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Synopsis

Colloidal suspensions like ink, milk, paint and many more are used in our day-to-day

life. These fluids show very rich flow properties at length and time scales that are

easily accessible in the laboratory. A colloidal suspension exhibits different phases

depending on the effective particle volume fraction, temperature and the nature of the

interaction potential between the colloidal particles. They can show aging behavior i.e.

the relaxation time increases with waiting time and the system evolves spontaneously.

In this thesis, we have studied the structure, dynamics and flow behavior of aging

colloidal suspensions formed by a synthetic clay, Laponite.

Chapter 1 presents the background knowledge necessary to understand the thesis

work. This chapter gives an overview of colloidal systems, different glass formers, the

colloidal glass transition, glass transition in supercooled liquids and other glass for-

mers, microscopic relaxation and inter-particle interactions in the context of colloidal

suspensions. Next, the phase diagram and aging dynamics of Laponite (a colloidal

system and the main material studied in this thesis) is discussed in details. This is fol-

lowed by a detailed discussions of the flow behaviors of colloidal suspensions and the

dynamics of interfaces.

Chapter 2 describes the experimental methods used in this thesis. This chapter

contains the detailed descriptions of the dynamic light scattering technique, high speed

imaging, rheology and sodium ion concentration measurement. Design of a falling ball
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viscometer and a Hele-Shaw cell that have been used in this thesis, are also described.

Chapter 3 presents the different microscopic relaxation processes of soft colloidal

suspensions formed by the synthetic clay Laponite in the context of the glass transition.

The primary (α-process) and secondary (β-process) relaxation timescales of aging soft

colloidal suspensions of Laponite are estimated from intensity autocorrelation func-

tions obtained in dynamic light scattering (DLS) experiments. The dynamical slowing

down of these relaxation processes are compared with the observations in fragile su-

percooled liquids by establishing a one-to-one mapping between the waiting time tw

since filtration of a Laponite suspension and the inverse of the temperature 1/T of a su-

percooled liquid that is rapidly quenched towards its glass transition temperature. New

timescales associated with the primary and secondary relaxation processes, such as

the characteristic timescale associated with the slowdown of the secondary relaxation

process t∞β and the glass transition time tg, which describe the phenomenon of dynam-

ical arrest in Laponite suspensions, are found. These results are strongly reminiscent

of analogous timescales extracted from supercooled liquids approaching their glass

transitions. A strong coupling exists between the primary and secondary relaxation

processes of aging Laponite suspensions in the cage-forming regime. Furthermore, the

experimental data clearly demonstrates the self-similar nature of the aging dynamics

of Laponite suspensions within a range of sample concentrations. These observations

are very useful to understand the universal behavior of the microscopic relaxation dy-

namics in the glass transition of two very different glass formers - colloidal glasses and

supercooled liquids.

Chapter 4 describes the effects of several physicochemical parameters, such as the

particle concentration, the interaction potential between particles and the temperature,

on the colloidal glass transition. The microscopic dynamics of clay suspensions is

studied using dynamic light scattering for different clay concentrations CL, the con-

centrations of externally added salt CS (and hence the interaction potential) and tem-

peratures T . The α and β-relaxation times of Laponite suspensions are extracted from

intensity autocorrelation functions measured at different waiting times since sample
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Synopsis

preparation. Scaling of the microscopic timescales of clay suspensions with differ-

ent clay concentrations, waiting times, salt concentrations and temperatures results in

comprehensive overlap curves for both relaxation timescales. These results highlight

the self-similar nature of the energy landscape of Laponite suspensions under different

physicochemical conditions and the pivotal role of attractive interactions in the micro-

scopic dynamics of spontaneously evolving Laponite suspensions.

In chapter 5, the microscopic relaxation timescales are estimated from the autocor-

relation functions obtained by dynamic light scattering experiments for Laponite sus-

pensions with different concentrations (CL), added salt concentrations (CS ) and tem-

peratures (T ). In this chapter, the fragility parameter D, which signifies the deviation

from Arrhenius behavior, is obtained from fits to the time evolutions of the structural

relaxation timescales. For the Laponite suspensions studied in this work, D is seen to

be independent of CL and CS , but is weakly dependent on T . Interestingly, the behav-

ior of D corroborates the behavior of fragility in molecular glass formers with respect

to equivalent variables. Furthermore, the stretching exponent β, which quantifies the

width w of the spectrum of structural relaxation timescales is seen to depend on tw. A

hypothetical Kauzmann time tk, analogous to the Kauzmann temperature for molecular

glasses, is defined as the timescale at which w diverges. Corresponding to the Vogel

temperature defined for molecular glasses, a hypothetical Vogel time t∞α is also defined

as the time at which the structural relaxation time diverges. Interestingly, a correlation

is observed between tk and t∞α , which is remarkably similar to that known for fragile

molecular glass formers. A coupling model that accounts for the tw-dependence of the

stretching exponent is used to analyze and explain the observed correlation between tk

and t∞α .

A universal secondary relaxation process, known as the Johari-Goldstein (JG) β-

relaxation process, appears in many glass formers. This relaxation process involves

all parts of the molecule and is particularly important in glassy systems because of

its very close relationship with the α-relaxation process. However, the absence of J-

G β-relaxation mode in colloidal glasses, raises questions regarding its universality.
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In chapter 6, we studied the microscopic relaxation processes for Laponite suspen-

sions (a model glass former) by dynamic light scattering (DLS) experiments. The α

and β-relaxation timescales are estimated from the autocorrelation functions obtained

by DLS measurements for Laponite suspensions with different concentrations CL, salt

concentrations CS and temperatures T . We measure primitive relaxation timescales

from the α-relaxation time and the stretching exponent β by applying the coupling

model for highly correlated systems. Our experimental results suggest that the β-

relaxation process involves all parts of a Laponite particle and is coupled with the

primitive relaxation process. The glass transition time is also correlated to the activa-

tion energy of the β-relaxation process for all Laponite concentrations, salt concentra-

tion and temperatures. The width of the primary relaxation process is also coupled with

the secondary relaxation process. It is seen that both primary and secondary relaxation

timescales are sensitive to particle concentration. These observations suggest that the

β-relaxation process of colloidal glasses of Laponite carries many characteristics of the

J-G β-relaxation processes seen in molecular glass formers.

In chapter 7, the microscopic relaxation processes of aging Laponite suspensions

with embedded polystyrene beads, used as probe particles, are studied by dynamic

light scattering (DLS) experiments. The polystyrene beads, being larger in size than

the Laponite particles, behave as the less mobile regions in the suspension. Intensity

autocorrelation functions measured in DLS experiments show the existence of two-

step relaxation processes in these suspensions. The fast relaxation process is identified

as due to the diffusion of a Laponite particle inside the cage formed by its neighbors,

while the slow relaxation process is interpreted to originate due to structural relax-

ation events in the presence of the externally added less mobile polystyrene beads.

The fragility parameter D, which quantifies the rapidity of approach towards eventual

kinetic arrest, is calculated from the evolution of the structural relaxation time for dif-

ferent concentrations and sizes of the polystyrene beads. D is seen to increase with

the concentration of polystyrene particles, but decreases as the size of the particles in-

creases. The observed results are compared with simulation results on random pinning
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Synopsis

in binary mixtures.

In the next two chapters, we report experimental observations of the flow behaviors

of aging Laponite suspensions which show non-Newtonian rheology. Two important

classes of problem are addressed which involve the motion of an object in a viscous

medium and flow behaviors in porous media during enhanced oil recovery. It is seen

that the falling of an object through a non-Newtonian aging suspensions leads to very

interesting manifestations of Stokesian flows without any terminal velocity. In chap-

ter 8, we report falling ball experiments on aging colloidal suspensions of Laponite.

Steel balls of different sizes are dropped into the suspensions having different initial

states of structure. An increase of velocity of the ball as it gets deeper into the fluid

is observed. This increment is more pronounced for larger balls and for lower aging

or waiting times of the suspensions. A simple rheological model is constructed based

on the concepts of structural kinetics in thixotropic fluids to explain the experimental

results by taking into account (i) the restructuring and destructuring processes and (ii)

the dependence of the viscosity of the suspensions on structure parameter and shear

rate.

Dynamics at interfaces is a vast and interesting field of research involving different

kinds of instabilities (for example, Saffman-Taylor instability), fractal structure for-

mation, viscous fingering, viscoelastic fracturing, wetting properties and many more.

This kind of problem has immense significance in the context of enhanced oil recovery

and in the flow in porous media. In many of these cases, interfacial properties play

a major role in determining the flow behavior of complex fluids and soft solids. In

chapter 9, the dynamics at the interface between different kinds of fluids (Newtonian

fluids, aging non-Newtonian fluids formed by anisotropic charged clay suspensions) is

studied in a confined geometry, also known as a Hele-Shaw cell. It is reported that the

emergence of fractal patterns is determined by many factors, for example, the type of

Newtonian fluid (miscible and immiscible fluids), the rate of injection of the second

fluid, the surface tension etc. Colloidal suspensions formed by anisotropic charged clay

(Laponite) transform from a liquid-like phase to a soft solid phase with time. Hence,
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different kinds of interfacial phenomena are seen when an aging colloidal suspension

is displaced by a miscible Newtonian fluid. For example, viscous fingering is observed

by us when clay is in a liquid-like phase due to Saffman-Taylor instability, with the

pattern transforming to a viscoelastic fracturing pattern later in the case of miscible

flow. Suppression of the tip-splitting and side-branching with increasing elasticity are

also observed. The changes observed in the fractal patterns due to the development of

elasticity in the first phase (Laponite suspension) are described in this chapter.

Chapter 10 summarizes the main results reported in this thesis and discusses the

scope for future work.

Dr. Ranjini Bandyopadhyay Debasish Saha

(Thesis Supervisor)

Soft Condensed Matter Group

Raman Research Institute

Bangalore 560 080

India
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1
Introduction

1.1 Colloidal suspensions

The word “colloid” was coined from a Greek word- “κωλλα” by Graham Thomas,

meaning “glue” [1, 2] in the 19th century. A large variety of multiphasic substances,

for example, suspensions, emulsions, foams, aerosol etc. are described by the word

colloid. All these multiphasic substances are composed by particles in solid, liquid or

gaseous state dispersed in a continuous phase. These systems have sizes ranging from

10 nm-10 µm [3].

A colloidal suspension, in general, is constituted by small solid particles (dispersed

phase) dispersed in a liquid phase (dispersion medium). The size of the solid particle

is small enough that it is affected by the thermal fluctuations in the system. A colloidal

particle in a suspension is subjected to random collisions by the solvent molecules.

As a result, it moves in a very random fashion and shows Brownian motion at labo-

ratory time scales. Colloidal systems can be categorized depending on the states of

the dispersion media and the dispersed phases. Various colloidal systems and typical

examples [3, 4] are described in table 1.1 given below:
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1. Introduction

Colloidal
systems

Dispersion
medium

Dispersed phase Examples

Foams Liquids or
solids

Gas bubbles Shaving foam, soap bubble.

Aerosols Gases Solid particles or
liquid droplets

Smoke, fog.

Emulsions Liquids Liquid droplets Hand lotion, mayonnaise.
Suspensions Liquid Solid particles Blood, paint, dispersions of

clay minerals.

Table 1.1: Examples of colloidal systems.

The experimental results reported in this thesis are carried out with aqueous col-

loidal dispersions or suspensions formed by a synthetic clay Laponite. The main focus

of this thesis is on the study of the dynamics and flow behaviors of the glasses and

gels formed by Laponite suspensions. In the following sections and subsections, the

basic features of the glass transition are discussed in the context of colloids and other

materials. The flow behaviors of colloidal suspensions are also discussed briefly.

1.2 Glass transition

The viscosity of most liquids depend on their temperatures. In general, above the

melting point, viscosity increases with decrease in temperature. Depending on the

cooling conditions, two situations can arise at the melting point. Crystalline order can

be achieved by many liquids if they are cooled slowly enough that liquid molecules

have time to rearrange themselves. However, if a liquid is cooled down rapidly below

its melting point to avoid crystallization, the molecules retain a liquid-like structure

but their dynamics become extremely slow. This results in a huge increase in viscos-

ity. This phenomena is called the glass transition and the temperature at which the

transition happens is called the glass transition temperature, Tg. Typical cooling rates

required to attain the glass transition are in the range 0.1-103 K/sec and are highly ma-

terial dependent. Below Tg, a material is in a highly disordered arrested state as it does
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1.2 Glass transition

not have any crystalline order. Depending on the timescale, it might show solid-like or

liquid-like behavior. For example, pitch or bituminous tar appear to be solid in normal

condition. However, it is well-known that even pitch can flow like a liquid if we wait

long enough (≈10 years) [5].

1.2.1 Colloidal glass transition

Like most liquids, a colloidal suspension can also achieve the glass transition. There

is a large difference in the nature of the glass transition between a colloidal suspension

and a liquid. The viscosity of a colloidal dispersion is dependent on the volume fraction

φ of the colloidal particles in the suspension. For a very dilute suspension, i.e. φ <10−5,

the viscosity is independent of φ and almost equal to the viscosity of the dispersing

medium. As the number of colloidal particles in a suspension increases, the viscos-

ity of the suspension is no longer the same as that of the pure solvent. Hard sphere

colloids, where interparticle interactions are present only when the particles come in

contact or try to interpenetrate [6], form a liquid-like suspension below φ=0.494 [7].

The volume fraction φ f reeze=0.494 is analogous to the freezing point of a liquid. If

the volume fraction φ is increased rapidly beyond φ f reeze, a disordered state can be

achieved, with the dynamics of the colloidal particles in the suspension ceasing to ex-

ist for φ >0.58. This volume fraction φg=0.58 is the colloidal glass transition volume

fraction. Beyond this volume fraction, a colloidal suspension constituted by monodis-

perse colloidal particles is more likely to form a crystal and at φrcp=0.64, it will achieve

a random close packed structure. However, a small amount of polydispersity will al-

low it to be in a glassy state between 0.58 ≤ φ ≤ 0.64. In an important contribution,

Marshall and Zukoski showed that the viscosity of colloidal silica depends on φ and it

obeys the Doolittle equation given below [8]:

η

ηc
= C exp

(
ANT v∗f /v f

)
(1.1)
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1. Introduction

In the above expression, NT is the number of particles in the suspension. v f and v∗f are

the free volumes available and required for the diffusion process respectively. A is a

constant. Equation 1.1 can be written in terms of φ as [8]:

η

ηc
= C exp

(
Aφ

φm − φ

)
(1.2)

Here, φm=0.638 and A is a constant close to unity.

Interestingly, the primary relaxation time, or the α-relaxation time τα, also obeys

the above functional form and is given by:

τα = τ0 exp
[

Dφ
φ0 − φ

]
(1.3)

In the above expression, φ0=0.638 and D, a dimensionless number, is called the fragility

index [3].

1.2.2 Glass transition in supercooled liquids and other glass

formers

A supercooled liquid is one that is quenched rapidly below its freezing point to avoid

crystallization. Supercooled liquids and their glass transitions show many interesting

features such as the rapid increase of viscosity near Tg, heat-capacity jump at Tg, Kauz-

mann entropy catastrophe, non-exponential relaxation processes and fragile behavior

[9–11]. In the next few paragraphs, these features are discussed briefly.

Above the vaporization point Tv, a liquid behaves like a gas, that is, in this regime,

the main transport process is collisional [10]. Molecules of a gas feel the existence of

the other molecules only when they collide. As a result, a gas has negligible potential

energy compared to its kinetic energy. If it is cooled down below Tv, the transport will

still be collisional. It will behave like a very dense gas below Tv and intermolecular

forces will have an important contribution to its behavior. In a liquid, molecules are

held together by attractive van der Waals forces. In this state, the potential energy

of the liquid molecule exceeds its kinetic energy. However, the nearest neighbors of
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1.2 Glass transition

Figure 1.1: Regimes of the molecular phases between a dilute gas and a frozen glass. Here,
Tv is the vaporization temperature, Tm the melting point. TA is the temperature at which colli-
sional transport ceases and the onset of activated motion is seen. TA is usually, but not always,
below Tm and transport below TA is dominated by the underlying energy landscape below this
temperature. Below the glass transition temperature Tg, the system achieves a non-equilibrium
state. TK is the Kauzmann temperature. This figure is adapted from [10].

a molecule are not fixed as two molecules do not spend much time near each other.

Here, the molecular permutation timescale of a molecule is comparable to its colli-

sional timescale. However, if the liquid is cooled below its melting point Tm at a rate

greater than the rate of nucleation, crystalline order can be avoided. In this situation,

a molecule can retain its nearest neighbors for a very long time and transport is no

longer dominated by collisions [10]. At some temperature TA (figure 1.1), transport

properties like viscosity, diffusion etc., are dominated by activated processes. If the

system is cooled further below a temperature Tg, the timescale of molecular permuta-

tions, or the α-relaxation timescale, becomes larger than the laboratory timescale. This

temperature is called the glass transition temperature (Tg). In general, Tg depends on

the observation timescale. In the supercooled liquids literature, Tg is the temperature

at which the α-relaxation time (τα) is 100 sec [12]. Viscosity (η) and the α-relaxation

9



1. Introduction

Figure 1.2: Angell plots of the viscosity data as functions of the inverse temperature scaled
by their respective glass transition temperatures Tg/T . Straight lines in the Angell plot shows
the Arrhenius dependence of viscosity on temperature seen in strong glass formers (SiO2, GeO2
etc.). Non-Arrhenius behaviors of viscosity is seen for fragile glass formers (o-terphenyl,
toluene etc.) and represented by the deviation from the straight line. In the inset, specific
heat Cp is plotted vs. Tg/T . Cp shows a jump at Tg. This figure is adapted from [9].

timescale (τα) increase by many decades near Tg (figure 1.2). By convention, a glassy

state is achieved when η ≈ 1012 Pa.s and flow ceases to exist at observation timescales

achievable in the laboratory. This rapid increase in viscosity near Tg is a very common

feature of the glass transition in supercooled liquids. In some glass formers, the vis-

cosity shows an Arrhenius dependence on temperature (figure 1.2) with an activation

energy that is independent of temperature. Interestingly, in some other glass formers,

the increase in viscosity with the inverse of temperature deviates from Arrhenius be-

havior and the degree of deviation is commonly defined as the fragility of the glass

former. In fragile supercooled liquids, viscosity η and the structural relaxation time

or the α-relaxation time τα each obey a Vogel-Fulcher-Tammann (VFT) temperature

10



1.2 Glass transition

dependence that is given by the following two equations:

η = η0 exp
[

DT0

T − T0

]
(1.4)

τα = τ0 exp
[

DT0

T − T0

]
(1.5)

Here, D is known as the fragility or strength index and solely depends on the material.

T0 is called the Vogel temperature and signifies the temperature at which τα diverges.

For “strong” glass formers (i.e. SiO2, GeO2), D → ∞ and the rate of change of

viscosity in the whole temperature range remains the same (figure 1.2). However, for

“fragile” glass formers like o-terphenyl mixtures, chlorobenzene etc., the changes in η

and τα are very rapid near Tg and another measure for the fragility (m) or the deviation

from Arrhenius behavior exists. m quantifies how rapidly η and τα increase as the glass

transition temperature is approached and is defined as follows:

m =

(
∂ log η
∂(Tg/T )

)
T=Tg

(1.6)

or,

m =

(
∂ log τα
∂(Tg/T )

)
T=Tg

(1.7)

The origin of fragility is still not well understood despite many theoretical and

experimental studies. A correlation is drawn between fragility of a material and its

physical properties i.e. Poissons ratio or the relative strength of its shear and bulk

moduli [13]. The relation between the nature of the interaction potential and fragility

has also been studied for model binary mixture glass formers [14] and colloidal glass

formers [15].

It has already been mentioned that collisional transport takes a back seat and

energy landscape driven transport dominates below TA (figure 1.1). The energy land-

scape can be visualized in terms of a multidimensional potential energy surface as a

function of the particle coordinates [16]. For a dense liquid, the material properties are

related to the interactions between the constituent particles. The constituent particles

11
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Figure 1.3: Potential energy landscape explored by fragile glass formers near Tg. The ele-
mentary interbasin transitions are associated with the β-relaxation process, and the large dis-
tance intercrater transitions are associated with the α-relaxation process. This figure is adapted
from [17].

could be atoms, molecules, ions or a group of atoms. There exists a potential energy

function φ(r1, r2, ..., rN) for each of these particles that depends on interparticle inter-

actions and also on their spatial positions ri [17]. For a supercooled liquid state, where

each molecule is interacting with numerous molecules, the full N-body φ-function is

need to describe the system [16]. Therefore, the potential energy landscape (PEL)

is a 3N+1 dimensional hyperspace and is characterized by several extrema (maxima

and minima), with the temporally evolving system being represented by a point in this

hyperspace [16–18]. This description makes it easier to discuss the relaxation pro-

cesses of glass forming liquids. In this multidimensional hyperspace, the relaxations

between neighboring basins (or minima) is identified with the β-relaxation processes

(figure 1.3), whereas the α-relaxation processes are represented in terms of an escape

from one deep basin within a ”metabasin” to another neighboring basin [17, 18].

The above description of the potential energy landscape is particularly useful for
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1.3 Interparticle interactions in colloids

the calculation of the configurational entropy (S c) of a supercooled liquid [19]. Ac-

cording to the Adam-Gibbs relation, the configurational entropy is related to the vis-

cosity of the liquid and is given by [12, 20]:

η = η0 exp
[

A
TS c

]
(1.8)

Here, the VFT form (equation 1.4) can be obtained if S c is written in the following

way [11, 19]:

TS c = KAG

(
T
TK
− 1

)
(1.9)

Here, TK is the Kauzmann temperature or the ideal glass transition temperature, while

KAG is the kinetic fragility. Below TK , S c = 0.

1.3 Interparticle interactions in colloids

In general, the structure and dynamics of a colloidal suspension is extremely sensitive

to its inter-particle (or pair) potential [4]. For a hard sphere colloidal suspension, the

interaction potential between two particle has the simplest form. The only constraint

on motion in this case is that the particles cannot penetrate each other. The interparticle

interaction potential for hard sphere colloids is given by V(r) = 0 when r ≥ σ, where

σ is sum of the radii of the two interacting particles. In addition, V(r) = ∞ for r < σ,

which signifies that the particles are impenetrable. A dilute colloidal suspension of

hard spheres has no potential energy and the dynamics is solely governed by the vol-

ume fraction φ of the particles. However, most colloidal suspensions do not show hard

sphere interaction. In general, colloidal suspensions are formed by charged particles

and the interparticle interaction can be expressed as the sum of two interactions - the

attractive van der Waals interaction and the screened electrostatic repulsion.
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1.3.1 van der Waals forces

The van der Waals force is attractive in nature. For a molecular system having perma-

nent dipoles, an attractive force exists between two molecules because of the dipole-

dipole interaction. However, a neutral atom or molecule can be considered as a rapidly

fluctuating dipole due to the rapid motion of the electrons around its nucleus and a

London dispersion interaction arises as the dipoles start to couple with each other to

minimize the interaction energy [21]. For colloidal particles where each particle con-

sists of a large numbers of molecules, the London dispersion interaction manifests as

the attractive van der Waals force between particles. Normally, the interaction between

colloidal particles is calculated by summing over all the pairwise interactions between

an atom in one particle with all the atoms in the other particle. Finally, this pairwise

summation is done for all the atoms in the first particle and added together to get the

total van der Waals interaction. This method of calculation was first prescribed by

Hamaker in 1937 [21, 22].

For a 2:1 layer clay (i.e. Laponite in figure 1.4, the main material investigated in

this thesis) the free energy per unit area due to van der Waals attraction is given by [1]:

WvdW = −
AH

48π

[
1
d2 +

1
(d + ∆)2 −

2
(d + ∆/2)2

]
(1.10)

where d is the half-distance between two plates. Here, d is measured between the

planes of the tetrahedral sheet and the centers of the oxygen atoms. AH is the Hamaker

constant (1.06 × 10−20 J) and ∆ is the thickness of unit layers between the same planes

(6.6 Å) [1].

1.3.2 Electrostatic repulsion

When a charged colloidal particles is added to an electrolyte solution, the counterions

from the solution are attracted towards the electric charges of the particle. These coun-

terions are always in thermal motion and diffuse around the particle. This arrangement

of counterions and the opposite charges on the particle is called an electric double
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1.3 Interparticle interactions in colloids

layer [21]. Electrostatic repulsion arises due to overlap of the diffuse charges in the

electrical double layers of two colloidal particles. This is known as electric double

layer repulsion. The influence of the interaction due to double layer repulsion is ex-

perienced over a distance given by the Debye screening length (1/κ). Here, the Debye

screening length, which measures the range of the electric potential that extends from

the surface of a charged colloidal particle, depends on the electrolyte concentration in

the suspension. It is given by the following expression [23]:

1
κ

=

(
ε0εrkBT∑

i(zie)2ni

)1/2

(1.11)

Here, ε0 is the permittivity of free space, εr is the relative permittivity of the medium,

kB is the Boltzmann constant, T is the temperature of the suspension, e is the charge of

an electron and zi is the ionic charge number of the ith species of ions of concentration

ni.

It is, however, very difficult to measure the exact potential at the surface of the

colloidal particle. Stern prescribed that there is an effect of the finite size of the coun-

terions near the particle surface and can be accounted for by considering the presence

of a Stern layer, the distance of closest approach of the counterions [1, 24]. How-

ever, there exists a potential called zeta potential which is experimentally measurable.

Zeta potential is the potential at the slipping plane which occurs between the moving

envelop of water attached to the particle and the bulk [1, 4, 21]. As a good approxima-

tion, the zeta potential can be considered as the potential at the Stern layer.

The free energy per unit area due to double layer repulsion for a 2:1 layer clay can

be written as a function of half-distance d [1]:

WDL =

(
64nkBT

κ

)
γ2e−2κd (1.12)

where n is the number density and γ = tanh(zeΦ0/4kBT ), where z is the valence of the

counterions and Φ0 is the surface electric potential.
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1.4 Different phases formed by Laponite nanoclay

colloidal suspensions

Hydrous sodium lithium magnesium silicate (Na+0.7[(Si8Mg5.5Li0.3)O20(OH)4]−0.7) or

Laponite belongs to a family of hectorite clay comprising 2:1 phyllosilicate. Each

Laponite particle has a disk-like shape with diameter in the range 25±2.5 nm and a

thickness of approximately 1 nm [25]. It consists of an octahedral layer of magnesia

sandwiched by two tetrahedral layers of silica (figure 1.4) [1]. The deficiency of posi-

tive charges within the particle is compensated by sodium atoms that, in the dry state,

reside in the inter-layer gallery. When dispersed in aqueous media, the sodium ions

dissociate such that the two faces of the Laponite particle acquire negative charges.

The edge of the particle, on the other hand, is composed of anhydrous oxides dom-

inated by MgOH groups [26], whose charge in the aqueous medium depends on the

medium pH. Incorporation of Laponite powder in ultra-pure water raises its pH, due

to the dissociation of OH− ions from the edges, and leads to the edges acquiring pos-

itive charges [26, 27]. At a pH of 10, the edge of the Laponite platelet is estimated

to have a weak positive charge [26]. Owing to dissimilar charges on their edges and

faces, the particles can interact via attractive as well as repulsive interactions, thereby

strongly influencing the sample microstructure [28–30]. It is observed that in an aque-

ous medium, Laponite particles interact via face-to-face long range repulsions and

edge-to-face short range attractions [31]. Addition of monovalent salts such as NaCl

in aqueous suspensions of Laponite increases the concentrations of cations and anions

that shield the charges on the particles and effectively reduces the interparticle repul-

sive interactions.

Typically, for Laponite suspensions with concentrations above 2 wt%, the vis-

cosity and the elastic modulus increase gradually as a function of time since prepa-

ration. This suggests a continuous build-up of structure in a process that is referred

to as physical aging [32–34]. In dynamic light scattering experiments, physical aging

is manifested by an enhancement in the suspension’s relaxation time with increase in
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1.4 Different phases formed by Laponite nanoclay colloidal suspensions

Figure 1.4: (a) Chemical formula for Laponite. (b) Structure of a unit cell of Laponite. (c)
A single Laponite platelet. This figure is adapted from [28].

waiting time [35–37]. However, the application of a deformation field reverses the

process of aging, with the viscosity, elastic modulus and relaxation time decreasing

due to the breakdown of the sample microstructure [33, 38]. This process is known

as rejuvenation in the colloidal glass literature and as shear melting in the traditional

rheology literature [39, 40].

In the last decade, the phase behavior of aqueous suspensions of Laponite has

been studied in great detail using different experimental techniques, such as static and

dynamic light scattering [37, 41–48], small angle X-ray scattering [49], microscopy

[50], and rheology [51–55]. Ruzicka et. al. summarized all the results obtained by

both experimental and numerical studies in a recent review [28] and presented a fresh

phase diagram of Laponite suspensions for large waiting times (figure 1.5). There is a

general consensus that for concentrations below approximately 2 wt%, the microstruc-

ture is dominated by edge-to-face attractive interactions, leading to an attractive gel

[28, 56]. For higher concentrations, there is a debate on whether the particles are

in mutual contact due to attractive interactions or remain self-suspended in the re-

pulsive environments of the surrounding particles, thereby forming a repulsive glass
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1. Introduction

Figure 1.5: Phase diagram of Laponite suspensions for a large waiting time. VI, LS, SIM,
SAXS, DLS and SLS refer to visual inspection, light scattering, numerical simulations, small
angle X-ray scattering, dynamic light scattering and static light scattering respectively. This
figure is adapted from [28].

[53, 56]. Remarkably, for φ > 0.004, aqueous suspensions of Laponite undergo ergod-

icity breaking over a duration of days, with the free-flowing liquid getting transformed

into a soft solid phase that can support its own weight. Ruzicka and co-workers stud-

ied aqueous suspensions of Laponite using small angle X-ray scattering (SAXS) and

estimated that the average interparticle distance, which was around 15 nm for concen-

trations less than 2 wt%, increased to 40 nm at high concentrations [49]. This work,

therefore, indicates the presence of an attractive gel-like morphology at low concen-

trations and a repulsive glass-like microstructure at high concentrations. Dissolution

experiments carried out by the same group [57] showed that Laponite suspensions that

were older than 7 days do not dissolve in an aqueous medium, thereby suggesting that

the influence of attractive interactions on the microstructures of old samples cannot be

ignored.

Ruzicka et al. report the existence of two different concentration-dependent
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1.5 Flow behavior of colloidal dispersions

routes by which Laponite clay suspensions approach the arrested state [58, 59]. They

claim that at high clay concentrations, the system forms a repulsive Wigner glass

whose elementary units are single Laponite platelets, while at low clay concentra-

tions (1.0 wt% < Cw < 2.0 wt%), clusters of Laponite platelets form an attractive gel.

Interestingly, recent work on this subject suggests that the influence of attractive inter-

actions cannot be ruled out even at high Laponite concentrations [53, 57]. Laponite

suspensions also show very interesting phase behavior as the salt concentration is var-

ied [60, 61]. A gel or a glass state, and a nematic gel state are observed at low salt

concentrations as the clay concentration is increased. At very high ionic strengths,

there is phase separation [62]. Recent experimental observations and simulations in

the gel state show that for very high waiting times, suspensions at weight concentra-

tions Cw ≤ 1.0 wt% phase separate in the absence of salt into clay-rich and clay-poor

phases, while suspensions at concentrations 1.0 wt% < Cw < 2.0 wt% do not phase

separate, giving rise to a true equilibrium gel obtained from an empty liquid [63].

1.5 Flow behavior of colloidal dispersions

In general, a liquid has negligible resistance to shear deformation compared to a solid.

As a result, it starts to flow under the application of a shearing stress. For a Newto-

nian fluid of low viscosity like water, the mechanical properties can be described by

its shear viscosity η, which depends on temperature and pressure. However, there is a

large class of fluids, called complex fluids, that show deviations from simple Newto-

nian flow behavior. These complex fluids are intermediate between solids and liquids.

For short times, they can maintain their shapes and show solid-like behavior. However,

at long times, they eventually start to flow and show liquid-like behavior. This kind of

intermediate flow behavior is known as viscoelasticity [64]. Typical examples of com-

plex fluids are polymer melts, glass forming liquids and dense colloidal dispersions.

In dense colloidal suspensions, the average interparticle separation is less than the

particle radius. The rheological properties of these suspensions show non-Newtonian
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Figure 1.6: (a) Typical plots of shear stress vs. shear rate for Newtonian, shear thinning and
shear thickening (dilatant) fluids. (b) Viscosity vs. shear rate for Newtonian, shear thinning
and shear thickening fluids (dilatant). This figure is adapted from [66].

behavior. Multiple-body interactions and two-body lubrication effect are significant in

dense colloidal suspensions [65]. Many colloidal suspensions, for example paint and

clay suspensions, show thixotropy or aging, i.e. their viscosities are dependent on the

deformation history and therefore change with time. In dense colloidal suspensions,

the viscosity also depends on the rate of shear deformation (figure 1.6). Shear thinning

or the decrease in viscosity with shear rate is observed in blood, polymer melts and in

Laponite clay suspensions. Shear-thickening, or the increase in viscosity with shear

rate, is not uncommon in dense colloidal suspensions (example, in cornstarch sus-

pensions [67]). A considerable deviation from Stokes drag force is observed when a

spherical object settles under gravity through a thixotropic colloidal suspension formed

by Laponite [68]. Pattern formation or fingering instabilities are seen at the interface

between two fluids when a more viscous fluid is replaced by a less viscous fluid in

a porous medium or in a quasi-2D Hele Shaw geometry in many contexts [69, 70].

A transition from viscoelastic fingering to viscoelastic fracturing has been observed

with increase in clay concentration when a clay suspension is displaced by water in

Hele-Shaw cell [71, 72]. Colloidal suspensions of Laponite show aging behavior, i.e.

their mechanical properties evolve spontaneously with time, and are characterized by

complex viscoelastic properties [73]. The aging and rejuvenation of these materials
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have been studied [33]. Details of many such phenomena related to the complex flow

behavior of viscoelastic materials can be found in [74].

1.6 Thesis organization

This thesis presents a systematic study of the dynamics and flow behaviors of colloidal

suspensions formed by Laponite. Chapter 1 contains a brief description of the glass

transitions in colloidal suspensions and supercooled liquids. It also discusses interpar-

ticle interactions in colloidal suspensions and the phase behavior of Laponite suspen-

sions. Experimental techniques used in this thesis are described in chapter 2. Chapter 3

describes the experimental measurements of the relaxation processes in aqueous sus-

pensions of Laponite and compares these results with previous studies that investigate

the dynamics of supercooled liquids. In chapter 4, more experimental work addressing

the issue of the self-similarity of the relaxation processes under various physicochem-

ical conditions and the influence of attractive interactions on the aging dynamics of

Laponite suspension is reported. The kinetics of the glass transition process and the

fragile behavior of aging colloidal glasses of Laponite under various physicochemi-

cal conditions are discussed in chapter 5. The characteristics of the secondary relax-

ation process exhibited by fragile glasses of Laponite are discussed in chapter 6. In

chapter 7, the influence of the inclusion of probe particles on the relaxation dynam-

ics of Laponite suspensions is described. The settling of a spherical object through

a thixotropic colloidal suspension of Laponite is reported in chapter 8. Chapter 9

discusses the instabilities that emerge at the interface between non-Newtonian aging

Laponite suspensions and Newtonian fluids when the former is displaced by the latter.

In chapter 10, a summary of the experimental results is given and the scope of future

research is discussed.
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2
Experimental Techniques

2.1 Introduction:

Several experimental techniques, such as dynamic light scattering (DLS), ion measure-

ment, rheology and high speed imaging, used to perform the experiments reported in

this thesis, are described in this chapter. Designs of cells for the study of interfacial

instabilities in a Hele-Shaw geometry and a falling ball viscometer are also discussed.

The timescales of the microscopic dynamics of colloidal suspensions are studied by

DLS. Details of this experimental technique are described in the section 2.2.1. Sodium

ion concentration measurements are done by an ion meter. The principles of acquir-

ing data using this meter is explained in section 2.2.2. A stress controlled rheometer

is used for bulk rheological measurements. A brief discussion of rheometry and the

rheometer used in this work is included in the section 2.2.3. A high speed camera used

for studying interfacial instabilities and the trajectory of the falling ball in aging clay

suspensions is discussed in section 2.2.4. Section 2.2.5 describes the design of a falling

ball viscometer and the data analysis protocols used here. The Hele-Shaw cell used to
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2. Experimental Techniques

study the interfacial instabilities in this thesis is described in section 2.2.6.

2.2 Experimental techniques:

2.2.1 Dynamic Light Scattering:

Dynamic light scattering is a very efficient technique to study the microscopic motion

of scatterers in a suspension in a non-invasive way. This technique, commonly used

in the determination of the structure and dynamics of soft materials, is also known as

photon correlation spectroscopy.

A standard dynamic light scattering (DLS) setup has three parts, i.e. an intense

monochromatic source or a laser, an index-matching bath containing the sample holder

and a very fast and efficient detector (an avalanche photo diode (APD) or a photo mul-

tiplier tube (PMT)). A schematic diagram of the DLS setup is shown in figure 2.1(a).

Colloidal particles in a dilute suspension undergo Brownian motion. An incident beam

from a laser is scattered by the colloidal particles in every direction. The intensity of

the scattered light from the scattering volume has an angular dependence and generally

fluctuates rapidly due to the thermal motion of the scatterers in the suspension. The

scattering volume is defined as the volume of intersection between the incident beam

and scattered beam intercepted by the detector [1]. The shape and size (or the hydro-

dynamic radius) of the colloidal particle is measured from the angular dependence and

the intensity fluctuations of the scattered light respectively. Below, a brief theory is

given for the measurement of the size of monodisperse spherical scatterers diffusing in

a dilute suspension.

For a scattering volume V inside a non-scattering solvent containing N identical

scatterers, if an incident monochromatic plane wave, polarized perpendicular to the

scattering plane and having a frequency ω0 is scattered by the scatterers, then at a dis-

tant point R0 and at a scattering angle θ, the light scattered by the jth scatterer is given
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2.2 Experimental techniques:

Figure 2.1: (a) Schematic diagram of dynamic light scattering (DLS) setup. (b) Snapshot of
BIC 200SM DLS setup with laser (A), index-matching bath (B), sample holder (C) and photo
multiplier tube (D).

29
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Figure 2.2: Schematic diagram of geometry of scattering system. This figure is adapted
from [2].

by [2, 3]:

E j = A j(t) exp (iφ) exp (−iω0t) (2.1)

where A j is the amplitude of E j. If we choose the phase φ = 0 for a scatterer at the

origin and denote the position vector of the jth scatterer by ~r j with respect to the origin,

then according to figure 2.2 [2],

φ j = ( ~K0 − ~Ks).~r j = ~q.~r j (2.2)

where ~K0 and ~Ks are the incident and scattered wave vectors respectively. For quasi-

elastic light scattering,
∣∣∣∣ ~K0

∣∣∣∣ ≈ ∣∣∣∣ ~K j

∣∣∣∣ and
∣∣∣~q∣∣∣ = 2

∣∣∣∣ ~K0

∣∣∣∣ sin (θ/2) = 4πn
λ

sin (θ/2), where

n and λ are the refractive index of the medium and the wavelength of the laser light

respectively [1, 4]. The total scattered field Es at a distant point R0 is given by [2]:

Es =

N∑
j=1

A j(t)ei~q.~r je−iω0t (2.3)
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Hence, the average scattered intensity at R0 is given by Is =
〈
|Es|

2
〉
, where 〈〉 de-

notes the time average. Now, if the motion of the scatterers are independent and un-

correlated, all cross terms in the expression of Is in the time average vanish to give

Is =

〈∑
j

∣∣∣A j

∣∣∣2〉 = N
〈
|A|2

〉
[2]. The following expression for the spectrum of the scat-

tered light can be obtained from the Wiener-Khintchine theorem [5] which relates the

electric field autocorrelation of a stationary random process with its spectrum through

spectral decomposition:

I(w) =
1

2π

∫ ∞

−∞

C(τ)eiωτdτ (2.4)

where the autocorrelation function C(τ) is given by the following expression:

C(τ) =
〈
E∗s(t)Es(t + τ)

〉
(2.5)

Here, E∗s is the complex conjugate of Es. Replacing the values of Es and E∗s in equa-

tion 2.3 gives,

C(τ) =

〈 N∑
j=1

A∗j(t)e
−i~q.~r j(t)eiω0t

N∑
l=1

Al(t + τ)ei~q.~rl(t+τ)e−iω0(t+τ)
〉

(2.6)

If we assume that the positions and orientations of all the scatterers are independent,

then all cross terms ( j , l) in the above equation vanishes. Since all N scatterers are

identical and have the same autocorrelation function,

C(τ) = Ne−iω0τ 〈A∗(t)A(t + τ)〉
〈
e−i~q.~r(t)ei~q.~r(t+τ)

〉
(2.7)

Substituting the value of C(τ) in equation 2.4, for identical and statistically independent

scatterers we have,

I(w) =
N
2π

∫ ∞

−∞

ei(ω−ω0)τ [CA(τ)]
[
Cφ(τ)

]
dτ (2.8)
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For identical spherical scatterers undergoing translational diffusion, [CA(τ)] = 1 as the

scattering amplitude A(t) is constant. The phase autocorrelation function is given by[
Cφ(τ)

]
= e−Dq2τ [2], where D is the translational diffusion coefficient and related to

the hydrodynamic radius rh of the scatterer by the Stokes-Einstein relation,

D =
kBT

6πηrh
(2.9)

Here kB is the Boltzmann constant, η is the viscosity of the medium at temperature T .

Using equations 2.8 and 2.9, it is seen that the spectrum of the scattered light (I(ω)) is

given by a Lorentzian centered at ω = ω0 [2].

I(ω) = N |A|2
1

2π

∫ ∞

−∞

ei(ω−ω0)τe−Dq2τdτ = N |A|2
{

Dq2/π

(ω − ω0)2 + (Dq2)2

}
(2.10)

There are two types of measurement techniques, namely homodyne and heterodyne

methods, that depend on the optical mixing protocol of the scattered spectrum. In the

homodyne method, the scattered spectrum is mixed with itself. However, for hetero-

dyne measurements, a part of the incident beam is mixed with the scattered beam.

The homodyne measurement technique is used to perform all the experiments re-

ported in this thesis. In this method, the output of the detector is either analyzed

by an autocorrelator to generate the autocorrelation function or is sent to a spectrum

analyzer. One assumption is that the optical field is spatially coherent over the de-

tector. The instantaneous intensity I(t) of the optical field is related to the electric

field E(t) by I(t) = E∗(t)E(t). If W (1)(t) is the probability per unit time that a sec-

ondary electron will be emitted, then the average output current of the detector is given

by 〈i(t)〉 = e
〈
W (1)(t)

〉
= eβ 〈I〉, where β is the quantum efficiency of the detector

and e is the charge of an electron. Again, if W (2)(t, t + τ) is the joint probability per

unit time that one secondary electron will be emitted at t and another at t + τ, then〈
W (2)(t, t + τ)

〉
= β2 〈E∗(t)E(t)E∗(t + τ)E(t + τ)〉 = β2 〈I〉2 g(2)(τ), where the second
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order correlation function g(2)(τ) is given by [2]:

g(2)(τ) = 〈E∗(t)E(t)E∗(t + τ)E(t + τ)〉 / 〈E∗E〉2 (2.11)

The current autocorrelation function is given by [2]:

Ci(τ) = 〈i(t)i(t + τ)〉 = e2
〈
W (1)(t)W (1)(t + τ)

〉
(2.12)

In the present experimental setup, a digital autocorrelator receives i(t) from the output

of the detector as infinitely narrow discrete pulses. Clearly, for two distinct secondary

electrons at t and t +τ,
〈
W (1)(t)W (1)(t + τ)

〉
=

〈
W (2)(t, t + τ)

〉
= β2 〈I〉2 g(2)(τ), while for

the same electron we get
〈
W (1)(t)W (1)(t + τ)

〉
=

〈
W (1)(t)

〉
δ(τ) = β 〈I〉 δ(τ). So, Ci(τ)

can be written as follows [2]:

Ci(τ) = e2β 〈I〉 δ(τ) + e2β2 〈I〉2 g(2)(τ) = e 〈i〉 δ(τ) + 〈i〉2 g(2)(τ) (2.13)

We know from the central limit theorem [6] that the optical field for light scattered

by a very dilute solution of independent scatterers is a Gaussian random field. The

second-order intensity autocorrelation function g(2)(τ) can therefore be related to the

first order electric field autocorrelation function by the Siegert relation [7]:

g(2)(τ) = 1 +
∣∣∣g(1)(τ)

∣∣∣2 (2.14)

where g(1)(τ) = 〈E∗(t)E(t + τ)〉 / 〈E∗(t)E(t)〉 and the autocorrelation function is given

by Ci(τ) = e 〈i〉 δ(τ) + 〈i〉2 (1 +
∣∣∣g(1)(τ)

∣∣∣2). Now, for a dilute suspension of identical

spherical scatterers, g(1)(τ) ∝ e−Dq2τ [2] and therefore
∣∣∣g(1)(τ)

∣∣∣2 ∝ e−2Dq2τ.

The DLS experiments reported here are performed with a Brookhaven Instruments

Corporation (BIC) BI-200SM spectrometer equipped with a 150 mW solid state laser

(NdYVO4, Coherent Inc., Spectra Physics) having an emission wavelength of 532 nm
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(figure 2.1(b)). A refractive index-matching bath filled with decaline contains the cu-

vette filled with the sample. The temperature of the bath is maintained by water cir-

culation with a temperature controller (Polyscience Digital). The scattered photons

give rise to secondary electrons in the detector which set off voltage pulses in the PMT

detector. The output of the detector is attached to a Brookhaven BI-9000AT digital

autocorrelator which is used to measure the intensity autocorrelation function of the

light scattered from the samples. There are 522 channels (maximum) in the autocor-

relator that are controlled by high-speed, medium-speed and low-speed circuits [8].

These channels can be programed to be spaced logarithmically, linearly or otherwise.

The intensity autocorrelation function g(2)(t) is obtained by the autocorrelator using the

following expression [8]:

g(2)(τ j) = lim
N→∞

1
N

N∑
i=1

ni.ni− j j = 1, 2, 3......,M (2.15)

Here, N is the total number of samples and τ j is the jth delay time, ni and ni− j are the

number of pulses in the time interval ∆τ (or sampling time) centered at t and t− τ j and

M is the total number of channels [8].

For a very dilute suspension of polystyrene beads (purchased from Bangs Lab,

NT05N, NIST particle size standard, nominal size 95.6 nm, polydispersity 3.7%), the

normalized intensity autocorrelation function C(τ) = g(2)(τ) − 1 as a function of delay

time τ is plotted in figure 2.3 for several scattering angles at temperature T = 25◦C.

A dilute polystyrene suspension (volume fraction φ=10−5) is prepared from a supplied

stock suspension. The second order autocorrelation function is given by g(2)(τ) =

<I(0)I(τ)>
<I(0)>2 = 1 + A|g(1)(τ)|2, [1], where I(τ) is the intensity at a delay time τ, g(1)(τ) is the

normalized electric field autocorrelation function, A is the coherence factor, and the

angular brackets <> represents an average over time. The duration of data collection

is kept long enough to ensure a large photon count. The autocorrelation functions

C(τ) are acquired at six different scattering angles (i.e. six different q, figure 2.3) and

are fitted to exponential decays C(τ) = exp(−τ/τ1). Here, τ1 is the relaxation time
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Figure 2.3: (a) The normalized intensity autocorrelation functions C(τ) vs. the delay time
τ at 25◦C and scattering angle (60◦ (�), 75◦ (◦), 90◦ (4), 105◦ (∇), 120◦ (�) and 135◦ (/)) for
polystyrene beads in a dilute aqeous suspension (φ = 10−5). The solid lines are fits to simple
exponential function. (b) 1/τ1 vs. q2 plot showing diffusive motion of the scatterers. Diffusion
coefficient D of the scatterers is extracted from the slope of the plot which yields 96.1± 0.6 nm
as size of the scatterers.

of the scatterers. τ1 values obtained from the fits to the C(τ) data for six q values

and 1/τ1 are plotted vs. q2 (figure 2.3(b)). A straight line passing through the origin

indicates diffusive behavior i.e. τ1 = 1/Dq2. Here D is the diffusion coefficient and

is obtained from the slope of the 1/τ1 vs. q2 plot. The size of the polystyrene beads

dispersed in aqueous medium (η = 0.89 mPa.s at 25◦C) is calculated by applying the

Stokes-Einstein relation (equation 2.9). The calculated size of the polystyrene sphere

is 96.1±0.6 nm which agrees fairly well with the size supplied by the manufacturer.

2.2.2 Ion Measurements:

An ion selective membrane is needed to determine the concentration of a specific ion

in suspension. In this thesis, the concentration of sodium ions (Na+) is measured by

a Eutech CyberScan 2100 pH/ion meter (figure 2.4). This meter is equipped with an

electrode (ROSS Sure-Flow) with a sodium ion-selective membrane. An ion-selective

membrane allows only a particular species of ion or a specific set of ions to permeate

(figure 2.5). For this reason, an electrical potential develops across the membrane

over time. A sodium ion selective membrane senses the activity of the sodium ion
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Figure 2.4: Snapshot of the Eutech CyberScan 2100 pH/ion meter.

Figure 2.5: Schematic diagram of an ion-selective membrane. Potential V develops across
the membrane because it is permeable to a particular ion. Red and yellow circles denote two
different species of ions.
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dissolved in the colloidal suspension and converts it into an electrical potential. This

potential is measured and is used to determine the concentration of sodium ions in the

suspension. The potential developed at this membrane is measured using two internal

electrochemical cells- a sensing reference cell and a second reference cell. These two

cells are connected in such a way that the change in potential happens only due to

the change in the concentration of sodium ions. The measured potential is given by

the Nernst equation which relates the concentration gradient of a species or a specific

ion (in case of an ion selective electrode) at equilibrium to the electric potential that

balances it [9, 10]:

V = V0 + S log A (2.16)

Here V0 is the constant potential dependent on the reference electrode, A is the sodium

ion activity and S is the electrode slope. Calibration is done for several known concen-

trations of Na+ ions (0.01 mM, 0.1 mM, 1 mM, 10 mM and 100 mM) to determine the

electrode parameters (V0 and S ). The Laponite suspension is loaded in a narrow-mouth

bottle and the electrode is dipped inside for measurement. The opening between the

mouth of the bottle and electrode wall is sealed. The temperature of the suspension

is maintained at the desired value by water circulation throughout the duration of the

experiment. It is seen from equation 2.16 that the Nernst equation relates the poten-

tial directly to the activity but not to the concentration of a specific ion. However, the

activity Ai of an ion (ith species or sodium ion) is related to its concentration ci in the

following way [11]:

Ai = γici (2.17)

Here, γi is called the activity coefficient which, in the case of a chemical solution or

mixture, is a measure of the deviation from ideal behavior. For low concentrations

of sodium ions, the activity coefficient is close to unity [11] and the activity A in the

Nernst equation (equation 2.16) can be replaced by the concentration of sodium ions.
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2.2.3 Rheology and Rheometry:

The word “Rheology” was coined by Bingham to describe the study of the deformation

and flow of matter [12]. For an ideal elastic solid, the deformation or strain (γ) is

directly proportional to the stress (σ) applied to it. Here, the Hookes’ law is used to

relate stress and strain, with σ = Gγ [13], where G is the proportionality constant

known as rigidity modulus or modulus of elasticity. An ideal liquid, on the other

hand, offers no resistance to shear deformation and has no elasticity. However, in a

liquid, the applied stress (σ) is proportional to strain rate (γ̇ =
dγ
dt ), σ = ηγ̇. Here η

is called the coefficient of viscosity [14] and is the measure of the liquid’s resistance

to flow. As discussed in the introduction, many soft matter systems, including the

Laponite suspensions studied in this thesis, show viscoelastic behavior. Depending on

the amount of stress or strain in the material, two different kinds of behavior, linear

and non-linear viscoelasticity, are observed. In the linear viscoelastic regime i.e. for

small stresses or stains, a linear relationship exists between σ and γ̇ which is described

by the linear differential equation below.

σ(t) =

∫ t

−∞

G(t − t1)γ̇(t1)dt1 (2.18)

In the above equation, G(t− t1) is the stress relaxation function. It is a function of t− t1

where t1 is a past time variable. However, in the non-linear regime which occurs for

higher values of stresses and strains, G also depends on the amount of instantaneous

strain. In this regime, the stress can be written as σ(t) = G(t, t1, γ)γ(t). Normal stress

differences, shear thinning and shear thickening are observed in this regime [15].

In the laboratory, a rheometer is employed to measure the different rheological

parameters. In general, measurements may be performed by applying both rotational

and oscillatory stresses. All rheological measurements reported in this thesis are per-

formed in a stress controlled modular Anton Paar MCR 501 rheometer (figure 2.6).

This rheometer consists of a synchronous motor, an air bearing support with a normal
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Figure 2.6: Anton Paar MCR 501 rheometer (left) and the schematic diagram of the rheome-
ter (right) consisting of the optical encoder (A), synchronous motor (B), air bearing support (C),
compressor (D), measuring rod (E), measuring geometry (F) and temperature controller (G).

Specification Concentric cylinder Double gap
Model no. CC17 DG26.7/Q1
Description Co-axially arranged

cylindrical cup with
a rotating cylindrical
bob. Gap between
cup and bob is 0.71
mm (figure 2.7(a))

Modified concentric
cylinder geome-
try with an inner
hollow cylinder.
Two gaps between
the inner and outer
cylinder surfaces
(figure 2.7(b))

Effective
Length

24.99 mm 40 mm

Sample
volume

4.72 ml 3.8 ml

Range of
shear stress

771.345×10−6 Pa
and 17740.935 Pa

109.407×10−6 Pa
and 2516.361 Pa

Range of
shear strain

> 1.23×10−5 > 2.93×10−5

Range of
strain rate

1.283×10−7s−1 and
3.849×103s−1

3.0697×10−7s−1 and
9.209×103s−1.

Table 2.1: Specifications of measuring geometries used in this thesis.
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Figure 2.7: Schematic diagram of the measuring geometries (a) CC17 and (b) DG26.7/Q1
used in this thesis. This picture is adapted from [16].

force transducer, a compressor, an optical encoder, a measuring rod, a measuring ge-

ometry and a temperature controller as shown in the schematic diagram (figure 2.6). A

synchronous motor is used to directly control the torque or stress applied to the sys-

tem under observation. A feedback mechanism is used for the measurements that need

strain control. Compressed air from the compressor is sent to the air bearing support

attached to the motor to reduce the friction between the rotor and the stator of the syn-

chronous motor. In this way, the rheometer is capable of measuring torques down to 2

nN.m with a resolution of 0.01 nN.m [16]. Angular deflection is measured with very

high resolution and precision by employing an optical encoder (resolution < 1 mrad).

The temperature of the sample in the measuring geometry is controlled by water cir-

culation using a temperature controller (Viscotherm VT2) [16]. All data is acquired

and saved using the Rheoplus 3.40 software in the computer. Different geometries,

depending on the system under study, are used to acquire data. The specifications of

two measuring geometries (concentric cylinder and double gap, figure 2.7) are given

in the table 2.1. A sample flow curve of glycerol, obtained in a double gap geometry
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Figure 2.8: Flow curve of glycerol using DG26.7/Q1 where viscosity (�) and stress (•) are
plotted vs. shear rate. From the picture, it is seen that the stress is proportional to shear rate and
the viscosity is constant at 0.12 Pa.s in the applied shear rate regime, confirming the Newtonian
flow behavior of glycerol.

(DG26.7/Q1), is shown in figure 2.8.

2.2.4 High Speed Imaging:

High speed imaging was done with an IDT MotionPro Y4-S2 CMOS camera equipped

with a Nikon AF-S NIKKOR 12-24mm lens (figure 2.9). The specifications of the

camera are given in the table 2.2 [17]:

Figure 2.9: Snapshot of the IDT MotionPro Y4-S2 CMOS camera equipped with a Nikon
AF-S NIKKOR 12-24mm lens.
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Key features Specifications
Maximum fps @ maximum resolution 4500 @ 1016x1016
No. of pixels 1016x1016
Minimum exposure time 1 µs
Sensitivity ASA (mono) 6000
Sensitivity ASA (color) 6000
Memory/DRAM Internal 8 GB
Sensor Type CMOS-Polaris II
Sensor Size 13.9 x 13.9 mm
Array Size 1 Megapixel
Pixel Size 13.68 x 13.68 µm
Pixel Fill factor 40 %
Dynamic Range 60 dB
Quantum Efficiency (QE) 50%
Pixel Depth (mono) 10-bit
Pixel Depth (color) 30-bit
Internal clock 166.66 MHz

Table 2.2: Specifications of high speed camera.

2.2.5 Falling Ball Viscometer:

The main principle behind a falling ball viscometer is that the buoyant weight of an

object settling through a viscous fluid is balanced by the viscous drag on it. In this

condition, the object achieves terminal velocity. The viscosity of the medium can

be calculated from the terminal velocity by applying Stokes’ law [18]. According to

Stokes’ law, a drag force is generated against the motion of the ball and is proportional

to the instantaneous velocity of the ball. At some point of time, this drag force is

large enough to cancel the buoyant weight of the falling ball. Thus, the ball stops

accelerating due to gravity and attains a terminal velocity when the drag force and

gravitational force balance each other. The drag force F is related to the terminal

velocity v by Stokes’ law for an infinite medium (i. e. in the absence of wall) and

without any inertial effect and is given by [18],

F = 6πηrv (2.19)
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Figure 2.10: Schematic diagram of the falling ball viscometer. (A) Cylindrical tube, (B)
ball, (C) guide tube, (D) thermal bath and (E) high speed camera.

where η is the coefficient of viscosity of the medium and r is the radius of the ball

dropped. If this force is equal to the buoyant weight of the ball, then we have,

4
3
πr3(ρball − ρ)g = 6πηrv (2.20)

which yields the expression for terminal velocity,

v =
2
9

r2(ρball − ρ)g
η

(2.21)

Often in an experiment, conditions are not ideal and the fluid through which the ball

falls has a finite extent. There can then be wall effects due to the closeness of the

cylinder walls to the falling ball (figure 2.10) as well as inertial effects. In general, the

presence of the wall reduces the terminal velocity v as the drag on the ball is more.

43



2. Experimental Techniques

Figure 2.11: Snapshot of the falling ball viscometer inside a thermal bath and with a solenoid
based ball release mechanism.

The correction to the terminal velocity due to the wall effect is given by Faxen for a

cylindrical tube with a diameter D [19]:

vFaxen = v(1 − 2.104(d/D) + 2.089(d/D)3 + ...)
−1

(2.22)

where d is the diameter of the ball. The correction due to the inertial effect is given by

Oseen’s approximation [20]. The corrected terminal velocity in the presence of inertia

is given by:

vOseen = v
(
1 +

3
16

Re
)−1

(2.23)
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where Re, the Reynolds number, is the ratio of the inertial force to the viscous drag,

and is given by:

Re =
ρvd
η

(2.24)

Here, ρ is the density of the fluid through which the ball is falling. Other higher or-

der corrections to the terminal velocity are given by Goldstein [21] and Proudman and

Pearson [22] and the corresponding equations are given by the following two equa-

tions.

vGoldstein = v
(
1 +

3
16

Re −
19

1280
Re2 +

71
20480

Re3 + ...

)−1

(2.25)

vProudman = v
(
1 +

3
16

Re +
9

160
Re2 ln

(Re
2

)
+ ...

)
(2.26)

In our design of a falling ball viscometer, the fluid under observation is loaded into

a cylindrical tube of height 61 cm approximately and diameter 3.6 cm (figures 2.10

and 2.11). The tube is kept inside a thermal bath made of acrylic. A temperature

controller (Polyscience Digital) is attached to the thermal bath. The temperature is

maintained by water circulation. Spherical steel balls are used as the objects settling

through the medium inside the cylinder under gravity (the falling ball). The path fol-

lowed by the ball is recorded with an IDT MotionPro Y4-S2 high speed camera. From

the frames obtained, the motion of the ball is tracked using a LabView based tracking

program [23] to obtain the displacement of the ball with time. It should be noted that

after the ball reaches terminal velocity v, the slope of the displacement vs. time graph

for a Newtonian fluid gives the value of its terminal velocity. In this work, the ball is

dropped using a solenoid based release mechanism at the center of the cylinder through

a guide tube (figures 2.10 and 2.11). This ensures that the ball falls through the center

of the cylindrical viscometer and minimizes wall effects.
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Figure 2.12: (a) Schematic of a radial Hele-Shaw cell. (b) Schematic of a flow experiment
in a Hele-Shaw set up. (c) Snapshot of the experimental set up. (d) Viscous fingering pattern
when mustard oil (η =60 mPa.s) is displaced by colored (green) water (η =0.89 mPa.s).

2.2.6 Hele-Shaw Cell:

The interface between two fluids, in general, is unstable when a fluid of higher vis-

cosity is displaced by a fluid of lower viscosity under pressure. This leads to the for-

mation of finger-like intrusions and the creation of fractal patterns. This phenomenon

is known as viscous fingering [24]. Tongues of water in oil have often been reported

in the context of secondary oil recovery. The study of viscous fingering is performed

in a confined geometry or a Hele-Shaw cell. In the Hele-Shaw cell, named after the

English mechanical and automobile engineer Henry Selby Hele-Shaw, two glass plates

with spacers between them are used to confine the more viscous fluid. This geometry
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is used to study the Stokes flow between two parallel plates separated by an infinites-

imally small gap (a quasi 2 dimensional geometry). If the glass plates are very close

(separation < 0.02 inch) then the flow is laminar at all velocities [25]. This simpli-

fies many problems in fluid mechanics and the phenomenon of interfacial instabilities

can be studied by analytical, numerical and experimental methods. Rheologists use

different types of geometries to study viscous fingering. In the conventional radial

Hele-Shaw cell, the less viscous fluid is pushed through a hole in the center of one of

the glass plates (upper or lower) by applying pressure. A lifting Hele-Shaw cell is a

special example of a confined geometry where the force of adhesion can be estimated

by determining the force required to separate the plates. There have been many in-

stances of the study of viscous fingering in modified Hele-Shaw cells. In some recent

experiments, an external perturbation was introduced by etching grooves in the lower

plate [26, 27] or by stretching a piece of cloth across the lower plate [28]. In this thesis

a conventional radial Hele-Shaw cell (figure 2.12) is used to study the fingering insta-

bilities at the interface between an aging non-Newtonian fluid (Laponite suspension)

and a Newtonian fluid (oil or water). Circular glass plates of thickness 10 mm and

diameter 60 cm are used for the experiment. 10 mm thick glass plates are found to

give good mechanical stability. This also improves the uniformity of the gap between

the glass plates by reducing sagging. A hole of approximately 4.2 mm is drilled on

the upper glass plate for fluid injection. A syringe pump (Fusion 400, Chemyx Inc.) is

used to inject the fluid at a controlled rate. The Hele-Shaw cell is kept on a mechan-

ically stable table. Imaging is done from below by the IDT MotionPro Y4-S2 high

speed camera (figure 2.12(b)).
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3
The dynamical slowing down

process in soft glassy colloidal

suspensions: comparisons with

supercooled liquids

3.1 Introduction

Two-step relaxation processes are ubiquitous in supercooled liquids [1]. The faster

(β) decay corresponds to the diffusion of the particle within a cage formed by its

neighbours, while the slower (α) decay corresponds to its cooperative diffusive dy-

namics between cages. The transport properties (i.e. viscosity, diffusivity etc.) and

the relaxation timescales of a glass former change sharply as the glass transition is

51



3. The dynamical slowing down process in soft glassy colloidal suspensions:
comparisons with supercooled liquids

approached [2]. The primary or the α-relaxation time becomes increasingly slow and

diverges in the vicinity of the glass transition. The dependence of this relaxation time

on temperature in a strong glass former is nearly Arrhenius and the degree of devia-

tion from Arrhenius behaviour is measured as ‘fragility’. For fragile glass formers, the

α-relaxation time shows a Vogel-Fulcher-Tammann (VFT) dependence on temperature

(T ), with the fragility index depending solely on the material [3]. The density of po-

tential energy minima of the configurational states in the potential energy landscape

determines the strong or fragile behaviors of supercooled liquids [4]. Strong glasses

have a lower density of minima and their entropy increases slowly with decreasing

temperature, thereby resulting in nearly Arrhenius behavior [5]. In contrast, fragile

glasses have a larger density of minima which causes super-Arrhenius behavior of the

α-relaxation. Other secondary relaxation processes also simultaneously take place in

the same temperature range. In supercooled liquids and molecular glasses, one of

them is the Johari-Goldstein (JG) β-relaxation process [6–9], which is the slowest of

the secondary relaxation processes and is strongly coupled with the α-relaxation pro-

cess [10–12].

In the last two decades, colloidal glasses have emerged as excellent model can-

didates for the study of glasses and glass formers. While supercooled liquids can be

driven towards their glass transitions by rapidly quenching their temperatures, the glass

transition in colloidal suspensions can be achieved by increasing the volume fraction

φ. For a colloidal suspension of hard spheres, increasing φ towards a glass transition

volume fraction φg plays the same role as supercooling a liquid towards its glass tran-

sition temperature Tg [13, 14].

In recent years, colloidal glasses formed by the synthetic clay Laponite have been

studied extensively [15–24]. Interestingly, aging Laponite suspensions show many

similarities with supercooled liquids and molecular glasses. These include the obser-

vation of well-separated fast and slow timescales [25], the absence of thermorheologi-

cal simplicity [26, 27], asymmetry in structural recovery following a step temperature
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change [28, 29], probe size-dependent diffusion [30] and the presence of more com-

plex phenomena such as overaging [31, 32].

The ergodic-to-nonergodic transition is observed in colloidal Wigner glasses and

is discussed in detail by Tanaka et. al. in the context of aging dynamics of Laponite

suspensions [21]. Two very distinct regimes in the temporal change of τα (α-relaxation

time) are observed by the authors. The initial regime, when the system is ergodic and τα

increases exponentially with waiting time, is called the ‘cage-forming’ regime, while

the later stage, where τα increases linearly with waiting time, is called the ‘full-aging’

regime. In the cage-forming regime, the effective particle volume fraction increases

with waiting time. The system gradually approaches a glass transition and finally en-

ters the nonergodic full-aging regime. It should be noted that the aging dynamics of

Laponite suspensions in the ergodic cage-forming regime is totally different from the

aging of supercooled liquids just below the glass transition temperature.

In an aging Laponite clay suspension, the effective volume fraction changes spon-

taneously and continuously with waiting time due to the exfoliation of Laponite par-

ticles from Laponite tactoids [33] and by the simultaneous spontaneous evolution of

inter-particle electrostatic interactions [18, 22, 34]. In this chapter, we report dynamic

light scattering (DLS) experiments that are performed to measure the time-evolution

of the primary and secondary relaxation processes of aging Laponite suspensions in

the ergodic cage-forming regime. We use our data to establish connections between

aging Laponite suspensions undergoing dynamical arrest and fragile supercooled liq-

uids approaching their glass transitions. We show here that increasing the waiting

time tw of aging Laponite suspensions is equivalent to decreasing the thermodynamic

temperature T of supercooled liquids. While the Vogel-Fulcher-Tammann (VFT) func-

tional form (with 1/T mapped to sample age tw) was demonstrated to work for the

slower α-relaxation timescale of aging Laponite suspensions [16], we show here that

β-relaxation follows an Arrhenius form (with 1/T again mapped to sample age tw) as

expected for supercooled liquids [9, 35]. A correspondence between temperature (T )

and the waiting time since sample preparation (tw) was reported in numerical studies of
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physical and chemical gelation [36] and in Monte Carlo simulations of patchy-particle

models of Laponite discs [37]. In a recent work, the role of thermodynamic tempera-

ture in the dynamical slowing down process of a colloidal glass produced by tethering

polymers to the surface of inorganic nanoparticles has been investigated in the context

of soft glassy rheology [38].

Furthermore, we demonstrate novel analogies between colloidal suspensions of

Laponite and supercooled liquids. We extract new timescales (the timescale t∞β as-

sociated with the fast relaxation process and the glass transition time tg) to demon-

strate several remarkable similarities that exist between supercooled liquids and soft

glassy materials. We demonstrate a coupling between t∞β and the glass transition time

tg. An analogous coupling between the glass transition temperature of a supercooled

liquid and the activation energy corresponding to its β-relaxation process has been sug-

gested and experimentally verified for supercooled liquids [10–12], but has never been

demonstrated in soft materials. It has been shown in the literature that the autocorrela-

tion decay corresponding to the primary relaxation time can be successfully modeled

as a stretched exponential process [39]. We show here that the stretching exponent β

decreases linearly with waiting time. This observation is analogous to that in fragile

supercooled liquids, where β is seen to decrease linearly with 1/T while approaching

the glass transition. This further establishes the soundness of our mapping between the

waiting time of a Laponite suspension and the inverse of the temperature of a super-

cooled liquid. Our DLS data also provides indirect evidence of an exfoliation process

of the nature seen earlier [33]. It also demonstrates the self-similar time-evolutions of

the fast and slow relaxation times, the stretching exponents β, and the width and non-

Gaussian parameters (α1 and α2) characterizing the distributions of the slow relaxation

time with changing Laponite concentration. Finally, we show that the fragility index D

is concentration-independent and interpret this result in terms of the self-similar nature

of the intricate potential energy landscape of aging Laponite suspensions approaching

the glass transition.
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3.2 Sample preparation

All the experiments reported in this chapter are performed with Laponite RD procured

from Southern Clay Products. Before every experiment, Laponite powder is dried in an

oven at 120◦C for at least 16 hours. Appropriate amounts of powder are added slowly

and carefully to double-distilled and deionized Millipore water of resistivity 18.2 MΩ-

cm. The mixture is stirred vigorously until it becomes optically clear. The resulting

suspension is filtered using a syringe pump (Fusion 400, Chemyx Inc.) at a constant

flow rate (3.0 ml/min) by passing through a 0.45 µm Millipore Millex-HV syringe-

driven filter unit. The filtered suspension is loaded and sealed in a cuvette for DLS

experiments. Laponite suspensions of concentrations 2.0% w/v, 2.5% w/v, 3.0% w/v

and 3.5% w/v are used in this study. Here, the concentration (% w/v) is the weight of

Laponite in 100 ml of water. The mechanical properties of all the suspensions evolve

spontaneously with time and exhibit the typical signatures of soft glassy rheology [40].

To avoid any kind of disturbance, the sample, once loaded in the sample holder of the

DLS set up, is not removed until the end of the experiment.

3.3 Results and Discussions

The relaxation dynamics of a medium can be analyzed by monitoring the temporal

behavior of the intensity autocorrelation function g(2)(t). In figure 3.1, the normalized

intensity autocorrelation function, C(t) = g(2)(t)−1, is plotted for a 3.0% w/v Laponite

suspension as a function of delay time, t, for experiments carried out at different wait-

ing times tw since filtration of the sample. C(t) shows a two-step decay, suggesting the

presence of two distinct relaxation timescales. In addition, the decay in the autocorre-

lation function slows down progressively as the sample ages. For a glassy suspension,

the two-step decay of C(t) can be described as a squared sum of an exponential and a
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Figure 3.1: The normalized intensity autocorrelation functions C(t) vs. the delay time t at

25◦C and scattering angle θ = 90◦ for 3.0% w/v Laponite suspension at several different waiting
times tw (from left to right): 0.5 hours (�), 6.0 hours (4), 9.0 hours (∇), 12.0 hours (�) and 15.0
hours (/). The solid lines are fits to equation 3.1.

stretched exponential decay given by [16]:

C(t) =
[
a exp {−t/τ1} + (1 − a) exp

{
−(t/τww)β

}]2
(3.1)

The fits to equation 3.1 (shown by the solid lines in figure 3.1) describe the decays

of the normalized autocorrelation functions for a range of waiting times tw and for all

the aging Laponite suspensions studied in this work. The fits are used to estimate the

two relaxation timescales: τ1, the fast relaxation timescale that is associated with the

secondary β-relaxation process, and τww, the slow timescale that is associated with the

primary α-relaxation process. In addition, the fits also provide values of the stretching

exponent β which is connected to the distribution of the α-relaxation timescales.

In figure 3.2(a), we plot the evolutions of τ1 with increasing tw for Laponite sus-

pensions of different concentrations. Interestingly, τ1 evolves in two steps. At very

small tw, τ1 initially decreases before increasing rapidly at large tw. This is shown by
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Figure 3.2: (a) The fast relaxation times, τ1 vs. waiting time tw for Laponite samples pre-
pared at 25◦C and at concentration 2.0% w/v (�), 2.5% w/v (◦), 3.0% w/v (4) and 3.5% w/v
(∇). The solid lines show fits to the modified Arrhenius functions, τ1 = τ0

1 exp(tw/t∞β ) (equa-
tion 3.2). Data are shifted vertically by an additive constant for better representation. The
shaded portion highlights the initial decrease in τ1. (b) The mean α-relaxation times < τww >,
vs. waiting time tw, are plotted for the same samples. The solid lines show fits to the modified
VFT functions, < τww >=< τww >

0 exp(Dtw/(t∞α − tw)) (equation 3.3).
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Figure 3.3: The waiting times associated with the minima in τ1 (tw,min) vs. concentration of
Laponite.
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the shaded portion in figure 3.2(a). It is also seen that the evolution of τ1 shifts to

smaller tw with increasing Laponite concentration.

As noted earlier, the slow timescale τww is identified with the α-relaxation process.

The average value of τww is given by < τww >= (τww/β)Γ(1/β), where Γ is the Euler

Gamma function [41]. In figure 3.2(b), the evolution of < τww > is plotted as a function

of tw for different concentrations of Laponite. In contrast to the initial non-monotonic

behavior of τ1, < τww > remains almost constant at small tw. At larger tw, < τww >

shows a sharp increase. Furthermore, as in the case of τ1, the onset of the evolution of

< τww > shifts to smaller tw with increase in concentration of Laponite.

We now try to explain the non-monotonic nature of the initial time-evolution of the

fast relaxation time. We note that the hydration of clay takes place soon after mixing

dry Laponite powder in water. The water molecules diffuse into the inter-layer gallery

causing the clusters to swell. Filtration of these suspensions breaks the clusters. After

filtration, these broken clusters undergo further fragmentation [42]. In both cases, τ1

is expected to decrease until the swelling clusters or the fragmented parts undergo dy-

namical arrest due to strong inter-platelet interactions that evolve spontaneously [33].

The waiting time at which τ1 shows a minimum can therefore be considered as a mea-

sure of the time required for the onset of jamming. The waiting time associated with

the minimum, tw,min, decreases with increase in Laponite concentration as shown in

figure 3.3. As the Laponite concentration increases, the increase in the number of

cage-forming particles can be associated with a decrease in the free space that is re-

quired for cage expansion and swelling of the clusters. The minimum in τ1 (tw,min)

therefore shifts to smaller tw with increase in Laponite concentration.

The stretching exponents β associated with < τww > are obtained from fits of the

data to equation 3.1 and are plotted as a function of tw in figure 3.4. For small values

of tw, β is close to unity. However with increase in tw, β decreases linearly, which

signifies the broadening of the distribution associated with < τww >. The decrease in β

also shifts to smaller tw with increase in the concentration of Laponite.
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Figure 3.4: The stretching exponent, β, vs. waiting time, tw, for 2.0% w/v (2), 2.5% w/v
(◦), 3.0% w/v (4) and 3.5% w/v (∇) Laponite suspensions. The solid lines are linear fits.

Because of the self-similar curvatures in the evolutions of both τ1 (the monotoni-

cally increasing parts) and < τww >, the data plotted in figure 3.2 can be superposed

upon horizontal and vertical shifting. This is shown in figure 3.5(a). The correspond-

ing shift factors (the horizontal shift factors for τ1 and < τww > are denoted by t∞β and

t∞α respectively, and the vertical shift factors for τ1 and < τww > are denoted by τ0
1 and

< τww >
0 respectively) are plotted in figure 3.5(b). It is observed that < τww >

0 (• in fig-

ure 3.5(b)) increases with Laponite concentration. This observation can be explained

by considering that at higher concentrations, the particles are more easily confined in

deep wells and can therefore be kinetically constrained at earlier times. If q′ = 1/t∞α

is defined as a rate at which the system approaches the glass transition, it is seen from

figure 3.6 that q′ increases exponentially with concentration. This is connected to our

observation that Laponite particles are trapped in progressively deeper energy wells as

the Laponite concentration is increased. This again confirms that the sluggishness of

the α-relaxation process increases with increasing Laponite concentration. In addition

to τ1 and τww, β also shows superposition after appropriate shifting through a vertical

shift factor (V) obtained as the value of β at tw/t∞α → 0. This is shown in figure 3.7.

The self-similarity and sharp enhancement of τ1 and < τww > with increase in tw

59



3. The dynamical slowing down process in soft glassy colloidal suspensions:
comparisons with supercooled liquids

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0

1 0 0

1 0 1

1 0 2

1 0 3

<�
ww

>/<
� ww

>0  

t w  / t ��

1 0 0

1 0 1

1 0 2
 

t w  / t �� ��

� 1/�0 1 

2 . 0 2 . 5 3 . 0 3 . 51 0 1

1 0 2

1 0 3

Sh
ift 

fac
tor

s in
 <�

ww
> 

C o n c e n t r a t i o n  ( %  w / v )
1 0 1

1 0 2

1 0 3

 

 

Sh
ift 

fac
tor

s in
 � 1 

( a )

( b )

Figure 3.5: In (a), Superpositions of normalized τ1 and normalized < τww >when plotted vs.
tw/t∞β and tw/t∞α , respectively, for 2.0% w/v (2), 2.5% w/v (◦), 3.0% w/v (4) and 3.5% w/v (∇)
Laponite suspensions. Dashed and solid lines are fits of normalized τ1 and normalized < τww >

to the modified Arrhenius and modified VFT functions (equations 3.2 and 3.3) respectively. In
(b), the shift factors are plotted vs. Laponite concentration. The horizontal shift factors t∞β
(hours) and t∞α (hours), corresponding to the fast and slow relaxation processes respectively,
are denoted by 4 and �, respectively. The vertical shift factors, τ0

1 (µsec) and < τww >
0 (µsec),

are denoted by ∇ and •, respectively.

are reminiscent of the changes that are observed in the fast (β) and slow (α) timescales

of supercooled liquids that are quenched rapidly towards their glass transition temper-

atures Tg [1, 35]. In supercooled liquids, the fast relaxation shows an Arrhenius depen-

dence on temperature T given by: τ1 = τ0
1 exp(E/kBT ). Here, τ0

1 is the fast relaxation

time when T → ∞, E is the depth of the energy well associated with particle motion
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Figure 3.6: The rate q′=(1/t∞α ) at which the system approaches the glass transition is plotted
vs. Laponite concentration. The solid line is an exponential fit.

within the cage and kB is the Boltzmann constant. The slow α-relaxation time, which

represents the timescale associated with cage diffusion in supercooled liquids, demon-

strates a dependence on temperature T that is given by the Vogel-Fulcher-Tammann

(VFT) law: < τww >=< τww >
0 exp(DT0/(T − T0)). Here, the temperature T0 at which

< τww > diverges is called the Vogel temperature and D is the fragility of the material.

The Arrhenius equation is, therefore, a special case of the VFT equation in the limit

T0 → 0 [43]. Clearly, for nonzero values of T0, the slow timescale < τww > diverges

more rapidly than the fast timescale τ1. In figure 3.5(a), we see a very similar situation,

wherein < τww > diverges much more rapidly when compared to τ1. It can therefore

be appreciated that the slowdown observed in aqueous Laponite suspensions is equiv-

alent to that seen in supercooled liquids, with the inverse of the temperature (1/T ) in

the latter case mapped with the waiting time (tw) in the former. In order to assess the

validity of the proposed mapping, we write a modified Arrhenius equation:

τ1 = τ0
1 exp(tw/t∞β ) (3.2)
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Figure 3.7: Superposition of the normalized stretching coefficients β when plotted vs. tw/t∞α

for 2.0% w/v (2), 2.5% w/v (◦), 3.0% w/v (4) and 3.5% w/v (∇) Laponite suspensions. The
straight line is a linear fit. In the inset: vertical shift factor (V) vs. Laponite concentration.

Here, t∞β is a characteristic timescale associated with the slowdown of the fast relax-

ation process. Similarly, the modified VFT equation for the mean α-relaxation time is

written as:

< τww >=< τww >
0 exp(Dtw/(t∞α − tw)), (3.3)

where t∞α is identified as a Vogel time and < τww > is calculated from the distribution of

slow relaxation times ρww(τ) which is obtained by inverting the stretched exponential

part of the autocorrelation decay. D is the fragility index and will be discussed later.

The expression for ρww(τ) is given by [41],

ρww(τ) = −
τww

πτ2

∞∑
k=0

(−1)k

k!
sin(πβk)Γ(βk + 1)

(
τ

τww

)βk+1

(3.4)

In equations 3.2 and 3.3, the inverse of temperature 1/T in the Arrhenius and the VFT

forms for supercooled liquids is mapped with tw and 1/T0 is mapped with t∞α . It can be

seen in figures 3.2 and 3.5(a) that equations 3.2 and 3.3 fit the time-evolution of the τ1

and < τww > data extremely well.
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It is to be noted that multispeckle autocorrelation decay data report an initial cage-

forming regime followed by a power-law full-aging regime [18, 44]. While multi-

speckle spectroscopy probes the ballistic dynamics of Laponite particle rearrangements

over longer timescales (103 - 105 s), the DLS data presented here probes the diffusive

particle dynamics at much smaller timescales (10−5 - 1 s). In contrast to multispeckle

spectroscopy, DLS is an extremely useful technique to estimate the faster relaxation

times (10−5-1 s) of Laponite suspensions in the ergodic cage-forming regime. In the

present work, a linear or power-law dependence of the slow relaxation time on the

suspension waiting time, such as those seen in earlier reports using multispeckle tech-

niques [18, 44], is absent. We note here that while we have restricted our observations

to the ergodic cage-forming regime only, i.e. to a regime in which the autocorrelation

functions decay fully and complex viscosity and Na+ ion concentration increase with

waiting time (figure 3.8). The multispeckle data reported earlier predominantly probed

the ballistic dynamics in the full-aging regime.

In an activated process, the dependence of a characteristic timescale on tem-

perature is used to calculate the activation energy associated with that relaxation phe-

nomenon. For an Arrhenius relaxation process represented by τ1 = τ0
1 exp(E/kBT ), E

is the activation energy and kB is the Boltzmann constant. For a VFT relaxation process

described by < τww >=< τww >0 exp(DT0/(T − T0)), the apparent activation energy

is given by: EVFT = kBd(ln τ)/d(1/T ) = kBDT0T 2/(T − T0)2 [2, 45]. The activation

energies associated with the modified Arrhenius and VFT processes in aging Laponite

suspensions can be estimated by comparing with the corresponding relations for a su-

percooled liquid, with 1/T mapped with tw and 1/T0 with t∞α . These calculations yield

the following results:

E = (kBc1)/t∞β (3.5)

and

EVFT = (kBc2)[Dt∞α /(t
∞
α − tw)2] (3.6)
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Figure 3.8: The simultaneous time-evolution of the sodium ion concentration (�), the com-
plex viscosity (◦) and the mean slow relaxation time(4) of a 3.0% w/v Laponite sample. The
vertical dotted line indicates the glass transition as defined in [3].

Here, equation 3.5 represents activation energy (E) associated with τ1, while equa-

tion 3.6 represents the apparent activation energy (EVFT ) associated with < τww >.

In these equations, kB is the Boltzmann constant, D is the fragility parameter, and c1

and c2 are constants with dimensions [time]×[temperature]. It can be seen in the in-

set of figure 3.9 that the activation energy E associated with τ1 is independent of tw

and shows a power-law dependence on c, the concentration of Laponite (E ∝ c5.7±0.3).

EVFT associated with < τww >, on the other hand, remains constant at small tw (<< t∞α ),

but shows a strong dependence on tw for large tw. In addition, EVFT shifts to smaller

waiting times with increase in concentration of Laponite. This agrees with our earlier

results that Laponite suspensions of higher concentrations are driven faster towards an

arrested state. Furthermore, our data implies that the evolution of the potential energy

landscape with increasing tw is governed only by the α-relaxation process. The self-

similar nature of EVFT with changes in Laponite concentration is apparent when the

data is scaled appropriately (figure 3.10(a)). The same horizontal shift factor t∞α , used
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Figure 3.9: The normalized apparent activation energy (EVFT/kBc2) associated with the α-
relaxation process vs. waiting time (tw) for 2.0% w/v (�), 2.5% w/v (◦), 3.0% w/v (4) and
3.5% w/v (∇) Laponite suspensions. In the inset, the normalized activation energy associated
with the β-relaxation process (E/kBc1) is plotted vs. Laponite concentration c. The solid line
is a power law fit (E = c5.7±0.3).

earlier to superpose the < τww > data, is also used here.

Following the definition proposed by Angell for supercooled liquids, we define the

glass transition time tg as the time since sample preparation at which < τww > = 100

seconds for each Laponite concentration [3]. The Angell plot corresponding to the α-

process of Laponite suspensions is shown in figure 3.10(b). Our data shows the same

behaviour expected for fragile supercooled liquids (shown by the dotted line, where

1/T is mapped onto tw, as discussed in equations 3.2 and 3.3). The straight dashed

line corresponds to strong glassformers for which the α-relaxation timescale shows

Arrhenius behavior. Furthermore, it is observed that the value of the fragility index D

remains almost constant over the Laponite concentration range explored here (inset of

figure3.10(b)). It has been pointed out earlier that caged particles can get trapped in

deeper energy wells with increase in the concentration of a glassformer [46]. However,
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Figure 3.10: (a) Superposition of the normalized apparent activation energies (EVFT ) asso-
ciated with the α-relaxation process is plotted as a function of (tw/t∞α ) for 2.0% w/v (2), 2.5%
w/v (◦), 3.0% w/v (4) and 3.5% w/v (∇) Laponite suspensions. Inset shows the horizontal
(t∞α denoted by 2) and vertical (V ′ denoted by ◦) shift factors vs. Laponite concentration. (b)
Angell plot for 2.0% w/v (2), 2.5% w/v (◦), 3.0% w/v (4) and 3.5% w/v (∇) Laponite sus-
pensions. The dashed diagonal straight line is the Angell plot for strong supercooled liquids,
while the dotted curve is for a fragile glassformers. In the inset, fragility index (D) is plotted
vs. concentration of Laponite suspensions.

our observation that D is independent of Laponite concentration suggests that the over-

all topology of the potential energy landscape of aging Laponite suspensions remains

unchanged even when Laponite concentration is changed [35].

The simultaneous enhancements of the fast and slow timescales at high tw (fig-

ures 3.2 and 3.5) suggests the possibility that both these processes are strongly corre-

lated with each other. In figure 3.11, the timescale t∞β associated with the fast relaxation

process and obtained from fits to equation 3.2 is plotted vs. the glass transition time

tg. It is observed that these two timescales are strongly coupled. A linear fit to the

data (solid line in figure 3.11) yields t∞β = (1.10 ± 0.05)tg. It should be noted that for

supercooled liquids, the activation energy associated with the β-relaxation process was

demonstrated to be proportional to the glass transition temperature Tg, with the exact

relationship being given by Eβ = (24 ± 3)RTg, where R is the universal gas constant

[10–12]. The fast relaxation process in Laponite glasses has previously been identified

as a β-relaxation process [25]. The coupling between t∞β and tg seen in figure 3.11 is
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Figure 3.11: The fast relaxation timescale t∞β vs. the glass transition time tg (from left to

right - 3.5% w/v, 3.0% w/v, 2.5% w/v and 2.0% w/v). The solid line (t∞β ≈ (1.10 ± 0.05)tg) is
a linear fit passing through origin.

not new in the context of the relaxation dynamics in supercooled liquids. The Johari-

Goldstein (JG) β-relaxation seen in supercooled liquids, for example, is seen to be

coupled with the α-relaxation [9–12]. Using ultrasound attenuation spectroscopy, Ali

et. al. demonstrated the fragmentation of Laponite tactoids comprising more than one

Laponite platelet, in addition to the slow absorption of one or two layers of water by

these tactoids [33]. Both these processes contribute to an increase in the effective vol-

ume fraction and can result in the observed slowdown of the fast relaxation process.

We would like to point out here that the fragmentation of clusters into smaller entities

is verified by the DLS results reported here (shaded region in figure 3.2(a)). Both the

relaxation processes reported here therefore slow down due to an increase in effective

volume fraction, which explains the observed coupling between them.

The linear decrease of β with tw (figures 3.4 and 3.7) as the Laponite suspensions

approach the glass transition is similar to the observation in fragile supercooled liquids

(such as o-terphenyl mixtures [47]) where β decreases linearly with 1/T while ap-

proaching its glass transition. This shows that the mapping between the waiting time
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Figure 3.12: (a). Width parameter α1 vs. tw/t∞α for 2.0% w/v (2), 2.5% w/v (◦), 3.0%
w/v (4) and 3.5% w/v (∇) Laponite suspensions. In the inset: distributions of the α-relaxation
timescales plotted for 3.0% w/v Laponite suspension at 2 hr, 5 hr, 10 hr and 20 hr (from top to
bottom). (b) The non-Gaussian parameter α2 vs. tw/t∞α for 2.0% w/v (2), 2.5% w/v (◦), 3.0%
w/v (4) and 3.5% w/v (∇) Laponite suspensions.

of a Laponite suspension in the cage-forming regime and the inverse of the tempera-

ture of a supercooled liquid is valid even though the mechanism by which the glass

transition is approached is totally different in these two cases.

We now analyze the distributions of the α-relaxation timescales for various Laponite

concentrations. The distributions of the α-relaxation timescales for a 3.0% w/v Laponite

suspension, ρww(τ), at four different tw values (2 hr, 5 hr, 10 hr and 20 hr) are estimated

using equation 3.4 and are plotted in the inset of figure 3.12(a). In all the samples stud-

ied, the distributions broaden significantly with increasing waiting time tw. We define a

width parameter α1 =
〈
τ2

ww

〉
− 〈τww〉

2/〈τww〉
2 as a measure of the broadening of ρww(τ).

The calculated values of α1 are seen to superpose when plotted vs. tw/t∞α for all the

Laponite concentrations in figure 3.12(a).

We next calculate the non-Gaussian parameter α2 = (3
〈
τ4

ww

〉
/5

〈
τ2

ww

〉2
) − 1 associ-

ated with the distribution ρww(τ) of the α-relaxation timescales. In figure 3.12(b), α2,

when plotted vs. tw/t∞α , is seen to superpose for all four Laponite concentrations. It is

seen that α2 is very small when tw is small. However, α2 increases sharply at higher

tw for all four Laponite concentrations. In all the superpositions presented here, it is

observed that the horizontal shift factor t∞α decreases rapidly with increasing Laponite
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concentration (figure 3.5(b) and the inset of figure 3.10(a)). The observed superposi-

tions of α1 and α2, which is achieved without any vertical shift for all the Laponite con-

centrations, is an additional verification of the self-similarity of the dynamical slowing

down process.

3.4 Conclusions

In this work, we have extracted the primary and secondary relaxation timescales of

aging Laponite suspensions by modeling the intensity autocorrelation functions ob-

tained from dynamic light scattering measurements. We have compared the dynami-

cal slowing down process of these samples with the slowing down observed in frag-

ile supercooled liquids. While colloidal suspensions of Laponite approach the glass

transition spontaneously with increasing waiting time tw, supercooled liquids are ob-

tained by quenching the temperature of a liquid towards its glass transition temper-

ature at a rate that is rapid enough to avoid crystallization. It is proposed in the

literature that the faster β-relaxation process of a supercooled liquid exhibits an Ar-

rhenius temperature-dependence, while the slower α-relaxation time exhibits a VFT

temperature-dependence [1]. The work reported in this chapter demonstrates the re-

markable similarities that exist in the relaxation processes of soft colloidal suspensions

approaching dynamical arrest and fragile supercooled liquids approaching the glass

transition temperature. This is done by performing a simple one-to-one mapping be-

tween the waiting time since filtration of an aging Laponite suspension and the inverse

of the thermodynamic temperature of a supercooled liquid (tw ↔ 1/T ).

We have identified the secondary and the primary relaxation processes of aging

Laponite suspensions with, respectively, the β and the α-relaxation processes of frag-

ile supercooled liquids. We observe here that the secondary relaxation time of aging

Laponite suspensions exhibits exponential dependence on waiting times and is strongly

coupled with α-relaxation process. This kind of coupling with the α-relaxation process

is seen for the Johari-Goldstein β-relaxation process reported for supercooled liquids
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in polarization-sensitive measurements. Furthermore, we have shown that the evo-

lutions of both the primary and secondary relaxation processes are self-similar with

increasing Laponite concentration. Our estimates for the apparent activation energy

corresponding to the α-relaxation process, the widths of the distributions of the α-

relaxation timescales and the non-Gaussian parameters characterizing these distribu-

tions also confirm the self-similar dynamics of Laponite suspensions with increasing

Laponite concentrations.

A simple relation is known to exist between the glass transition temperature Tg

and energy scale E (the activation energy corresponding to the β relaxation process) of

supercooled liquids. In this work, we have calculated the glass transition time tg [3],

and have defined a new timescale corresponding to the secondary relaxation process,

t∞β , to characterize the dynamical slowing down process in Laponite suspensions. We

demonstrate the existence of a relationship between these timescales that is strongly

reminiscent of the relationship that was established between the glass transition tem-

perature and the energy scale corresponding to the β-relaxation process of supercooled

liquids approaching their glass transitions.

A comparison of our data with the results obtained for suspensions of hard spheres

near the glass transition shows that a suspension of Laponite platelets evolves in the

same way with increasing waiting time as a suspension of hard spheres whose volume

fraction is increased towards the random close packing fraction of φc= 0.638 [14]. It

has been noted earlier that the particle exfoliation process and the inter-platelet interac-

tions in aging Laponite suspensions evolve spontaneously with waiting time, resulting

in an increase in the effective volume fraction and a simultaneous decrease in the ac-

cessible volume available to the system. This eventually leads to dynamical arrest. In

the present case, the increase of the volume fraction is driven by a very complex inter-

play between the fragmentation/exfoliation process, and the evolution of the sodium

ion concentration, which results in an evolution of the inter-particle interaction. It

has been observed that precise experimental determination of volume fractions of col-

loidal suspensions remains a challenging problem [48]. In hard sphere suspensions,
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the volume fraction plays the same qualitative role as the inverse of temperature in

the glass transition of molecular glasses and supercooled liquids [13, 14]. The map-

ping (tw ↔ 1/T ) established here demonstrates that aging Laponite suspensions, hard

sphere glasses and fragile supercooled liquids approach their glass transitions in very

similar manners, thereby confirming that aqueous suspensions of Laponite are model

glass formers.
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Lett., 40, 649-654 (1997).

[11] A. Kudlik, C. Tschirwitz, T. Blochowicz, S. Benkhof, E. Rössler, J. Non-Cryst.
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4
Effects of physicochemical

interactions on the aging dynamics

of colloidal suspensions of Laponite

4.1 Introduction

Interparticle interactions in colloidal dispersions determine their microstructures, which,

in turn, influence their physical properties. In the limit of small concentrations, col-

loidal particles scarcely interact with each other, with the dispersions existing in the

liquid state. Upon increasing the concentration, enhanced interparticle interactions can

lead to self-assembled structures that strongly depend upon the charges and the shapes

of the particles [1, 2]. The complexity of the structure is expected to increase if the par-

ticles possess dissimilar charges and anisotropic shapes [3]. Moreover, in some cases,
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the spontaneously formed structures may not be in thermodynamic equilibrium and

can continue to evolve with time over the observation timescales [4]. In this chapter,

we study the relaxation dynamics of aqueous colloidal dispersions of the smectite clay

Laponite. Laponite particles are characterized by their anisotropic shapes, dissimilar

charges and time dependent structures in aqueous suspensions even at very small par-

ticle concentrations [3].

A series of rheological studies were carried out by Shahin and Joshi on Laponite

suspensions [5–7]. They monitored the evolution of the elastic moduli of the suspen-

sions as a function of time for different control variables, viz. Laponite concentration

(CL), externally added salt (CS ), temperature (T ) and the time, ti, at which shear melt-

ing was carried out after preparation of the Laponite suspension. Due to the weak

sample microstructure expected during the first few days after sample preparation, the

authors explored the aging behavior of only older samples (ti ≥ 7 days for Laponite

suspensions without externally added salt and ti < 7 days for suspensions with high

concentrations of externally added salt) [5]. This study reveals that older shear-melted

suspensions have larger elastic moduli than the younger shear-melted ones. This indi-

cates that the permanent structures in aged Laponite suspensions cannot be destroyed

even by applying very large shear deformations. For the older samples, therefore, the

aging dynamics subsequent to shear-melting begins at a matured low energy level. The

evolution of the elastic modulus was observed to take place at a faster rate with increase

in CL, CS and T , indicating that the process of structure buildup is faster for increas-

ing values of these three variables. Finally, ionic conductivity was also measured as a

function of these variables and it was demonstrated that the Debye screening lengths of

Laponite suspensions decrease with increase in Laponite and salt concentrations. The

interparticle interaction between two approaching parallel plates was estimated using

DLVO (Derjagiun-Landau-Verwey-Overbeek) theory for various electrostatic screen-

ing conditions. It was observed that increasing the concentrations of particles and salt

and the sample temperature increases the heights of the repulsive energy barriers while

simultaneously decreasing their widths. The observations in [5] can be understood in
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terms of the dissociation of Na+ ions from the faces of the Laponite particles which

increases the electronegativity of each particle face and induces an attraction between

the edges and the faces of the Laponite discs. These results therefore clearly empha-

size that the influence of attractive interactions in older Laponite suspensions cannot be

ignored and are in close agreement with the observations of Ruzicka and co-workers

[8].

In this chapter, we employ dynamic light scattering (DLS) to study the relaxation

dynamics of Laponite suspensions whose ages are much smaller than those in Shahin

and Joshi’s work [5]. These dynamics are studied as a function of the concentrations

of Laponite (CL) and salt (CS ) and the sample temperature (T ). The spontaneously

evolving Laponite suspensions used here are less than three days old (aging time or

waiting time, tw < 3 days) and therefore can be classified as comparatively younger

than the samples used in [5]. The present study, therefore complements the rheolog-

ical studies performed on the much older samples [5]. We extract the evolution of

the relaxation dynamics of Laponite suspensions from our DLS data to understand the

complex aging dynamics of the samples. To gain further insight into the dynamics

and microstructures, we measure the ionic strengths of the samples and analyze the

physicochemical interactions in Laponite suspensions using the DLVO theory.

4.2 Sample preparation and experimental methods

All the experiments reported in this chapter are done using Laponite RDr. The de-

tails of preparation of Laponite suspensions are given in chapter 3. A sodium chlo-

ride (NaCl procured from Sigma-Aldrich) solution of a predetermined concentration

is added to the filtered Laponite suspension using a pipette. The suspension is vigor-

ously stirred during addition of the salt solution. The sample is then filled and sealed

properly in a cuvette for the DLS experiments. The waiting time or the aging time tw is

calculated from the moment the sample is sealed. The measure of concentration in %
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Figure 4.1: The normalized intensity autocorrelation functions C(t), vs. the delay time t,
at 15◦C and scattering angle θ = 90◦, for 3.0% w/v Laponite suspension with 0.05 mM salt at
several tw. The solid lines are fits to equation 4.1.

w/v refers to the weight of Laponite in grams that is mixed in 100 ml (100 gm) of Milli-

pore water. Details of the experimental techniques (DLS and sodium ion concentration

measurement) used to perform the experiments are described in chapter 2.

4.3 Results and discussions

The evolution of the relaxation time of an aging Laponite suspension is estimated by

analyzing the intensity autocorrelation function g(2)(t) for different waiting times, tw,

after the sample is sealed in the cuvette. The normalized intensity autocorrelation func-

tion, C(t) = g(2)(t)−1, as a function of delay time t, for a 3.0% w/v Laponite suspension

with 0.05 mM salt concentration at 15◦C is plotted in figure 4.1 for different waiting

times tw. It is observed from figure 4.1 that the decay in C(t) slows down with increas-

ing tw. Furthermore, C(t) exhibits a two-step decay which is typical of glass-forming

materials as they approach the glass transition [9] and is discussed in detail in the pre-

vious chapters.
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For a molecular glass former where the glass transition is driven by a rapid de-

crease in temperature, the faster β-relaxation process shows an Arrhenius temperature

dependence, while the slower structural α-relaxation process exhibits a Vogel-Fulcher-

Tammann (VFT) temperature dependence [10–12]. In chapter 3, it was shown that

the glass transition of spontaneously evolving Laponite suspensions is waiting time

(tw) driven and can be compared to the glass transition of supercooled liquids by a

one-to-one mapping between the waiting time (tw) of the former and the inverse of the

temperature (1/T ) of the latter [13]. The two-step relaxation in C(t) shown in figure 4.1

can be expressed in the following way [13–15]:

C(t) = [a exp {−t/τ1} + (1 − a) exp
{
−(t/τww)β

}
]2 (4.1)

Equation 4.1 fits all the autocorrelation data acquired in DLS experiments for Laponite

suspensions characterized by different CL, CS and T . In all the fits, a, τ1, τww and β as

the fitting parameters. It is seen from the fits that the relaxation time τ1 associated with

the exponential relaxation process are always faster than the slow relaxation time τww.

τ1 is therefore associated with the fast relaxation process of the soft glassy Laponite

suspension and is believed to arise from the motion of particles within cages formed

by their neighbors [16]. The intercept a is a measure of the relative strength of this

fast relaxation process. The slow non-exponential relaxation process, which yields the

slow relaxation time τww, is associated with the cooperative diffusion of a particle out

of its cage [13, 14, 17]. The mean value of τww is defined by < τww >= (τww/β)Γ (1/β)

[18], where β is the stretching exponent (β <1) and Γ is the Euler Gamma function.

In figure 4.2(a), < τww > is plotted as a function of tw for Laponite suspensions

of several different CL, and CS = 0.05 mM at T = 25◦C. It is apparent from the figure

that the time-evolutions of < τww > possess self-similar curvatures at different Laponite

concentrations. The superposition of the slow relaxation times that is achieved by suit-

ably normalizing both axes by shift factors for different concentrations is shown in

figure 4.3(a). The horizontal and vertical shift factors are plotted in figure 4.3(b). In
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Figure 4.2: Mean slow relaxation times < τww >, obtained by fitting the C(t) data to equa-
tion 4.1, are plotted vs. tw for different CL, CS and T values in (a)-(c).
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Figure 4.3: (a) Superposition of mean slow relaxation times < τww > / < τww(CL) > is
shown vs. tw/τα(CL) for four different Laponite concentrations (CL=2.0% w/v (�), 2.5% w/v
(◦), 3.0% w/v (4) and 3.5% w/v (∇)) with 0.05 mM salt at 25◦C. (b) Horizontal and vertical
shift factors, τα(CL) (�) and < τww(CL) > (◦) respectively, are plotted vs. CL. (c) Superposition
of mean slow relaxation times < τww > / < τww(CS ) > is shown vs. tw/τα(CS ) for 3.0% w/v
Laponite suspensions with four different salt concentrations (CS =0 mM (�), 0.05 mM (◦), 0.1
mM (4) and 0.5 mM (∇)) at 25◦C. (d) Horizontal and vertical shift factors, τα(CS ) (�) and
< τww(CS ) > (◦) respectively, are plotted vs. CS . (e) Superposition of mean slow relaxation
times < τww > / < τww(T ) > is shown vs. tw/τα(T ) for 3.0% w/v Laponite suspensions with
0.05 mM salt and at four different temperatures (T=15◦C (�), 25◦C (◦), 40◦C (4) and 60◦C
(∇)). (f) Horizontal and vertical shift factors, τα(T ) (�) and < τww(T ) > (◦) respectively, are
plotted vs. inverse of temperature (1000/T ).
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figure 4.2(b), we plot < τww > vs. tw for Laponite suspensions having different CS with

CL = 3.0% w/v at T = 25◦C, while in figure 4.2(c), we plot the evolutions of < τww >

with tw for Laponite suspensions of CL = 3.0% and CS = 0.05 mM at several T values.

Clearly, all the plots in figures 4.2(b) and (c) also show self-similar curvatures. The

superpositions of the above data with changing CS and T are plotted in figures 4.3(c)

and (e) respectively and the corresponding shift factors used for the superpositions are

shown in figures 4.3(d) and (f) respectively.

Similar to the data for < τww >, τ1 and β are also observed to be very sensitive

to CL, CS and T (figures 4.4 and 4.5). A comparison of the data in figures 4.2 and 4.4

reveals that the increase in < τww > with tw is much stronger than for τ1 for all the sam-

ples investigated here. This results in a separation of the α and β relaxation timescales

as the sample ages, with the two-step relaxation process being very clearly visible for

the older samples (figure 4.1). It is seen from figure 4.5 that β decreases linearly with

tw when CL, CS and T are changed. As in the case of < τww >, τ1 and β also show self-

similar time evolutions when CL, CS and T are varied. This is seen in figures 4.6(a)-(f)

and figures 4.7(a)-(f), where the superimposed time-evolution curves and the horizon-

tal and vertical shift factors used to obtain the superpositions are plotted. It is important

to note that the time-evolutions of < τww >, τ1 and β shift to smaller waiting times with

increase in CL, CS and T . Interestingly, for a given CL, CS and T , the horizontal shift

factors used to superpose the < τww > and β data (plotted in figures 4.3 and 4.7) are

approximately the same.

In figure 4.8(a), we plot the comprehensive Laponite concentration - salt concen-

tration - temperature - time superpositions of the < τww > data (figure 4.2). Similar

comprehensive overlaps are also observed for τ1 (figure 4.4) and β (figure 4.5), and are

shown in figure 4.8. The excellent superpositions suggest that the temporal evolutions

of the relaxation processes in Laponite suspensions are self-similar when CL, CS and T

are varied, indicating that the underlying energy landscapes remain self-similar when

these variables are changed. These results are similar to the ones reported earlier for
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Figure 4.4: Fast relaxation times τ1 are plotted vs. waiting times tw for different CL, CS and
T values in (a)-(c).
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Figure 4.5: Stretching exponents β are plotted vs. tw for different CL, CS and T values in
(a)-(c).
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Figure 4.6: (a) Superposition of fast relaxation times τ1/τ1(CL) is shown vs. tw/τβ(CL) for
four different Laponite concentrations (CL=2.0% w/v (�), 2.5% w/v (◦), 3.0% w/v (4) and
3.5% w/v (∇)) with 0.05 mM salt at 25◦C. (b) Horizontal and vertical shift factors, τβ(CL)
(�) and τ1(CL) (◦) respectively, are plotted vs. CL. (c) Superposition of fast relaxation times
τ1/τ1(CS ) is shown vs. tw/τβ(CS ) for 3.0% w/v Laponite suspensions with four different salt
concentrations (CS =0 mM (�), 0.05 mM (◦), 0.1 mM (4) and 0.5 mM (∇)) at 25◦C. (d) Hori-
zontal and vertical shift factors, τβ(CS ) (�) and τ1(CS ) (◦) respectively, are plotted vs. CS . (e)
Superposition of fast relaxation times τ1/τ1(T ) is shown vs. tw/τβ(T ) for 3.0% w/v Laponite
suspensions with 0.05 mM salt and at four different temperatures (T=15◦C (�), 25◦C (◦), 40◦C
(4) and 60◦C (∇)). (f) Horizontal and vertical shift factors, τβ(T ) (�) and τ1(T ) (◦) respectively,
are plotted vs. inverse of temperature (1000/T ).
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Figure 4.7: (a) Superposition of stretching exponents β/β(CL) is shown vs. tw/τα(CL) for
four different Laponite concentrations (CL=2.0% w/v (�), 2.5% w/v (◦), 3.0% w/v (4) and
3.5% w/v (∇)) with 0.05 mM salt at 25◦C. (b) Horizontal and vertical shift factors, τα(CL)
(�) and β(CL) (◦) respectively, are plotted vs. CL. (c) Superposition of stretching exponents
β/β(CS ) is shown vs. tw/τα(CS ) for 3.0% w/v Laponite suspensions with four different salt
concentrations (CS =0 mM (�), 0.05 mM (◦), 0.1 mM (4) and 0.5 mM (∇)) at 25◦C. (d) Hori-
zontal and vertical shift factors, τα(CS ) (�) and β(CS ) (◦) respectively, are plotted vs. CS . (e)
Superposition of stretching exponents β/β(T ) is shown vs. tw/τα(T ) for 3.0% w/v Laponite
suspensions with 0.05 mM salt and at four different temperatures (T=15◦C (�), 25◦C (◦), 40◦C
(4) and 60◦C (∇)). (f) Horizontal and vertical shift factors, τα(T ) (�) and β(T ) (◦) respectively,
are plotted vs. inverse of temperature (1000/T ).
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Figure 4.8: (a) The comprehensive superposition of the scaled mean slow relaxation times
< τww > / < τww(CL) >, < τww > / < τww(CS ) >, < τww > / < τww(T ) > is plotted vs. waiting
time tw/τα(CL), tw/τα(CS ), tw/τα(T ). Here, < τww(CL) >, < τww(CS ) > and < τww(T ) >
are, respectively, the vertical shift factors for < τww > when CL, CS and T are changed and
τα(CL), τα(CS ) and τα(T ) are the corresponding horizontal shift factors (plotted in figure 4.3
(b), (d) and (f)). (b) The comprehensive superposition of scaled fast relaxation times τ1/τ1(CL),
τ1/τ1(CS ), τ1/τ1(T ) is plotted vs. scaled waiting time tw/τβ(CL), tw/τβ(CS ), tw/τβ(T ). Here,
τ1(CL), τ1(CS ) and τ1(T ) are, respectively, the vertical shift factors for scaling τ1 when CL, CS

and T are changed and τβ(CL), τβ(CS ) and τβ(T ) are the corresponding horizontal shift factors
(plotted in figure 4.6 (b), (d) and (f)). (c) The comprehensive superposition of scaled stretching
exponents β/β(CL), β/β(CS ), β/β(T ) is plotted vs. scaled waiting times tw/τα(CL), tw/τα(CS ),
tw/τα(T ). Here, β(CL), β(CS ) and β(T ) are, respectively, the vertical shift factors for scaling β
when CL, CS and T are changed and τα(CL), τα(CS ) and τα(T ) are the corresponding horizontal
shift factors (plotted in figure 4.7 (b), (d) and (f)).
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significantly old rejuvenated Laponite suspensions [5]. The results reported here there-

fore demonstrate that the time-evolutions of the relaxation processes remain similar in

young and old Laponite samples. This is attributed to the fact that whatever the initial

state of the sample, the process of structural build-up is dictated only by the interac-

tions that the particles share among themselves.

Figure 4.8(b) clearly shows that τ1 has a non-monotonic aging behavior with a

minimum at small tw. The initial decrease in τ1 indicates the faster motion of the par-

ticle within its cage at short times. Interestingly, < τww > remains almost constant

over the same duration. We believe that the decrease in τ1 originates from the delam-

ination of Laponite particles at early times, a scenario that has been reported earlier

[13, 19]. It is seen from figure 4.8 that τ1 and < τww > increase simultaneously before

they eventually diverge. This observation suggests that the enhancements in both the

relaxation timescales are correlated. For a material with purely repulsive interparticle

interactions, the fast timescale is expected to remain finite, while the slow timescale

diverges as the system approaches structural arrest. It is also seen in figure 4.5 that β

decreases linearly with tw and the decay becomes faster with increase in CL, CS and T .

β=1 represents a simple exponential decay with a single dominating relaxation time,

while β < 1 indicates a broadening of the distribution of relaxation times with tw [18].

Usually, glasses formed by dominating repulsive interactions are known to preserve

the shapes of the relaxation time distributions during aging. This has been confirmed

for polymer glasses [20, 21], spin glasses [22], colloidal glasses with hard sphere in-

teractions [23], microgel pastes [24] and concentrated emulsions [7]. On the other

hand, chemical gels with covalent bonds between the polymeric chains and attractive

colloidal gels are known to undergo broadening of their relaxation time distributions

as a function of time [25–28]. Clearly, the spontaneously evolving young Laponite

suspensions studied here show features that can be identified with colloidal gelation.

Hence, the observations from our DLS experiments indicate an influence of attractive

interactions. The correlation between τ1 and < τww > and the decrease in β with tw also

remarkably corroborate the rheological observations reported earlier [29, 30].
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It is necessary to quantify the interaction potentials between Laponite particles to

verify the influence of attractive interactions postulated from the DLS experiments. We

next estimate the concentrations of Na+ present in the aging Laponite suspensions of

different CL, CS and T . Na+ in the suspensions can originate from the externally added

NaCl and from the dissociation of Na+ from the faces of Laponite particles into the

bulk aqueous medium. Since concentration of externally added NaCl (CS ) is known,

an estimation of the time-evolution of Na+ ions can yield important information about

the dissociation of Na+ from the faces of the Laponite platelets. An estimation of the

concentration of the dissociated Na+ can be used to predict the amount of negative

charges on the faces of the Laponite particles. The electronegativity of the Laponite

particles, and hence the range of the electrostatic potential associated with the faces of

these particles, can be then quantified by estimating the surface charge densities σ and

the Debye screening lengths κ−1. σ can be obtained by estimating the number of Na+

dissociated per face of each Laponite particle and is given by σ = e(n − n0)/(2ALnp),

where n0 is the number density of ions due to the added salt, AL is the area of the face

of a Laponite particle (=625 nm2) and np is the number density of Laponite particles.

κ−1 is given by κ−1 =
(
ε0εrkBT/

∑
i(zie)2ni

)1/2
[2], where ε0 is the permittivity of free

space, εr is the relative permittivity of the medium, kB is the Boltzmann constant, T is

the temperature of the suspension, e is the charge of an electron and zi is the valence

of the ith species of ions of concentration ni. In aqueous suspensions of Laponite, two

types of ions, Na+ and Cl−, influence κ−1. The concentration of Na+ in suspension is

obtained using an ion meter, while the concentration of Cl− ions is known a priori as

CS is fixed in every experiment.

The concentrations of Na+, measured for Laponite suspensions at different CL, CS

and T , are used to extractσ and κ−1 values associated with the Laponite particles. Inter-

estingly, for all Laponite suspensions, the concentrations of Na+ progressively increase

as a function of time (figure 4.9). This indicates a continuous dissociation of Na+ from

the faces of Laponite particles with increasing tw. This results in a continuous temporal

change in σ and κ−1 with change in CL, CS and T (figure 4.10). For a given tw, the Na+
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Figure 4.9: The Na+ ion concentration vs. waiting time (tw) for different CL, CS and T
values in (a)-(c).
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Figure 4.10: Surface charge density (σ) and Debye screening length (κ−1) are plotted vs. tw
for different CL, CS and T values in (a)-(f).

concentration is higher for greater CL, CS and T (figure 4.9). Increasing CL, CS and

T , therefore, all result in increased dissociation of Na+ and enhancement of the sur-

face electronegativity of the Laponite particles. A larger number of Na+ in suspension

enhances the screening and decreases the values of κ−1, as observed in figures 4.10(b),

(d) and (f).

To understand the effects of the enhanced electronegativity of the faces of Laponite
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Figure 4.11: Free energy per unit area (W) between two layers of 2:1 Laponite clay (pla-
nar surfaces) calculated from DLVO theory and plotted as a function of half the distance, d,
between Laponite platelets for a 3.0% w/v Laponite suspension with 0.1 mM salt at 25◦C at
different waiting times tw (from top to bottom 10.0 hour, 5.0 hour, 1.5 hour and 0.25 hour). In
the inset, the free energy per unit area for the double layer repulsive interaction WDL, attractive
van der Waals interaction (WvdW and the combined interaction WDL + WvdW are plotted vs. κd
for the same sample at tw =10.0 hour.

particles with increasing CL, CS and T and the observed decrease in the Debye screen-

ing lengths, we solve the DLVO model for a scenario in which two plates approach

each other in a parallel fashion. The total free energy per unit area, due to van der

Waals attraction (WvdW) and double layer repulsion (WDL) between the two layers of a

2:1 layer clay for weak interactions (i.e. κd large), is given by [3]:

W(d) = WvdW +WDL = −
AH

48π

[
1
d2 +

1
(d + ∆)2 −

2
(d + ∆/2)2

]
+

(
64nkBT

κ

)
γ2e−2κd (4.2)

Here, AH is the Hamaker constant (1.06 × 10−20 J), d is the half-distance between

two Laponite platelets as shown in the inset of figure 4.11, ∆ is the thickness of

unit layers measured between the same planes (6.6 Å) [3], γ = tanh(zeΦ0/4kBT ),

Φ0 is the surface electric potential. Φ0 is related to σ by σ = e(n − n0)/ALnp =
√

8ε0εrkBTn sinh (zeΦ0/2kBT ) [3].

In figure 4.11, we plot the total free energy of interaction W(d) vs. the half-distance

94



4.3 Results and discussions

d between the Laponite platelets for a 3.0% w/v Laponite suspension with 0.1 mM salt

at 25◦C for different tw. It can be seen that the height of the repulsive barrier in-

creases with the passage of time. However, it can be simultaneously observed that

the width of the repulsive barrier decreases with tw. In the inset, we have shown the

contributions from the different parts (repulsive (WDL), attractive (WvdW) and combined

(WDL + WvdW)) to the total free energy. Clearly, the effect of the van der Waals interac-

tion is negligible except in the limit of d << κ−1.

For a Laponite suspension of fixed CL and CS , an increase in T leads to an increase

in the concentration of dissociated Na+ counter-ions. Therefore, the predictions of the

DLVO theory for different temperatures will also be qualitatively similar to the results

plotted in figure 4.11, with tw replaced by T [13]. Consequently, an increase in T is

expected to cause an increase in the repulsive energy barrier, while simultaneously de-

creasing the barrier width. Unlike temperature T and waiting time tw, a change in the

concentration of salt, CS , keeps the value of γ unaffected. However, since 1/κ ≈ 1/
√

n,

the coefficient nkBT/κ in equation 4.2 increases with increase in concentration of salt

according to nkBT/κ ≈
√

n. Consequently, the qualitative behavior of the free energy

per unit area calculated using DLVO theory with increase in CS will be the same as

that shown in figure 4.11, but with tw replaced by CS . Similarly, an increase in CL,

the concentration of Laponite, causes an increase in n, and since nkBT/κ ≈
√

n, the

qualitative behavior of the interparticle potential is again expected to remain the same

as that shown in figure 4.11, but with tw replaced by CL.

Microscopically, aqueous suspensions of Laponite consist of randomly-oriented

disk like particles that interact via face-to-face repulsive interactions, edge-to-face at-

tractive interactions and van der Waals interactions. The physical cages in which the

individual particles are arrested can be represented as energy wells. The complex in-

terparticle interaction between the anisotropic particles results in a distribution of well

depths in the sample’s free-energy landscape. As the suspension is not in the lowest

free energy state, Laponite particles continue to undergo microscopic motions as tw

increases. This gives rise to structural rearrangements, or physical aging, and results
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in the eventual occupation of those states that have lower energy. If E is the mean en-

ergy well depth, the cage diffusion or the slow timescale can simply be represented by

〈τww〉 = 〈τww〉0 exp (E/kBT ). Consequently, the increase in 〈τww〉, which represents an

increase in the mean energy well depth, is a manifestation of a physical aging process.

In this process, the timescale associated with the microscopic dynamics, which sets a

unit timescale for the physical aging process, is represented by a microscopic timescale

τm [31]. The time dependence of the mean energy well depth can then be represented

by: E = E (tw/τm). The microscopic timescale τm, which is a measure of the rate of

the evolution of < τww >, can also be considered to have an Arrhenius temperature

dependence given by τm = τm0 exp (U/kBT ) [5]. Here, U, the activation energy barrier

associated with microscopic motion, sets the aging timescale τm and is distinct from

E, the average depth of the energy well in which the particles reside [5]. As reported

earlier, the self-similar evolution of < τww > shifts to lower waiting times with increase

in CL, CS and T . Therefore, the shift factors associated with the time axis shown in

figures 4.2 and 4.8(a) can be related to microscopic timescale as: τm = τm (CL,CS ,T ).

Consequently, as per dependencies described in figures 4.3(b), (d) and (f), it can be

concluded that τm decreases with increase in these variables. A decrease in τm indi-

cates that the activation barrier U for microscopic motion decreases with increase in

CL and CS . As already noted, the aging behavior of Laponite suspensions gets affected

by T even more strongly. First, τm decreases with increase in T through the Arrhenius

relationship cited earlier [5]. Increase in T also results in an increase in the concentra-

tion of Na+ in suspension. Therefore, any change in T is expected to strongly affect

the activation barrier U.

The results of our light scattering study and DLVO analysis, therefore, present a

very interesting scenario. The light scattering study clearly suggests that the activation

energy U, associated with the microscopic motion of the particles, sets a timescale τm

for structural reorganization events, which determines the rate of aging. This timescale

(τm) decreases with increasing CL, CS and T as mentioned before, accelerating the ag-

ing dynamics. A decrease in τm, in turn, indicates a decrease in U. Furthermore, due to
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its Arrhenius temperature dependence, τm is expected to decrease with increase in T .

However, the DLVO analysis shows that CL, CS and T not only cause an enhancement

in the height of the repulsive potential, but also lead to a shrinkage in the width of the

repulsive potential. Therefore, as increasing CL, CS and T results in a decrease in the

width of the repulsive barrier leading to accelerated structure formation (or a decrease

in U), it is concluded that the formed structure cannot be only repulsion dominated.

We note that the predictions of the DLVO theory are applicable strictly to the case

when two Laponite particles approach each other in a parallel fashion as shown in the

inset of figure 4.11. The DLVO interaction in the present case can only be solved

for two parallel plates approaching each other. However, if the particles approach

non-parallely, then the edge-to-face attraction will increase. Therefore, for such non-

parallel orientations, increase in CL, CS and T will give rise to an enhanced decrease

in the energy barrier U associated with structure formation. Hence, for all orientations

of Laponite particles, attractive interaction will have an important influence on the low

energy structures.

4.4 Conclusions

In this work, we use dynamic light scattering to study the fast and slow relaxation

timescales of young Laponite suspensions as a function of the aging or waiting times

tw. The time-evolutions of the relaxation processes of young Laponite suspensions

under various physicochemical conditions are investigated systematically by chang-

ing the Laponite concentration CL, the salt concentration CS and the suspension tem-

perature T using both DLS and Na+ measurements. Our data shows that both the

fast and slow relaxation processes are self-similar upon changing CL, CS and T . The

stretching exponents β, associated with the slow relaxation timescales, also show self-

similarity. The Laponite concentration-salt concentration-temperature-time superpo-

sitions obtained here highlight the self-similar nature of the energy landscapes of

Laponite suspensions when these physicochemical variables are changed. We also see
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signatures of a delamination effect of Laponite particles at early time when all these

variables are changed.

For aqueous suspensions of Laponite without externally added salt, small angle

X-ray scattering has established the presence of a repulsive glass at Laponite concen-

trations above 2 wt% [32] where the particles do not touch each other and remain

self-suspended. Also, dissolution [8] and rheological studies [5] showed that young

Laponite suspensions (tw < 2-3 days) are primarily repulsion dominated, while at-

tractive interactions strongly influence the structures of old samples (3 days < tw <

7 days). The present study combines DLS, Na+ measurements and a DLVO analysis

to show that even in young suspensions (tw < 2 days), the effect of attractive interac-

tions is not negligible. However, it is extremely likely that the attractive interactions in

young Laponite suspensions are weaker than the solvation forces that are likely to have

dominated in the dissolution experiments mentioned above [8]. While this work gives

unique insight into the possible structure of the arrested state, it still cannot give direct

structural information. In any case, we believe that the present study complements sev-

eral previous reports on the aging of aqueous suspensions of Laponite by suggesting

that in an overall repulsive environment, the attractive interactions between Laponite

particles in aqueous suspension play an extremely influential role in exploring low

energy structures.
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5
Kinetics of the glass transition of

fragile soft colloidal suspensions

5.1 Introduction

The dependence of transport properties (diffusivity, viscosity etc.) and structural relax-

ation times near the glass transition are of crucial importance in understanding glass

formers. A few key observations, like the rapid increase of viscosity near the glass tran-

sition temperature Tg, the heat-capacity jump at Tg, the Kauzmann entropy catastrophe,

the super-Arrhenius temperature dependence of the structural relaxation processes, and

fragile behavior are common to many glass formers [1–3]. An enormous increase in

viscosity and relaxation time (14 decades and more) is observed as a molecular glass

former is quenched towards its glass transition temperature [4]. Specific heat measure-

ments show a jump in the heat-capacity at Tg and the extent of the jump, in general, is
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5. Kinetics of the glass transition of fragile soft colloidal suspensions

larger for a fragile glass [2]. Fragile glasses show super-Arrhenius temperature depen-

dence and exhibit an extremely steep increase in viscosity η which can be expressed

by the Vogel-Fulcher-Tammann (VFT) relation, i.e., η = η0 exp [DT0/(T − T0)]. Here,

T0 is the Vogel temperature at which η diverges. The fragility parameter D quantifies

the deviation from Arrhenius behavior. D is a material specific quantity [5], whose

magnitude is small (typically <10) for fragile supercooled liquids and can change to

very large values for strong glass formers. It is very difficult to differentiate between

an Arrhenius temperature dependence and a super-Arrhenius temperature dependence

for D > 100 [5, 6].

The relation between the fragility parameter D and the structural properties of a

material is still not completely understood despite many theoretical and experimental

studies. A correlation is drawn between the fragility of a material and its physical

properties, i.e. its Poissons ratio or the relative strength of its shear and bulk moduli

[7]. The relation between the nature of the interaction potential and fragility has also

been studied for model binary mixture glass formers [8] and colloidal glass formers

[9]. In the supercooled liquids literature, Tg is the temperature at which the mean α-

relaxation time (< τα >) is 100 sec [5, 6]. It is to be noted that Tg depends on the

heating or cooling rate [10].

The phenomenology of glass formers have often described by a potential energy

landscape (PEL) [11, 12] which can be visualized in terms of a multi-dimensional sur-

face describing the dependence of the potential energy of the system as a function of

the particle coordinates [13]. If N is the number of particles, then the dimension of the

hyperspace is 3N + 1, with the system represented by a point evolving temporally in

this complex potential hyperspace [13]. In this topographic description, the minima of

the PEL correspond to mechanically stable arrangement of particles [13]. A correla-

tion is drawn between the fragility of a glass former and the density of minima in the

PEL. Fragile glass formers are observed to have more density of minima than strong

glass formers [5]. Interestingly, the PEL is particularly useful to calculate another im-

portant quantity, the configurational entropy (S c) of a supercooled liquid [14]. In the
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supercooled regime, S c is the excess entropy of the liquid over its crystalline phase. At

a hypothetical temperature known as Kauzmann temperature TK , S c vanishes and the

system is postulated to go through a thermodynamic transition to avoid a catastrophe

(the Kauzmann catastrophe) which would require the entropy of the crystalline state to

be greater than that of the liquid state. The resultant ‘ideal glass’ state corresponds to

the global minimum of the PEL [11].

Even after decades of research, a proper understanding of the ideal glass state and

the link between the thermodynamics and kinetics of glass formers remains elusive.

However, it is seen that for most fragile supercooled liquids, TK is approximately equal

to T0, indicating a possible relation between its thermodynamics and kinetics [6]. The

random first order transition theory of the glass transition predicts a possible relation

between the stretching exponent β of the non-Debye α-relaxation and TK [15]. It is

believed that β is temperature dependent and vanishes at TK which corresponds to the

divergence of the width w of the α-relaxation spectrum [15, 16].

This chapter describes further analysis of the microscopic relaxation processes of

colloidal suspensions of Laponite approaching the jamming transition and discussed

earlier in chapters 3 and 4. The evolution of microscopic relaxation timescales are

studied for Laponite suspensions with different concentrations (CL), added salt con-

centrations (CS ) and temperatures (T ) to observe the effects of these variables on the

fragility parameter D. It has been confirmed in chapters 3 and 4 that the evolutions of

relaxation timescales of Laponite for all CL, CS and T can be compared with molec-

ular glass formers if the waiting time (tw) of the former is mapped with the inverse

of thermodynamic temperature (1/T ) of the latter [17]. The stretching exponent β,

associated with the non-Debye structural relaxation processes, is also extracted for dif-

ferent waiting times tw for samples of different CL, CS and T . A hypothetical timescale

tk at which the width of the distribution of structural relaxation times diverges is de-

fined by extrapolating β → 0. It is shown here that this timescale is correlated to the

timescale t∞α at which the mean structural relaxation time diverges. This remarkable

correlation between these two hypothetical timescales is reminiscent of the correlation
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5. Kinetics of the glass transition of fragile soft colloidal suspensions

Figure 5.1: The normalized intensity autocorrelation functions C(t), vs. the delay time t,
at 25◦C and scattering angle θ = 90◦, for 2.5% w/v Laponite suspension with 0.05 mM salt at
several tw. The solid lines are fits to equation 5.1. Data are shifted by an additive constant for
better visibility.

of two hypothetical temperatures, the Kauzmann and Vogel temperatures, seen pre-

viously in extremely fragile molecular glass formers. We explain this correlation by

appropriately modifying the coupling model for molecular glass formers and by an-

alyzing the observed waiting time dependence of the stretching exponent associated

with the primary relaxation process of Laponite particles in suspension.

5.2 Sample preparation and experimental methods

All the experiments are done with aqueous suspensions of Laponite RDr. Details

of the experimental techniques and sample preparation are given in chapters 2 and 4

respectively.

5.3 Results and discussions

Intensity autocorrelation functions g(2)(t) are obtained as a function of the waiting time

tw. In figure 5.1, the normalized intensity autocorrelation function, C(t) = g(2)(t) − 1,
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for a 2.5% w/v Laponite suspension with 0.05 mM salt at 25◦C, is plotted as a function

of delay time t for several tw values. Similar to the data of chapters 3 and 4, two-step

relaxation processes, with the two steps becoming more distinguishable as tw increases,

are observed in C(t). It is also seen that the decay of C(t) slows down with tw and can

be expressed by a sum of an exponential and a stretched exponential decay in the fol-

lowing way [17–19].

C(t) = [a exp {−t/τ1} + (1 − a) exp
{
−(t/τww)β

}
]2 (5.1)

The data in figure 5.1 are fitted to equation 5.1, with τ1, τww, a and β being the

fitting parameters. The fast decay, expressed by an exponential function, describes a

relaxation time quantified by a timescale τ1, the fast relaxation time. Similarly, the

slow decay is represented by a stretched exponential function, where τww and β are

the slow relaxation time and the stretching exponent respectively [18]. The mean slow

relaxation time is given by < τww >= (τww/β)Γ(1/β) [20].

As noted earlier, two-step decays are often seen in glass formers [21–23]. In su-

percooled liquids and in the present system, the faster decay involves diffusion of a

particle within a cage formed by its neighbors [24], while the slower decay (the α-

relaxation process) is connected to structural or orientational rearrangements [6]. The

mean slow relaxation time < τ > is very sensitive to changes in temperature and can

be expressed by the Vogel-Fulcher-Tammann relation < τ >= τVF exp[B/(T − T0)]

[6], where the fitting parameter τVF =< τ > (T → ∞). B and T0 are identified as the

fragility index and the Vogel temperature respectively. For quantifying the deviation

from Arrhenius behavior, i.e. < τ >= τ exp(E/kBT ), one can define B = DT0, where

D is the strength or fragility parameter [2, 5, 6].

It has been already shown in chapter 3 that the mean slow relaxation time < τww >

shows a VFT-type dependence on tw given by the following expression [17]:

< τww >=< τww >
0 exp(Dtw/(t∞α − tw)) (5.2)
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In equation 5.2, D is the fragility parameter and t∞α is identified with the Vogel time

or the waiting time at which < τww > diverges.

In figure 5.2(a), < τww > and the corresponding fits to equation 5.2, discussed in our

recent work [25] and in chapter 4, are plotted for different values of CL with CS =0.05

mM and T=25◦C. It is seen from the plots that the evolution of < τww > becomes

faster with increase in CL. The fragility parameters D (•) and the Vogel times t∞α (�)

obtained from the fits are plotted in figure 5.2(b). Recent simulation results suggest

that the kinetic fragility KVFT (KVFT = 1/D), calculated from the α-relaxation time for

Kob-Anderson (KA) model glass formers, has a very weak dependence on density [26].

In the Laponite suspensions studied here, the suspension density changed from 1020

Kgm−3 to 1035 Kgm−3 when CL is varied between 2.0% w/v and 3.5% w/v. Since the

change in the density of the Laponite suspensions studied here is very small, D can be

expected to be constant. Remarkably, our experimental observation, as demonstrated

in figure 5.2(b), nicely supports this observation for molecular glass formers.

It is to be noted that although the bulk suspension density does not change appre-

ciably within the range of CL studied here, the number density of particles increases

with CL. The subsequent decrease in the interparticle distance in Laponite suspen-

sions for higher CL therefore translates to an increase in pressure as more particles are

now packed in the same volume of the suspension. The apparent independence of D

on number density in the Laponite suspensions studied here is therefore reminiscent

of recent results for many molecular glass formers for which the isochoric fragility

is independent of pressure [27]. It is also seen from figure 5.2(b) that t∞α decreases

monotonically with CL, thereby indicating a faster approach to an arrested state with

increasing Laponite concentration. Since the number density of Laponite particles in

suspension is directly proportional to CL, multi-body interactions are enhanced with

increasing CL, thereby shifting the onset of the glass transition to earlier times (fig-

ure 5.2(a)). This feature is reminiscent of a previous observation in dense colloidal

suspensions [28] and has been also discussed earlier in the context of the aging of

Laponite suspensions in chapters 3 and 4 [17, 25].
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Figure 5.2: Mean slow relaxation times < τww >, obtained by fitting C(t) data to equa-
tion 5.1, are plotted vs. tw for different CL, CS and T in (a), (c) and (e) respectively. Fragility
D (•) and Vogel time t∞α (�), measured by fitting < τww > data to equation 5.2, are plotted for
different CL, CS and T in (b), (d) and (f) respectively.
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In figure 5.2(c), < τww > is plotted for different values of CS with CL=3.0% w/v

and T=25◦C [25]. D (•) and t∞α (�) are obtained from the fits of the data to equa-

tion 5.2 and are plotted in figure 5.2(d). D is almost constant for the entire range of

salt concentrations CS . DLVO calculations for Laponite suspensions reported in chap-

ter 4 have revealed that the height of the repulsive barrier increases and the width of

the barrier decreases with increase in CS [25]. This is due to the enhancement of the

screening of the interparticle repulsive interactions and the increasingly important role

that interparticle attractions play in spontaneously evolving Laponite suspensions. The

addition of salt and the development of interparticle attractions clearly increase the rate

of structure formation, as it is seen in figure 5.2(d), when t∞α decreases rapidly with in-

crease in CS [25]. This verifies our earlier observation in chapter 4 that the arrested

state is approached at a faster rate due to stronger interparticle interactions when the

concentration of salt in the system is enhanced. However, an almost constant value

of D (figure 5.2(d)) with increasing CS indicates that the fragility parameter is inde-

pendent of the screening effects on the interparticle interaction within the range of salt

concentrations studied here.

Simulation results for binary mixtures of soft spheres have shown that fragility is

independent of the softness of the repulsive interaction [29]. However, recent computer

simulation results on binary mixture glass formers with a modified Lennard-Jones type

potential show that the kinetic fragility increases with increasing softness [8]. Exper-

iments on soft colloidal systems show that soft (more compressible) particles form

stronger glasses than hard (less compressible) colloidal particles [9]. In our experi-

ment, it is to be noted that while relative magnitudes of the attractive and repulsive

interaction changes with CS , the softness of interparticle interactions and the compress-

ibility of the Laponite particles do not change. This is established from the observed

self-similarity of the potential energy landscape with CS reported in chapter 4. Hence,

the apparent insensitivity of D to changes in CS confirms several earlier simulations

and experimental results on colloidal and molecular glass formers [8, 9, 29].
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It has been noted in chapter 4 that temperature has a strong effect on the evolu-

tion of relaxation processes in Laponite suspensions [25, 30]. < τww > is plotted for

different values of T with CL=3.0% w/v and CS =0.05 mM in figure 5.2(e). It is seen

that increase in T accelerates the time-evolution of < τww > [25, 30]. In figure 5.2(f),

D (•) and t∞α (�) are plotted for the data shown in figure 5.2(e). Like CL and CS , T

has a negligible effect on D except at the lowest temperature. However, t∞α is seen

to increase with decrease in temperature, thereby indicating that the glass transition

is achieved at earlier times with increase in T . Increase in T is therefore equivalent

to increasing the apparent cooling rate q′, with the system being driven towards the

glass transition at faster rates at higher temperatures. For bulk metallic glass form-

ers, i.e. Zr57Cu15.4Ni12.6Al10Nb5 and Zr58.5Cu15.6Ni12.8Al10.3Nb2.8, there is an apparent

increase in D at slower cooling rates [31], while the Vogel temperature T0 increases

with cooling rate. The small increase in D with 1000/T at the slowest cooling rate

seen in figure 5.2(f) therefore, is in accordance with the observations in [31]. Since

an inverse relation exists between T0 and t∞α (i.e. T0 ↔ 1/t∞α ) [17], the decrease of t∞α

with increase in T or q′ is remarkably consistent with the observations in metallic glass

formers [31].

As discussed in the introduction of this chapter, strong glass formers have a lower

density of minima in the potential energy landscape compared to fragile glass formers

[5]. The very small changes in D (figure 5.2) reported in this chapter indicate that the

underlying energy landscapes are self-similar for the ranges of CL, CS and T studied

here. This is in agreement with the conclusion from chapter 4 where it was shown

that the time-evolutions of the microscopic relaxation times scales and the stretching

exponents β associated with the slow relaxation process show comprehensive Laponite

concentration-salt concentration-temperature-waiting time superpositions, thereby in-

dicating the self-similarity of the underlying energy landscapes [25].

In figure 5.3, the stretching exponent β, obtained by fitting the C(t) data to

equation 5.1, is plotted vs. tw for different CL, CS and T . It is seen that for all
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Figure 5.3: (a) Stretching exponents β are plotted vs. tw for CS =0.05 mM and T=25◦C at
different CL (from right to left, 2.0% w/v (�), 2.5% w/v (◦), 3.0% w/v (4), 3.5% w/v (∇)). (b)
β vs. tw for CL=3.0% w/v and T=25◦C at different CS (from right to left, 0 mM (�), 0.05 mM
(◦), 0.1 mM (4), 0.5 mM (∇)). (c) β vs. tw for CL=3.0% w/v and CS =0.05 mM at different T
(from right to left, 15◦C (�), 25◦C (◦), 40◦C (4), 60◦C (∇)). tk (•), the waiting time at which
β → 0, measured by extrapolation of β, are plotted for different CL, CS and T in the insets of
(a), (b) and (c) respectively.
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CL, CS and T , β decreases linearly with tw. For many supercooled liquids, β de-

pends on temperature and decreases linearly with 1/T [16]. As discussed earlier, a

non-Arrhenius stretched exponential decay of the C(t) data can arise due to the well-

known Kohlrausch-Williams-Watts distribution of the slow relaxation timescales given

by ρww(τ) = − τww
πτ2

∑∞
k=0

(−1)k

k! sin(πβk)Γ(βk + 1)
(
τ
τww

)βk+1
[20]. The width w of the dis-

tribution can be written as w =
<τ2

ww>

<τww>2 − 1 =
βΓ(2/β)

(Γ(1/β))2 − 1. Here β ≤ 1, with a lower

value of β indicating a broader distribution of relaxation timescales, with the width w

of the distribution ρww(τ) diverging at β → 0 [20]. We define a time tk as the waiting

time at which β → 0. This definition of a hypothetical divergence time tk is similar to

the definition of the Kauzmann temperature TK for molecular glass formers where it is

seen that w diverges with a vanishing β at TK [15, 16, 32, 33]. From the data plotted in

figure 5.3, tk is measured by extrapolating β to 0 for different CL, CS and T . It is seen

from the insets of figures 5.3(a)-(c) that the extrapolated values of tk decrease with the

increase of CL, CS and T .

The temperature TK corresponding to a vanishing β in fragile supercooled liquids

[32, 33], which is typically calculated from the extrapolation of the temperature de-

pendent β data, is seen to be correlated to T0 [15, 16], i.e. T0 ≈ TK . Given the many

similarities between supercooled liquids and aging Laponite suspensions, it is interest-

ing to investigate if tk has a connection with t∞α , the analogous Vogel time. In figure 5.4,

we plot t∞α vs. tk. Remarkably, it is seen that tk is correlated with t∞α , i.e. t∞α ≈ tk. We

further note that for all Laponite suspensions studied here, 4 ≤ D ≤ 5.5 (inset of fig-

ure 5.4). It is to be noted that values of D for sorbitol, toluene, o-terphenyl, propylene

carbonate, triphenyl phosphite and sucrose, for example, are 8.6, 5.6, 5.0, 2.9, 2.9 and

0.154 respectively [3, 34]. The obtained values of D for Laponite suspensions there-

fore compare very well with the D-values for these fragile molecular glass formers,

thereby indicating that Laponite suspensions are excellent candidates for the study of

the glass transition [35].

In the supercooled liquids literature, the Kauzmann temperature TK is also known
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Figure 5.4: Analogous Vogel time t∞α is plotted vs. tk, the waiting time at which β → 0 for
all the samples studied here. Solid line is the linear fit with a slope 1.02±0.025. In the inset,
the ratio t∞α /tk is plotted vs. D.

as the equilibrium glass transition temperature [36]. According to this theory, the sys-

tem in the supercooled regime relaxes by exploring possible configurations available in

the energy landscape via activated processes. However, it is not completely clear that

a simple relation between the kinetics and the thermodynamics of a glass former (i.e.

T0 ≈ TK) always exists, as a systematic increase of Tk/T0 from unity was observed for

increasing values of D [34]. It was reported in an earlier work that the ratio Tk/T0 lies

between 0.9 to 1.2 for D < 20 [34]. In the inset of figure 5.4 we have plotted the ratio

t∞α /tk vs. D for data acquired for all the Laponite suspensions of different CL, CS and T

studied here. It is seen that 0.9 ≤ t∞α /tk ≤ 1.2 for all the samples. As discussed earlier,

it was shown in a previous study that TK/T0 starts increasing from unity for fragile

glass formers and attains higher values for strong supercooled liquids [34]. Although

there is an apparent similarity between the results plotted in figure 5.4 and Tk/T0 ratios

reported earlier [34], we note here that tk, the time at which w → ∞, for the colloidal

suspensions of Laponite studied here, has a very different physical origin when com-

pared to TK in supercooled liquids.

We now explain the simultaneous divergence of the two hypothetical times, t∞α

114



5.3 Results and discussions

and tk in terms of the Vogel-Fulcher behavior of the relaxation times, the stretched-

exponential nature of the slow relaxation process and the linear decrease of β with tw

[37]. The observed stretched exponential dependence of the slow relaxation process

can be rewritten for aging colloidal suspensions as:

exp
{
− (t/τ)β(tw)

}
= exp {−t/L(tw, t)} (5.3)

Here, L(tw, t) can be interpreted as the time-dependent relaxation time and has a similar

physical origin as for supercooled liquids [37]. Following the coupling model proposed

by Ngai et. al. [38–40], we relate L(tw, t) to the time-dependent relaxation rate W(t) by

W(t) = β/L(tw, t), where β = β(tw) [41]. This model of relaxation indicates that each re-

laxation unit of the system relaxes independently with a primitive rate W0 at timescales

that are short when compared to the characteristic timescale t0 ≡ 1/ωc associated with

the coupling of the relaxing molecular units. At longer times, i.e. ωct > 1, the primitive

relaxation rate slows down and can be expressed as, W(t) = W0(ωct)−n, 0< n <1 and

n = 1 − β [41]. If L(tw, t) = L0(tw)(t/t0)1−β [37], where L0 = β/W0 [41], it follows from

equation 5.3 that exp
[
− (t/τ)β

]
= exp

[
− t

L0(tw)(t/t0)1−β

]
= exp

[
−

(
t

t0[L0(tw)/t0]1/β

)β]
. Hence,

τ can be rewritten as, τ = t0[L0(tw)/t0]1/β [37]. For colloidal suspensions of Laponite,

the secondary relaxation process is related to the microscopic motion of a single relax-

ation unit (a Laponite particle) and has the following Arrhenius dependence on tw as

discussed earlier in chapter 3: τ1 = τ0
1 exp

(
tw/t∞β

)
[17]. As L0(tw) is related to the single

relaxation unit [41], we assume an Arrhenius dependence of L0(tw) on tw for the col-

loidal suspension of Laponite, L0(tw) = L exp
(
tw/t∞β

)
, where L is a constant. We have

already seen from figure 5.3 that β decreases linearly with tw, i.e. β(tw) = β0(tk − tw).

Substituting the tw-dependence of β along with the Arrhenius dependence of L0(tw) in

the expression for τ yields a VFT equation,

τ = t0

L exp
(
tw/t∞β

)
t0


1/β

= L1/βt(β−1)/β
0 exp

(
tw/βt∞β

)
= C exp

 tw

t∞β β0(tk − tw)

 (5.4)
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where C = L1/βt(β−1)/β
0 . Equation 5.4 has an identical form as equation 5.2, when tk ≈ t∞α

with τ diverging at tw → t∞α and the width w of the distribution ρww(τ) diverging at tk.

This explains the correlation between tk and t∞α observed in figure 5.4.

This successful adaptation of the coupling model to the present scenario of aging

colloidal Laponite suspensions, which was previously proposed for molecular glass

formers, clearly states the universal nature of the approach to a final arrested state in

these two seemingly different glass formers. Additionally, the similar behavior of the

fragility parameter D in these two glass formers, together with the explanation of the

observed correlation between the two hypothetical divergence times t∞α and tk using the

coupling model, indicate a remarkable similarity in these relaxation processes at the

particle scale.

5.4 Conclusions

In this chapter, the time evolutions of the relaxation processes of colloidal suspensions

of Laponite are studied by dynamic light scattering (DLS). The fragility parameter D is

obtained by fitting the autocorrelation data C(t) for Laponite suspensions of different

concentrations (CL), added salt concentrations (CS ) and temperatures (T ). It is seen

that the value of D is approximately constant for the entire range of Laponite concen-

trations and salt concentrations investigated here. These results are reminiscent of the

observed independence of the isochoric fragilities of supercooled liquids on pressure.

Furthermore, D is independent of the screening effects of the repulsive interparticle

interactions due to the addition of salt. Finally, it is seen that T determines the rate at

which system approaches the glass transition (or the apparent cooling rate) and that D

is weakly dependent on T . This result is reminiscent of the dependence of the kinetic

fragility on the cooling rate for metallic glass formers [31].

The stretching exponent β for Laponite suspensions with different CL, CS and T is

seen to decrease linearly with waiting time, indicating a divergence of the width of the

relaxation time distribution at even higher waiting times. This observation is similar
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to the decrease of β with 1/T in many fragile molecular glass formers. We next define

a timescale tk at which the width of the distribution of the slow relaxation timescale

diverges. We report a correlation between tk and t∞α , where t∞α is the hypothetical Vogel

time at which the average slow relaxation time diverges. This correlation corroborates

analogous observations in fragile molecular glass formers for which it was reported

that the Kauzmann and Vogel temperature are approximately equal (TK ≈ T0). We

next calculate the ratio t∞α /tk and plot it vs. D. This ratio is found be approximately 1

for all the D values reported here. This observation is reminiscent of the ratio TK/T0

with fragility parameter D for several supercooled liquids [34].

Our results therefore clearly agree very well with existing results for fragile glass

formers. Interestingly, in the case of Laponite which is a colloidal system, tk is mea-

sured from the kinetics of the relaxation process. In contrast, TK for supercooled liq-

uids is a thermodynamic quantity and generally calculated from calorimetric data. Fi-

nally, the correlation between the two hypothetical diverging time scales for Laponite

suspensions, tk and t∞α , demonstrates that the average value and the width of the distri-

bution of slow relaxation times diverge simultaneously. This result is explained using

the coupling model proposed for molecular glass formers [38] and the tw-dependence

of the stretching exponent β observed in our experiments.
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6
Characteristics of the secondary

relaxation process in soft glassy

colloidal suspensions

6.1 Introduction

The study of the relaxation processes in complex, disordered and out-of-equilibrium

systems is one of the many unsolved problems in non-equilibrium statistical mechan-

ics. The plethora of non-equilibrium systems around us, supply several opportunities to

observe diverse fascinating phenomena. The physics of relaxation processes in glasses

or glassy systems has been meticulously pursued during the last century, but is yet

unsolved. It has been noted that glasses comprise a disordered state of matter which

is structurally like a liquid but whose dynamics are characterized by extremely slow
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relaxation. These systems fail to relax within timescales accessible in the laboratory.

At the particulate scale, many types of relaxation processes are possible that can in-

volve an atom, a molecule, a part of molecule, a group of molecules or particles. It

is important to study how these microscopic relaxation processes slow down as glass-

forming materials are quenched below their glass transition temperatures, with their

relaxation time scales exceeding the observation time scales as the system falls out of

equilibrium.

As discussed earlier, the different types of relaxation processes in glass formers

can be classified in two categories- the primary and the secondary relaxation processes

[1, 2]. The former is involved with the orientational or structural rearrangements of the

molecules or particles and is considered to be the main process leading to structural re-

laxation. This type of structural relaxation process in molecular glasses or supercooled

liquids, metallic glasses, polymer glasses and other glass formers, is generally known

as the α-relaxation process [1]. The latter relaxation process, known as the β-relaxation

process, involves the motion of a molecule or a part of a molecule and is generally be-

lieved to have no connection with the glass transition process [3]. These secondary

relaxation processes are much faster than the α-relaxation process. However, many

experimental results have shown that some β-relaxation processes are closely related

to the structural relaxation process. Very recent molecular dynamics simulation results

on asymmetric diatomic molecular glass formers demonstrate that the α-relaxation

process has a close relationship with a particular secondary relaxation process known

as the Johari-Goldstein β-relaxation (J-G) process [4–7]. This type of secondary relax-

ation process is generally considered to be universal in nature as it appears in a variety

of glass formers such as supercooled liquids, metallic glasses, polymeric glasses and

plastic crystals. It involves all the parts of the molecule or particle and is particularly

important in glassy systems because of its very close relationship with the α-relaxation

process. However, the absence of any experimentally reported result detecting a J-G

β-relaxation mode in the colloidal glasses has raised questions regarding its universal-

ity.
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After decades of research, a general route is used to classify the secondary relax-

ation processes in glass formers based on their dynamic properties [3] and to determine

whether it is related to its structural relaxation process. These include a through char-

acterization of the nature of the glass former in terms of the following:

• Molecule with or without internal degrees of freedom.

• Involvement of the whole molecule or part of a molecule in the secondary relax-

ation process.

• The temperature and pressure dependencies of the secondary relaxation time τβ.

• The separation between τβ and τα, the primary or structural relaxation times.

• The relationship between τβ and τ0, with τ0 being the independent primitive

relaxation time according to the coupling model.

• The pressure and temperature dependencies of τβ and τ0.

• The temperature dependence of the secondary relaxation strength ∆εβ (measured

from dielectric spectroscopy) across the glass transition temperature Tg.

• The aging behavior of τβ and ∆εβ below Tg.

• Merging of τβ with the primary relaxation time τα at very high temperatures.

In this chapter, we study the microscopic relaxation processes for Laponite suspensions

by dynamic light scattering (DLS) experiments. The α and β-relaxation timescales

are estimated from the autocorrelation functions obtained by DLS measurements for

Laponite suspensions with different concentrations (CL), salt concentrations (CS ) and

temperatures (T ). We measure the primitive relaxation timescales from the α-relaxation

time and the stretching exponent β by applying the coupling model for highly corre-

lated systems. Our experimental results suggest that the β-relaxation process involves

all the parts of a Laponite particle and is coupled with the primitive relaxation process.

The glass transition time is also correlated with the activation energy of the β-relaxation
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process for all Laponite concentrations, salt concentration and temperatures. Our stud-

ies indicate that the β-relaxation process of colloidal glasses of Laponite carries many

similarities with the J-G β-relaxation processes and may, indeed, be a plausible candi-

date that requires further investigation.

6.2 Sample preparation and experimental methods

All the experiments reported in this chapter are performed with aqueous suspension of

Laponite RD r. Details of the sample preparation is given in chapter 4 (section 4.2).

Details of the experimental techniques are given in chapter 2 (section 2.2.1).

6.3 Results and discussions

Intensity autocorrelation functions g(2)(t) are acquired in dynamic light scattering ex-

periments (DLS) as a function of the waiting time tw of aging Laponite suspensions. In

figure 6.1, we plot the normalized intensity autocorrelation function, C(t) = g(2)(t) − 1

as function of delay time t for several waiting times for a 2.5% w/v Laponite suspen-

sion at 25◦C and at a scattering angle θ=60◦. It is seen from this figure that the C(t)

data show two-step relaxations and that the slow relaxation process progressively slow

down with tw. The two-step relaxation process in C(t) can be expressed by a sum of an

exponential and a stretched exponential decay [8–10].

C(t) = [a exp {−t/τ1} + (1 − a) exp
{
−(t/τww)β

}
]2 (6.1)

In equation 6.1, a, τ1, τww and β are the four fitting parameters corresponding to the

relaxation strength, the fast relaxation time, the slow relaxation time and the stretching

exponent respectively. C(t) is a second order autocorrelation function with the two

terms within the brackets of equation 6.1 giving the first order autocorrelation function

g(1)(t). It is to be noted that in most molecular glass formers, dielectric spectroscopy,
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Figure 6.1: The normalized intensity autocorrelation functions C(t) vs. the delay time t at
25◦C and at a scattering angle θ=60◦ for 2.5% w/v Laponite suspension at several different
waiting times tw (from left to right: 0.58 hour (�), 20.0 hour (◦), 40.0 hour (4) and 60.0 hour
(∇). The solid lines are fits to equation 6.1.

Figure 6.2: The diffusive dynamics of the fast relaxation time (τ1) and the mean slow relax-
ation time (< τww >) are shown in (a) and (b) respectively for a 2.5% w/v Laponite sample for
two different waiting times tw. The dashed lines are linear fits passing through the origin.

which yields a first order correlation function due to dipole-dipole correlation, has been

often used to study relaxation processes.

We plot τ1 and τww vs. 1/q2 in figures 6.2(a) and (b), where q is the scattering

wave vector for two different waiting times (tw = 40 hour and 1.5 hour) for a 2.5%

w/v Laponite suspension. A straight line passing through the origin indicates that both
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Figure 6.3: (a) Fast relaxation time τ1 vs. waiting time tw for CL =2.5% w/v Laponite
suspension (CS = 0 mM and T =25oC) at two different scattering angles (θ = 90o (�) and
θ = 60o (◦)). Solid lines are fits to the equation 6.2. τ1 is plotted vs. tw for different (b) CL

(2.0% w/v (�), 2.5% w/v (◦), 3.0% w/v (4) and 3.5% w/v (∇)), (c) CS (0 mM (�), 0.05 mM (◦),
0.1 mM (4) and 0.5 mM (∇)), and (d) T (15◦C (�), 40◦C (◦) and 60◦C (∇)) values at scattering
angle θ = 90◦.

the relaxation processes at 25◦C are diffusive i.e. τ1 = 1/D1q2 and < τww >= 1/D2q2,

where D1 and D2 are the diffusion coefficient corresponding to the fast and slow relax-

ation processes respectively. Another important observation is that both τ1 and < τww >

slow down with tw.

It was seen in chapter 3 that the aging dynamics of a spontaneously evolving

Laponite suspension and its approach to a kinetically arrested state can be compared to

molecular glasses which achieve glass transition upon rapid cooling to avoid the crys-

talline state. It has been demonstrated in chapter 3 that Arrhenius and super-Arrhenius

dependencies of the fast and slow relaxation times on waiting time are obtained if the

waiting time of a spontaneously evolving Laponite suspension is mapped with the in-

verse of the thermodynamic temperature 1/T of molecular glasses [10]. It was also
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demonstrated that the tw-dependence of τ1 and < τww > are given in the following

equations:

τ1 = τ0
1 exp

 tw

t∞β

 (6.2)

and,

< τww >=< τww >
0 exp

[
Dtw

t∞α − tw

]
(6.3)

In equation 6.2, the fitting parameter τ0
1 = τ1(tw → 0) while τ∞β is the character-

istic timescale associated with the slowdown of the secondary relaxation process. In

equation 6.3, D, < τww >0 and t∞α are the three fitting parameters. D is called the

fragility or strength parameter which quantifies the deviation from an Arrhenius be-

havior, < τww >0=< τww > (tw → 0) and t∞α is the Vogel time, or the hypothetical

waiting time at which < τww >→ ∞ [10].

In figure 6.3(a), the time-evolutions of τ1 is plotted vs. tw for two scattering an-

gles (θ = 60◦ and 90◦) for a 2.5% Laponite suspension. It is seen from figure 6.3 that

τ1 decreases with tw at smaller tw, while at higher tw, τ1 increases with tw for all the

Laponite suspensions with different CL, CS and T investigated here. It is known that

Laponite particles can form tactoids or rigid aggregates consisting of more than one

platelet in aqueous suspension [11]. At the early stage of dispersion, these tactoids

exfoliate and the rate of exfoliation decreases with time as the intertactoid Coulombic

repulsion increases rapidly with time [11]. This tactoid fragmentation process results

in the speeding up of the dynamics and gives rise to the non-monotonicity of the τ1 vs.

tw plot at small tw. It is seen from figure 6.3 that the later increasing part of τ1 can be

fitted to equation 6.2 and the rate of increase becomes faster for higher values of CL,

CS and T .

The diffusion coefficient D1 of a sphere is related to its relaxation time τ1 by the

relation τ1 = 1/D1q2 [12]. D1 can be estimated for a dilute suspension of monodis-

perse sphere from the Stokes-Einstein relation, D1 = kBT/6πηrh [12], where kB, η

and rh are the Boltzmann constant, viscosity of the medium (0.89 mPa.s at 25◦C)

and hydrodynamic radius of the particle respectively. It follows, therefore, that τ =
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Figure 6.4: The characteristic timescale associated with the secondary relaxation process t∞β
vs. the glass transition time tg for different CL, CS and T . The solid line (t∞β ≈ (0.99±0.05)tg)
is a linear fit passing through the origin.

1/D1q2 = 6πηrh/kBTq2. However, the Laponite platelet is a disk shaped particle (di-

ameter d =25-30 nm and thickness t =1 nm approximately [13]). For these anisotropic

platelets, the equivalent spherical diameter (ESD) is given by the Jennings-Parslow

relation, ds = d
(

3 arctan
√

(d/t)2−1

2
√

(d/t)2−1

)1/2

[14]. From the Jennings-Parslow relation the esti-

mated value of ds for Laponite is 7.5-8.3 nm. Using the value of ds = 7.5 − 8.3 nm for

the Laponite particle, the estimated value of diffusion timescale of the particle τ is 30-

34 µsec and 62-68 µsec at q = 0.0223 nm−1 (θ = 90◦) and q = 0.0157 nm−1 (θ = 60◦)

respectively. It is seen from figure 6.3(a) that the values of τ0
1, i.e. τ1(tw → 0), is 34

µsec and 63 µsec for θ = 90◦ and θ = 60◦ and agrees well with the estimated values of

τ1 at smaller tw. Therefore, τ1 is associated with a relaxation process that involves all

parts of the Laponite platelet.

In chapter 5, it was seen that < τww > increases with tw for all CL, CS and T . It

is also seen that the time-evolution of < τww > can be fitted to equation 6.3 very well.

Similar to chapter 3, we define the glass transition time tg as the waiting time at which

< τww >=100 sec for all Laponite suspensions [15]. In figure 6.4, the characteristic
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Figure 6.5: Stretching exponent β vs. log (τww/τ1) for Laponite suspensions with different
CL, CS and T .

timescale t∞β associated with fast relaxation process is plotted vs. tg for Laponite sus-

pensions with different CL, CS and T studied in this work. It is seen from the figure that

t∞β ∝ tg indicating a possible coupling between the fast and slow relaxation processes.

A linear fit to the data (solid line) yields t∞β = (0.99 ± 0.05)tg. This is reminiscent

of an empirical observation for many supercooled liquids where it was seen that the

glass transition temperature Tg is proportional to the activation energy Eβ of the slow

secondary β-relaxation process [16, 17].

The α-relaxation process is a non-exponential process which can be given by

a stretched exponential function (equation 6.1). As discussed in chapters 1 and 3,

the non-exponential decay arise due to the distribution of relaxation timescales given

by the well-known Kohlrausch-Williams-Watts distribution (equation 3.4): ρww(τ) =

−
τww
πτ2

∑∞
k=0

(−1)k

k! sin(πβk)Γ(βk + 1)
(
τ
τww

)βk+1
[18]. The width w of the distribution is re-

lated to stretching exponent β and given by w =
<τ2

ww>

<τww>2 − 1 =
βΓ(2/β)

(Γ(1/β))2 − 1. In figure 6.5,

we plot β vs. log(τww/τ1). It is seen that β decreases with log(τww/τ1) indicating that

the width of the α-relaxation process is coupled with the secondary relaxation time

[5]. This coincides well with an empirical observation in supercooled liquids that the

width of the α-relaxation process is coupled with the J-G relaxation timescale, with β
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Figure 6.6: Relaxation times τ1 (�) and τww (•) vs. CL for tw=5.5 hour.

decreasing monotonically with log (τα/τβ) [5, 19].

In figure 6.6, we plot log(τ1) and log(τww) for different CL for a fixed waiting time

tw=5.5 hour. It is seen from figure that both τ1 and τww increase with CL. In chapter 5,

we had pointed out that increasing CL is analogous to increasing pressure on the system

as a larger number of particles are packed in a fixed volume. So, both the relaxation

processes of Laponite suspensions are sensitive to pressure or concentration. It must

be pointed out here that in the context of supercooled liquids, the slow secondary re-

laxation process or the J-G relaxation process is very sensitive to pressure [19]. For

example, it was seen from the dielectric measurement of sorbitol and xylitol that the

separation between the α and β relaxation peaks is greater at elevated pressure con-

firming the sensitivity of the β relaxation process to high pressures [20].

We have calculated the primitive relaxation time τ∗ from the coupling model [21–

23] which is discussed in chapter 5. The two coupled equations which follow from this

model are given by:

φ(t) = exp
− (

t
τww

)1−n (6.4)
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Figure 6.7: The secondary relaxation times τ1 (�) and the primitive relaxation times τ∗ (•)
vs. tw for 3.0% w/v Laponite suspension (CS = 0 mM, T =25◦C). Dashed lines are exponential
fits.

and,

τww =
[
(1 − n)ωn

cW−1
0

]1/1−n
(6.5)

In the above two equations φ(t) is the slow relaxation process, n is the coupling

parameter and it is related to the stretching exponent β by n = 1 − β. As discussed

in chapter 5, W0 is the primitive rate (i.e. W0 = 1/τ∗) and the characteristic timescale

t0 = 2π/ωc. It follows from equation 6.5 that τ∗ can be calculated from the following

relation [3, 24].

τww =

β (
2π
t0

)1−β

W−1
0

1/β

=

β (
2π
t0

)1−β

τ∗
1/β

(6.6)

Here, it is reasonable to assume that t0 = 300 µsec as τ1 < t0 < τww at all tw. In fig-

ure 6.7, we plot the evolution of τ1 and τ∗ for a 3.0% w/v Laponite suspension (CS = 0

mM, T =25◦C). It is seen that both relaxation timescales grow exponentially with in-

crease in tw as the Laponite suspension approaches the glass transition. This indicates

that the secondary relaxation process is correlated with the primitive relaxation pro-

cess. From the extrapolation of τ1 at higher tw, it is seen that τ1 approaches τ∗0 which is
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the value of τ∗ at tw = 0 (shaded region in figure 6.7). A similar correlation is observed

between τ∗ and the JG β-relaxation time τβ in case of molecular glass formers [3, 19].

6.4 Conclusions

In this chapter, we have extracted the primary and secondary relaxation timescales of

Laponite suspensions with different Laponite concentrations (CL), salt concentrations

(CS ) and temperatures (T ) from the intensity autocorrelation functions obtained from

dynamic light scattering (DLS) measurements. A well-known route is followed to

characterize the secondary relaxation process [3]. It is seen that the secondary relax-

ation process of aging Laponite suspensions involves all parts of a Laponite particle.

Furthermore, it is coupled with the primary relaxation process as it is seen that its glass

transition time tg is coupled with its characteristic time t∞β . It is also demonstrated that

the width w is correlated with the β-relaxation timescale. Both τ1 and τww are found

to be very sensitive to concentration even within the narrow range explored here. Fi-

nally, a correlation is observed between the primitive relaxation time τ∗ and τ1 as τ1

approaches τ∗0 at longer waiting times. Our experimental observations suggest that the

β-relaxation process of colloidal glasses of Laponite show many characteristics of the

J-G β-relaxation processes that are seen in molecular glass formers.
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7
Fragile behavior of a soft glassy

colloidal suspension in the

presence of probe particles

7.1 Introduction

The nature of the glass transition in supercooled liquids is one of the oldest unsolved

problems in condensed matter physics [1, 2]. Supercooled liquids, in general, show

increase in their viscosities and structural relaxation times when quenched rapidly to-

wards their glass transition temperatures to avoid crystallization. As discussed ear-

lier in chapter 1, this change in viscosity or structural relaxation time has a super-

Arrhenius dependence on temperature for many supercooled liquids and is expressed

by the Vogel-Fulcher-Tammann (VFT) relation, τ = τ0 exp
(

DT0
T−T0

)
[3–5]. The fragility
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or strength parameter D is a measure of the deviation from the Arrhenius temperature

dependence and T0 is a hypothetical divergence temperature or Vogel temperature. The

super-Arrhenius dependence of viscosity and transport quantities is characteristic of a

fragile glass former that is approaching its glass transition.

Even after decades of research, there is no general theory which can explain all the

features of the glass transition. There is also no consensus on whether the glass transi-

tion is a thermodynamic transition or a purely kinetic phenomenon. In order to develop

a better theory, it is necessary to find an analytically and numerically tractable model

system for an extremely fragile liquid [6]. A model system with tunable fragility could

be invaluable for experiments as well as theory to understand several concepts related

to the glass transition. It should be noted here that fragility is believed to be a solely

material dependent quantity [3], though what determines fragility is still an enigma.

Experiments and simulations on glass formers report several correlations between

fragility and other material parameters as discussed in previous chapters. Simulation

results reveal that the softness of the interparticle potential is correlated to the fragility

of glass forming binary mixtures [7]. It was shown experimentally for supercooled liq-

uids that a correlation exists between Poisson’s ratio and fragility [8] while for colloidal

glasses, soft i.e. compressible colloid particles were seen to form stronger glasses [9].

Recent experiments on metallic glass formers have correlated the material fragility to

the rate of its structural ordering with decreasing temperature, thus revealing a funda-

mental link between its structure and dynamics [10].

In the last few decades, a different class of glass formers i.e. spin glasses have

been studied extensively [11–13]. These glass formers, that are formed in magnetic

systems due to the disordered freezing of spins upon decreasing temperature [14], are

extremely fragile and are relatively better-understood when compared to molecular

glass formers. However, spin glasses have some basic differences when compared to

molecular glass formers. The presence of quenched disorder in spin glasses is so ubiq-

uitous that it is necessary to introduce quenched disorder in model molecular glass

formers to compare these two systems properly. In practice, these kinds of systems
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are commonly described by the random pinning glass model, where some parts of the

system are frozen in space and therefore always out of equilibrium [15, 16]. It is a

challenge to verify the results of the random pinning glass model experimentally as it

requires an external field in most of the cases to drive parts of a system out of equilib-

rium. A comparatively easy approach could be the introduction of less mobile regions

comprising larger probe particles in the form of impurities. Exploring the possibility

of tunable fragility in these systems due to the addition of such less mobile regions is

an extremely interesting problem.

Another aspect of any glass or glassy system is that in spite of its liquid-like struc-

ture, it is kinetically totally different from a liquid as its microscopic dynamics are

frozen [17]. Many experimental techniques, for example video microscopy, confocal

microscopy, static and dynamic light scattering, rheology etc., are available to study

both the dynamics and structure of colloidal glass formers [17]. These measurements

are extremely important as they offer opportunities to justify or falsify the fundamental

connection between the structure and dynamics of disordered systems. In this con-

text, colloidal glass formers could be particularly important, as visualization at the

particulate level is easily possible because of their large sizes when compared to the

constituents of molecular systems.

In this chapter, we report dynamic light scattering (DLS) experiments on frag-

ile glasses formed by colloidal suspensions of Laponite RDr, a model glass former.

Polystyrene beads, of sizes larger than the Laponite particle, are dispersed in the

Laponite suspensions and constitute the less mobile regions. Dynamic light scatter-

ing (DLS) experiments are performed to study the time evolution of the microscopic

dynamics. The primary or α-relaxation timescales (τww) are extracted from the inten-

sity autocorrelation functions of light scattered by the less mobile regions dispersed in

the Laponite suspensions. It is seen that the secondary β-relaxation timescale (τ1) arise

due to the diffusion of Laponite particles. The fragility parameter D is calculated with

different concentrations and sizes of polystyrene beads. Our experimental results are

compared with existing simulation results on model glass-forming binary mixtures in
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the presence of random pinning.

7.2 Sample preparation and experimental methods

All experiments reported in this chapter are performed using Laponite RDr. As dis-

cussed in chapter 1, Laponite is a disk shaped particle with diameter d = 25-30 nm

and thickness t = 1 nm approximately [18]. The equivalent spherical diameter (ESD)

can be estimated for these anisotropic platelets using the Jennings-Parslow relation,

ds = d
(

3 arctan
√

(d/t)2−1

2
√

(d/t)2−1

)1/2

[19]. The estimated value of ds for Laponite is 7.5-8.3 nm.

The details of preparation and filtration of Laponite suspensions have been discussed in

chapter 3. Polystyrene NanosphereT M (refractive index n=1.595 at wavelength λ=532

nm [20]) of sizes 95.6 nm, 208 nm, 390 nm and 588 nm were bought from Thermo Sci-

entific and Bangs Laboratories, Inc. To study the effect of bead sizes on the Laponite

medium, polystyrene beads of different sizes (95.6 nm, 208 nm, 390 nm and 588 nm)

at a fixed volume fraction (φ = 4.75×10−5) are added separately in the cuvettes loaded

with Laponite suspensions (concentration of Laponite 2.0% w/v i.e. volume fraction

of Laponite φL = 7.9 × 10−3, and refractive index n ≈ 1.335 at a wavelength λ=589.3

nm [21]) and are sealed immediately. The concentration of Laponite expressed in %

w/v refers to the weight of Laponite in grams that is dispersed in 100 ml MilliQ water.

Polystyrene beads (208 nm) of different volume fractions (φ=1.9×10−5, 2.85×10−5,

3.8×10−5, 4.75×10−5 and 5.7×10−5) are also added separately to the cuvettes loaded

with Laponite suspensions for experiments with different polystyrene concentrations.

Each cuvette is gently moved upside down several times to mixed the polystyrene

beads uniformly. The waiting time (i.e. tw = 0) is measured from the moment when the

mixing of the polystyrene beads in the Laponite suspension is complete. The cuvettes

are kept at a constant temperature by water circulation using a Polyscience Digital Inc.

water circulator. The Dynamic Light Scattering (DLS) experiments are done using

a Brookhaven Instruments Corporation (BIC) BI-200SM spectrometer. Details of the

experimental set-up are described in chapter 2. Rheological measurements are done by
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Figure 7.1: (a) The normalized intensity autocorrelation functions C(t) vs. the delay time t
at 25◦C and scattering angle θ=90◦ for 2.0% w/v Laponite suspensions (φL =7.9×10−3) with
208 nm polystyrene probe particles embedded at a volume fraction φ=4.75×10−5 at several
different waiting times tw (from left to right) 16 hour (�), 102 hour (◦), 150 hour (4), 207
hour (∇). The solid lines are fits to equation 7.1.(b) The scattered intensity Is vs. φ for 208
nm polystyrene beads dispersed in 2.0% w/v Laponite suspension (�) and dispersed in MilliQ
water (◦) at tw = 1 hour, T = 25◦C and θ = 90◦. In the inset, C(t) vs. t at 25◦C and θ = 90◦ for
2.0% w/v Laponite suspension with 208 nm polystyrene beads of different φ values (from left
to right, no polystyrene (�), 9.5×10−7 (◦), 1.9×10−6 (4), 3.8×10−6 (∇), 1.9×10−5 (�), 3.8×10−5

(.), 4.75×10−5 (/), 5.7×10−5 (D)).

an Anton Paar MCR 501 Rheometer. Laponite suspensions are filled in a concentric

cylinder geometry (Anton Paar CC17) and the complex viscosity is measured with tw

by applying an oscillatory strain with amplitude 0.1% at an angular frequency ω = 1

rad s−1. Details of the rheometer and the measuring geometry are given in chapter 2.

7.3 Results and discussions

As discussed in chapters 1 and 2, colloidal suspensions of Laponite evolve sponta-

neously with time and the system approaches kinetic arrest with increasing waiting

time tw [25–27]. In spontaneously evolving Laponite suspensions, the microscopic re-

laxation processes slow down with tw in a manner that is reminiscent of the dynamical

slow down observed in molecular glass formers when the latter is driven out of equilib-

rium as the temperature is decreased rapidly [22]. In order to compare these two sys-

tems, the waiting time tw of aging Laponite suspensions can be mapped with the inverse
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of the thermodynamic temperature 1/T of a supercooled liquid (chapter 3 and [22]).

In figure 7.1(a), we plot C(t), the normalized intensity autocorrelation function, vs. the

delay time t for a 2.0% w/v Laponite suspension with 208 nm polystyrene particles that

comprise the less mobile regions at several different waiting times tw. Similar to the

data presented in the earlier chapters of this thesis, two-step relaxation processes are

observed, with α and β-relaxation processes becoming more distinguishable at higher

waiting times. As discussed earlier, this kind of two-step decay in autocorrelation

function is ubiquitous in glass formers [28]. The C(t) data acquired experimentally in

this work can be represented by the following equation.

C(t) = g(2)(t) − 1 = [a exp {−t/τ1} + (1 − a) exp
{
−(t/τww)β

}
]2 (7.1)

In the above equation, τ1, τww, β and a are the fitting parameters. τ1 is the fast relax-

ation time due to the diffusion of a particle within the cage formed by its neighbors.

The slow relaxation time τww is associated with diffusion of the scatters out of the cage

leading to structural rearrangements. This is a non-Debye relaxation process and can

occur due to a distribution of relaxation times, with β being the stretching exponent

associated with this slow relaxation process. The mean slow relaxation time < τww >

can be obtained by < τww >= (τww/β)Γ(1/β) [29]. In equation 7.1, a and (1− a) are the

relaxation strengths of the fast and slow relaxation processes respectively.

In figure 7.1(b), we plot the scattered intensity from 2.0% w/v Laponite suspen-

sions with increasing concentration of polystyrene beads (�) and compare these data

with the scattered intensity of polystyrene beads dispersed in water (◦). It is seen from

this figure that polystyrene is a strong scatterer of light and that the scattering from the

Laponite suspension is insignificant when the volume fraction of polystyrene beads

φ > 0.5 × 10−5. It is seen from the inset of figure 7.1(b) that the shape of the auto-

correlation function for a pure Laponite suspension changes significantly even when

very small amounts (φ = 4.0 × 10−6) of polystyrene is added. The higher scattering

contrast of polystyrene arises from its refractive index mismatch with respect to the
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Figure 7.2: The diffusive nature of (a) the fast relaxation time (τ1) and (b) mean slow relax-
ation time (< τww >) are shown for a 2.0% w/v Laponite suspension with 95.6 nm polystyrene
beads (volume fraction φ=4.75×10−5) at different waiting times. The solid lines are linear fits
passing through the origin.

Laponite suspension (∆n = 1.595 − 1.335 = 0.260). Since the Laponite particles have

a much smaller ESD= 7.5-8.3 nm in comparison to the polystyrene particles used here

(95.6-588 nm), the polystyrene beads dispersed in Laponite suspension scatter light

more strongly when compared to the Laponite particles.

In figure 7.2, both τ1 and < τww > are plotted vs. 1/q2 for a 2.0% w/v Laponite

suspension with 95.6 nm polystyrene beads (volume fraction φ=4.75×10−5) at differ-

ent waiting times. Straight line fits passing through the origin indicate the diffusive

natures of τ1 and < τww >. The diffusive behaviors of both these relaxation pro-

cesses are also seen for all the samples used here with different sizes of embedded

polystyrene beads. In figure 7.3(a), we plot the fast relaxation time τ1, obtained from

the fits of equation 7.1 to C(t) vs. t for 2.0% w/v Laponite suspension (volume frac-

tion φL = 7.9×10−3) with 208 nm polystyrene beads dispersed at volume fractions φ

between 1.9×10−5-5.7×10−5. τ1 is seen to increase from 30 µsec to 100 µsec for the

range of tw investigated. For a Laponite suspension without beads, an increase in τ1

is also seen with tw [22, 23]. The relaxation time (τ) of a spherical particle is related

to its diffusion coefficient D1 by: τ = 1/D1q2 [24]. According to the Stokes-Einstein

relation, D1 = kBT/6πηrh for a dilute suspension of spherical monodisperse particles,

where kB, η and rh are the Boltzmann constant, viscosity of the medium (0.89 mPa.s

at 25◦C) and hydrodynamic radius of the particle respectively. Furthermore, as shown
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Figure 7.3: (a) Fast relaxation time < τ1 > vs. waiting time tw for 2.0% w/v Laponite
suspension with 208 nm polystyrene beads of volume fractions (φ) 1.9×10−5 (�), 2.85×10−5

(◦), 3.8×10−5 (4), 4.75×10−5 (∇), 5.7×10−5 (�) at 25 ◦C and at a scattering angle θ = 90◦.
(b) Complex viscosity vs. tw for 2.0% w/v (�), 2.5% w/v (◦) and 3.5% w/v (4) Laponite
suspensions at 25 ◦C.

in figure 7.2(a), τ = 1/D1q2 = 6πηrh/kBTq2 (q = 0.0223 nm−1), which gives us

τ ≈ 30 − 34 µsec for ds= 7.5-8.3 nm, the ESD of Laponite particle. It is seen from fig-

ure 7.3(a) that for suspensions of very low tw where the constituents may be assumed

to diffuse freely, the average value of τ1 is approximately 30 µsec and agrees well with

the estimated values of τ1 at very small tw. As the Laponite suspension ages, the vis-

cosity increases with tw (figure 7.3(b)) which results in increased viscous drag on the

polystyrene particles at large tw. The corresponding growth in relaxation timescales is

seen in figure 7.3(a) and agrees well with the previously reported results [22, 23, 26].

The large scatter in the data in figure 7.3(a) can be attributed to fitting errors that arise

due to the limited dynamical extent of the fast relaxation process in our experiments

and to the fact that Laponite particles are very weak scatterers of light (figure 7.1(b)).

The autocorrelation function for polystyrene dispersed in water has a single expo-

nential decay (figure 7.4). In contrast to this, the data in figure 7.5, the autocorrelation

function for polystyrene beads dispersed in a Laponite suspension cannot be fit to a

single exponential decay. However, a functional form that is a sum of an exponential

and a stretched exponential decay shows good fits. In figure 7.5(a), we also see that the

decay of the autocorrelation function is significantly slower when polystyrene beads
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Figure 7.4: (a) The normalized intensity autocorrelation functions C(t) vs. the delay time
t at 25◦C and at a scattering angle θ = 90◦ for polystyrene (size=208 nm, volume fraction
φ=4.75×10−5) in MilliQ water at different waiting times tw. The solid lines are fits to the
exponential function. (b) The relaxation time τ vs. tw are extracted from the C(t) data plotted
in (a). The size of the scatterers is extracted from the relation 2rh = kBTτq2/3πη which yields
the size 215.6 ± 0.9 nm.

are dispersed in Laponite suspensions rather than in water. This is because in the for-

mer samples, the polystyrene beads are confined and diffuse inside cages formed by

the Laponite particles. The slower non-exponential decay in C(t) is therefore mainly

dominated by the diffusion of these polystyrene beads out of their cages. In contrast,

the polystyrene beads dispersed in water show only Brownian motion without any ag-

ing (figure 7.4(b)). The slow-down seen in figure 7.1, can therefore be attributed to

the aging of the Laponite suspension which in turn results in the slowing down of the

polystyrene particle dispersed in it.

We plot the mean slow relaxation time < τww > vs. tw for 2.0% w/v Laponite

suspension with different concentrations of 208 nm polystyrene beads in figure 7.6(a).

It is seen from this figure that < τww > remains almost constant at earlier times and

increases rapidly at longer tw. For an aging Laponite suspension, < τww > shows a

Vogel-Fulcher-Tammann like dependence on tw given by [22]:

< τww >=< τww >
0 exp(Dtw/(t∞α − tw)) (7.2)
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Figure 7.5: (a) The normalized intensity autocorrelation functions C(t) vs. the delay time
t at 25◦C and θ = 90◦ for polystyrene beads (size=208 nm, volume fraction φ= 4.75×10−5)
dispersed in water (◦), polystyrene beads dispersed in 2.0% w/v Laponite suspension (�) and
2.0% w/v Laponite suspension without any bead (4), at tw=212 hour. Dashed and solid lines
are fits to an exponential function and to equation 7.1 respectively. (b) C(t) vs. t for polystyrene
beads dispersed in 2.0% w/v Laponite suspension (�) plotted in (a). Dotted, solid and dashed
lines are fits to an exponential function, equation 7.1 and a stretched exponential function
respectively. It is seen from the plot that equation 7.1 yields the best fit.

Here, D, t∞α and < τww >0 are the fragility parameter, Vogel time and < τww > at

tw → 0, respectively. As already discussed, the aging process in Laponite suspensions

results in a dynamical slowing down of the slow relaxation process obtained from the

C(t) data for polystyrene particles embedded in the Laponite suspension. We fit equa-

tion 7.2 to the data plotted in figure 7.6(a). It is seen that equation 7.2 fits extremely

well to the slow relaxation time data. This validates our assumption that the slowing

down of the relaxation timescales of polystyrene is due to the slowing down of the

relaxation dynamics of the Laponite suspension. In figure 7.6(b), we plot < τww >

vs. tw for different sizes of polystyrene beads (φ=4.75×10−3) dispersed in 2.0% w/v

Laponite suspensions. It is seen from the plot that < τww > is longer for larger particle

sizes as the relaxation time is proportional to the hydrodynamic radius of the particle

in dilute suspension i.e. τ = 1/Dq2 = 6πηrh/kBTq2. We see that the rate of increase of

the relaxation time at higher tw is also size-dependent. It has been reported earlier that

the polystyrene beads show size-dependent diffusion in Laponite suspensions [30].

It is evident from figure 7.6 that the relaxation timescale increases as the size
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7.3 Results and discussions

Size (nm) µ = 1
3πηd (Kg−1s)

8 1.49×1010

95.6 1.25×109

208 5.73×109

390 3.06×108

588 2.03×108

Table 7.1: Mobility of Laponite particle (ESD≈ 8 nm) and polystyrene beads.

Figure 7.6: (a) Mean slow relaxation time < τww > vs. waiting time tw at different concen-
trations of 208 nm polystyrene beads dispersed in 2.0% w/v Laponite suspension. (b) < τww >

vs. tw at different sizes of polystyrene beads at volume fraction (φ) 4.75×10−3 dispersed in
2.0% w/v Laponite suspension. Solid lines are fits to equation 7.2.

(d) or the mass of the embedded polystyrene particle increases. Mobility µ = 1
3πηd de-

creases as the size of the particle increases (table 7.1). Polystyrene particles therefore

behave as less mobile regions in the Laponite suspension which are diffusing inside

and out of the cages formed by the neighboring Laponite particles.

In order to see the effects of the concentration and the size of the polystyrene par-

ticles on the aging dynamics of the Laponite medium, we plot the fragility parameter

D and Vogel time t∞α , calculated by fitting equation 7.2 to < τww > data, vs. the

concentration (figure 7.7(a)) and size (figure 7.7(b)) of the polystyrene beads respec-

tively. It is seen from the figure 7.7(a) that D increases by a very small amount with

polystyrene concentration while t∞α remains almost independent of concentration. Such

a dependence of D and t∞α on polystyrene concentration is reminiscent of the results

in recent molecular dynamics simulations of supercooled liquids with random pinning
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7. Fragile behavior of a soft glassy colloidal suspension in the presence of probe
particles

Figure 7.7: (a) Fragility parameter D (�) and Vogel time t∞α (◦) vs. volume fraction φ of 208
nm polystyrene bead dispersed in Laponite suspension of volume fraction (φL)=7.9×10−3. (b)
D (�) and t∞α (◦) vs. size of polystyrene beads for a fixed φ =4.75×10−5.

[31] which revealed that the kinetic fragility parameter, KVFT = 1/D, decreases as

the pining concentration increases, while the hypothetical divergence temperature (T0)

is independent of the pinning concentration. We further note that in our experimen-

tal range of φ, D is very weakly dependent on φ. In figure 7.7(b), we plot D and

t∞α for different sizes of the embedded polystyrene beads at the same volume fraction

(φ = 4.75×10−5). It is seen that both D and t∞α decrease rapidly as the size of the bead

increases.

7.4 Conclusions

We have studied the relaxation dynamics of aqueous Laponite suspensions in the pres-

ence of less mobile regions, introduced by adding larger polystyrene beads. The α-

relaxation timescales (τww) are extracted from the intensity autocorrelation functions

of light scattered by the less mobile regions dispersed in the Laponite suspensions. It

is seen that the secondary β-relaxation timescale (τ1) originates due to the diffusion of

Laponite particles. It is seen that both fragility parameter D and the hypothetical diver-

gence time t∞α decrease with the size of the polystyrene bead. The fragility parameter D
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7.4 Conclusions

increases by a very small amount but t∞α remains almost unchanged in the narrow con-

centration range of the beads investigated here. These observations are reminiscent of

simulations results obtained for supercooled liquids with random pinning [31]. How-

ever, in the simulation results, the pinned sites are always out of equilibrium and are

therefore truly quenched. In the present case, polystyrene beads have finite mobilities

even though the sizes of polystyrene beads are much bigger than Laponite particles.

Therefore, the polystyrene beads behave as regions of sparse mobility and can only be

compared qualitatively to the simulation results for very low pinning concentrations

[31].
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8
Falling ball experiments on aging

colloidal suspensions

8.1 Introduction

The falling of an object through a non-Newtonian aging suspension leads to very inter-

esting manifestations of Stokesian flows without any terminal velocity. Many indus-

trial processes, for example chocolate and concrete preparation that involve the settling

of solid objects through non-Newtonian pasty fluids, depend strongly on the settling

behavior of these objects.

In a Newtonian fluid, the terminal velocity v of an object falling through it under

the action of gravity arises because of the balance between the drag force of the fluid

on the object and the buoyant weight of the object [1].

v =
2
9

(ρs − ρ)gR2

η
(8.1)
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8. Falling ball experiments on aging colloidal suspensions

Here, ρs, ρ, η, g and R are the density of the object, fluid density, viscosity of the fluid,

acceleration due to gravity and radius of the object respectively. However, the fall of

an object through a non-Newtonian fluid may not achieve terminal velocity as the drag

force depends on many factors like shear rate, preparation history and also on the initial

structure. After decades of research, the complete understanding of the motion of an

object in a fluid with structure (i.e. pasty fluids) remains elusive. Several experiments

on the fall of an object through non-Newtonian fluids i.e. Laponite clay suspensions

[2–4], polymer solutions [5] and concentrated suspensions [6] have been carried out

during the last few decades and several models have been developed to explain the

observed flow behaviors [7, 8]. It was seen that a sphere falling through a thixotropic

medium (i.e. Laponite suspension) showed different types of motion depending on the

age of the medium or its initial structure [9]. For example, the ball was seen to fall

rapidly with almost constant velocity at smaller ages. This was followed by a slower

fall with decreasing velocity at moderate ages and stoppage at higher ages. On the

other hand, observations in bentonite clay suspensions show that the velocity of the

fall increases as the object gets deeper into the fluid [10]. All these results indicate

the important roles of the structure formation and rejuvenation processes during the

motion of an object in aging clay suspensions.

In recent years, it was observed that the rheological behavior of aging Laponite

suspensions have striking differences depending on whether they had evolved spon-

taneously or were rejuvenated suspensions. In shear melted experiments, the plateau

value of the complex viscosity was reported to depend upon the idle time or the time

elapsed after preparation. A partial irreversibility in aging behavior upon rejuvenation

was also observed [11]. It was also seen that the permanent structures in Laponite sus-

pensions that are preserved for a larger idle time cannot be destroyed even by applying

very large shear deformations [12]. The microscopic dynamics of Laponite suspen-

sions also show dichotomic aging behaviors [13], indicating a difference in structure

between spontaneously evolved and rejuvenated suspensions. It must be noted here

that the motion of an object falling in a Laponite suspension was studied extensively
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8.2 Sample preparation and experimental methods

for only rejuvenated suspensions in earlier works [2–4, 9]. Therefore, experiments on

spontaneously evolving suspensions could be extremely interesting as the fall of the

object could likely explore different conditions of structure formation.

In this chapter, we report our results of the fall of steel balls through spontaneously

evolving colloidal suspensions of Laponite. Balls of different sizes are dropped into

the suspensions having different initial states of structure. An increase of velocity of

the ball as it gets deeper into the fluid is observed. This increment is more pronounced

for larger balls and for lower aging or waiting times of the suspensions. A simple rheo-

logical model is discussed to explain the experimental results by taking into account (i)

the restructuring and destructuring processes and (ii) the dependence of the viscosity

of the suspensions on the structure parameter and shear rate [9].

8.2 Sample preparation and experimental methods

All experiments reported in this chapter are done using Laponite XLGr (BYK Addi-

tives). Laponite XLG is a high-purity grade of Laponite RD [14, 15] with similar size

as Laponite RD (diameter 25-30 nm and thickness 1 nm approximately [16]), but with

less heavy metal content than the RD grade. Laponite XLG is hygroscopic in nature. It

is first heated in a hot air oven (Biovision Inc.) for 16 hours at 120◦C before the exper-

iment. Colloidal suspensions of Laponite XLG (concentration 3.5% w/v) are prepared

by adding dried Laponite powder to MilliQ water (resistivity ' 18.2 MΩ-cm). Here,

the concentration (% w/v) is the weight of Laponite XLG powder in grams added to

100 ml MilliQ water. The Laponite suspension is vigorously stirred with a magnetic

stirrer for 1 hour for complete dispersion of Laponite powder in the aqueous medium.

After 1 hour, the suspension becomes optically clear. It is then filtered through a Mil-

lipore membrane filter (pore size=0.45 µm) with the help of a vacuum pump (Tarsons

Rockyvac) in order to avoid large particle clusters. Proper care is taken to avoid any

change of Laponite concentration during the filtration process. After filtration, the

Laponite suspension (approximately 600 ml) is loaded into a falling ball viscometer
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8. Falling ball experiments on aging colloidal suspensions

which consists of a cylindrical tube kept inside a water bath. Details of the design and

working principle of the falling ball viscometer are given in chapter 2. Freshly pre-

pared Laponite suspensions are used to fill the viscometer for each experiment. The

temperature of the water bath is maintained at 25◦C with the help of a temperature

controller (Polyscience Digital Inc.). After loading, the top of the cylindrical tube is

covered with a parafilm to keep it isolated from the atmosphere and the material is left

to age so that its microstructure starts to develop. The waiting time tw is calculated

from the moment the Laponite suspension is completely loaded into the viscometer.

After a waiting time tw, the parafilm cover is removed from the top and the steel ball is

dropped using a push-pull solenoid based release mechanism positioned at the center

to avoid the rotation of the balls. A guide tube is used to ensure that the ball always

falls through the center of the tube. The path followed by the ball is recorded with an

IDT Motion Pro Y4-S2 high speed camera at 700-1500 frames per second. Details of

the camera are given in chapter 2. The position of the ball during its fall is tracked

from the images recorded by the camera using a LabView based tracking program [17]

and the velocity of the ball is calculated from the position vs. time data.

8.3 Results and discussions

We have performed falling ball experiments with steel balls falling through sponta-

neously evolving Laponite suspensions. The experiments reported here are performed

with freshly prepared Laponite suspension of tw <100 min. In figure 8.1(a), snapshots

captured by the camera are shown for various stages of the fall of a 5 mm steel ball

through a 3.5% w/v Laponite suspension at tw = 90 min. In figure 8.1(b), displacement

of the ball from the free surface of the suspension is plotted vs. the time of fall for the

5 mm steel ball for different tw. As expected, the ball gets deeper into the fluid with

time, with the velocity of fall depending strongly on tw. The velocity of the falling ball,

which is calculated from the displacement vs. time data, is plotted vs. x in figure 8.2

for the 5 mm steel ball for different waiting times tw. It is seen from the figure that (i)
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8.3 Results and discussions

Figure 8.1: (a) Snapshots of a steel ball of 5 mm in diameter falling through a Laponite
suspension of 3.5% (w/v) of waiting time tw=90 minutes. (b) Displacement vs time of a steel
ball of 5 mm in diameter falling through Laponite suspensions of 3.5% w/v characterized by
several waiting times.
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8. Falling ball experiments on aging colloidal suspensions

Figure 8.2: Velocity of a steel ball of 5 mm diameter falling through a Laponite suspension
of 3.5% (w/v) at several different waiting times tw (from top to bottom) 30 minutes (�), 45
minutes (©), 60 minutes (4), 75 minutes (∇), 90 minutes (3) plotted as a function of the
displacement from the free surface of the tube. The solid lines are fits to equations 8.14.

v decreases with increasing tw and (ii) v increases monotonically with x for all tw, with

the increase of v being more prominent for smaller tw. It is seen from equation 8.1 that

the velocity of fall for Stokesian flow also depends on the size of the object. We plot v

vs. x for steel balls of different sizes for tw= 30 min in figure 8.3. It is seen from this

figure that v is larger for the bigger balls. However, terminal velocity is not achieved

in any of the runs. Instead, an increase in velocity, which is more prominent for larger

balls, is observed.

We describe a simple rheological model proposed by Ferroir and coauthors [9] to

explain our experimental observations i.e. the increase in velocity with depth of fall

as seen in figures 8.2 and 8.3 for balls of different sizes and tw of Laponite suspen-

sions. This rheological model was originally proposed for thixotropic pasty fluids and

accounts for the presence of structure of the fluid in the form of a structure parameter

λ [8, 18–21]. The structure parameter λ has the following physical interpretation: λ=0

for a fully broken or destructured state of the thixotropic fluid or when the structure

is yet to form at microscopic scale, while λ=1 for a fully structured fluid when the
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8.3 Results and discussions

Figure 8.3: Velocity of steel balls of several different diameters (from bottom to top) 2 mm
(�), 3 mm (©), 4 mm (4), 5 mm (∇), falling through a Laponite suspension of 3.5% (w/v) at
waiting time tw=30 minutes are plotted as a function of the displacement from the free surface
of the tube. The solid lines are fits to equations 8.14.

recovery from a broken state is complete. The viscosity of these pasty materials is not

only shear rate (γ̇) dependent but also depends on the instantaneous state of the struc-

ture [22]. Hence, the kinetic equation which governs the time evolution of structure

parameter λ has two terms due to (i) restructuring or structural recovery and (ii) struc-

tural break-down or destructuring processes and can be represented by the following

equation [9]:
dλ
dt

= F(λ) −G(λ)γ̇ (8.2)

In the above equation, F(λ) and G(λ) are associated with the rates of the restructur-

ing and destructuring processes of the internal structure respectively, and are generally

functions of λ.

This above model is particularly useful for Laponite suspension as it is thixotropic

in nature and shows structural recovery [23]. We further explore the role of destruc-

turing and restructuring process by rheological and conductivity measurement. In fig-

ure 8.4, the evolution of conductivity σ and storage moduli G′ are plotted for a 3.5%
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8. Falling ball experiments on aging colloidal suspensions

Figure 8.4: Conductivity σ (◦) and storage modulus G′ (�) vs. waiting time tw for a 3.5%
w/v Laponite suspension. Shaded region in the evolution plots of σ and G′ for the Laponite
suspension highlights the evolution of both the quantities upon rejuvenation after 18 hours of
preparation.

w/v Laponite suspension measured by a Eutech Instruments PC 2700 conductivity me-

ter and Anton Paar MCR501 rheometer respectively. It is seen from the figure that both

σ and G′ are increasing with tw. This indicates the presence of structure in Laponite

suspension. A shear rejuvenation is applied to this Laponite suspension after 18 hours

of preparation and bothσ and G′ are monitored to study the structural recovery (shaded

region in figure 8.4). It is seen that G′ increases from a very low value of approximately

1 Pa to a very high value (G′ > 103 Pa) after 18 hours of aging. However, the value of

G′ decreases during the shear-melting process in which a very high shear rate (500/s)

is applied for 5 minutes to break the structure. But unlike G′, the value of σ does not

decrease in the shear rejuvenation process (applied shear rate approximately 500/s for

5 minutes using a syringe pump). Interestingly, G′ shows a faster structural recovery

for rejuvenated suspensions as G′ increases to 103 Pa in only 7 hours. Therefore, the

process of structure formation or restructuring is faster for higher sodium ion concen-

tration or equivalently for higher conductivity. This has been indeed seen in chapters 4
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where addition of salt to Laponite suspension accelerates the structure formation pro-

cess. It is also seen from figure 8.4 that the structure of Laponite suspensions can be

broken by the application of shear.

From the above discussion, it is evident that both the restructuring and the destruc-

turing processes are likely to be important as the structures of Laponite suspensions are

amenable to shear deformation when an object passes through it. The kinetic equation

(equation 8.2) can be simplified by taking F = 1/θ and G = αλ, where 1/θ and α

are two parameters related to the restructuring and destructuring rates respectively [9].

Therefore,
dλ
dt

=
1
θ
− αλγ̇ (8.3)

Equation 8.2 can be further simplified if a simple expression of viscosity, η = η0(1+λn),

often used for structured fluids, is assumed [9]. Here η0 is the viscosity in the absence

of any structure and n ≥ 1. In this case, the terminal velocity of the ball falling through

the fluid can be obtained from equation 8.1 by using the following expression [9]:

v =
2
9

(ρs − ρ)gR2

η0

1
1 + λn =

W0

1 + λn (8.4)

The parameter W0 = 2
9

(ρs−ρ)gR2

η0
is the reference fall velocity of the ball through a com-

pletely destructured fluid (λ = 0). The expression for the velocity of the ball can be

obtained from the equation 8.4 using the expression for λ from equation 8.3. The above

equation can be further simplified by taking n = 1 [9]. In the equations 8.2 and 8.3, the

presence of both restructuring and destructuring processes is assumed. However, in an

earlier work by Ferroir and coauthors [9] it was seen that only the restructuring process

is important (i.e. G(λ) = 0 in equation 8.2) for rejuvenated Laponite suspensions. In

this case, we can write from equations 8.2 and 8.3,

dλ
dt

= F(λ) =
1
θ

(8.5)
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8. Falling ball experiments on aging colloidal suspensions

which yields,

λ = λ0 +
t
θ

(8.6)

Here, λ0 is the structural state of the material at t=0. Using equation 8.6 in equation 8.4

with n = 1, we have,

v =
dx
dt

=
W0

1 + λ0 + t
θ

(8.7)

Integrating both sides of the above equation,

x =

∫ t

0

W0

1 + λ0 + t
θ

dt = θW0 ln
[
1 + λ0 + t

θ

1 + λ0

]
(8.8)

Replacing the value of
(
1 + λ0 + t

θ

)
from equation 8.7 in equation 8.8, we have the

velocity as a function of depth x as following:

v =
W0

1 + λ0
exp

[
−x
θW0

]
=

W0

1 + λ0
exp

[
−x
x0

]
(8.9)

Here x0 = θW0. It is clear from equation 8.9 that velocity of the ball decreases as it gets

deeper into the fluid. This is the original solution used in [9]. Equation 8.9 is a very

good approximation when the Laponite suspension is left undisturbed for a long time

after preparation, such that it evolves to a vitreous state, and is eventually rejuvenated

to break the structure before the experiment. As already seen in figure 8.4, for such

Laponite suspensions, the recovery process is faster than in a spontaneously evolving

Laponite suspension. Ferroir and coauthors had, indeed, seen a decrease in velocity

with the depth for rejuvenated Laponite suspensions [9].

Equation 8.9 clearly fails to explain the increase in velocity with depth seen in

figures 8.2 and 8.3. This feature arises as the destructuring process is dominant for

spontaneously evolving Laponite suspensions. We solve equations 8.2 and 8.3 taking
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into account only the destructuring process (i.e. F(λ) = 0).

dλ
dt

= −G(λ)γ̇ = −αγ̇λ (8.10)

Solving the above equation, we have,

λ = λ0 exp[−αγ̇t] (8.11)

Using the expression of λ from equation 8.11, we have from equation 8.4 for n = 1,

v =
dx
dt

=
W0

[1 + λ0e−αγ̇t]
=

W0

[1 + λ0e−βt]
(8.12)

Here, β = αγ̇. Integrating both sides of the above equation, we have,

x =

∫ t

0

W0

1 + λ0e−βt dt = −
W0

β
ln

[
(1 + λ0)e−βt

1 + λ0e−βt

]
(8.13)

Substituting the value of e−βt from equation 8.12 in equation 8.13, we have the follow-

ing expression for the velocity of a ball falling through a destructuring medium with

depth x:

v = W0

[
1 −

λ0

1 + λ0
exp {−x/x1}

]
(8.14)

Here x1 = W0/β = W0/αγ̇. The above equation predicts an increase in velocity of the

ball with x.

We fit the data shown in figures 8.2 and 8.3 to equation 8.14. It is seen from

these figures that equation 8.14 fits the data extremely well. In the tables 8.1 and 8.2,

the fitting parameters are shown for different waiting times tw and sizes d of the ball

respectively. From the tables 8.1 and 8.2, it is seen that the characteristic length as-

sociated with the destructuring process, x1, is always less than the length L (L ≈ 0.5

m) of the viscometer. It was reported in chapter 4 and also seen in figure 8.4 that
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Only destructuring
tw W0 ms−1 λ0 x1 m

30 min 0.8812 ± 0.0002 0.3206 ± 0.0001 0.0676 ± 0.0003
45 min 0.9069 ± 0.0028 0.2769 ± 0.0034 0.3021 ± 0.0079
60 min 0.6491 ± 0.0003 0.0974 ± 0.0006 0.1332 ± 0.0024
75 min 0.5098 ± 0.0001 0.0965 ± 0.0006 0.0890 ± 0.0012
90 min 0.0676 ± 0.0003 0.0700 ± 0.0001 0.1499 ± 0.0406

Table 8.1: Fitting parameters from figure 8.2 for a 5 mm steel ball falling through 3.5%
w/v Laponite suspensions at different tw.

the concentration of sodium ions (or conductivity) increases with tw for spontaneously

evolving Laponite suspensions. At earlier times, interparticle interactions are weak and

amenable to breakage, which results in a very slow restructuring process of Laponite

suspension around the ball during its motion. Therefore, the destructuring process

dominates for spontaneously evolving Laponite suspensions at smaller tw as our exper-

iments and data analysis demonstrate. Given the several approximations in the model

(for example, n = 1 for pasty fluid) and the assumption that restructuring is not at all

influencing our Laponite suspensions (i.e. F(λ) = 0), we clearly need to improve the

model to obtain better quantitative fits.

Only destructuring
d W0 ms−1 λ0 x1 m

5 mm 0.8812 ± 0.0002 0.3206 ± 0.0010 0.0676 ± 0.0004
4 mm 0.5499 ± 0.0007 0.1357 ± 0.0010 0.0314 ± 0.0004
3 mm 0.4799 ± 0.0005 0.0134 ± 0.0010 0.0188 ± 0.0022
2 mm 0.2530 ± 0.0002 0.0100 ± 0.0001 0.0002 ± 0.0001

Table 8.2: Fitting parameters from figure 8.3 for steel balls of different sizes d falling
through 3.5% w/v Laponite suspension of tw = 30 min.
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8.4 Conclusions

We have shown that the motion of solid objects (steel balls) through spontaneously

evolving aging colloidal suspensions of Laponite is very different from the motion of

a solid object in a Newtonian fluid. It is observed that there is a net increase in the

velocity of the balls over the period of the fall, as it gets deeper into the fluid. The

increase in velocity is more prominent for smaller waiting times tw of the suspension

and for the larger balls. A simple model is discussed to explain the experimental results

based on the structural kinetics of the thixotropic fluid [8, 9, 20, 21]. In this model,

the restructuring and destructuring processes in thixotropic materials are taken into

account. These two processes, which are functions of the viscosity of the suspension

on structure parameter and shear rate, were previously used to explain the decreasing

velocity of fall in rejuvenated Laponite suspensions [9]. We have seen that the same

model could be used to explain all the experimental results. However, the conductivity

and rheological data indicate a clear difference between spontaneously evolving and

rejuvenated Laponite suspensions. The structural recovery is faster for rejuvenated

suspensions due to the higher amount of sodium ions. In the present experiments

which are done only for spontaneously evolving Laponite suspensions, it is seen that

restructuring process is very slow and only destructuring process is important over the

period of fall.
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9
Instabilities at the interface between

a Newtonian fluid and an aging

non-Newtonian fluid in quasi-2D

geometry

9.1 Introduction

Viscous fingering is a very challenging problem in the context of the displacement

of fluids in a porous material and it generally refers to the onset and evolution of in-

stabilities at the interface between two fluids [1]. This problem originates from the
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petroleum industry. Tongues of water in oil are observed by petroleum engineers dur-

ing enhanced secondary oil recovery. This particular problem is industrially so impor-

tant that a meticulous study of interfacial instabilities was pursued to determine the

optimal policy of oil recovery [2, 3]. Pioneering work by Saffman and Taylor revealed

that the boundary between oil and a displacing fluid becomes unstable if the latter is

less viscous than the former [4, 5]. This instability at the interface between two flu-

ids is called the Saffman-Taylor instability and the resultant finger-like protrusions are

known as the Saffman fingers. Typically, the study of viscous fingering is performed

in a confined geometry. A thin linear channel or a Hele-Shaw cell are often preferred

most as they facilitate laminar flow [6].

The physics of interfacial patterns in a constrained geometry is understood in terms

of Laplacian growth, where the boundary of a two dimensional domain grows at a rate

proportional to the gradient of a Laplacian field, i.e. pressure, [7]. It is a general prac-

tice to write Darcy’s law to relate the velocity of the finger to the gradient of the pres-

sure in a narrow channel or porous medium [8]. For Newtonian fluids with a parabolic

velocity profile of the finger over the gap in a Hele-Shaw cell, the gap-averaged veloc-

ity v is proportional to the pressure gradient ∇p: v = −(b2/12µ)∇p, where b is width

of the gap or the spacing between the plates and µ is the viscosity of the fluid. For

non-Newtonian fluids, this relation can be further modified by taking into account a

shear rate dependent viscosity µ(γ̇): v = −(b2/12µ(γ̇))∇p [9–11].

A sound understanding of the interfacial phenomena in a Hele-Shaw cell involv-

ing non-Newtonian fluids is relatively difficult due to the complex flow behaviors of

the elasticity and viscosity at different shear rates [12, 13]. For example, yield stress

fluids, which do not flow until the shear stress is above a critical value of the stress

known as the yield stress, show thixotropic behavior including aging, shear rejuvena-

tion and also shear banding [14]. It was demonstrated experimentally in yield stress

fluids that the Saffman-Taylor instability is dramatically modified and gives rise to dif-

ferent regimes and pattern morphologies i.e. branched patterns at low velocities, a
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single stable finger at moderately high velocities and the destabilization of finger prop-

agation and side-branching instabilities at very high velocities [9]. This problem was

also studied analytically and numerically to understand the morphological features of

the fluid-fluid interface, the finger competition dynamics and the stability of the in-

terface at different stages of pattern evolution [15, 16]. Such instabilities and pattern

morphologies have been also explored when one of the phases is a viscoelastic clay

suspension [17, 18]. It was seen that viscous fingering is obtained when an aqueous

suspension of bentonite clay is displaced by water for low clay/water ratios [17]. In-

terestingly, a transition from viscous finger to viscoelastic fracturing is observed with

increasing clay/water ratio [18].

In general, clay suspensions (eg. Laponite suspension) are thixotropic in nature

[19] and exhibit aging properties (chapter 1). Understanding the pattern morphologies

for such aging viscoelastic fluids and a Newtonian fluid is of utmost theoretical and

experimental importance as many natural phenomena involve clay/water systems [17].

In the present experiment, the instabilities at the interface between aging colloidal sus-

pensions of Laponite XLG and two different Newtonian fluids are studied in a radial

Hele-shaw cell. The Laponite suspension is displaced by the Newtonian fluids car-

bon tetrachloride or water at different waiting times. The morphology of the patterns

obtained when aging Laponite suspensions are displaced by an immiscible Newto-

nian fluid (carbon tetrachloride) are found to be dependent on waiting times. A dense

branching finger pattern emerges due to the non-linear development of the interface

arising out of the Saffman-Taylor instability at longer waiting times. A dependence of

the patterns on waiting times is also observed when Laponite suspensions are displaced

by a miscible Newtonian fluid (water). In this case, a transition from viscous fingering

to viscoelastic fracturing is observed at very high waiting times. The observed results

are explained qualitatively with the help of rheological data.
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9.2 Sample preparation and experimental methods

All experiments reported in this chapter are done using Laponite XLGr (BYK addi-

tives). The concentration of the aqueous suspension is kept constant at 3.5% w/v for

all experiments. Here, the concentration of Laponite expressed in % w/v refers to the

weight of Laponite in grams that is dispersed in 100 ml MilliQ water. Details of the

sample preparation are given in chapter 8. The Laponite suspension is loaded inside

a Hele-Shaw cell just after preparation. Details of the Hele-Shaw cell and the exper-

imental procedure are given in chapter 2 (section 2.2.6). The waiting time tw = 0 is

measured from the moment at which the loading process of the Laponite suspension is

completed. The waiting time tw is the time interval between the time of loading of the

Laponite suspension into the Hele-Shaw cell and the time at which the second (New-

tonian) fluid is injected. All the experiments reported in this chapter are done with

spontaneously evolving Laponite suspensions, i.e. for each experiment, a freshly pre-

pared Laponite suspension is loaded into the cell. Two different types of experiments

are performed by displacing aqueous Laponite suspensions by two different Newtonian

fluids, (i) water (a miscible phase) and (ii) CCl4 (carbon-tetrachloride- an immiscible

phase). A tiny amount of dye (KMnO4/Sudan III) is added to the displacing phases

(water/CCl4) to improve the contrast of the images obtained by the high speed camera.

9.3 Results and discussions

9.3.1 Pattern formation when an aging Laponite suspension is

displaced by CCl4

In this section, we discuss the morphologies of the patterns obtained when aging

Laponite suspensions at different stages of structural evolutions (i.e. different tw) are

displaced by an immiscible Newtonian fluid i.e. CCl4 (viscosity η1 = 0.90 mPa.s,
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specific density ρ1 = 1.58 and surface tension σ1 = 0.026 Nm−1). In figure 9.1, a

few representative patterns are shown when Laponite is displaced by CCl4 (colored

red with dye) at different waiting times tw. It is seen that the interface between the

fluids is not circular due to the Saffman-Taylor instability and finger-like protrusions

are observed (figure 9.1). At smaller tw, the protrusions are not clearly separated from

each other and they avoid side-branching (figure 9.1(a)). However, a very branched

pattern emerges when Laponite is displaced by CCl4 after tw = 5 hours (figure 9.1(b)).

At even higher tw (i.e. tw = 24 hours), similar types of branched patterns are observed

(figure 9.1(c)), but the widths of the branches appear to decrease. Patterns that are

shown in this figure are typical fractal patterns that emerge when a more viscous fluid

is displaced by a less viscous fluid in porous media due to the Saffman-Taylor instabil-

ity [1]. We have plotted the fractal dimensions d f of the patterns as a function of tw of

the Laponite suspension in figure 9.3.

It is well known that fractal patterns are not compact objects and the relation be-

tween the area and any characteristic length scale (i.e. average radius of the patterns)

does not have any definite functional form. In contrast, a compact object will have a

definite functional form. For example, the area A of a circle is related to its radius r by

A = πrd f , where d f = 2 is an integer. In the case of a fractal pattern which is embedded

Figure 9.1: Interfacial patterns which are obtained when aging Laponite suspensions are
displaced by CCl4 at a constant flow rate of 5.25 ml/min in a Hele-Shaw cell (gap = 0.17 mm)
at three waiting times: (a) tw = 1 hour (b) tw = 5 hours and (c) tw = 24 hours.
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Figure 9.2: Fractal dimension d f vs. injection time ti for the patterns obtained when aging
Laponite suspensions are displaced by CCl4 at a constant flow rate of 5.25 ml/min in a Hele-
Shaw cell (gap = 0.17 mm) at tw = 1 hour.

in 2-dimensional space, d f could be between 1 and 2. We use the fractal box counting

method to calculate d f for the patterns obtained in the experiments. In this method, the

number of boxes N that are required to cover the whole area A of the fractal pattern

is calculated. In general N depends on the size of the box l, i.e. N(l) and the area

can written as A = N(l)l2. Now the area is related to the characteristic length scale

A = cld f . Therefore, log A = 2 log l + log N(l) = d f log l + log c, where c is a constant.

Next, d f is estimated from the slope of log N vs. log l plot.

In figure 9.2, we plot d f vs. the injection time ti for a Laponite suspension that is

displaced after tw = 1 hour. The injection time ti = 0 is measured from the moment

when injection of the second fluid is commenced. ti is always less than 3 minutes

for our experiments and therefore, no significant aging happens during injection. It is

seen from figure 9.2 that d f increases with the increase in ti and finally saturates above
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Figure 9.3: Fractal dimension d f vs. waiting time tw for aging Laponite suspensions that are

displaced by CCl4 at a constant flow rate of 5.25 ml/min in a Hele-Shaw cell (gap= 0.17 mm).
The change in interfacial patterns at the two extreme values of tw are also reproduced above.

ti = 10 sec when the patterns becomes self-similar. It is also noted that errors in d f

are larger for smaller patterns as the statistics are poor (i.e. the number of boxes in the

fractal box counting method is small). For the remainder of this chapter, we report only

the values of d f that are obtained for self-similar patterns when d f does not depend on

ti.

In figure 9.3, we plot d f vs. tw to study the dependence of d f on the aging or wait-

ing times of Laponite suspensions. It is seen from the figure that d f decreases from a

value 1.94±0.01 to 1.60±0.01 with increasing tw. As seen in figure 9.4 for a Laponite

suspension of tw = 24 hours that is displaced by CCl4, d f also depends on the gap

between the plates. It is seen that d f increases with increasing gap between the plates.
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Figure 9.4: Fractal dimension d f vs. the gap between the plates for aging Laponite suspen-
sions that are displaced by CCl4 at a constant flow rate of 5.25 ml/min in a Hele-Shaw cell at a
fixed waiting time, tw = 24 hours.

9.3.2 Pattern formation when an aging Laponite suspensions

is displaced by water

Fractal patterns are also formed due to interfacial instabilities when aging aqueous

Laponite suspensions are displaced by water, a miscible Newtonian fluid. In figure 9.5,

patterns are shown for three different ages, tw, of Laponite suspensions. Initially for

tw = 1 hour (figure 9.5), many closely spaced radially propagating fingers are observed.

This is different from the pattern seen in figure 9.1(a), where the presence of only a few

very broad fingers were observed.

A very dense dendritic pattern is observed when the Laponite suspension is dis-

placed at a relatively higher waiting time tw = 5 hours (figure 9.5(b)). Unlike in the

immiscible case, the morphology of the patterns changes further when Laponite is dis-

placed by water at even higher waiting times (figure 9.5(c)). Similar to our analysis
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Figure 9.5: Fractal patterns that are obtained when aging Laponite suspensions are displaced
by water at a constant flow rate of 5.25 ml/min in a Hele-Shaw cell (gap = 0.17 mm) at three
waiting times tw = (a) 1 hour (b) 5 hours and (c) 24 hours.

for the immiscible patterns, we have estimated the fractal dimension d f of the patterns

formed when Laponite suspension are displaced at different tw. In figure 9.6, we plot

d f vs. injection time ti. Similar to the data in figure 9.2, d f increases with ti initially,

before saturating to a constant value 1.41±0.01. In figure 9.7, d f is plotted vs. tw. It

is seen that the decrease in d f is much more drastic in this plot than in figure 9.3. In

the inset of figure 9.7, d f is plotted vs. the gap between the plates for two different

gaps. Similar to the case of the immiscible patterns, d f increases with the increase in

gap. For high waiting time tw = 28 hours, d f = 1.32 ± 0.01 (figure 9.7) and the pattern

looks similar to the viscoelastic fracturing patterns (figure 9.8) obtained for bentonite

clay suspensions for very high clay/water ratios [17, 18]. The reported values of d f

for the viscoelastic fracturing pattern is below 1.50. It was also reported that in the

viscoelastic fracturing regime, the fractures or cracks emerged at almost 90◦ relative to

the primary branches [18]. The patterns seen in our experiments are very similar to the

ones reported earlier [17, 18].

We next explore the morphology of the fracturing patterns for very high waiting

times. In figure 9.8, the pattern which is obtained when aging Laponite suspensions

are displaced by water at tw = 28 hours are reproduced. It is seen from this figure

that some cracks have emerged at almost 90◦ relative to the main branch (shown by
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Figure 9.6: Fractal dimension d f vs. injection time ti for the pattern obtained when aging
Laponite suspensions are displaced by water at a constant flow rate of 5.25 ml/min in a Hele-
Shaw cell (gap = 0.17 mm) at tw = 24 hours.

arrows). This is a typical features of viscoelastic fracturing [18] and is only seen when

the age of the Laponite suspension is very high.

In figure 9.9, elastic G′ and viscous G′′ moduli and the complex viscosity η∗ of

a 3.5% w/v Laponite suspension are plotted vs. tw. It is seen that at smaller tw, the

values of G′ and G′′ are comparable (shaded region in figure 9.9(a)) as the suspension

is liquid-like. However, it is seen that both modulus and complex viscosity increase

with tw due to aging. At very high ages i.e. tw > 20 hours, G′ is almost two decades

higher in magnitude than G′′. This indicates a development of elasticity and the emer-

gence of soft solid-like behavior in the suspension. Since elasticity is more important at

higher ages, it influences the morphology of the pattern and gives rise to a viscoelastic

fracturing phenomenon reported in this chapter.
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Figure 9.7: Fractal dimension d f vs. waiting time tw for the patterns obtained when aging
aqueous suspensions of Laponite are displaced by water at a constant flow rate of 5.25 ml/min
(gap = 0.17 mm). In the inset, d f is plotted vs. the gap between the plates.

9.4 Conclusions

The elasticity of glassy colloidal suspensions builds up as the system ages, and the me-

chanical properties of soft glassy suspensions change dramatically as time progresses.

Colloidal suspensions of Laponite are loaded into a quasi-2 dimensional cell consisting

of two glass plates separated by a thin gap (a radial Hele-Shaw cell). A miscible and

an immiscible Newtonian fluid, having low viscosity values compared to Laponite, are

each injected in separate experiments at a constant flow rate through a hole in one of

the glass plates of the cell to replace the aging Laponite suspension. The fractal behav-

ior of the interfacial pattern is seen to have a strong dependence on the waiting time of

the colloidal suspension of Laponite and on the surface tension between the two fluids.

A transition from viscous to viscoelastic fracturing is observed when aging Laponite

suspensions are displaced by water at higher waiting times due to the development of
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Figure 9.8: The viscoelastic fracturing pattern that is obtained when aging aqueous suspen-
sion of Laponite at tw = 28 hours, is displaced by water (gap = 0.17 mm, flow rate = 5.25
ml/min). Arrows indicate that the fractures occur at an angle of approximately 90◦.
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Figure 9.9: (a) Elastic or storage G′ (�) and viscous or loss G′′ (◦) moduli vs. waiting time
tw for a 3.5% w/v Laponite suspension at 25◦C. (b) Complex viscosity η∗ vs. tw for 3.5% w/v
Laponite suspension.
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considerable elasticity in the Laponite suspensions with time.
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10
Summary and future directions

This chapter describes the main results reported in this thesis and discusses the scope

for future research in this field. The main objective of this thesis is to study the colloidal

glass transition in aging Laponite suspensions, a model glass former, and connect the

observed behaviors with other glass formers. This thesis also describes the flow be-

havior of aging Laponite suspensions in two contexts - settling of an object through

a thixotropic fluid formed by Laponite clay and the formation of fractal patterns in

a confined geometry (Hele-Shaw cell) due to instabilities at the interface. The slow

dynamics in aging Laponite suspensions is explored mainly by dynamic light scatter-

ing (DLS) experiments and supported by ion concentration measurements using an ion

meter and rheological measurements using a rheometer. Designs and implementation

of falling ball viscometer and Hele-Shaw cell experiments, to study the flow behavior

of aging Laponite suspensions, are also discussed in this thesis.

Chapter 1 contains a review of the background information required to understand

the experimental observations in this thesis. It describes colloids and colloidal suspen-

sions. It next discusses the main features of the glass transition, with a focus on the
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colloidal glass transition. The dynamic slowing down of the relaxation processes in

colloidal suspensions and the concomitant increase in viscosity are discussed in detail.

This is followed by a discussion of the glass transition of supercooled liquids and other

glass formers. This chapter also briefly discusses the main interparticle interactions in

colloids. Next, the phase diagram of Laponite suspension is described. Finally, the

flow behaviors of colloidal dispersions are discussed.

Chapter 2 discusses the experimental techniques used to performed the experiments

in this thesis. This includes the description and measuring protocols used in dynamic

light scattering (DLS) measurements, ion concentration measurements, rheology and

high speed imaging. Instrumentation involving the design of a falling ball viscometer

and Hele-Shaw cell are also described in details.

In chapter 3, we report the dynamic slowing down of relaxation processes of aging

Laponite suspensions. Laponite is known as a model glass former. This study relates

the relaxation processes in aging Laponite suspensions with the relaxation processes

in supercooled liquids. A mapping between waiting time (tw) for Laponite suspension

in the ergodic cage-forming regime with the inverse of temperature (1/T ) of a su-

percooled liquid is proposed. In this framework, the comparison between these glass

formers reveals the underlying universality of the glass transition processes. Both α

and β-relaxations are seen to slow down as the Laponite suspension approaches the

glass transition. Coupling between these two relaxation processes is also observed

and is related to a similar behavior observed in supercooled liquids. We also relate

the observed non-monotonic behavior of the β-relaxation process to the exfoliation of

Laponite tactoids. Aging Laponite suspensions are identified as fragile glass formers

and the fragility index is also defined for these colloidal glass formers.

Chapter 4 discusses the self-similar nature of relaxation processes for different

physicochemical variables i.e. Laponite concentration (CL), salt concentration (CS )

and temperature (T ) for spontaneously evolving Laponite suspensions. Comprehen-

sive overlap curves are obtained for both the relaxation timescales and the stretching

exponent. This highlights the self-similar nature of the energy landscape dominated
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transport of the aging Laponite suspensions. The stretching exponents are seen to

decrease linearly with waiting time. The timescale associated with the β-relaxation

process is seen to slow down. All these observations and DLVO calculations, together

with our sodium ion measurements, indicate the influence of attraction in an overall

repulsion dominated environment even for spontaneously evolving Laponite suspen-

sions.

After the glass transition, a glass former achieves a non-equilibrium state and it

is not possible to measure its relaxation time as the system does not relax within the

observation timescale accessible in the laboratory. Hence, it is customary to study

the correlations among different quantities (hypothetical timescales or temperatures)

which are associated with the glass transition process and are mostly obtained by ex-

trapolation. The remarkable similarities between the relaxation dynamics of sponta-

neously evolving Laponite suspensions and molecular glasses makes it possible to ex-

plore numerous correlations among different hypothetical timescales associated with

the glass transition process of spontaneously evolving Laponite suspensions. Chap-

ter 5 describes the kinetics of the glass transition of fragile soft colloidal suspensions

for different physicochemical variables. Fragility parameters D are estimated from

the evolutions of the primary relaxation times for different physicochemical variables

CL, CS and T . It is seen that D is independent of Laponite concentration CL and salt

concentration CS , but is weakly dependent on temperature T . This also explains the

self-similarity of the relaxation process upon change in these variables as seen in chap-

ter 4. Interestingly, the behavior of D corroborates the behavior of fragility in molecu-

lar glass formers with respect to equivalent variables. It is seen that a correlation exists

between the Vogel time (t∞α ) and the Kauzmann time (tk) for all Laponite suspensions

with different CL, CS and T . This correlation is remarkably similar to an observation

reported for fragile molecular glass formers (D < 10). A coupling model which was

first proposed for molecular glass formers is adapted to account for the tw-dependence

of the stretching exponent and the secondary relaxation time τ1, and is used to analyze

and explain this correlation.
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10. Summary and future directions

In the previous chapters, the primary relaxation process was mainly studied. The

secondary relaxation process is generally neglected in the study of the vitrification of

liquids. However, it is seen that some of the secondary relaxation processes in molec-

ular glass formers have a connection to the glass transition process. The successful ap-

plication of the coupling model to explain the correlation between t∞α and tk, discussed

in chapter 5, and the coupling between primary and secondary relaxation processes

(chapter 3), indicate that the secondary relaxation process might play a crucial role

in the relaxation dynamics of spontaneously evolving Laponite suspensions. In chap-

ter 6, the characteristics of the secondary relaxation process of Laponite suspensions

are explored by following a conventional route that is often followed for a molecular

glass formers. It is seen that the secondary relaxation process of Laponite suspension

have many characteristics that are reminiscent of the slow secondary relaxation pro-

cess of molecular glass formers. For example, the secondary relaxation process of an

aging Laponite suspension involves all parts of a Laponite particle. It is also coupled

with the primary relaxation process for all the physicochemical variables as the glass

transition time tg is seen to be coupled with the characteristics time t∞β associated with

the secondary relaxation process and the width of the primary relaxation process w is

correlated to the β-relaxation timescale. Both primary and secondary relaxation times

are also shown to be very sensitive to changes in concentration. A correlation between

primitive and secondary relaxation processes is also observed. However, this study is

done for a spontaneously evolving Laponite suspension where an exfoliation process

of Laponite tactoids into smaller entities is present. Additionally, all the correlations

are verified from data that are obtained well before the glass transition is achieved as

the decay of the autocorrelation function is incomplete for very high waiting times

and therefore impossible to analyze. An advanced study is required to be performed

in future where the effect of exfoliation could be minimized (possibly by low power

ultrasoniacation of suspension) and for higher waiting times.

In chapters 3-6, the remarkable similarities of the relaxation processes between

colloidal glasses of Laponite and fragile supercooled liquids are reported. In future, a
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detailed study of the relaxation behavior is needed to be performed for Laponite at very

high and low concentrations where they show different phase behaviors. It is worth

studying the existence of similar correlations between different dynamical quantities

as described in the previous chapters for other concentration regimes. Structural data

has to be obtained by X-ray, cryogenic scanning electron microscopy (Cryo-SEM) etc.

to improve the understanding and also to determine the presence of any fundamental

link between the structure and the dynamics of the different phases of Laponite. Par-

ticularly, the structural origin of the fragility in these suspensions needs to be studied.

The mapping between the waiting time (tw) for Laponite suspension with the inverse of

temperature (1/T ) of supercooled liquid has to be verified for other clay dispersions,

such as, bentonite, etc.

In chapter 7, the microscopic relaxation processes of aging Laponite suspensions

are studied in the presence of probe particles. These probe particles are polystyrene

beads with sizes larger than that of the Laponite particles. These particles behave

as the less mobile regions in the suspension. Two-step relaxation processes are ob-

served from the intensity autocorrelation function obtained in DLS experiments. The

fast relaxation process is identified as due to the diffusion of a Laponite particle in-

side the cage formed by the neighboring Laponite particles, while the slow relaxation

process is interpreted to originate due to relaxation in the presence of the externally

added less mobile polystyrene beads. The fragility parameter D is obtained from the

evolution of the primary relaxation time for different concentrations and sizes of the

polystyrene beads. D is seen to increase with the concentration of polystyrene parti-

cles, but decreases as the size of the particles increases. Qualitative agreement in the

fragile behavior of the observed relaxation process is demonstrated with simulation

results for random pinning in binary mixtures. An advanced study is required to be

performed using optical trap to create true quenched defects by pinning different parts

of the system in order to make a better comparison with the observations reported for

binary mixtures.

The last two experimental chapters report interesting observations regarding the
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10. Summary and future directions

flow behavior of aging Laponite suspensions. Chapter 8 reports the settling of an

object through a thixotropic medium formed by spontaneously evolving Laponite sus-

pensions. Steel balls of different radii are dropped in a long cylindrical tube filled

with Laponite suspensions after different waiting times. The motion of each ball is

recorded with a high speed video camera. The velocity is seen to increase with the

depth of fall for spontaneously evolving Laponite suspensions. This increment is more

prominent for larger balls and for lower aging or waiting times of the suspensions. A

simple rheological model is constructed based on the concepts of structural kinetics

in thixotropic fluids. In contrast to rejuvenated Laponite suspensions, it is seen that

the destructuring process is more important than the restructuring process for sponta-

neously evolving Laponite suspensions over the period of fall. In future, balls with

different densities could be dropped in spontaneously evolving Laponite suspensions

to understand the structural kinetics under various conditions of structure formation.

The analysis should also be performed after considering the possibility of competing

restructuring and destructuring phenomena as this may yield better quantitative fits to

the experimental data.

Finally, the evolution of fractal patterns when Laponite suspensions of different

ages or waiting times are displaced by water (miscible phase) or carbon-tetrachloride

(immiscible phase) in a Hele-Shaw cell are reported in Chapter 9. For the miscible

phase, a transition from viscous fingering to viscoelastic fracturing is observed with

increasing age of the Laponite suspension. However, this transition is absent in the

case when the immiscible phase displaces the Laponite suspension. This confirms the

role of surface tension in the suppression of viscous fingering. In future, an effort could

be made to develop a model to understand these observations quantitatively. It is also

important to study if the observed viscoelastic fracturing patterns have any similarities

to the patterns formed by natural processes involving various clay/water systems, for

example, delta formation by rivers.

This thesis reports a series of experimental studies on colloidal suspensions of
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Laponite. The colloidal glass transition and the flow behavior of aging Laponite sus-

pension are highlighted using a wide array of experiments. These studies have shown

that Laponite suspensions have the potential to be an excellent model system to study

the physics of the glass transition and the flow behavior of aging viscoelastic fluids.
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