓ→0
sign(∆ℓ) log |∆ℓ| (4.23)
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with the required limit, sign(∆ℓ) log |∆ℓ| → ∓∞ as ∆ℓ → 0±. Here f0 ≡ f(ℓ0).
But, the final limit is the average of left and right limits and hence the resonant
contribution Jsr(ℓ0, t) vanishes. As a result the self contribution to current is zero
for extremum point ℓ0 as well. It is worth noting that the cause of the apparent
directional divergence is the logarithmic singularity of the interaction kernel K(ℓ, ℓ′)
of log potential as ℓ′ → ℓ. In order to control such steep features in J(ℓ, t) in the
vicinity of extremum point/s ℓ0, we employ the softened interaction kernel KS(ℓ, ℓ′)
of equation (A.25) in the RR code.

4.1.3 Conserved Quantities

Since the MBH is not considered a sink of stars in the present study, the disc mass
M remains conserved as the DF f(ℓ, t) evolves by the RR kinetic equation (4.11).
Equivalently, considering the normalization property of DF f(ℓ, t), the norm N of
the system is conserved as:

N =
∫

dℓf(ℓ, t) = 1 . (4.24)

As there are no external forces acting on the system, total energy E and total
angular momentum L of the system are also conserved. The conservation of these
quantities – M , L and E – can be deduced from the RR kinetic equation in a
straightforward manner; see § 6.1 of ST17 for an axisymmetric disc. We reduce the
expressions to the monoenergetic case by using equation (4.6) and (4.7). The total
angular momentum L of the system is:

L = MI0

∫ 1

−1
dℓ ℓf(ℓ, t) = M

√
GM•a0

∫ 1

−1
dℓ ℓf(ℓ, t) (4.25)

where MI0 is the maximum possible angular momentum corresponding to the case
of a disc composed of only circular prograde orbits. We express the normalized total
angular momentum L = L/(MI0) ≤ 1 as:

L =
∫ 1

−1
dℓ ℓf(ℓ, t) . (4.26)

The total energy E of the disc is given explicitly as:

E = MEK(a0) + 1
2

∫
dℓ dℓ′ dg

2π
dg′

2π
GM2f(ℓ, t)f(ℓ′, t)

2πa0
ψ(ℓ, ℓ′, g − g′) (4.27)

where the first term corresponds to the total Keplerian energy of the disc, with
EK(a0) = −GM•/(2a0) being the Keplerian energy of a Gaussian Ring of semi-major
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axis a0. Since the semi-major axes of all the Rings in the system are conserved
in secular dynamics, this part of E is evidently also conserved. The second term
corresponds to the self-gravitational energy of the disc. The “1/2” corrects, in the
usual manner, for the double counting of the gravitational potential of all the pairs
of Rings in the system. The normalized two-Ring interaction potential ψ is given by
equation (4.12). It is straightforward to solve the integrals over g and g′ using the
Fourier series expansion of equation (A.15), and the total energy becomes:

E = MEK(a0) + 1
2
GM2

2πa0

∫
dℓ dℓ′ C0(ℓ, ℓ′)f(ℓ, t)f(ℓ′, t) . (4.28)

We define the normalized self-gravitational energy E of the disc in units of GM2/a0,
as:

E = 1
4π

∫
dℓ dℓ′C0(ℓ, ℓ′)f(ℓ, t)f(ℓ′, t) . (4.29)

Using equation (4.13) for the Fourier coefficient C0 we have:

E = − 2
π

log 2 + 1
4π

∫
dℓ dℓ′ log e2

> f(ℓ, t)f(ℓ′, t) . (4.30)

We find that the RR code respects the conservation of the quantities {N ,L ,E }
to a good precision, as detailed in § 4.3.

4.1.4 Boltzmann Entropy

ST17 demonstrated that the Boltzmann entropy of an axisymmetric Keplerian disc is
a non-decreasing function of time, as the system evolves according to the RR kinetic
equation (4.3)-(4.4). This result also applies to the special case of a monoenergetic
axisymmetric disc, which is the subject of the present study. The Boltzmann entropy
S for a monoenergetic axisymmetric Keplerian disc is defined as:

S = −
∫ 1

−1
dℓ f(ℓ) log [f(ℓ)] . (4.31)

In § 4.3, we find that the entropy indeed remains a non-decreasing function of time
during the RR code runs. The code evolves the system towards the higher entropy
states with a gradual saturation towards the end; see Figure 4.4d.
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4.1.5 Stationary States

Here we construct a class of stationary state solutions of the RR kinetic equa-
tion (4.11). The corresponding current J(ℓ) of equation (4.11b) should vanish at
all the points ℓ ∈ [−1, 1]. The antisymmetric factor in the current integral can be
rewritten as follows: {

f
∂f ′

∂ℓ′ − f
′∂f

∂ℓ

}
= ff ′

{
1
f ′
∂f ′

∂ℓ′ −
1
f

∂f

∂ℓ

}
. (4.32)

For functions which have f−1∂f/∂ℓ equal to a single-valued function of Ω (say
η[Ω]), the right side of the above expression becomes ff ′ {η[Ω′]− η[Ω]}. Hence the
co-occurrence of δ(Ω′ − Ω) and anti-symmetric factor {η[Ω′]− η[Ω]} in the current
integral makes the current vanish at every point in ℓ-space. Therefore, DFs fs(ℓ)
that satisfy the property,

1
fs(ℓ)

dfs(ℓ)
dℓ = η[Ωs(ℓ)] (4.33)

are stationary states of the RR kinetic equation. Here Ωs(ℓ) is the apse precession
rate corresponding to the DF fs(ℓ), given by equation (4.14). The above equation
can be integrated over ℓ to get the following form for these stationary states:

fs(ℓ) = A exp
[∫ ℓ

−1
η[Ωs(ℓ)] dℓ

]
(4.34)

where A is the constant of integration, chosen by using normalization property of
the DF. These DFs can be the possible end states for RR evolution of the discs, only
if they are dynamically and thermally stable. For these states, f−1

s dfs/dℓ = η[Ωs] is
a single-valued functional of Ωs.

It is straightforward to see that the thermal equilibrium state is a special case
of these stationary states. The Boltzmann-form of the thermal equilibrium DF for
axisymmetric discs is derived by ST17, and is given in equation (81) of the same
paper. Reduction to the monoenergetic case can be done by using equations (4.6)
and (4.8), which gives the following form of the thermal equilibrium DF fth(ℓ):

fth(ℓ) = A exp [−βΦth(ℓ) + γℓ] (4.35)

where A, β and γ are real constants, fixed by the total mass (i.e. normalization
of equation 4.24), energy and angular momentum of the disc. Φth(ℓ) is the mean
self-gravitational potential of the disc given by equation (4.8). Differentiating the
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above equation, we have the following property satisfied by these equilibria:

1
fth(ℓ)

dfth(ℓ)
dℓ = ηth[Ωth(ℓ)] = −β Ωth(ℓ) + γ . (4.36)

The above equation upon comparison with the equation (4.33), establishes that the
thermal equilibria fth(ℓ) are a sub-class of the stationary state DFs fs(ℓ) with η[Ω]
being a linear polynomial in Ω.

The thermal equilibrium is an entropy-extremum by construction; but it is not
clear whether or not the stationary states also correspond to extrema. It is of interest
to see whether the end-states from RR evolution of an initial DF by the RR kinetic
equation (4.11), actually correspond to the thermal equilibria or not. It is intriguing
to find that the RR code evolves the example initial DF of the equation (4.52) to an
end-state corresponding to the stationary states of the type fs, with the functional
η[Ωs] being a non-linear function. Hence, this end-state is not a thermal equilibrium;
see § 4.3.1 for details.

4.2 RR Code Algorithm

In this section, we describe the RR code algorithm in detail. The ℓ-space is divided
into N intervals with N + 1 number of uniformly spaced grid points ℓi with i =
0, 1, 2, ..., N . Here, ℓ0 = −1 and ℓN = 1. The bin–areas Ai ≡

∫ ℓi+1
ℓi

dℓ f(ℓ) with
i = 0, 1, 2, ..., N − 1, which are direct measures of the DF, are updated in the RR
code at each time-step. The RR kinetic equation (4.11) is integrated over ℓ in an
interval [ℓi,ℓi+1] giving the following equation:

∂Ai

∂t
= Ji − Ji+1 (4.37)

where Ji = J(ℓi, t) denotes the current at the grid-point ℓi. We now discretize the
above equation by choosing the forward stepping in time employing Forward Euler
method:

A
(k+1)
i − A(k)

i

∆t = Ji − Ji+1 . (4.38)

This is the time-stepping equation to obtain the bin-areas A(k+1)
i at time tk+1 from

A
(k)
i at the previous time tk = tk+1 − ∆t. Here the currents on the right side of

the above equation are evaluated at time tk; hence Ji ≡ J
(k)
i and Ji+1 ≡ J

(k)
i+1. The

conservative scheme ensures the exact conservation of the total norm N = ∑N
i=0 Ai

at each time-step.
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From equation (4.16), the current Ji on the grid points is explicitly given as:

Ji =
∑

j

′ K(ℓi, ℓrj)∣∣∣∣∣∂Ω
∂ℓ

∣∣∣∣∣
ℓrj

{
fi
∂frj

∂ℓrj

− frj
∂fi

∂ℓi

}
(4.39)

where the points ℓrj ̸= ℓi satisfy the resonant condition Ω(ℓrj) = Ω(ℓi), and also
fi ≡ f(ℓi). As evident from the equation (4.38), only the bin-areas A(k)

i are inherited
from the previous time in the code. Hence to evaluate Ji at time tk, we devise a
methodology to model the DF with a smooth function f (k)(ℓ) from the given bin-area
array A

(k)
i as explained below. Note that the function f (k)(ℓ) (not merely the DF

values fi on the grid) is required to evaluate the quantities at resonant points ℓrj

which generally lie in-between the grid points. The model to evaluate f (k)(ℓ) employs
the notion of cumulative DF F (ℓ, t) =

∫ ℓ
−1 dℓ′ f(ℓ′, t) and comprises the following

steps.

• The grid values of the cumulative DF F
(k)
i ≡ F (ℓi, tk) at time tk are directly

calculated from bin-areas as F (k)
i = ∑i−1

j=0 A
(k)
j for i = 1, 2..., N with F

(k)
0 = 0.

Note that F (k)
N = 1 from the normalization of DF.

• A cubic spline interpolation of the array F
(k)
i , with i = 0, 1..., N is done to

have the continuous model cumulative DF F (k)(ℓ). The function f (k)(ℓ) is got
from the relation f (k)(ℓ) = dF (k)/dℓ and is a piece-wise quadratic polynomial
with continuous slope (while the double derivative of f (k)(ℓ) on a grid point is
discontinuous in general).

• The cubic spline interpolation requires the two more boundary conditions –
the values of F ′(−1) = f(−1) ≡ f

(k)
0 and F ′(1) = f(1) ≡ f

(k)
N . These are

derived from the direct discretization of the RR kinetic equation (4.11) around
ℓ = ℓ0,N = ±1 employing the Forward Euler method as:

f
(k)
0 − f (k−1)

0
∆t = −∂J

∂ℓ

∣∣∣∣∣
ℓ=−1

≡ −J ′
0 (4.40a)

f
(k)
N − f (k−1)

N

∆t = −∂J
∂ℓ

∣∣∣∣∣
ℓ=+1

≡ −J ′
N . (4.40b)

To obtain the current derivatives at ℓ = ±1, we compute the current at the
points ℓ+ = (ℓN−1 +1)/2 and ℓ− = (ℓ1−1)/2 which bisect the edge grid interval.
Referring to the corresponding currents as J+ and J−, the derivatives are got
from the direct discretization −J+/(1− ℓ+) and J−/(ℓ− + 1). The bisection is
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repeated on (ℓ+,1) and (−1,ℓ−), followed by the computation of the current
derivatives using the new bisecting points for discretization as done earlier.
These steps are iterated till the derivatives converge upto 0.1%, with 20 being
the maximum number of trials.

The equations (4.40) along with (4.38) are employed at each time-step in the RR
code to evolve the bin-areas Ai and the edge-values of DF f0 and fN . The above
methodology to obtain the model function f (k)(ℓ) by spline fit of the cumulative DF
array Fi, conserves the norm N . For the calculation of the currents, the method
provides the required quantities f , ∂f/∂ℓ and ∂Ω/∂ℓ, which turn out to be continuous
in ℓ-space.

We now describe the schematics of the code. The initial DF fin(ℓ) is chosen and
its bin-areas Ai are evaluated leading to the cumulative DF array Fi. The cubic
spline fitting of Fi is done, given the derivatives of F at the grid end points i.e.
fin(−1) and fin(+1). The resultant array of spline coefficients and hence, the model
function f (k)(ℓ) is fed to the time loop, which comprises of the following sequence of
steps.

• Given the continuous function f (k)(ℓ) from the previous time-step, it is straight-
forward to evaluate the Ω profile from the equation (4.14). Then the extremum
points of the Ω profile are identified, as explained in § 4.2.2. Let ℓ(m)

0 be the
location of the extrema, and the corresponding value of precession rate be Ω(m)

0

on the ℓ > 0 half of the ℓ-space; m = 1, ..., ms, where ms is the number of
extremum points in the half-space. Since the Ω profile is monotonic between the
two neighbouring extremum points, there are (ms + 1) number of slots/regions
in the half-space where the Ω profile is monotonic.

• Resonance points for each grid point ℓi on the positive half-space (ℓ > 0) are
evaluated. For each ℓi, there can be at maximum ms resonant points each
possibly lying in a monotonic slot not containing ℓi. Also, note that each
monotonic slot can have at the maximum only one resonant point for a given ℓi.
The detailed steps involved are provided in § 4.2.2. Due to the anti-symmetry
of the Ω profile (see equation 4.14), inverting the signs of the resonant points
gives the resonant set of points in the negative half of the ℓ-space.

• The currents Ji are evaluated at all the grid points ℓi using equation (4.39).
The interpolated continuous function f (k)(ℓ) and the corresponding Ω(ℓ) profile
are employed to evaluate the required quantities f , ∂f/∂ℓ and ∂Ω/∂ℓ at the
resonant points.
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• The currents Ji are then used in equation (4.38) to advance the bin areas
Ai in time. Current derivatives are evaluated at the end points ℓ = ±1 as
explained earlier, to evolve the DF values at the end points, f0 and fN , using
equation (4.40).

• The updated bin areas are finally used to evaluate the new cumulative DF
array Fi that is cubic spline interpolated using the updated values of f0 and
fN as boundary conditions.

The updated coefficient array got from the spline interpolation (and hence the
continuous function f (k)(ℓ)) serves as the feedback to the time loop, and above
steps are repeated until time 0.2Tres. Enroute the values of conserved quantities
{N , L , E }, along with entropy S are recorded. N is exactly conserved in the
scheme of the code. The reason is the conservative form of the time-stepping discrete
equation (4.38) and also, the cubic spline interpolation of the cumulative DF array
which ensures that bin-areas are not changed while getting the continuous function
f (k)(ℓ). The other conserved quantities L , E remain close to their initial values to
good precision; see § 4.3. Entropy S increases with time and saturates by the end
of the calculation. Dynamical stability of the evolving DF is checked after a few
time-steps by solving the integral eigenvalue equation (2.23); details of the method
are provided in § 4.2.3.

Now, we elaborate on some of the steps of the above methodology.

4.2.1 Cubic Spline Interpolation of Cumulative DF

In the RR code, these quantities are available from the previous time-step – cumulative
DF array {Fi} with i = 0, 1, ..., N , and the DF values {f0, fN} at end-points. Cubic
spline interpolation gives the following interpolated cumulative DF:

Fi(ℓ) = ai + bi(ℓ− ℓi) + ci(ℓ− ℓi)2 + di(ℓ− ℓi)3 for ℓ ∈ [ℓi, ℓi+1] (4.41)

with i = 0, 1, .., N − 1. This is a piece-wise cubic polynomial with 4N interpolation
coefficients {ai, bi, ci, di}. These are derived in the standard manner from the conti-
nuity relations of cumulative DF and its derivatives at the grid points ℓi, as given in
Appendix E.

The continuous functional form for DF at time tk, f (k)(ℓ) (henceforth k dependence
will be dropped for convenience) is the derivative of the interpolated cumulative DF
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and hence is given by the following piece-wise quadratic polynomial:

fi(ℓ) = dFi

dℓ = bi + 2ci(ℓ− ℓi) + 3di(ℓ− ℓi)2 for ℓ ∈ [ℓi, ℓi+1] . (4.42)

It is evident from the procedure of the spline interpolation in Appendix E, the
cumulative DF F (ℓ) and its first two derivatives are continuous (even at the grid
points). This implies the continuity of the first derivative of the interpolated DF
df(ℓ)/dℓ = d2F (ℓ)/dℓ2; but d2f(ℓ)/dℓ2 is not continuous at the grid points. Still,
this methodology is effective in the present context, because analytical expressions
(see equation 4.16) do not require the second derivative. The benefit of doing the
interpolation for the cumulative DF F (ℓ) (instead of the DF f(ℓ) itself) is that this
preserves the norm to high precision when used in combination with our conservative
scheme of the algorithm; see equation (4.38).

Physical quantities in terms of the interpolated function: For evaluation of the
current using equation (4.16), we need to calculate the quantities f , df/dℓ and
dΩ/dℓ at the resonant points, which generally lie between the grid points. Here we
present these quantities in terms of the interpolated function F (ℓ) (and/or continuous
function f(ℓ)). Firstly, differentiating the equation (4.42), we have df/dℓ expressed
as:

dfi(ℓ)
dℓ = 2ci + 6di(ℓ− ℓi) for ℓ ∈ [ℓi, ℓi+1] . (4.43)

Equation (4.14) for Ω(ℓ) can be manipulated to the following form:

Ω(ℓ, t) = −2ℓ
1− ℓ2 [1− F (|ℓ|) + F (−|ℓ|)] (4.44)

where the interpolated cumulative DF F is explicitly known; see equation (4.41).
Differentiating the above equation, it is straightforward to manipulate the Ω derivative
to the following form:

dΩ(ℓ)
dℓ = 1 + ℓ2

ℓ(1− ℓ2)Ω(ℓ) + 2|ℓ|
1− ℓ2 [f(ℓ, t) + f(−ℓ, t)] (4.45)

where the continuous model DF f is explicitly known from equation (4.42).

4.2.2 Locating Resonances

Here we explain the detailed steps involved in locating the resonant points having
equal apse precession frequency Ω. We limit the domain of investigation to the positive
half of the ℓ space. Firstly, the extremum points ℓ0 of Ω profile are identified. These
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points divide the half space into monotonic slots of Ω. Then, sets of resonant points
ℓr’s are located for each grid point ℓi, to evaluate the current Ji from equation (4.39).

With the interpolated function F (ℓ) available, it is straightforward to calculate
the apse precession Ωi at grid points ℓi from equation (4.44). Then we locate the
extremum points ℓ0 of the Ω profile using the scheme, given below. We first look for
the grid points ℓi which satisfy the condition:

(Ωi − Ωi−1)(Ωi+1 − Ωi) ≤ 0 ; i ∈
[
N

2 + 1, N − 1
]
. (4.46)

Then i is the grid index which locates the turning point of Ω profile on the grid; there
can be more than one such points in general. Hence the extremum point ℓ0 should be
located in either of the two grid intervals [ℓi−1,ℓi] or [ℓi,ℓi+1] and respectively we have
the grid index i0 = i− 1 or i for the extremum point ℓ0. We evaluate the derivatives
of the precession rate Ω′ ≡ dΩ/dℓ at the consecutive grid points ℓi−1, ℓi and ℓi+1

using equation (4.45). If Ω′
i−1 Ω′

i ≤ 0, i0 = i − 1 and else if Ω′
i Ω′

i+1 ≤ 0, i0 = i.
After knowing the grid-index i0, we have to locate the extremum point ℓ0 ∈ [ℓi0 , ℓi0+1],
for which the derivative of the apse precession vanishes. We numerically locate it by
employing the bisection method for the condition, |Ω′

0| < 10−10, to be satisfied.

In general, we can have some finite number ms of the extremum points ℓ(m)
0

with the corresponding precession rates Ω(m)
0 where m = 1, 2, ...ms. But, for RR

of the initial example DF of equation (4.52), the evolving Ω profile at a time is
characterized by a single extremum point in the half-space; see Figure 4.2b. These
extrema ℓ(m)

0 divide the positive half of the ℓ space into (ms + 1) slots within which
the Ω–profile remains monotonic. These slots are [ℓ(m)

0 , ℓ
(m+1)
0 ] for m = 0, 1, ...,ms

where ℓ(0)
0 = 0 and ℓ

(ms+1)
0 = 1 are the bounds of the half-space. For a point ℓi, the

resonant point ℓr is the one satisfying the condition Ω(ℓr) = Ω(ℓi). For a given ℓi,
there can be at the most a single resonant point in each monotonic slot, except the
one containing ℓi. So any point can have at the most ms number of resonant points.
Firstly it is determined whether or not a given monotonic slot contains any resonant
point. A slot [ℓ(m)

0 , ℓ
(m+1)
0 ] will have a resonant point for ℓi only if the condition

(Ωi − Ω(m)
0 )(Ωi − Ω(m+1)

0 ) < 0 is satisfied. Then a grid interval [ℓj, ℓj+1] (within the
monotonic slot) contains the resonant point if (Ωi − Ωj)(Ωi − Ωj+1) < 0. Till here,
the grid-index j of the interval containing a resonant point ℓr is determined.

Then we need to further pinpoint the resonant point ℓr ∈ [ℓj, ℓj+1] so as to
evaluate the current Ji. Using equation (4.14) (for positive ℓ) in the resonance
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condition Ω(ℓr) = Ωi, we have:

− 2ℓr

1− ℓr
2

(
1−

∫ ℓr

−ℓr
dℓ′f(ℓ′)

)
= Ωi . (4.47)

From the definition of cumulative DF F (ℓ), the above equation can be expressed in
the form:

ℓr [1 + F (−ℓr)− F (ℓr)] + Ωi

2 (1− ℓr
2) = 0 . (4.48)

Since F is a piece-wise cubic polynomial, the above equation is a quartic polynomial
equation in ℓr. Using equation (4.41), we have the following expressions for F (±ℓr)
with ℓr ∈ [ℓj, ℓj+1] and −ℓr ∈ [ℓN−j−1 = −ℓj+1, ℓN−j = −ℓj]:

F (ℓr) = aj + bj(ℓr − ℓj) + cj(ℓr − ℓj)2 + dj(ℓr − ℓj)3 (4.49a)

F (−ℓr) = aN−j−1 + bN−j−1(ℓj+1 − ℓr) + cN−j−1(ℓj+1 − ℓr)2 + dN−j−1(ℓj+1 − ℓr)3 .

(4.49b)

This leads to the final quartic polynomial equation in ℓr given explicitly in equa-
tion (F.1) of Appendix F. A general quartic equation can be solved analytically for its
four roots. The explicit forms of these roots are provided in equation (F.2). Exactly
one out of these four roots satisfies ℓr ∈ [ℓj, ℓj+1] and is the required resonant point
for ℓi. This analytic root-finding is highly favored so as to minimize the numerical
errors in the RR code.

4.2.3 Secular Dynamical Stability

The RR code keeps a check on the dynamical stability of the resonantly relax-
ing system to non-axisymmetric secular modes. Linear secular stability of mo-
noenergetic axisymmetric discs is analyzed in § 2.2.2 of Chapter 2. It is already
noted that the axisymmetric modes of an axisymmetric Keplerian disc are neu-
trally stable (ST16a). The linearly perturbed system has the DF f(ℓ, t)/(2π) +
Re{f1m(ℓ, t) exp [i(mg − ωm(t)t)]} for a mode corresponding to the azimuthal wavenum-
ber m. Here ωm(t), f(ℓ, t) and f1m(ℓ, t) have a long-term time dependence over the
RR timescales Tres. The eigenvalues ωm(t) can be complex in general; its real part
signifies the rotational frequency of the m-pattern, and the imaginary part represents
the growth rate of the mode. Using the Fourier coefficients of equation (4.13), the
linear integral eigenvalue problem for secular stability given in equation (2.23) can
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be rewritten as:

[ωm(t)−mΩ(ℓ, t)] f1m(ℓ, t) = −m ∂f(ℓ, t)
∂ℓ

∫ 1

−1
dℓ′ Cm(ℓ, ℓ′)f1m(ℓ′, t) (4.50)

where Ω(ℓ, t) evolves over the timescale Tres.

We discretize the above integral equation over the ℓ-space grid to get the corre-
sponding matrix eigenvalue problem. The ℓ and ℓ′ are written as ℓi and ℓj respectively.
We represent the discretized form of eigen-amplitudes f1m(ℓ, t) as Xi, where i in-
dicates evaluation at ℓi. The long term time-dependence of all the quantities is
suppressed in the discretized representation. We represent Cm(ℓ, ℓ′) as Cij, with the
suppression of m-dependence in the notation. The ℓ′-integral is discretized using
mid-point method considering uniformly spaced grid-points ℓj, j = 1, 2, ..., (N − 1).
Note that the end-points ℓ0 = −1 and ℓN = +1 need not be considered as Cm(ℓ, ℓ′)
and hence the integrand vanishes at ℓ′ = ±1. From equation (4.50), f1m(±1, t) = 0
and hence X0,N = 0. The final (N − 1)× (N − 1) matrix eigenvalue problem is given
as:

N−1∑
j=1

Mij Xj = ωm Xi where Mij = m (Ωj δij −∆ℓ fi
′ Cij) (4.51)

for i = 1, 2, ..., (N − 1). The problem is numerically solved using the DGEEV
subroutine from LAPACK1. The eigenvalues are computed for m = 1, 2, ..., 100,
with attention paid to their imaginary parts. The initial DF of equation (4.52),
evolved by the RR code, remains dynamically stable throughout the evolution, as
discussed in § 4.3.

Now the question arises, what if the system goes unstable on the way for some
general initial DF? Under such a situation, the unstable state should be evolved
by N -Ring simulations (Touma et al., 2009). After witnessing the emergence of
the fastest growing linear unstable mode (deducible from the above calculations),
the system will further evolve non-linearly towards a secularly stable collisionless
equilibrium. The resulting DF from the simulations should be further evolved by the
RR kinetic equation; the RR code can be used for axisymmetric DFs.

4.3 RR Code Results

In this section, we present results from the RR code for a sample DF. The discretized
grid contains N = 200 intervals in ℓ-space with the grid interval ∆ℓ = (ℓN − ℓ0)/N =

1Linear Algebra PACKage (a library of Fortran subroutines)
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Fig. 4.2 RR Code results for a typical Gaussian DF: (a). Distribution function f(ℓ),
(b). Apse precession Ω(ℓ) (in the units of Tsec

−1), (c). Surface density Σ(r) profiles, are
plotted for the resonantly relaxing disc by the RR code at various intermediate times,
including the initial state (in blue) and the final state at 0.2Tres (in red). The initial
Gaussian DF is given by equation (4.52).

2/N = 0.01. Since the RR kinetic equation (4.11) has a diffusive term, the time-step
∆t = CFL×∆ℓ2 (in units of Tres) is chosen for the stability of numerical algorithm
(Press et al., 1992). Here we choose CFL = 10−4. The RR code is run till 0.2Tres.
We choose an initial Gaussian DF fin(ℓ) explicitly given as:

fin(ℓ) = A exp
(
−(ℓ− ℓ0)2

2σ2

)
(4.52)

with A ≃ 1.6, ℓ0 = 0.4 & σ = 0.25. The DF evolves by the RR code and settles to a
stationary state by ∼ 0.08Tres. The evolving DF profile is shown in the Figure 4.2a
at different intermediate times, including the initial and end-states. For the sub-
dominant retrograde population (ℓ < 0), DF seems to remain frozen throughout
the evolution. A prograde DF, on the other hand, spreads in ℓ-space towards both
higher and lower eccentricities. Mass in near-circular orbits increases with time. Also,
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the median of the profile (initially at ℓ0 = 0.4) shifts gradually towards the high
eccentricities. Hence RR heats up the system, resulting in states with apparently
higher velocity dispersions. Stars orbiting along the high eccentricity Rings, approach
central MBH closely (evident from the evolving surface density profile in Figure 4.2c),
and are susceptible to various astrophysical phenomena discussed earlier, like TDEs,
EMRIs and/or MBH feeding. The evolving apse precession Ω profiles are shown
in the Figure 4.2b. It is intriguing to see that the Ω profiles become more and
more flattened with time, especially for the moderate and low eccentricity Rings.
High eccentricity Rings keep precessing differentially throughout the evolution, while
the remaining Rings for the end-state distribution seem to be co-precessing with a
constant apse precession rate, which is very close to the maximum precession rate
(corresponding to time ∼ 14Tsec) for the initial Ω profile.

We compute the real-space surface probability density Σ(r) for the evolving DFs
(Figure 4.2a) using equation (G.4) derived in Appendix G. Figure 4.2c shows Σ(r)
profiles at the corresponding times. The Σ(r) profiles are double humped (or horned),
which is typical of the monoenergetic discs (see Figure 2.3a for waterbags). As a
result of the angular momentum relaxation due to RR, the radial distance between
these density humps widens, channeling the mass – inwards closer to the MBH,
and also outwards near outer edge of the disc. This characteristic arises due to the
increase in the population of the high eccentricity Rings, as a result of RR. Since
the near-circular population of Rings also rise in a resonantly relaxing disc, the Σ at
mid-radius a0 of the disc also increases with time.

It is evident from the Figure 4.2 that there is an interval about ℓ = 0 within
which the f(ℓ) and Ω(ℓ) profiles do not undergo any change throughout the evolution.
This is due to the absence of resonances and hence the currents in this region. This
is the region of non-resonance described in § 4.1.1; see Figure 4.1b. Figure 4.2b
for the evolving Ω(ℓ) profiles shows that this region keeps expanding with time (as
Ω(ℓ = ±1) keeps increasing in magnitude). This also shows up in Figure 4.3, where
the region of ℓ space with non-zero currents keeps shrinking with time. The decaying
magnitudes of the current J(ℓ) with time are evident, as the J(ℓ) profiles are shown
for the evolving DFs of Figure 4.2a. The current magnitudes drop to ∼ 10−4 for the
final state, with the initial state values being of the order ∼ 50.

Conserved quantities and entropy: The RR code preserves the conservation of the
norm N , normalized angular momentum L and normalized energy E , introduced
in § 4.1.3. In Figure 4.4a, we plot the quantity N − 1 and it turns out to be of
the order ∼ 10−10. This almost exact conservation of N is due to the conservative
scheme and other features of the algorithm, as explained in § 4.2. The angular
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Fig. 4.3 RR evolution of current profiles J(ℓ) plotted for the evolving DFs of Figure 4.2a.

momentum L is conserved till four decimals, with approx. relative error ≤ 10−4; see
Figure 4.4b. The energy E is conserved till fifth decimal with the approx. relative
error of ∼ 10−6, as evident from Figure 4.4c. From Figure 4.4d, the entropy S is an
ever increasing function in relevance to theoretical predictions of ST17, as described
in § 4.1.4. Initially, there is a gradual rise in S till ∼ 0.05Tres; afterwards the S
remains nearly constant signifying the fact that system has reached a stationary
state.

Dynamical stability checks: The RR code checks linear dynamical stability of the
system throughout the evolution, making use of the scheme described in § 4.2.3. For
the chosen initial DF of equation (4.52), the evolving system remains stable to the
non-axisymmetric modes with the azimuthal wave-numbers upto m = 100 (which
is the maximum wave-number explored during this exercise). The stability matrix
equation (4.51) is solved for its eigenvalues using LAPACK. It is found that the
maximum magnitude of the growth rate (or imaginary part of the eigenvalues) is of
the order ∼ 10−3. Hence the instabilities can possibly grow over times ∼ 1000Tsec.
As the timescale can be quite comparable to Tres ∼ N⋆Tsec, these slowly growing
instabilities do not get the enough time to mark a change in the evolution pathway,
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Fig. 4.4 Evolution of the conserved quantities {N , L , E } and the entropy S by the RR
code.

as in the mean time system evolves to a different state by RR. Hence, the example
system is considered to be secularly stable throughout the evolution.

4.3.1 Nature of end states

The end state DF at t = 0.2Tres (shown in Figure 4.2a) corresponds to the extremely
low magnitude of current J(ℓ) (fourth panel of Figure 4.3). Stationary state DF
fs(ℓ) = A exp

[∫ ℓ
−1 η[Ωs(ℓ)] dℓ

]
, which are constructed in § 4.1.5, corresponds to the

absolute zero currents. For the stationary states, f−1
s dfs/dℓ = η[Ωs] is a single-valued

functional of Ω(ℓ).
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Fig. 4.5 f−1df/dℓ vs Ω profiles for the states where the current magnitudes have fallen
significantly.

In Figure 4.5, we plot f−1df/dℓ vs Ω for the evolving DF for which the maximum
current magnitude falls to almost 10−2(at∼ 0.075Tres), 10−3(at∼ 0.088Tres), 10−4 (at
∼ 0.193Tres ), and also for the end state at 0.2Tres. The profiles nearly superpose for
these four states, and it can be seen that f−1df/dℓ is a single–valued functional of Ω
for most of the range in ℓ space, except the largish positive values of Ω (corresponding
to ℓ < 0) where f itself is very small (see Figure 4.2). Hence, the end states, from
the RR code, correspond very closely to the stationary states of the RR kinetic
equation (4.11). The analysis serves as a good consistency check for the RR code.

Note that the f−1df/dℓ profile in Figure 4.5 appears to be linear for some parts
of ℓ-space. If f−1df/dℓ is a linear polynomial in Ω for the entire ℓ-space, then
the stationary state corresponds to a thermal equilibrium of the form fth(ℓ) =
A exp [−βΦth(ℓ) + γℓ] (the equation 4.35). Hence, the end state does not correspond
to the thermal equilibrium contrary to usual physical expectations. The sharp peak
in the figure for Ω ∼ [−0.2, 0], corresponds to the prograde population of Rings lying
in the region of non-resonance (see Figure 4.2). This points out that the occurrence
of non-thermal end states is possibly related with the non-relaxed DF in this region
of zero current.
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4.4 Discussion and conclusions

In this chapter, we have presented a study of the implementation of the present
version of the RR code. We plan to improve various aspects of the code in the future.
Firstly we have chosen the simplest time-stepping algorithm employing Euler scheme;
see equation (4.38). We will upgrade it to the more sophisticated time-stepping
schemes, like RK4 (Press et al., 1992), that might lead to the better conservation of
quantities {L ,E }. Still with our very simple scheme, the approx. relative errors
for L and E are 10−4 and 10−6 respectively. Secondly we will implement adaptive
time stepping in the future version of the RR code, for better efficiency. For the
present example study, the initial evolution is faster till 0.05Tres; afterwards it is
much slower as evident from the entropy S evolution plot of Figure 4.4d. Hence, it
is more efficient to choose smaller time-steps initially and longer time-steps for later
parts of the evolution, rather than the present uniform time-stepping interval.

In the present example, central MBH is not considered as a sink and hence, the
DF f(ℓ, t) has a conserved norm throughout the evolution. The resonantly relaxed
system has greater population of high-eccentricity Rings, as discussed in § 4.3. If a
loss-cone is considered around the MBH, it might lead to the accelerated feeding of the
MBH and other astrophysically fascinating events like TDEs and EMRIs. Extensions
of the present study can help deducing occurrence rates for such events. Also, it is
interesting to see the effects of general relativistic precession on the RR evolution.
There have been interesting results from previous simulation studies (Merritt et al.,
2011; Bar-Or & Alexander, 2014; Hamers et al., 2014) where relativistic precession
turns out to quench RR near MBH (Schwarzschild barrier), hampering the inward
flow of stellar mass. It would be interesting to see the manifestation of this barrier
in the present semi-analytical picture of ST16b.

The end state from the RR evolution turns out to be a stationary state of the form
given in equation (4.34), and does not correspond to the expected Boltzmann-type
thermal equilibrium of equation (4.35). We suspect that the occurrence of the region
of non-resonance deprives a part of the phase space from having currents and evolving
by RR. This non-occurrence of resonances in a part of the ℓ-space is responsible for
preventing the system to reach the corresponding thermal equilibrium state. This
might be a reason for the evolution of the system to the non-thermal stationary
states by the RR code. As a check, we plan to construct the thermal equilibrium for
given L and E (for the present example DF), and compare it with the stationary
end state got from the RR code.
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It would also be interesting to compare the results of the RR code with N -
Ring simulations (Touma et al., 2009). Evolution of the high eccentricity Rings
corresponding to the non-resonant region around ℓ = 0, would be especially interesting
to study. In the present semi-analytical approach, DF remains frozen in this region,
which keeps expanding with time. The surmised evolution of DF in this region in
simulations is important for understanding the underlying physics of RR. It would be
quite important to compare the end-states from the RR code and simulations. The
RR code end state is dynamically stable; while its thermodynamic stability is yet to
be deduced. N -Ring simulations of this end state would provide an ultimate check
on the thermal stability and hence, on the physical significance of these stationary
states.

The present study of RR evolution of a monoenergetic axisymmetric disc seems
to represent a pathological case due to presence of the region of non-resonance about
ℓ = 0. This might be the reason for the non-thermal end states of the RR code.
It is important to note that the RR evolution of a monoenergetic disc occurs in
one-dimensional ℓ-space, where the Ω(ℓ, t) curve at any time t, can offer a discrete and
finite set of resonant points ℓrj for any point ℓi; see the Figure 4.1b. This leads to the
region of non-resonance where even a single resonant point is geometrically unavailable.
It is apparent that the lower dimensionality of the problem is responsible for non-
resonant region. Hence, it is necessary to generalize these studies to axisymmetric
Keplerian disc, by lifting the monoenergetic assumption. Resonances take a more
generic form in discs composed of stars with a range of semi-major axes. The RR
occurs in two-dimensional (I, L)-space, and Ω(I, L, t) is a curved two-dimensional
surface, which will allow resonant lines Lr(I) and hence a continuous set of resonant
points for any point (I,L). It is likely that every point in the space would manage
to avail resonances and DF can resonantly relax throughout the space, leading to
the thermal equilibrium end states. Hence, moving to the more general and realistic
case of non-monoenergetic axisymmetric discs seems to be important to understand
the collisional behaviour of naturally occurring astrophysical Keplerian discs.

The RR kinetic equation (4.3)-(4.4) (as derived by ST17) is based on direct two-
Ring interactions and does not take into account collective gravitational encounters
(gravitational polarization) among Rings. A natural question that arises is whether
the inclusion of polarization effects will modify RR evolution in some fundamental
manner. Also, the studies considering collective interactions are more suited for
comparisons with N -Ring simulations proposed above. In the next chapter, we
take forth this mission and set up the analytical framework to include gravitational
polarization for RR of axisymmetric Keplerian discs.





Chapter 5
Resonant Relaxation
with Gravitational Polarization

ST17 derived a Fokker-Planck equation for the resonant relaxation (RR) of ax-
isymmetric Keplerian discs. They evaluated the wake function in the passive response
approximation (PRA) limit, which corresponds to the neglect of gravitational polar-
ization. This implies that collective gravitational encounters among the constituent
Gaussian Rings are not taken into account. In this chapter, we extend the RR
theory of ST17 for axisymmetric discs by incorporating polarization. We develop an
analytical perturbative scheme to incorporate polarization terms iteratively, formally
accounting for all the orders. We recover the PRA current of the zeroth order theory,
and derive the leading order polarization current from the first order terms. The
different orders of the perturbation theory can be thought of as accounting for the
multiplicities of encounters among Rings. The PRA theory is based on two-Ring
encounters; the first order polarization theory is based on three-Ring encounters; and
the nth order theory on (n+ 2)-Ring encounters.

In § 5.1, we present the general RR kinetic equation of ST16b and the perturbative
series solutions of the wake equation as derived by ST17. We specialize to an
axisymmetric Keplerian disc in § 5.2, and interpret the physical meaning of the
leading order wake-function W (0) in terms of the angular momentum change a Ring
accumulates due to two-Ring or direct interactions. The higher order wake W (n), with
n = 1, 2, ..., is proportional to the angular momentum change a Ring accumulates
due to gravitational interactions with the wake W (n−1). Hence the higher order wakes
(W (1), W (2) and so on) account for collective interactions among the constituent
Gaussian Rings; going to each higher order further improves this accounting. In
§ 5.2.1, we explicitly derive the Fourier series of the lowest order wake function W (0).
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We also derive a recurrence relation for Fourier coefficients, leading to higher order
wakes W (n), with n = 1, 2, .... Hence, in principle we have the complete solution of
the wake equation in terms of a perturbative expansion. This leads to a general
perturbative expansion of the two-Ring correlation function F

(2)
irr in § 5.3, which

further leads to a series expansion of the RR current J in § 5.4. We also derive
the RR kinetic equation for an axisymmetric Keplerian disc (including polarization
effects). In this series expansion framework, a coefficient depends upon only the lower
order coefficients and hence, the theory can be truncated consistently at a certain
order. In § 5.4.1, we give expressions for the lowest order currents J (0) (corresponding
to PRA) and J (1) (corresponding to the first order polarization). We reduce the
RR kinetic equation for truncation at O(1) theory, for which we evaluate currents
explicitly. Then, we study the nature of stationary states of this reduced kinetic
equation in § 5.5. Finally, we conclude in § 5.6.

5.1 Basic Formalism and Perturbation Theory

We consider a star cluster of mass M composed of N⋆ ≫ 1 Gaussian Rings. The
central MBH is of mass M• ≫M and the system is a Keplerian star cluster with the
small parameter ϵ = M/M•. The formalism of theoretical framework of ST16b was
presented in § 1.4.2. The RR kinetic equation (1.19)-(1.20) is reproduced here as:

∂F

∂τ
+
[
F,H − Φ(R, τ)

N⋆

]
= C[F ] = 1

N⋆

∫ [
Ψ(R,R′), F (2)

irr (R,R′, τ)
]

dR′ (5.1)

where C[F ] is the collision integral. The irreducible part of the two-Ring correlation
function F (2)

irr can be written in terms of wake function W (as given in equation 1.21):

F
(2)
irr (R,R′, τ) = W (R|R′, τ)F (R′, τ) + W (R′ |R, τ)F (R, τ)

+
∫
W (R|R′′, τ)W (R′ |R′′, τ)F (R′′, τ) dR′′ . (5.2)

The wake function W (R|R′, τ) represents the linear response of the system at a
generic point R to a discrete Gaussian Ring R′. The gedanken experiment (Rostoker,
1964; Gilbert, 1968) leads to the wake equation (1.23), which is rewritten here as:

∂W

∂τ ′ + [W (R|R′(τ ′), τ ′) , H(R, τ ′) ] + [F (R, τ ′) , Φw(R,R′(τ ′), τ ′) ]

= [ Φp(R,R′(τ ′), τ ′) , F (R, τ ′) ] , for τ ′ ≤ τ . (5.3)
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To follow the RR evolution of the system, the above pde for the wake function is to
be simultaneously solved with the kinetic equation (5.1), with the adiabatic turn-on
initial condition for the wake function i.e. W (R|R′(τ ′), τ ′)→ 0 as τ ′ → −∞ . The
wake equation can be solved in perturbative manner of ST17. Perturbative expansion
for the wake W (R|R′, τ) of Ring R′:

W = W (0) +W (1) +W (2) + ... (5.4)

is substituted in the wake equation (5.3) to get the explicit solutions (from equa-
tion (26) of ST17):

W (0)(R|R′, τ) =
∫ τ

−∞
dτ ′ [ Ψ(R(τ ′),R′(τ ′), τ ′)− Φ(R(τ ′), τ ′) , F (R(τ ′), τ ′) ] ,

(5.5a)

W (n+1)(R|R′, τ)=
∫ τ

−∞
dτ ′
∫

dR′′ [Ψ(R(τ ′),R′′, τ ′), F (R(τ ′), τ ′)]W (n)(R′′|R′(τ ′), τ ′),

for n = 0, 1, 2, . . . .
(5.5b)

Here R(τ ′) and R′(τ ′) refer to the collisionless orbits of the Rings for the potential
Φ(R, τ) for τ ′ ≤ τ ; R = R(τ) and R′ = R′(τ) denote their phase space positions at
τ ′ = τ . Here W (0) corresponds to the PRA wake function which does not include
polarization effects. The W (1) is the leading order term accounting for polarization;
and the higher order wakes add to further corrections. Note that the above equations
have the two-Ring interaction potential with the explicit dependence on time given
as

Ψ(R(τ ′),R′(τ ′), τ ′) = exp [λτ ′]Ψ(R(τ ′),R′(τ ′)) , λ→ 0+ , (5.6)

because the wake function, and hence the interaction among the Rings, vanishes in
the distant past τ ′ → −∞. Here λ is a small positive parameter that controls the
adiabatic switching on of interactions in the distant past.

The general wake function W (R|R′, τ) satisfies the following two properties.

P1: The total mass contained in the wake of the Ring R′ at any time τ is zero,
∫

dR W (R|R′, τ) = 0 , (5.7)

because mutual torquing among Rings just leads to their rearrangement in
phase space.



116 Resonant Relaxation with Gravitational Polarization

P2: The net wake at R due to all the Rings in the system vanishes,
∫

dR′ F (R′, τ)W (R|R′, τ) = 0 . (5.8)

Henceforth we specialize to the case of an axisymmetric Keplerian stellar disc. In
the next section, we evaluate the explicit expressions for the general wake function.

5.2 Wake Function for an Axisymmetric Disc

For a planar system, the Ring space is three-dimensional with R ≡ {I, L, g}. An
axisymmetric Keplerian disc has a DF of the form F (I, L, τ), which represents
a collisionless (quasi) equilibrium over the secular timescales Tsec, as we saw in
§ 2.1.1. The time-dependence of F (I, L, τ) signifies its collisional evolution over the
RR timescales Tres. The resultant self-gravitational potential Φ(I, L, τ) (given by
equation 2.7) of the disc evolves over the similar timescale, which is much longer
than the apse precessional (secular) timescale Tsec of Rings. A wake arises due to
interactions among the Rings, which build up over a few times Tsec. Hence, the R(τ ′)
and R′(τ ′) in the equations (5.5) are effectively the Ring orbits in an axisymmetric
collisionless equilibrium at τ . These orbits are uniformly and rigidly precessing Gaus-
sian Rings; see the equation (2.8) for the Ring orbits. Hence over timescales ∼ Tsec,
the angular momentum L of a Ring is conserved and its apse precesses uniformly
with frequency Ω(I, L, τ) = ∂Φ/∂L. Thus R(τ ′) ≡ {I, L, g(τ ′) = g + Ω (τ ′ − τ)} and
R′(τ ′) ≡ {I ′, L′, g′(τ ′) = g′ + Ω′ (τ ′ − τ)} where Ω ≡ Ω(I, L, τ) and Ω′ ≡ Ω(I ′, L′, τ).
Both the Ω and Ω′ have time-dependence over the time Tres. Hence, for the ax-
isymmetric disc, the lowest order or PRA wake function of equation (5.5a) reduces
to:

W (0)(R|R′, τ) = ∂F

∂L

∫ τ

−∞
dτ ′ ∂

∂g
Ψ(I, L, g(τ ′), I ′, L′, g′(τ ′), τ ′) , (5.9)

since the DF F (I, L, τ) is independent of g and its derivative ∂F/∂L is pulled
out of the time-integral for its slower evolution over the time Tres. Hence, the PRA
wake is proportional to the net angular momentum change of the Ring R due to
torquing by the Ring R′ during the entire history of their interaction. Similarly, the
(n+ 1)th order wake function W (n+1) of equation (5.5b) can be expressed as:

W (n+1)(R|R′, τ)= ∂F

∂L

∫ τ

−∞
dτ ′
∫

dR′′ ∂

∂g
Ψ(I, L, g(τ ′), I ′′, L′′, g′′, τ ′)W (n)(R′′|R′(τ ′), τ ′)

= ∂F

∂L

∫ τ

−∞
dτ ′ ∂

∂g
Φ(n)

W (I, L, g(τ ′), I ′, L′, g′(τ ′), τ ′)
(5.10)
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where the nth order wake potential Φ(n)
W (R,R′, τ) of R′ is given as:

Φ(n)
W (R,R′, τ) =

∫
dR′′ Ψ(I, L, g, I ′′, L′′, g′′, τ)W (n)(R′′ |R′, τ) . (5.11)

From the above equations, the (n+ 1)th order wake function W (n+1) turns out to
be proportional to the angular momentum change of the Ring R due to its interaction
with the nth order wake of R′ throughout their orbital history. Hence, the successive
orders of wake functions measure the response of the system to the gravity of the
wake of one lower order; PRA wake being a measure of direct interactions among
the pairs of Rings. Hence, the higher order wakes are successive iterative corrections
taking into account gravitational polarization in more and more complete sense.

Below we check that the properties P1 and P2 (given in the equations (5.7)-(5.8))
of a wake function are satisfied by any general order wake function W (n)(R|R′, τ).

Firstly, we verify the property P1 which states that the net mass in the gen-
eral order wake W (n) of R′ vanishes. We start with the PRA wake function of
equation (5.9),

∫
dR W (0)(R|R′, τ) =

∫
dIdL ∂F

∂L

∫ τ

−∞
dτ ′

∮
dg ∂

∂g
Ψ(I, L, g(τ ′), I ′, L′, g′(τ ′), τ ′) .

(5.12)
Here the g–integral vanishes straightforwardly and hence, the property P1 is satisfied
by the PRA wake. Now, we consider the (n+ 1)th order wake of equation (5.10),

∫
dR W (n+1)(R|R′, τ) =

∫
dIdL ∂F

∂L

∫ τ

−∞
dτ ′

∫
dR′′ W (n)(R′′ |R′(τ ′), τ ′)

∮
dg ∂

∂g
Ψ(I, L, g(τ ′), I ′′, L′′, g′′, τ ′)

(5.13)

The above integral also vanishes similar to the earlier one.

Now, we verify the property P2 which states that the net general order wake
W (n) due to all the Rings vanishes at any general phase space location R. For the
PRA wake function of equation (5.9), we have,
∫

dR′ F (R′, τ)W (0)(R|R′, τ) =

∂F

∂L

∫ τ

−∞
dτ ′

∫
dI ′dL′

∮
dg′ ∂

∂g
Ψ(I, L, g(τ ′), I ′, L′, g′(τ ′)) .

(5.14)
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We know that Ψ depends upon g(τ ′) = g+ Ω (τ ′− τ) and g′(τ ′) = g′ + Ω′ (τ ′− τ) as a
function of g(τ ′)−g′(τ ′) = g−g′+(Ω−Ω′)(τ ′−τ). Hence we have ∂Ψ/∂g = −∂Ψ/∂g′

in the above expression and the resultant g′–integral vanishes trivially.

For the (n+ 1)th order wake function of the equation (5.10), we have,

∫
dR′F (R′, τ)W (n+1)(R|R′, τ) = ∂F

∂L

∫ τ

−∞
dτ ′

∫
dR′′ ∂

∂g
Ψ(I, L, g(τ ′), I ′′, L′′, g′′, τ ′)

∫
dI ′dL′dg′ F (R′, τ)W (n)(R′′ |R′(τ ′), τ ′) .

(5.15)
Since F (R′, τ) = F (I ′, L′, τ) for the axisymmetric system and F evolves slowly as
compared to apse precession (or secular) timescales, F (R′, τ) can be replaced by
F (R′(τ ′), τ ′). The above integral depicting the net (n+ 1)th order wake at R due to
all the Rings in the system:
∫

dR′F (R′, τ)W (n+1)(R|R′, τ) = ∂F

∂L

∫ τ

−∞
dτ ′
∫

dR′′ ∂

∂g
Ψ(I, L, g(τ ′), I ′′, L′′, g′′, τ ′)

∫
dR′ F (R′(τ ′), τ ′)W (n)(R′′ |R′(τ ′), τ ′)

(5.16)
vanishes if the net nth order wake due to all the Rings in the system vanishes at τ ′.
Since the zeroth order or PRA wake satisfies this property, the general higher order
wakes will also behave similarly by mathematical induction. Hence any general order
wake satisfies the property P2.

Below we evaluate explicitly the general order wake functions of the equations (5.9)-
(5.10), employing the orbital structure of an axisymmetric disc.

5.2.1 Explicit Wake Functions

The reduced expressions for the wake functions in equations (5.9) and (5.10) can be
simplified further by incorporating the uniform precession of apses in the axisymmetric
disc. Hence, g(τ ′) = g + Ω (τ ′ − τ) and g′(τ ′) = g′ + Ω′ (τ ′ − τ), and the PRA wake
W (0) of equation (5.9) takes the following form:

W (0)(R|R′, τ) = ∂F

∂L

∫ τ

−∞
dτ ′ ∂

∂g
Ψ (I, L, g + Ω (τ ′ − τ), I ′, L′, g′ + Ω′ (τ ′ − τ)) .

(5.17)
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Using the equation (4.1), the two-Ring interaction potential Ψ of equation (5.6) can
be Fourier expanded as:

Ψ(R,R′, τ ′) = exp [λτ ′]
+∞∑

m=−∞
C̃m(I, L, I ′, L′) exp [im(g − g′)] (5.18)

where λ→ 0+ for the slow build up of the wake from extremely small magnitudes in
the distant past as τ ′ → −∞. Employing the above Fourier series in equation (5.17),
we have:

W (0)(R|R′, τ) = ∂F

∂L

∫ τ

−∞
dτ ′ exp [λτ ′]

∑
m̸=0

imC̃m exp [im {g − g′ + (Ω− Ω′)(τ ′ − τ)}] .

(5.19)
Then, changing the variable of integration to x = τ ′ − τ , we get:

W (0)(R|R′, τ) = exp [λτ ]∂F
∂L

∑
m ̸=0

imC̃m exp [im(g − g′)] ×
∫ 0

−∞
dx exp [{λ+ im(Ω− Ω′)}x] ,

(5.20)

and this leads to the following form of the PRA wake function W (0):

W (0)(R|R′, τ) = exp [λτ ] ∂F
∂L

∑
m ̸=0

A(0)
m (I, L, I ′, L′) exp [im(g − g′)] (5.21a)

A(0)
m (I, L, I ′, L′) = im

λ+ im(Ω− Ω′)C̃m(I, L, I ′, L′) (5.21b)

where A(0)
m evolves slowly over the time ∼ Tres like Ω and Ω′, and its time-dependence

is suppressed in the above notation.

The next order wake function W (1) can be expressed in terms of the W (0) of
equation (5.21), using the recursive relation given in equation (5.5b) with n = 0 as:

W (1)(R|R′, τ) =
∫ τ

−∞
dτ ′

∫
dR′′ ∂F

∂L

∂

∂g
Ψ(I, L, g(τ ′), I ′′, L′′, g′′, τ ′)

exp [λτ ′]∂F
′′

∂L′′

∑
m̸=0

A(0)
m (I ′′, L′′, I ′, L′) exp [im(g′′ − g′(τ ′))]

= ∂F

∂L

∫ τ

−∞
dτ ′ exp [2λτ ′]

∫
dI ′′dL′′∂F

′′

∂L′′

∮
dg′′ ∑

n̸=0
inC̃n(I, L, I ′′, L′′)

exp [in(g(τ ′)− g′′)]
∑
m̸=0

A(0)
m (I ′′, L′′, I ′, L′) exp [im {g′′ − g′(τ ′)}] .

(5.22)
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Only the terms with n = m contribute to the g′′–integral. Using the explicit forms
of g(τ ′) and g′(τ ′), while changing the variable of integration to x = τ ′ − τ , we have:

W (1) = 2π∂F
∂L

exp [2λτ ]
∑
m̸=0

im exp [im(g − g′)]

∫
dI ′′dL′′ ∂F

′′

∂L′′ C̃m(I, L, I ′′, L′′)A(0)
m (I ′′, L′′, I ′, L′)

∫ 0

−∞
dx exp [(2λ+ im(Ω− Ω′))x] .

(5.23)
Solving the x-integral leads to the final expression:

W (1)(R|R′, τ) = exp [2λτ ]∂F
∂L

∑
m̸=0

A(1)
m (I, L, I ′, L′) exp [im(g − g′)] (5.24a)

A(1)
m (I, L, I ′, L′) = 2πim

2λ+ im(Ω− Ω′)

∫
dI ′′dL′′∂F

′′

∂L′′ C̃m(I, L, I ′′, L′′)A(0)
m (I ′′, L′′, I ′, L′) .

(5.24b)

Following the similar steps and using the recurrence relation of equation (5.5b), we
have the general order wake function:

W (n)(R|R′, τ) = exp [(n+ 1)λτ ] ∂F
∂L

∑
m ̸=0

A(n)
m (I, L, I ′, L′) exp [im(g − g′)] (5.25a)

A(n)
m = 2πim

(n+ 1)λ+ im(Ω− Ω′)

∫
dI ′′dL′′ ∂F

′′

∂L′′ C̃m(I, L, I ′′, L′′)A(n−1)
m (I ′′, L′′, I ′, L′) ,

n = 1, 2, . . . (5.25b)

Note that the n = 1 corresponds to the expression for W (1) given in equation (5.24).
Using equations (5.21) and (5.25) in the series expansion of wake function of equa-
tion (5.4), the general wake function can be expressed as:

W (R|R′, τ) = ∂F

∂L

∑
m̸=0

Am(I, L, I ′, L′, τ) exp [im(g − g′)] (5.26a)

Am(I, L, I ′, L′, τ) =
∞∑

n=0
A(n)

m (I, L, I ′, L′) exp [(n+ 1)λτ ] . (5.26b)

Since W and all W (n)’s are the real valued functions, A(n)∗
m = A

(n)
−m and A∗

m = A−m

for all the Ring pairs. Here “ * ” indicates complex conjugation.
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5.3 Correlation Function

The irreducible part of the two-Ring correlation function F
(2)
irr for an axisymmetric

Keplerian disc is evaluated using equation (5.26) in (5.2):

F
(2)
irr = F ′∂F

∂L

∑
m̸=0

Am(I, L, I ′, L′, τ) exp [im(g − g′)]

+ F
∂F ′

∂L′

∑
m ̸=0

Am(I ′, L′, I, L, τ) exp [im(g′ − g)] + ...

+ ∂F

∂L

∂F ′

∂L′

∫
dI ′′dL′′F ′′

∮
dg′′

{ ∑
m ̸=0

Am(I, L, I ′′, L′′, τ) exp [im(g − g′′)]

×
∑
n̸=0

An(I ′, L′, I ′′, L′′, τ) exp [in(g′ − g′′)]
}

(5.27)
where F ′ ≡ F (I ′, L′, τ), F ′′ ≡ F (I ′′, L′′, τ). In the g′′-integral, only the n = −m
terms contribute, and the above expression can be manipulated to:

F
(2)
irr =

∑
m ̸=0

exp [im(g − g′)]
[
F ′∂F

∂L
Am(I, L, I ′, L′, τ) + F

∂F ′

∂L′A−m(I ′, L′, I, L, τ)

+ 2π∂F
∂L

∂F ′

∂L′

∫
dI ′′dL′′ F ′′Am(I, L, I ′′, L′′, τ)A−m(I ′, L′, I ′′, L′′, τ)

]
.

(5.28)
Using equation (5.26b) in the above equation, F (2)

irr can be ordered as a perturbative
series in terms of exp [λτ ] (similar to the wake function):

F
(2)
irr (R,R′, τ) =

∞∑
n=0

∑
m ̸=0

B(n)
m (I, L, I ′, L′) exp [im(g − g′)] exp [(n+ 1)λτ ] (5.29a)

B(0)
m (I, L, I ′, L′) = F ′∂F

∂L
A(0)

m (I, L, I ′, L′) + F
∂F ′

∂L′A
(0)
−m(I ′, L′, I, L) (5.29b)

B(n)
m (I, L, I ′, L′) = F ′∂F

∂L
A(n)

m (I, L, I ′, L′) + F
∂F ′

∂L′A
(n)
−m(I ′, L′, I, L)

+ 2π∂F
∂L

∂F ′

∂L′

∫
dI ′′dL′′ F ′′

n−1∑
k=0

A(k)
m (I, L, I ′′, L′′)A(n−k−1)

−m (I ′, L′, I ′′, L′′) (5.29c)

for n = 1, 2, ... Since F (2)
irr is a real-valued function, B(n)∗

m = B
(n)
−m. As F (2)

irr is sym-
metric under the interchange of the two Rings, B(n)

m (I, L, I ′, L′) = B
(n)
−m(I ′, L′, I, L).
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5.4 Collision Integral and Current

Now we evaluate the collision integral given in equation (5.1) using (5.29) and (4.1):

C[F ] = 1
N⋆

∞∑
n=0

exp [(n+ 1)λτ ]
∫

dI ′dL′
∮

dg′
[ ∑

m ̸=0
imC̃m(I, L, I ′, L′) exp [im(g − g′)]

×
∑

m′ ̸=0

∂

∂L
B

(n)
m′ (I, L, I ′, L′) exp [im′(g − g′)]−

∞∑
m=−∞

∂

∂L
C̃m(I, L, I ′, L′) exp [im(g − g′)]

×
∑

m′ ̸=0
im′B

(n)
m′ (I, L, I ′, L′) exp [im′(g − g′)]

]
.

Only the terms with m′ = −m contribute in the g′-integral, and with simple
manipulations, we have:

C[F ] = ∂

∂L

∞∑
n=0

exp [(n+ 1)λτ ]
 2π
N⋆

∫
dI ′dL′ ∑

m̸=0
imC̃m(I, L, I ′, L′)B(n)

−m(I, L, I ′, L′)
 .

Changing the dummy variable as m→ −m and using the symmetry property of
C̃m (from ST16a) being even in m, i.e. C̃−m = C̃m, we have:

C[F ] = − ∂

∂L

∞∑
n=0

exp [(n+ 1)λτ ]
 2π
N⋆

∫
dI ′dL′ ∑

m ̸=0
imC̃m(I, L, I ′, L′)B(n)

m (I, L, I ′, L′)
 .

(5.31)
The current J(I, L, τ) is defined as:

C[F ] = −∂J
∂L

. (5.32)

Comparing the equations (5.31) and (5.32), the current can be represented as
perturbative series of the form:

J(I, L, τ) =
∞∑

n=0
exp [(n+ 1)λτ ]J (n)(I, L, τ) (5.33a)

J (n)(I, L, τ) = 2π
N⋆

∫
dI ′ dL′ ∑

m̸=0
imC̃m(I, L, I ′, L′)B(n)

m (I, L, I ′, L′) (5.33b)

where the τ dependence on right side of the equation is suppressed in B(n)
m . The

above equation can be manipulated to the form:

J (n)(I, L, τ) = −4π
N⋆

∫
dI ′dL′

∞∑
m=1

mC̃m(I, L, I ′, L′) Im
[
B(n)

m (I, L, I ′, L′)
]

(5.34)
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using the symmetry property B(n)
−m = B(n)∗

m , as mentioned earlier in the text below
the equation (5.29). Here “Im” denotes the imaginary part. Note that the real part
of the correlation function coefficient B(n)

m does not contribute to the RR evolution
of the system.

Using the equation (5.32) in the RR kinetic equation (5.1), we have the following
form of the kinetic equation:

∂F

∂τ
+
[
F,H − Φ(R, τ)

N⋆

]
+ ∂J

∂L
= 0 . (5.35)

For the above equation to present the RR evolution of the system, the Poisson
Bracket term will nearly vanish for the system being a quasi collisionless equilibrium
evolving slowly over Tres timescales. Hence, we have the following final form of the
RR kinetic equation for an axisymmetric disc:

∂F

∂τ
+ ∂J

∂L
= 0 . (5.36)

The above equation is similar to the form of the RR kinetic equation (4.3), with the
two DFs related as F = f̃/2π.

5.4.1 Low-order Currents

Here we evaluate the explicit expressions for the first two leading order terms J (0)

and J (1) in the current series of equation (5.33a). Employing the equation (5.29b) in
equation (5.34) (for n = 0), we have the PRA current J (0):

J (0) = − 4π
N⋆

∫
dI ′ dL′

∞∑
m=1

mC̃m(I, L, I ′, L′)

Im
[
F ′∂F

∂L
A(0)

m (I, L, I ′, L′) + F
∂F ′

∂L′A
(0)
−m(I ′, L′, I, L)

] (5.37)

where A(0)
±m is given by equation (5.21). To further simplify the expressions for A(n)

m

given in equation (5.21) and (5.25), we will frequently use the following result from
Plemelj’s theorem:

im
λ+ imξ →

1
ξ

+ iπsign(m)δ(ξ) (5.38)

in the limit λ→ 0+.
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We simplify the equation (5.21) in the desired limit by using the above theorem,
to get:

A(0)
m (I, L, I ′, L′) =

[ 1
Ω− Ω′ + iπ sign(m)δ(Ω− Ω′)

]
C̃m(I, L, I ′, L′) (5.39)

and hence the final form for the PRA current J (0) of equation (5.37) becomes:

J (0) = 2π
N⋆

∫
dI ′dL′

(
2π

∞∑
m=1

mC̃m(I, L, I ′, L′)2
)
δ(Ω′ − Ω)

{
F
∂F ′

∂L′ − F
′∂F

∂L

}
(5.40)

which is consistent with the current (equation 4.4 of Chapter 4) evaluated in § 5.2 of
ST17; note that a factor of 2π difference comes due to the different normalizations
of the DFs as F = f̃/2π. The term in “( )” is the interaction kernel K̃(I, L, I ′, L′)
of equation (4.5).

Now we evaluate the next higher order current J (1) which incorporates the leading
order polarization effects. Using equation (5.29c) with n = 1 for B(1)

m in (5.34), we
have J (1):

J (1) = − 4π
N⋆

∫
dI ′dL′

∞∑
m=1

mC̃m(I, L, I ′, L′)Im
[
F ′∂F

∂L
A(1)

m (I, L, I ′, L′) +

F
∂F ′

∂L′A
(1)
−m(I ′, L′, I, L) + 2π∂F

∂L

∂F ′

∂L′

∫
dI ′′dL′′F ′′A(0)

m (I, L, I ′′, L′′)A(0)
−m(I ′, L′, I ′′, L′′)

]
.

(5.41)

We have A(1)
m from equation (5.24b); the factor im/(2λ+ im(Ω− Ω′)) → 1/(Ω−

Ω′) + iπ sign(m) δ(Ω − Ω′) using the theorem of equation (5.38). Also, using the
reduced form of A(0)

m from equation (5.39), we have:

A(1)
m (I, L, I ′, L′) = 2π

[
(

1
Ω− Ω′ + iπ sign(m)δ(Ω′ − Ω)

)∫
dI ′′dL′′∂F

′′

∂L′′
C̃m(I, L, I ′′, L′′)C̃m(I ′, L′, I ′′, L′′)

Ω′′ − Ω′ −

(
πδ(Ω′ − Ω) + iπsign(m)

Ω′ − Ω

)∫
dI ′′dL′′ ∂F

′′

∂L′′ C̃m(I, L, I ′′, L′′)C̃m(I ′, L′, I ′′, L′′)δ(Ω′′ − Ω′)
]
.

(5.42)
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Employing the expressions for A(0)
±m and A

(1)
±m from equations (5.39) and (5.42)

respectively, in equation (5.41) and upon further simplification, we have:

J (1) = 4π2

N⋆

∫
dI ′dL′dI ′′dL′′

(
2π

∞∑
m=1

mC̃m(I, L, I ′, L′)C̃m(I, L, I ′′, L′′)C̃m(I ′, L′, I ′′, L′′)
)

[
δ(Ω′ − Ω)
Ω′′ − Ω

∂F ′′

∂L′′

{
F
∂F ′

∂L′ − F
′∂F

∂L

}
+ δ(Ω′′ − Ω)

Ω′ − Ω
∂F ′

∂L′

{
F
∂F ′′

∂L′′ − F
′′∂F

∂L

}

+ δ(Ω′′ − Ω′)
Ω′ − Ω

∂F

∂L

{
F ′∂F

′′

∂L′′ − F
′′∂F

′

∂L′

}]
.

(5.43)

The last term in the square bracket vanishes as it is anti-symmetric in inter-
change of the Ring variables {I, L} ←→ {I ′, L′} which are the dummy variables of
integration. Also, note that the second term becomes identical to the first one under
the interchange. The final expression for the lowest order polarization current J (1)

becomes:

J (1) = 4π2

N⋆

∫
dI ′dL′dI ′′dL′′

(
2π

∞∑
m=1

mC̃m(I, L, I ′, L′)C̃m(I, L, I ′′, L′′)C̃m(I ′, L′, I ′′, L′′)
)

[
δ(Ω′ − Ω)
Ω′′ − Ω

∂F ′′

∂L′′

{
F
∂F ′

∂L′ − F
′∂F

∂L

}
+ δ(Ω′′ − Ω)

Ω′ − Ω
∂F ′

∂L′

{
F
∂F ′′

∂L′′ − F
′′∂F

∂L

}]
.

(5.44)

It is evident from the above expression that the current J (1) arises due to pair-wise
interactions among three Rings, as the term within “( )” contains coefficients C̃m

corresponding to the three Ring coordinates – (I, L), (I ′, L′) and (I ′′, L′′). Both the
terms within “[ ]” contain the δ-functions δ(Ω′ − Ω) and δ(Ω′′ − Ω), signifying that
only the Rings that have apsidal resonances with {I, L} contribute to J (1). This
indicates that polarization terms of the current (J (1) and higher order currents) are
also driven by strict resonances, like the PRA current J (0). This is true for the next
higher order term J (2) as well; but we do not present the rather lengthy calculation
here, since it involves the same steps discussed above for J (1).

Now, we present the RR kinetic equation considering the gravitational polarization
upto the leading order. Restricting the current series of equation (5.33a) upto the
first order implies J(I, L, τ) = J (0)(I, L, τ) + J (1)(I, L, τ) (in the limit of λ → 0+),
where the explicit expressions for J (0) and J (1) are given by equations (5.40) and
(5.44). For RR evolution of an axisymmetric disc, we need to solve the RR kinetic
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equation (5.36), which becomes:

∂F

∂τ
+ ∂J (0)

∂L
+ ∂J (1)

∂L
= 0 . (5.45)

In the next section, we work out the form of stationary states for which the current
J = J (0) + J (1) vanishes at all points in the (I, L)-plane.

5.5 Stationary States and Thermal Equilibria

Similar to the monoenergetic limit of § 4.1.5, a family of stationary states for an
axisymmetric Keplerian disc has the DFs Fs(I, L) of the following form:

Fs(I, L) = A(I) exp
[∫ L

−1
η[Ωs(I, L′)] dL′

]
(5.46)

where A(I) is a positive function; η[Ωs] is a single-valued functional of Ωs, the apse
precession rate corresponding to the DF Fs(I, L). Equations (2.7)-(2.8) give the form
of Ωs, which is rewritten below:

Ωs(I, L) =
∫

dI ′ dL′ Fs(I, L)
∮ dg′

2π
∂

∂L
Ψ(I, L, g, I ′, L′, g′) . (5.47)

The coupled equations (5.46)-(5.47) form a non-linear integral pde, and its self-
consistent solution gives explicit functional form of Fs(I, L) in the (I, L)-plane.

Differentiating the equation (5.46) wrt L, we get:

1
Fs(I, L)

∂Fs(I, L)
∂L

= η[Ωs(I, L)] . (5.48)

Recalling the stability theorem of ST16a for axisymmetric Keplerian discs (also
see § 2.1.1), the DFs F (I, L) for which ∂F/∂L is of the same sign everywhere in
its domain of support in the (I, L)-plane, are stable to secular perturbations of all
azimuthal wavenumbers m. Therefore, the property of equation (5.48) implies that
the stationary states with DFs Fs(I, L) are dynamically stable, if η[Ωs] is either
always positive or negative for all Ωs(I, L).

Using equation (5.48) in (5.40), we have the stationary state PRA current J (0)
s :

J (0)
s = 2π

N⋆

∫
dI ′dL′

(
2π

∞∑
m=1

mC̃m(I, L, I ′, L′)2
)
δ(Ω′

s − Ωs)FsF
′
s {η[Ω′

s]− η[Ωs]}
(5.49)



5.5 Stationary States and Thermal Equilibria 127

which vanishes, because of the presence of both antisymmetric term “{ }” and
δ-function.

Similarly, using equation (5.48) in (5.44) for J (1), we have:

J (1)
s = 4π2

N⋆

∫
dI ′dL′dI ′′dL′′

(
2π

∞∑
m=1

mC̃m(I, L, I ′, L′)C̃m(I, L, I ′′, L′′)C̃m(I ′, L′, I ′′, L′′)
)

Fs F
′
s F

′′
s

[
δ(Ω′

s − Ωs)
Ω′′

s − Ωs
η[Ω′′

s ] {η[Ω′
s]− η[Ωs]}+ δ(Ω′′

s − Ωs)
Ω′

s − Ωs
η[Ω′

s] {η[Ω′′
s ]− η[Ωs]}

]
(5.50)

which vanishes in a similar manner, as J (0)
s . Note that the denominators of the form

(Ω′
s − Ωs) for the two terms within “[ ]” never lead to divergences, because the

corresponding Ring {I ′, L′} would not be a resonant one. This is evident since the
two terms (and corresponding integrands) are identical under the interchange of
dummy variables {I ′, L′} ←→ {I ′′, L′′}.

Hence DFs of the form Fs(I, L) indeed represent the stationary states, for which
the leading order current J = J (0) + J (1) vanishes.

Thermal Equilibria: ST17 constructed the Boltzmann-type thermal equilibria for
axisymmetric Keplerian discs, having DFs of the form:

Fth(I, L) = A(I) exp [−βΦth(I, L) + γL] (5.51)

where Φth(I, L) is given by the integral relation of the equation (2.7). Hence, one has
to solve this integral equation to have the explicit form of Fth(I, L). Differentiating
the above equation wrt L, we have:

1
Fth(I, L)

∂Fth(I, L)
∂L

= −β Ωth(I, L) + γ (5.52)

where Ωth(I, L) = ∂Φth/∂L is the apse precession profile for the thermal state. It
is evident from equations (5.48) and (5.52) that the thermal states with DF Fth

form a subset of the stationary state DFs Fs, for which the η functional is a linear
polynomial in Ωth.

The above stationary states Fs or thermal equilibria Fth might correspond to the
end states of the RR kinetic equation (5.45), if they are dynamically and thermally
stable.
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5.6 Discussion

We have presented an analytical formalism to study the RR evolution of an ax-
isymmetric Keplerian disc, including gravitational polarization effects. The general
framework developed upto § 5.4 allows for the inclusion of higher orders of po-
larization. Starting from the explicit form of the lowest order wake-coefficient
A(0)

m given in the equation (5.21b), all the higher order coefficients can be worked
out using the recursion relation of the equation (5.25b). Each A(n)

m (I, L, I ′, L′) is
a four-dimensional function, and can be calculated in principle by evaluating a
two-dimensional integral over the just lower order coefficient A(n−1)

m (I, L, I ′, L′). If
we have all the wake-coefficients A(n)

m for n = 0, 1, 2, ...N , we can evaluate the
correlation function coefficients B(n)

m (I, L, I ′, L′) upto the same order N from the
equation (5.29c). Then the imaginary part of B(n)

m for various m, are employed to
evaluate the current coefficient J (n)(I, L, τ) using the equation (5.34). This leads
to the current J = J (0) + J (1) + ... + J (N), from the equation (5.33a) in the limit
λ → 0+. Finally, employing the J(I, L, τ) one has to numerically solve the RR
kinetic equation (5.36) for some given initial DF F (I, L, 0). This method includes
the gravitational polarization till the N th order.

It is relatively simpler to study the RR evolution of the disc, with inclusion of
the first order polarization effects. The current J = J (0) + J (1) is explicitly known
from equations (5.40) and (5.44). The resulting RR kinetic equation (5.45) can be
numerically solved with a generalized RR code. The resultant end states of this
evolution are expected to be dynamically and thermally stable, and might be of
the form of the stationary states Fs of equation (5.46) or the thermal equilibria
Fth of equation (5.51). As pointed out in § 4.4, we expect a non-monoenergetic
axisymmetric disc to have resonant points throughout the (I, L)-plane in general.
This would allow the DF to resonantly relax all over the phase space and hence,
might lead to the thermal equilibria in the end.

In § 4.4 while studying the RR of a monoenergetic axisymmetric disc, we spec-
ulated that the problem of existence of non-resonant region might be resolved, if
gravitational polarization is taken into account. The RR kinetic equation (5.45),
with the first order polarization, can be reduced to the monoenergetic case as done in
§ 4.1.1. But, it is evident from the equation (5.44), presenting the explicit form of the
leading order polarization current J (1), that it is also driven by apsidal resonances. If
there are no resonant points for a phase-space location, the local currents will vanish.
But the nature of the apse precession profile of a monoenergetic axisymmetric disc
leads to a region (for high eccentricity Rings) devoid of resonances. Hence, the
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resulting end-states again might be of the form of non-thermal stationary states.
Therefore it seems necessary to study RR in the more generic setting of a Keplerian
disc composed of stars with a range of semi-major axes.





Chapter 6
Conclusions

In the thesis we have explored some aspects of the gravitational dynamics of nuclear
star clusters (NSCs) orbiting massive black holes (MBHs) at the centres of galaxies.
Both collisionless and collisional dynamics were considered, based on the formalism of
secular theory developed by Sridhar & Touma (2016a,b, 2017). Since the gravitational
force on a star is dominated by the Keplerian potential of the MBH (of mass M•),
stellar orbits can be approximated as Keplerian elliptical rings (Gaussian Rings)
which precess and deform due to the mean gravitational potential of the cluster
(of mass M ≪M•), over several secular collisionless timescales Tsec ∼ TKep/ϵ; TKep

refers to the Keplerian orbital timescale. Here the mass ratio ϵ = M/M• ≪ 1 is
a natural small parameter of the problem. Discrete interactions among the finite
number N⋆ ≫ 1 of Gaussian Rings constituting the system become important over
still longer collisional times Tres ∼ N⋆Tsec. Resonant relaxation (RR) is the collisional
phenomenon governing stochastic exchanges of angular momentum between the Rings
(Rauch & Tremaine, 1996). Our study of the secular dynamics and physical kinetics
of these Keplerian stellar systems was presented in two parts. Part I containing
Chapters 2 and 3 covered the secular collisionless dynamics, and Part II containing
Chapters 4 and 5 dealt with collisional studies of RR. Here we briefly recall the work
presented, and discuss some applications and possible extensions.

Secular Collisionless Instabilities: In Chapter 2, an idealized model of a razor–
thin, axisymmetric, Keplerian stellar disc around an MBH was constructed, and
non-axisymmetric secular instabilities were studied in the absence of counter-rotation
and loss cones. These discs are prograde monoenergetic waterbags, whose phase space
distribution functions (DFs) are constant for orbits within a range of eccentricities
(e) and zero outside this range. The linear normal modes of waterbags are composed
of sinusoidal disturbances of the edges of the DF in phase space. Waterbags which
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include circular orbits (polarcaps) have one stable linear normal mode for each
azimuthal wavenumber m. The m = 1 mode always has positive pattern speed and,
for polarcaps consisting of orbits with e < 0.9428, only the m = 1 mode has positive
pattern speed. Waterbags excluding circular orbits (bands) have two linear normal
modes for each m, which can be stable or unstable. We derive analytical expressions
for the instability condition, pattern speeds, growth rates and normal mode structure.
Narrow bands are unstable to modes with a wide range in m. N -Ring simulations
confirm linear theory and follow the non-linear evolution of instabilities. Long-time
integration suggests that instabilities of different m grow, interact non-linearly and
relax collisionlessly to a coarse-grained equilibrium with a wide range of eccentricities.

The above study can be extended to understand the orbital structure of the
compact young stellar disc (within 0.5 pc) at the Galactic Centre. The young
stars follow quite eccentric orbits with a mean eccentricity ∼ 0.3 (Yelda et al.,
2014). Collisionless relaxation of the distribution of eccentricities through non-
axisymmetric secular instabilities (similar to what we studied for waterbags) is
a possible mechanism for eccentricity excitation of the young stellar orbits. The
waterbag DF should be extended to more realistic DFs for axisymmetric discs, by (i)
lifting the monoenergetic assumption, (ii) including the gravitational potential of the
spheroidal old star cluster, (iii) making the problem three dimensional by considering
a disc with non-zero thickness, which will also allow for the excitation of vertical
motions.

Cusp Deformation: The Galactic Centre NSC is an extended, cuspy distribution
of old stars with an effective radius ∼ 4 pc. The embedded compact cluster of young
stars was probably born in situ in a massive accretion disc around the Galactic
Centre MBH. In Chapter 3, we investigated the effect of the growing gravity of the
gas disc on the orbits of old stars, using an integrable model of the deformation
of a spherical star cluster with anisotropic velocity dispersions. A formula for the
perturbed phase space DF was derived using secular, adiabatic linear theory, and
the new density and surface density profiles were computed. The cusp undergoes a
spheroidal deformation with the flattening increasing strongly at smaller distances
from the MBH; the intrinsic axis ratio ∼ 0.8 at ∼ 0.15 pc. Stellar orbits are deformed
such that they spend more time near the disc plane and sample the dense inner parts
of the disc; this could result in enhanced stripping of the envelopes of red giant stars,
which is thought to be responsible for the cored density profile of old giants within
∼ 0.5 pc. The mechanism of spheroidal cusp deformation is a generic dynamical
process, and it may be common in galactic nuclei.
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Linear theory accounts only for orbits whose apsides circulate. The non-linear
theory of adiabatic capture into resonance (Sridhar & Touma, 1996) is needed to
understand orbits whose apsides librate. The work can be extended to more general
geometries of both the star cluster and the perturbing disc potential. Chatzopoulos
et al. (2015) constructed a self-consistent axisymmetric, flattened and rotating DF
for the Galactic NSC. Whereas such a DF does not change due to the growth of an
axisymmetric gas disc, it can respond to non-axisymmetric geometries corresponding
to a warped disc, explored in previous work (Šubr et al., 2009). The deformed cluster
would then have more complex geometry, like the triaxial models of the Galactic
Centre NSC constructed by Feldmeier-Krause et al. (2017).

Resonant Relaxation: In Chapter 4, we studied the RR evolution of a razor-thin,
axisymmetric monoenergetic Keplerian stellar disc by solving the RR kinetic (Fokker-
Planck) equation of Sridhar & Touma (2017) in the monoenergetic limit. This
integral partial differential equation (pde) was solved by constructing an algorithm
“RR code”. The RR current density depends on the behavior of the DF, f(ℓ), in its
entire domain, ℓ ∈ [−1, 1], where ℓ is the normalized angular momentum of a stellar
orbit. The RR current is driven by apsidal resonances; for the current at ℓ to be
non-zero, there should exist ℓ′ such that the corresponding apse precession rates (Ω),
satisfy the resonance condition Ω(ℓ′) = Ω(ℓ). We employed a “conservative” scheme
for the discretization of the integral pde. The cumulative DF was interpolated with a
cubic spline, providing a smooth continuation of the DF within the grid and ensuring
the conservation of norm upto high precision. The apse precession rate for high
eccentricity rings is very small, and completely vanishes when ℓ = 0. As a result
there is in general a region in ℓ-space around ℓ = 0 where apsidal resonances do not
occur. Then local currents vanish and the DF in the region remains frozen. The
code conserves total energy and angular momentum of the disc to a good precision.
We identified a family of model DFs that are stationary solutions of the RR kinetic
equation with zero current density in phase space. The RR code results for a Gaussian
initial DF were presented, for which the end state is a dynamically stable non-thermal
stationary state. The resonantly relaxed distribution is dynamically hotter, as the
median of the DF shifts to high e orbits. This brings some stars closer to the MBH,
and can lead to a host of astrophysical events, like tidal disruption of stars, extreme
mass ratio inspirals (EMRIs) of compact stellar remnants and MBH feeding of stars.

It would be interesting to compare the RR code end-states with actual thermal
equilibrium DFs. N -Ring simulations of these systems are important especially to
investigate the surmised evolution in the non-resonant region. We suspect that
non-occurrence of resonances inside the non-resonant region about ℓ = 0 leads to non-
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thermal end states. This unavailability of resonances is due to the one-dimensional
nature of the system (in ℓ-space) being studied. Hence, generalizing the system to
axisymmetric discs (without the monoenergetic assumption) might lead to thermal
end states.

Gravitational Polarization: In Chapter 5, we generalized the RR theory of
Sridhar & Touma (2017) (ST17) for an axisymmetric Keplerian stellar disc, to
include gravitational polarization. We developed an analytical perturbative scheme
to incorporate polarization terms iteratively, to all orders. The different orders of
the perturbation theory may be thought of as accounting for the multiplicities of
encounters among the Rings. The PRA theory is based on two-Ring encounters;
the first order polarization theory is based on three-Ring encounters; and the nth

order theory on (n + 2)-Ring encounters. We use the perturbative expansion of
the wake function (ST17), to explicitly evaluate the lowest order PRA wake, and
derive a recurrence relation for deducing higher order wakes. The series form of
the wake function is used to derive series expressions for the two-Ring correlation
function and RR current. Since the higher order coefficients only depend upon the
lower order ones (as given by the recurrence relation), the theory can be consistently
truncated at any desired order. We derived the form of the RR kinetic equation
for an axisymmetric disc, which implicitly includes polarization in a perturbative
manner. Then, we calculated explicitly the lowest order (PRA) current and the
first order (leading order polarization) currents, thereby generalizing the RR kinetic
equation of ST17 to include the leading order polarization effects. We consider a
family of stationary states corresponding to this kinetic equation, and compare them
with the thermal equilibrium states derived by ST17.

We need to develop an algorithm (like the RR code) to solve the RR kinetic
equation of an axisymmetric Keplerian disc, considering leading order polarization,
derived in this chapter. It would be interesting to compare the end states from the
code with DFs of the form of stationary state and thermal equilibrium.
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Appendix A
Two-Ring Interaction Potential

A.1 Derivation of Log-Interaction Potential

We consider two coplanar Gaussian Rings of equal semi-major axes (a = a′ = a0),
with eccentricities e and e′ and apsidal longitudes g and g′. Let û̂ûu = (cos g , sin g)
and û̂ûu′ = (cos g′ , sin g′) be unit vectors in the directions of the periapses of the two
Rings. Let v̂̂v̂v = (− sin g , cos g) and v̂̂v̂v′ = (− sin g′ , cos g′) be unit vectors that are
perpendicular to û̂ûu and û̂ûu′, respectively. We also define the “eccentricity vectors”,
e = e û̂ûu = e(cos g , sin g) and e′ = e′ û̂ûu′ = e′(cos g′ , sin g′). The time–averaged
gravitational potential energy between the Rings can be written as:

Ψ = GM•

2πa0
ψ(e, e′) , ψ(e, e′) = −2π

〈〈
1

|r − r′|

〉〉
. (A.1)

Here r and r′ are the (normalised) position vectors, given by

r = û̂ûu(cos η − e) + v̂̂v̂v
√

1− e2 sin η , (A.2a)

r′ = û̂ûu′(cos η′ − e′) + v̂̂v̂v′√1− e′2 sin η′ (A.2b)

in terms of the eccentric anomalies η and η′. The above equations are analogous to
the form given in equation (1.5). Without loss of generality, we have assumed that
the Rings have prograde circulation. The time averages can be written explicitly as:

ψ(e, e′) = −2π
∫ 2π

0

∫ 2π

0

(1− e cos η)(1− e′ cos η′)
|r − r′|

dη
2π

dη′

2π . (A.3)

To obtain the dominant terms of ψ(e, e′) for small eccentricities we can make
the following two simplifications: (a) we set (1 − e cos η)(1 − e′ cos η′) → 1 ; and
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(b) in equation (A.2) we drop terms of order (e2, e′2) and higher order and write
r → ξ̂̂ξ̂ξ(η + g) − e and r′ → ξ̂ ′̂ξ ′̂ξ′(η′ + g′) − e′ , where ξ̂̂ξ̂ξ(η) = (cos η , sin η) and
ξ̂ ′̂ξ ′̂ξ′(η′) = (cos η′ , sin η′) are unit vectors. Then

ψ(e0) = −2π
∫ 2π

0

∫ 2π

0

1∣∣∣ ξ̂̂ξ̂ξ(η + g)− ξ̂ ′̂ξ ′̂ξ′(η′ + g′) − e0

∣∣∣ dη2π
dη′

2π + . . . , (A.4)

where e0 = e− e′, and “. . .” indicate (sub–dominant) terms that vanish in the limit
e → 0 and e′ → 0 . The integral has a basic symmetry that can be exploited to
simplify it. Under a transformation of variables η → η + χ and η′ → η′ + χ′, where
χ and χ′ are arbitrary real numbers, we get

ψ(e0) = −2π
∫ 2π

0

∫ 2π

0

1∣∣∣ ξ̂̂ξ̂ξ(η + g + χ)− ξ̂ ′̂ξ ′̂ξ′(η′ + g′ + χ′) − e0

∣∣∣ dη2π
dη′

2π + . . . .

(A.5)
It should be noted that, whereas the initial phases of ξ̂̂ξ̂ξ and ξ̂ ′̂ξ ′̂ξ′ can be arbitrary,
e0 = (e cos g − e′ cos g′ , e sin g − e′ sin g′) is unaffected by the transformation of
integration variables and is to be regarded as a given and fixed vector. Therefore

ψ(e0) = −2π
〈〈

1∣∣∣ ξ̂̂ξ̂ξ − ξ̂ ′̂ξ ′̂ξ′ − e0

∣∣∣
〉〉

+ . . . , (A.6)

where ξ̂̂ξ̂ξ and ξ̂ ′̂ξ ′̂ξ′ are now regarded as the position vectors of two points A and A′

which are distributed independently and uniformly on the unit circle, and “⟨⟨ ⟩⟩”
indicates averaging over the distributions of A and A′. Let qqq = ξ̂̂ξ̂ξ − ξ̂ ′̂ξ ′̂ξ′ be the
directed chord from A′ to A, and let P ( qqq)d2 qqq be the probability that qqq lies in the
area element d2 qqq. Then

ψ(e0) = −2π
∫ P ( qqq)d2 qqq

| qqq − e0 |
+ . . . . (A.7)

We can think of P ( qqq) as the surface mass density of a razor–thin disc of unit total
mass. Then G · ψ(e0)/(2π) is the self–gravitational potential at location e0 in the
qqq–plane. Since the end points of the chord, A and A′, are independently and

uniformly distributed over the unit circle, the distribution of qqq must be isotropic in
its plane. The surface density P (q) being axisymmetric, so is the self–gravitational
potential ψ(e0). There are different ways of relating ψ(e0) to P (q) given in Binney &
Tremaine (2008). We choose equation (2.155) which views the disc as a superposition
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of flattened spheroids:

ψ(e0) = −8π
∫ e0

0

dλ√
e2

0 − λ2

∫ ∞

λ
dq qP (q)√

q2 − λ2 + . . . . (A.8)

Since 2πqP (q) is the probability distribution of chord lengths, a straightforward
calculation in plane geometry gives:

P (q) =


(2π2q)−1 [1− (q/2)2]−1/2 if 0 < q < 2

0 otherwise.
(A.9)

Substituting equation (A.9) in (A.8) we get:

ψ(e0) = − 4
π

∫ e0

0

dλ√
e2

0 − λ2

∫ 2

λ

dq√
(1− (q/2)2)(q2 − λ2)

+ . . . . (A.10)

The integral over q can be written as a complete elliptic integral of the first kind
K (see equation C.2 for definition) by transforming to a new integration variable θ,
where sin2 θ = 4(q2 − a2)/q2(4− a2) :

ψ(e0) = − 4
π

∫ e0

0

dλ√
e2

0 − λ2
K
(√

1− (λ/2)2
)

+ . . . . (A.11)

Since 0 ≤ λ < e0 ≪ 1, we have K
(√

1− (λ/2)2
)

= log(8/λ) +O(λ2). Then

ψ(e0) = − 4
π

∫ e0

0

dλ√
e2

0 − λ2
log(8/λ) + . . . = −2 log(16/e0) + . . .

= −8 log 2 + log e2
0 + . . .

= −8 log 2 + log |e− e′|2 + . . . .

(A.12)

Substituting equation (A.12) in (A.1), we get:

Ψ = GM•

a0

{
− 4
π

log 2 + 1
2π log |e− e′|2

}
+ . . . . (A.13)

We refer to Ψ as two-Ring log interaction potential for planar monoenergetic Rings.
Note that this expression should be most accurate for Rings with small eccentricities.
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A.2 Interaction Kernels

A.2.1 Interaction Kernel for Log-Potential

The normalised two-Ring log interaction potential from equation (A.12) is:

ψ(ℓ, ℓ′, g − g′) = −8 log 2 + log (e− e′)2 . (A.14)

The Fourier series for ψ can be written as:

ψ(ℓ, ℓ′, g − g′) = C0(ℓ, ℓ′) +
∑
m̸=0

Cm(ℓ, ℓ′) exp [im(g − g′)] . (A.15)

Touma & Tremaine (2014) derived the following expressions for Fourier coefficients
Cm’s (as given in equation (C.2) of the paper):

C0(ℓ, ℓ′) = −8 log 2 + log e2
> ; Cm(ℓ, ℓ′) = − 1

|m|

(
e<

e>

)|m|

. (A.16)

Hence the normalised kernel K(ℓ, ℓ′) becomes:

K(ℓ, ℓ′) = 2π
∞∑

m=1
mC2

m = 2π
∞∑

m=1

1
m

(
e<

e>

)2m

= −2π log
1−

(
e<

e>

)2
 . (A.17)

A.2.2 Softened Interaction Kernel

For computational purposes it is useful to softened the two-Ring potential of
equation (A.14). Hence we consider the softened logarithmic potential,

ψS(ℓ, ℓ′, g − g′) = −8 log 2 + log (|e− e′|2 + δ2)

= −8 log 2 + log (e2 + e′2 − 2ee′ cos (g − g′) + δ2)
(A.18)

where 0 < δ ≪ 1 is the softening parameter. Similar to equation (A.15), we write
the Fourier series as:

ψS(ℓ, ℓ′, g − g′) = CS
0 (ℓ, ℓ′) +

∑
m̸=0

CS
m(ℓ, ℓ′) exp [im(g − g′)] . (A.19)

The 0th order Fourier coefficient CS
0 is:

CS
0 (ℓ, ℓ′) = −8 log 2 + log [e2 + e′2 + δ2] + 1

2π

∮
dg log (1−∆ cos g) (A.20)
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where ∆ = 2ee′/(e2 + e′2 + δ2). The integral in the above expression can be solved
using the formula 4.224...12 of Gradshteyn et al. (2007), which gives:

CS
0 (ℓ, ℓ′) = −8 log 2 + log (e2 + e′2 + δ2) + log

(
1 +
√

1−∆2

2

)

= −8 log 2 + log
e2 + e′2 + δ2 +

√
(e2 − e′2)2 + δ4 + 2δ2(e2 + e′2)

2

 .
(A.21)

For m ̸= 0, we have:

CS
m(ℓ, ℓ′) = 2

2π

∫ π

0
dg cos (mg) log (1−∆ cos g)

= − 2∆
2π|m|

∫ π

0
dg sin g sin (|m|g)

(1−∆ cos g) .

(A.22)

The integral can be solved using the formula 3.613 ...3 from Gradshteyn et al. (2007),
which gives:

CS
m(ℓ, ℓ′) = − 1

|m|

 1
∆ −

√
1

∆2 − 1
|m|

. (A.23)

Using the explicit form of ∆ we have the final expression:

CS
m(ℓ, ℓ′) = − 1

|m|

e2 + e′2 + δ2 −
√

(e2 − e′2)2 + δ4 + 2δ2(e2 + e′2)
2ee′

|m|

. (A.24)

Therefore the softened interaction kernel KS(ℓ, ℓ′) is:

KS(ℓ, ℓ′) = 2π
∞∑

m=1
m
(
CS

m(ℓ, ℓ′)
)2

= 2π
∞∑

m=1

1
m

e2 + e′2 + δ2 −
√

(e2 − e′2)2 + δ4 + 2δ2(e2 + e′2)
2ee′

2m

= −2π log

1−
e2 + e′2 + δ2 −

√
(e2 − e′2)2 + δ4 + 2δ2(e2 + e′2)

2ee′

2
(A.25)

It can be readily verified that, as the softening parameter δ → 0, the softened kernel
KS(ℓ, ℓ′) reduces to the original unsoftened log kernel K(ℓ, ℓ′) of equation (A.17).





Appendix B
Surface Density of Waterbags

We consider a monoenergetic axisymmetric Keplerian stellar disc defined by a real-
space DF f̂(r,u), where r and u are the position and velocity vectors of a star,
respectively, in the MBH’s rest frame. The surface density function is obtained by
integrating the disc DF over velocity space:

Σ(r) =
∫

du f̂(r,u) . (B.1)

For a razor-thin disc, the four dimensional phase volume, dr du = Idw dI dg dℓ.
Hence the DF of an axisymmetric monoenergetic disc (not necessarily a waterbag) is
related to the DF, f0(ℓ), of § 2.2.2, as:

f̂(r,u) = f0(ℓ)
4π2I0

δ(I − I0) . (B.2)

Then
Σ0(r) = 1

4π2I0

∫
du dϕu f0(ℓ) δ(I − I0) , (B.3)

where u is the speed, ϕ is the angle between u and r, and I0 =
√
GM•a0 . Since the

discs we consider have only prograde orbits, ℓ > 0 which implies that 0 ≤ ϕ ≤ π. We
now express the (scaled) Delaunay variables, {ℓ, I}, in terms of {u, ϕ}:

I =
(

2
GM•r

− u2

(GM•)2

)−1/2

, (B.4a)

ℓ = L/I = I−1ru sinϕ . (B.4b)
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Hence

δ(I − I0) = δ(u− u0)
|dI/du|u0

=
(
GM•

a3
0

)1/2
δ(u− u0)

u0
, (B.5)

where

u0(r) =


√
GM•

(2
r
− 1
a0

)
, for r ≤ 2a0

0 , for r > 2a0

(B.6)

is the speed at radius r, of an orbit with semi-major axis a0. Substituting equa-
tion (B.5) in (B.3) and using equations (B.4b) and (B.6), the surface density for a
general monoenergetic DF:

Σ0(r) = 1
4π2a2

0

∫
dϕ f0(ℓ0(r) sinϕ) , (B.7)

where ℓ0(r) = ru0(r)
I0

=


√

2r
a0
− r2

a2
0
, for r ≤ 2a0

0 , for r > 2a0.
(B.8)

For the waterbag DF of equation (2.24), f0(ℓ) = 1/∆ℓ = 1/(ℓ2 − ℓ1) = constant
for 0 ≤ ℓ1 < ℓ2 ≤ 1 and is zero outside this range. This implies that Σ0(r) is non
zero only when |r − a0| ≤ a0e1. Within this range of radii,

Σ0(r) = 1
4π2a2

0∆ℓ
∆ϕ(r) , (B.9)

where ∆ϕ(r) is the range in ϕ for which

ℓ1

ℓ0(r)
≤ sinϕ ≤ ℓ2

ℓ0(r)
. (B.10)

All we need to do now is to determine ∆ϕ(r). There are two cases to consider:

1. ℓ2 ≤ ℓ0(r) : Using equation (B.8), this condition is equivalent to |r − a0| ≤
a0e2. Then ∆ϕ(r) = 2 (ϕ2 − ϕ1), where ϕ1(r) = sin−1 [ℓ1/ℓ0(r)] and ϕ2(r) =
sin−1 [ℓ2/ℓ0(r)].

2. ℓ1 ≤ ℓ0(r) ≤ ℓ2 : Using equation (B.8), this condition is equivalent to a0e2 ≤
|r − a0| ≤ a0e1. Then ∆ϕ(r) = 2 (π/2− ϕ1).

Substituting these expressions for ∆ϕ(r) in equation (B.9), we obtain equation (2.25)
for the surface density of an axisymmetric monoenergetic waterbag.



Appendix C
Orbit-Averaged Gas Disc Potential

In order to compute the orbit–averaged disc potential, Φd(I, L, Lz, g, τ) introduced
in § 3.2.1, we need the following relations (coming from equation 1.3) between (r, z)
and Keplerian orbital elements:

r = a(1− eCη) , cos θ = z

r
=

Si

(
Sg (Cη − e) + Cg

√
1− e2 Sη

)
1− eCη

, (C.1)

where S and C are shorthand for sine and cosine of the angle given as subscript,
and η is the eccentric anomaly. From equation (3.6), we see that the following three
averages over the Kepler orbital phase, w, (or mean anomaly) need to be computed:
⟨ 1/√r ⟩, ⟨ |cos θ| /√r ⟩ and ⟨ cos2 θ/

√
r ⟩. Using w = (η− e sin η) , all of these can be

expressed in terms of the elliptic integrals, given below:

F(ζ0, k) =
∫ ζ0

0
dζ 1√

1− k2 sin2 ζ
, K(k) =

∫ π
2

0
dζ 1√

1− k2 sin2 ζ
, (C.2)

are incomplete and complete elliptic integrals of the first kind, and

E(ζ0, k) =
∫ ζ0

0
dζ
√

1− k2 sin2 ζ , E(k) =
∫ π

2

0
dζ
√

1− k2 sin2 ζ , (C.3)

are incomplete and complete elliptic integrals of the second kind. Then,
〈

1√
r

〉
=
∮ dη

2π
(1− e cos η)√

r
= 1

π
√
a

∫ π

0
dη
√

1− e cos η = 2
√

1 + e

π
√
a
E(k) ,

(C.4)
where k(e) =

√
2e/(1 + e).
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The second average is:
〈
|cos θ|√

r

〉
=
∮ dη

2 π (1−e cos η) | cos θ|√
r

= sin i√
a

∫ 2π

0

dη
2π
|Sg(Cη − e) + Cg

√
1− e2Sη|√

1− eCη

.

(C.5)
Note that |Sg(Cη−e)+Cg

√
1− e2 Sη| =

√
1− e2 cos2 g | cos (η − η0)−cos θ0|, where

η0(e, g) = tan−1(
√

1− e2 cot g) , θ0(e, g) = tan−1
(√

1− e2

e| sin g|

)
. (C.6)

In the angular interval η ∈ [η0, η0 + 2 π] , the expression within “| |” changes sign at
η = η0 + θ0 and η = 2π + η0 − θ0. Rewriting

〈
|cos θ|√

r

〉
= sin i√

a

∣∣∣∣∣∣
∮ dη

2π
Sg(Cη − e) + Cg

√
1− e2Sη√

1− eCη

− 2
∫ 2π+η0−θ0

η0 + θ0

dη
2π

Sg(Cη − e) + Cg

√
1− e2Sη√

1− eCη

∣∣∣∣∣∣ , (C.7)

we obtain 〈
|cos θ|√

r

〉
= 2 sin i

π
√
a
S(e, g) , (C.8)

where the function

S(e, g) =
√

1 + e

e
| sin g|

[
− E(k) + E(η2, k) − E(η1, k)

+ (1− e) {K(k)−F(η2, k) + F(η1, k)}
]
+ cos g1− e2

e

[
1√

1− e cos g −
1√

1 + e cos g

]
.

(C.9)

Here k is given below equation (C.4), (η0, θ0) are defined in equation (C.6), and

η1(e, g) = η0(e, g) + θ0(e, g)− π
2 , η2(e, g) = η0(e, g)− θ0(e, g) + π

2 .

(C.10)

The last average is easier to do:

〈
cos2 θ√

r

〉
=
∮ dη

2π (1− e cos η)cos2 θ√
r

= sin2 i√
a

∮ dη
2π

(
Sg(Cη − e) + Cg

√
1− e2Sη

)2

(1− eCη) 3
2

= 2 sin2 i

π
√
a

[√
1 + e E(k)

2 − T (e) cos 2g
]

(C.11)



153

where the function

T (e) =
√

1 + e
[( 2
e2 −

3
2

)
E(k)− 2

e2 (1− e)K(k)
]
. (C.12)

Using (C.4), (C.8) and (C.11), the orbit-averaged disc potential is:

Φd = 16GM•

11πrc
µ(τ)

√
rd

a

− 297
100
√

1 + e E(k) + sin i
2 S(e, g)

− 9
100 sin2 i

(√
1 + e

2 E(k)− T (e) cos 2g
)]

. (C.13)

This expression is used to compute the isocontours shown in Figure 3.2. For dynamical
calculations, we found it convenient to approximate the functions, S(e, g) and T (e),
by the following polynomials in e2 :

T (e) ≃ ate
2 + bte

4 + cte
6 , (C.14)

S(e, g) ≃
(
1 + a0e

2 + b0e
4 + c0e

6
)
− λ

(
ate

2 + bte
4 + cte

6
)

cos 2g , (C.15)

where the constants,(at, bt, ct, a0, b0, c0, λ), are given below equation (3.10). This
approximation results in a maximum error of ∼ 2% in Φd, and provides us with the
simpler expression of equation (3.10).





Appendix D
Density Deformation of the Cusp

The density perturbation, ρ1 = Mc/(2π)
∫
F1 du, is defined by a triple-integral over

velocities, of the DF perturbation, F1, of equation (3.16). We use spherical polar
coordinates, with u = (ur, uθ, uϕ). The integrals can be transformed into integrals
over E, L and Lz using the following relations:

Lz = r sin θ uϕ , L = r

√
u2

θ + L2
z

r2 sin2 θ
, E = u2

r

2 + L2

2r2 −
GM•

r
. (D.1)

Then we have:

ρ1(r, θ) = 2Mc

πr

∫ 0

− GM•
r

dE
∫ Lm

0
dL L√

L2
m − L2

∫ L sin θ

−L sin θ
dLz

F1√
L2 sin2 θ − L2

z

, (D.2)

where Lm(E, r) =
√

2r2E + 2GM•r is the maximum value of the (magnitude of the)
angular momentum that an orbit of energy E can have at distance r .

As F1 ∝ cos 2g, so we first express cos g in terms of (r,u). Since g is the angle
between the ascending node and the periapse (see Figure 1.3), we have:

cos g = 1
e
√
L2 − L2

z

[(
L2

GM•
− r

)
(ur cos θ − uθ sin θ) + rur cos θ

]
. (D.3)

Then

e2(L2 − L2
z) cos 2g = E1 + E2(L2 sin2 θ − L2

z) + terms odd in u , (D.4)
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where

E1 = L2 cos2 θ

[
2L2

(GM•)2

(
E − L2

r2 + 2GM•

r

)
− 1

]
, (D.5)

E2 = 2
r2

(
L2

GM•
− r

)2

− e2 . (D.6)

Odd terms in u do not contribute to the u-integral, so we can drop them. The
integral over Lz gives:

I1 =
∫ L sin θ

−L sin θ
dLz

F1√
L2 sin2 θ − L2

z

= f1

[
λ

2L

∫
dLz

E1 + E2(L2 sin2 θ − L2
z)√

(L2 sin2 θ − L2
z)(L2 − L2

z)
− 9

100L2

∫
dLz

E1 + E2(L2 sin2 θ − L2
z)√

L2 sin2 θ − L2
z

]
.

(D.7)

Although we have not shown it explicitly, the limits of the Lz-integrals in the second
line are the same as those in the first line. Here the factor,

f1 = 2n
2D(τ)

(GM•)n+ 1
2
√
rc

(−E)n/2 Ln−2
(
at + bte

2 + cte
4
)
. (D.8)

The transformation, Lz = L sin θ sinα, simplifies the integrals:

I1 = f1

[
λ

L2

∫ π
2

0
dαE1 + E2L

2 sin2 θ cos2 α√
1− sin2 θ sin2 α

− 18
100L2

∫ π
2

0
dα

(
E1 + E2L

2 sin2 θ cos2 α
) ]

= f1

[
λ

{(
E1

L2 − E2 cos2 θ

)
K(sin θ) + E2E(sin θ)

}
− 9π

100

(
E1

L2 + E2 sin2 θ

2

)]

= 2πf1

[
e2 − 2L2

(GM•r)2 (L2
m − L2)

]
Θ(θ) , (D.9)

where

Θ(θ) = λ

2π
[
E(sin θ) − 2 cos2 θK(sin θ)

]
− 9

400(1 − 3 cos2 θ) . (D.10)

where K and E are complete elliptical integrals of first and second kind, as defined
in equations (C.2)-(C.3).
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The L-integral can be expressed in terms of Beta (B) functions:

I2 =
∫ Lm

0
dL L√

L2
m − L2

I1

= 2n
2 +1πD(τ)

(GM•)n+ 1
2
√
rc

(−E)
n
2 Θ(θ)

∫ Lm

0
dL Ln−1√

L2
m − L2

(at + bte
2 + cte

4)
[
e2− 2L2(L2

m − L2)
(GM•r)2

]

= 2n
2 +1πD(τ)

(GM•)n+ 1
2
√
rc

(−E)
n
2 Θ(θ)

[
Ln−1

m
2

(
λaB(n

2 , 1
2) + (λb − λa)L

2
m
I2 B(n

2 +1, 1
2)

+ (λc − λb)
L4

m
I4 B(n

2 +2, 1
2) − λc

L6
m
I6 B(n

2 +3, 1
2)

)
− Ln+3

m

(GM•r)2

(
λaB(n

2 +1, 3
2)

+ λb
L2

m
I2 B(n

2 +2, 3
2) + λc

L4
m
I4 B(n

2 +3, 3
2)

)]
. (D.11)

The final step is to evaluate the E-integral, ρ1 = (2Mc/πr)
∫ 0

− GM•
r

dE I2 . Substituting
the explicit form for Lm given below the equation (D.2), and using I = GM•/

√
2(−E),

the integrals are once again given in terms of Beta functions. Therefore,

ρ1(r, θ, τ) = 3− γ
4π Cn,γ(τ) Mc

rc3

(
rc

r

)5
2

Θ(θ) , (D.12)

where

Cn,γ(τ) = 16n (2− γ)B(n, γ)
11π 2(γ− 1

2) αγ

√
rd

rc
µ(τ) ,

B(n, γ)= 1
B(n

2 +1, 1
2)B( 2γ+n−1

2 , n+3
2 )

λaB(n
2 , 1

2)B(n
2 +1, n+1

2 )+22(λb − λa)B(n
2 +1, 1

2)B(n
2 +2, n+3

2 )

− 23λaB(n
2 +1, 3

2)B(n
2 +1, n+5

2 )+24(λc − λb)B(n
2 +2, 1

2)B(n
2 +3, n+5

2 )−25λbB(n
2 +2, 3

2)B(n
2 +2, n+7

2 )

− 26λc B(n
2 +3, 1

2) B(n
2 +4, n+7

2 ) − 27λc B(n
2 +3, 3

2) B(n
2 +3, n+9

2 )

 ,
λa = at + bt + ct = 0.707106 , λb = −(bt + 2ct) = −0.915737 , (D.13)

λc = ct = 0.703998 .





Appendix E
Cubic Spline Interpolation

Consider a uniformly spaced grid of (N + 1) points ℓi, i = 0, 1, 2, ..., N , with the
interval ∆ℓ between successive points. The cumulative DF values {Fi} at these
grid points, and its first derivatives at boundaries, F ′

0 and F ′
N , are assumed to be

given quantities. The interpolating piece-wise cubic polynomial F (ℓ), as given in
equation (4.41), is rewritten as:

Fi(ℓ) = ai + bi(ℓ− ℓi) + ci(ℓ− ℓi)2 + di(ℓ− ℓi)3 for ℓ ∈ [ℓi, ℓi+1] . (E.1)

Hence there are 4N unknown interpolation coefficients {ai, bi, ci, di}. These are
determined from the conditions of continuity of F and its two lowest order derivatives
at the grid points:

Fi(ℓi) = Fi−1(ℓi) = Fi (E.2a)
F ′

i (ℓi) = F ′
i−1(ℓi) (E.2b)

F ′′
i (ℓi) = F ′′

i−1(ℓi) (E.2c)

for i = 1, 2, ..., (N − 1); which gives 4(N − 1) conditions. Here primed functions
(F ′ and F ′′) represent derivatives wrt ℓ. Including the four given boundary values
F0, FN , F ′

0, F ′
N , there are 4N conditions for the same number of unknowns. This

defines the complete problem of determination of coefficients for the cubic spline
interpolation.

Let {F ′
i} be the derivative of the interpolated cumulative DF at the grid points

ℓi; i = 0, 1, 2, ..., N . Note that only the boundary values F ′
0 and F ′

N are given, and
hence the rest of (N − 1) values are unknown. Differentiating the equation (E.1) wrt
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ℓ, we have:

F ′
i (ℓ) = bi + 2 ci(ℓ− ℓi) + 3 di(ℓ− ℓi)2 for ℓ ∈ [ℓi, ℓi+1] . (E.3)

Employing the equations (E.1) and (E.3) at ℓ = ℓi, ℓi+1, the coefficients {ai, bi, ci, di}
can be expressed in terms of {Fi, Fi+1, F ′

i , F ′
i+1}, as:

ai = Fi ; bi = F ′
i ; (E.4a)

ci = 3
∆ℓ2 (Fi+1 − Fi)−

1
∆ℓ

(
2F ′

i + F ′
i+1

)
; (E.4b)

di = 2
∆ℓ3 (Fi − Fi+1) + 1

∆ℓ2

(
F ′

i + F ′
i+1

)
. (E.4c)

So, there are (N − 1) unknowns F ′
i , i = 1, 2, ..., (N − 1). These can be worked

out using the continuity of the second derivatives F ′′, given in equation (E.2c).
This automatically takes into account the continuity of the function F and its first
derivative F ′.

Using equations (E.3) and (E.4) in the continuity equation (E.2c), we obtain the
following set of (N − 1) equations:

F ′
i−1 + 4F ′

i + F ′
i+1 = 3

∆ℓ (Fi+1 − Fi−1) , i = 1, 2, ..., (N − 1). (E.5)

This can be expressed as symmetric tridiagonal matrix linear equation,


4 1 0 ... 0 0 0
1 4 1 ... 0 0 0
0 1 4 ... 0 0 0
... ... ... ... ... ...
0 0 0 ... 4 1 0
0 0 0 ... 1 4 1
0 0 0 ... 0 1 4


N−1×N−1



F ′
1

F ′
2

F ′
3
...

F ′
N−3

F ′
N−2

F ′
N−1


N−1×1

= 1
∆ℓ



3 (F2 − F0)− F ′
0∆ℓ

3 (F3 − F1)
3 (F4 − F2)

...
3 (FN−2 − FN−4)
3 (FN−1 − FN−3)

3 (FN − FN−2)− F ′
N∆ℓ


N−1×1

.

(E.6)
and solved for the solution {F ′

i} employing the subroutine DGTSV from LAPACK1.
Using equations (E.1) and (E.4) along with the solution array {F ′

i}, we get the
interpolated cubic polynomial for the cumulative DF F (ℓ).

1Linear Algebra PACKage, a software package in Fortran.



Appendix F
Quartic Equation for Resonances

In § 4.2.2, we demonstrated that the problem of locating a resonant point in the ℓ-
space, reduces to a quartic equation. Here we explicitly present the quartic equation,
along with its four roots. Using equation (4.49) in (4.48), we have the quartic
polynomial equation for the resonant point ℓr of the grid-point ℓi, explicitly given as:

a′ℓr
4 + b′ℓr

3 + c′ℓr
2 + d′ℓr + e′ = 0

where
a′ = −dj − dN−j−1

b′ = −cj + 3djℓj + cN−j−1 + 3dN−j−1ℓj+1

c′ = −Ωi

2 − bj + 2cjℓj − 3djℓ
2
j − bN−j−1 − 2cN−j−1ℓj+1 − 3dN−j−1ℓ

2
j+1

d′ = 1− aj + bjℓj − cjℓ
2
j + djℓ

3
j + aN−j−1 + bN−j−1ℓj+1

+ cN−j−1ℓ
2
j+1 + dN−j−1ℓ

3
j+1

e′ = Ωi

2 .

(F.1)

The quartic equation for ℓr can be solved to obtain the following four roots:

ℓr
(1),(2) = − b′

4a′ − S ±
1
2

√
−4S2 − 2p+ q

S

ℓr
(3),(4) = − b′

4a′ + S ± 1
2

√
−4S2 − 2p− q

S

(F.2)



162 Quartic Equation for Resonances

where:

p = 8a′c′ − 3b′2

8a′2 , q = b′3 − 4a′b′c′ + 8a′2d′

8a′3

S = 1
2

√√√√−2p
3 + 1

3a′

(
Q+ ∆0

Q

)
, Q =

3

√√√√∆1 +
√

∆2
1 − 4∆3

0

2

∆0 = c′2 − 3b′d′ + 12a′e′ , ∆1 = 2c′3 − 9b′c′d′ + 27b′2e′ + 27a′d′2 − 72a′c′e′ .

Only one of the four roots presented in equation (F.2) lies in the grid-interval [ℓj, ℓj+1],
and is the required resonant point ℓr corresponding to the grid-point ℓi.



Appendix G
Surface Density of an
Axisymmetric Disc

We consider an axisymmetric monoenergetic Keplerian stellar disc given by probability
DF f(ℓ) at some time t in normalized angular momentum ℓ-space. The expression
for surface probability density Σ(r) is given by the equations (B.7)-(B.8), which are
rewritten here as:

Σ(r) = 1
4π2a2

0

∫
dϕ f(ℓ0(r) sinϕ) , (G.1)

where ℓ0(r) =


√

2r
a0
− r2

a2
0
, for r ≤ 2a0

0 , for r > 2a0.
(G.2)

Since 0 ≤ ℓ0(r) ≤ 1, the argument of f in the integrand, ℓ0(r) sinϕ ∈ [−1, 1]. Hence
the ϕ-integral is over the complete cycle with ϕ ∈ [0, 2π]. Separating the integration
limits, for which sinϕ is a monotonic function of ϕ:

Σ(r) = 1
4π2a2

0

[∫ π/2

0
dϕf(ℓ0(r) sinϕ)+

∫ 3π/2

π/2
dϕf(ℓ0(r) sinϕ)+

∫ 2π

3π/2
dϕf(ℓ0(r) sinϕ)

]
(G.3)

and choosing the variable of integration ℓ = ℓ0(r) sinϕ, we have the surface density
profile:

Σ(r) = 1
2π2a2

0

∫ ℓ0(r)

−ℓ0(r)
dℓ f(ℓ)√

ℓ0(r)2 − ℓ2
(G.4)

for a general monoenergetic axisymmetric Keplerian disc.
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