Synthesis and Characterization of Some Non-conventional Discotic Liquid Crystals

By

Satyam Kumar Gupta

Thesis submitted to Jawaharlal Nehru University, New Delhi for the award of the degree of

Doctor of Philosophy

Raman Research Institute
Bangalore-560080
March 2011

Raman Research Institute

CERTIFICATE

This is to certify that the thesis entitled "Synthesis and Characterization of Some Non-conventional Discotic Liquid Crystals" submitted by Mr. Satyam Kumar Gupta, for the award of the degree of DOCTOR OF PHILOSOPHY of Jawaharlal Nehru University, New Delhi, is his original experimental investigation and conclusions. The subject matter of this thesis has not been previously published or submitted to any other university for the award of any other degree or diploma.

SL-.

Prof. Ravi Subrahmanyan

(Director)

Raman Research Institute

Bangalore -560080

Sanded Viumar

Prof. Sandeep Kumar

(Thesis Supervisor)

Raman Research Institute

DECLARATION

I hereby declare that the entire work embodied in this thesis is the result of the experimental investigation carried out by me independently at Raman Research Institute, Bangalore, under the guidance and supervision of Prof. Sandeep Kumar. The experimental work and conclusions presented in this thesis work have not been previously submitted and no part of this thesis work has formed the basis for the award of any other degree, diploma, fellowship or any other similar title.

Sandado Numez

Prof. Sandeep Kumar

(Thesis Supervisor)

Raman Research Institute

Bangalore-560080

Smapia

Satyam Kumar Gupta

ACKNOWLEDGEMENTS

I wish to express profound sense of gratitude to my honored supervisor Prof. Sandeep Kumar who constantly inspired me at every stage of my research. There are no adequate words to explain his keen interest, immense patience, kind advice, sustained encouragement, constant help and thought provoking discussions that I had with him during this time. I am grateful to him for revealing me the richness of some basic synthetic organic chemistry. It was a great experience to work with and learn so many things from him both as a scientist and as a human being. He has always encouraged not only to become a good researcher but also a good human being as well. It has been a great pleasure and I really enjoyed working with him.

I especially thank Prof. V. A. Raghunathan for his enthusiastic interest and valuable help in the interpretation of XRD data. I have learnt the basics of XRD from him, which has been very helpful for interpreting the data described in this thesis.

I would like to express my gratitude to Prof. V. Lakshminarayanan, for his keen interest in my research work and many valuable discussions that I had with him. I have learnt some basic electrochemistry during some of the electrochemical and conductivity studies of my compounds.

I wish to express my gratefulness to Prof. B. K. Sadashiva, Prof. V. Lakshminarayanan and Dr. Arun Roy for their keen interest in this work and for useful discussions and suggestions during the period as advisory committee members.

I am thankful to all other SCM faculty members for their support and valuable suggestions.

I would like to acknowledge NMR Research Centre, Indian Institute of Science, Bangalore for recording NMR spectra of the compounds. I also thank all my friends from Chemistry department, Molecular biophysics unit, Hindi samiti and Art of living of Indian Institute of Science, Bangalore and National Chemical Laboratory, Pune for providing me research papers, spectra of some of my compounds as well as for their encouragement given to me during my research work. My special thanks to Suman Kalyan, Santosh, Namita, Arnab, Joydeep, Sougata, Gururaja, Krishan Kumar, Basudev, Ananya, Rishi, Bhavna, Ved Prakash, Ramesh Bhagwat, Hari, Anupam, Sreevalsa, Shrabani, Surya, Vinod, Pradeep, Ravi, Shashi and Kamna for friendly and cheerful behavior as well as for their help in various ways.

l also thank Mr. H. T. Srinivasa, Mr. Rame Gowda, Mr. Murali for their invaluable help in the lab, Mr. Dhason for his help in AFM imaging.

I thank Mrs. Vasudha for recording IR spectra, DSC thermograms, X-ray diffraction, UV spectra and elemental analysis. I also thank Mr. K. Radhakrishna for his valuable and timely help throughout my research work. My thanks to Mr. Ram, Mr. Mani, and Mr. Shashidhara for their kind help in various ways.

I am thankful for the kind of help, co-operation and encouragement given to me by my seniors, Dr. Ashish Prajapati, Dr. Santanu Kumar Pal and Dr. Hari Krishna during the period. I had very valuable discussions with them on both academic and non-academic matters and I had enjoyable time. I also thank my seniors in Soft Condensed Matter Group Dr. Suresh, Dr. Kavitha and Dr. Bharat for their friendly support and their help in conductivity, photoconductivity and langmuir monolayer studies.

I also thank Radhakrishnan, Santosh, Antara, Arif and all other X-Ray lab members for their invaluable help in all aspects of X-Ray measurement.

The library staffs of RRI have been outstanding during the course of my research work and it is a pleasure to thank all of them for their significant and timely help. The ever smiling staff would oblige for all our requests including books and journals from various other libraries. This is the first time I have come across such a well maintained library.

I was blessed to have Dr. V. N. Pandey, Dr. Meenal, Dr. Sunita, Dr. Divya, Dr. Suchand Sandeep, Dr. Sajal, Dr. Brindaban, Dr. Amit, Bibhu Ranjan Sarangi, Tripta Bhatia, Arif Kamal, Rahul and Dibyendu Roy as my seniors, Rakesh, Nagaraju, Plyush, Wasim, Arijit and Ruta, as my batchmates and Avinash, Swamy, Radhika, Arnab, Jagdish, Mahaveer as my juniors. I wish to thank all my friends and research colleagues in the institute who made my stay enjoyable.

I thank my hostel friends and all my badminton friends Dr. Srikanth, Kanhaiya, Dr. Sandeep, Nishant, Yogesh, Chandrakant, Jaya Kumar, Praveen, Seegan and Archana for providing hilarious and healthy time in the evening.

My thanks to Yadupati, Prashant, Siddharth, Darshana, Renu, Ashok, Saptarshi, Vikrant, Tarun, Brajesh, Naresh, Yatin, Jhumur, Shiva Kumar, Sankalp, Indu, Shadakshari, Arvind and Velan for offering me joyful time in the institute.

It was very wonderful experience for me to enjoy food of different varieties (either homemade or outside) with Dr. V. N. Pandey, Dr. Amit, Rakesh, Himani, Yadupati, Prashant, Meenal, Bhavna, Anupam, Rohit, Sujit, Bharat, Suresh, Darshana, Suman Kalyan, Shrabani, Naveen, Shipra, Ashish, Deepgaurav, Arnab, Vikrant, Surya, Vedprakash, Shashi, Sneha, Vishal, Shweta, Sanjeev, Rishi in and around Bangalore city.

My gratitude to all my previous teachers from Shishu Bihar Bal Vidhya Mandir (Pathrahat), Chandrashekhar Azad Inter College (Deogaon), Maharaja Agrasen Inter

College (Deoria), Deen Dayal Upadhyay Gorakhpur University and National Chemical Laboratory, Pune for giving me knowledge about subject. My special thank to Dr. B. K. Ojha, Dr. Nizamuddeen, Dr. I. P. S. Kapoor, Dr. R. S. Singh, Dr. Gurudeep Singh, Dr. A. K. Tiwari, Dr. M. S. Singh, Dr. O. P. Pandey, Dr. S. C. Srivastava for their constant support, encouragement and valuable suggestions during my study period.

I sincerely thank to all my seniors, juniors, batch mates and well wisher friends from D. D. U. Gorakhpur University and other educational institutes/universities for the joyful company provided by them. My special thank to Gaurav, Pawan, Nitesh, Uday, Ravi, Pankaj, Sanjeev, Rahul, Dinesh, Prabhat, Govind, Jitendra, Nitin, Rishi, Maneesh, Manoj, Vageesh, Kanchan, Smriti, Kajal, Arti, Parul, Sanjeev, Upendra, Ghulam, Abhishek, Suman, Aparna, Ashish, Naveen, Deepgaurav, Shalini, Aradhana, Kinshuk, Anuradha, Priyanka, Shweta, Pooja, Namrata, Jyotsana, Nikhil, Nagendra, Lalit, Mahesh, Vishal, Dharmendra, Mr. Satyendra, Mr. Kesari, Mr. Abhishek, Mr. Prashant, Mr. Vishal, Shweta and Vinod for prayers, wishful thinking and enjoyable time with me.

I would like to thank various other departments of RRI, Administration, Computer section, Accounts, Workshop, Transport, Canteen and Clinic for their constant support throughout my research work. I also thank hostel cooks Yashoda, Padma, Ratna, Mangla, Uma and Sharda for providing good food as well as for their concern.

My heartly thanks to Gita press, Osho Rajneesh, Swami Ramdev, Shri Shri Ravishankar, Saint Kabir Das Ji, Swami Vivekanand and many other social or spiritual groups/personalities who have always been an ultimate source of inspiration and enlightenment which kept me active, patient and healthy all through my academic journey so far.

My thanks to Dr. Mahesh, Arif, Antara, Prashant, Santosh, Avinash, Swaminathan, Rakesh, Sagar and Srinivasa for going through some chapters of my thesis and giving useful suggestion about improvement of the thesis.

I am honestly obliged to Raman Research Institute for giving me the opportunity to carry out the research work in the friendliest surroundings. It is an massive pleasure to thank all the scientific as well as supporting staff of the institute for their kind concern and cooperation.

Finally, I would like to thank my beloved parents and teachers for being a steady source of encouragement, support and help throughout my study and research work. My deep gratitude to my aunty Mrs. Sandhya, my elder brothers Mr. Nitin, Mr. Nikhil and all other family members for being a constant source of affectionate encouragement and help throughout my study and research work. I have greatly benefited by their valuable suggestions and thought provoking advices. It is my pleasure to thank my thesis supervisor's wife Mrs. Navita for her concern and kind suggestions during the period.

यथैधांसि समिद्धोऽग्निर्भस्मसात्कुरुतेऽर्जुन । ज्ञानाग्निः सर्वकर्माणि भस्मसात्कुरुते तथा ॥

> yathaidhamsi samiddhoʻgnir bhasma-sat kurute'rjuna jnanagnih sarva-karmani bhasma-sat kurute tatha

हे अर्जुन! जैसे प्रज्वलित अग्नि ईंधनों को भस्ममय कर देता है, वैसे ही ज्ञानरूप अग्नि सम्पूर्ण कर्मों को भस्ममय कर देता है

O Arjuna, just as the blazing fire reduces firewood to ashes, so does the fire of knowledge burn to ashes all reactions to material activities.

CONTENTS

CHAPTER 1: Introduction

1.1.	Liquid	crystals	1
1.2.	Liquid	crystals as an intermediate phase (mesophase) of matter	2
1.3.	Discov	very and History of liquid crystals	4
1.4.	Classi	fication of liquid crystals	6
1.4.1.	1.4.1. Lyotropic liquid crystals		
1.4.2.	Therm	otropic liquid crystals	9
1.4.2.	1.	Calamitic liquid crystals	10
1.4.2.	1.1.	Nematic Phase	11
1.4.2.	1.2.	The Chiral Nematic Phase	12
1.4.2.:	1.3.	Smectic Phase	13
1.4.2.:	1.4.	Smectic C* Phase	14
1.4.2.	1.5.	Ferro-, antiferro- and ferrielectric chiral smectic C phases	16
1.4.2.2	2.	Banana Liquid Crystals	17
1.4.2.3	3.	Discotic Liquid Crystals	20
1.5.	Discot	ic Liquid Crystals: The discovery	20
1.6.	Struct	ures of the liquid crystalline phases formed by discotic mesogens	22
1.6.1.	Nema	tic Phases of discotic mesogens	23
1.6.2.	Smect	ic Phases of discotic mesogens	25
1.6.3.	Colum	nar Phases of discotic mesogens	26
1.6.3.	1.	The hexagonal columnar mesophase (Colh)	26
1.6.3.2	2.	The rectangular columnar mesophase (Col _r)	28
1.6.3.3	3.	The columnar oblique mesophase (Col _{ob})	29
1.6.3.4	4.	The columnar plastic mesophase (Col _n)	30

1.6.3.5	5.	The columnar helical (H) phase	31
1.6.3.6	3 .	The columnar lamellar mesophase	32
1.6.3.7	7.	The columnar square (tetragonal) phase	33
1.6.4.	Cubic	phase	34
1.7.	Structi	ure of the discotic mesogens	34
1.8.	Chemi	stry of discotic liquid crystals	35
1.9.	Charac	cterization of discotic liquid crystal phases	37
1.10.	Why d	iscotics?	38
1.11.	Discot	ics as semiconductor: molecular concepts, one-dimensional electrical	
	& pho	toconductivity	39
1.12.	Struct	ure property relationship; phase behavior and transition temperatures	45
1.13.	Alignn	nent of discotic liquid crystals	47
1.14.	Applic	ations of discotic liquid crystals	48
1.14.1	. ·	Discotic liquid crystals in display devices	48
1.14.2	. .	Discotics in Xerographic processes	50
1.14.3	3.	Discotics in holographic optical data storage	51
1.14.4	١.	Discotics in organic light-emitting diodes	53
1.14.5	5.	Discotics in organic field-effect transistors	55
1.14.6	5.	Discotic liquid crystals as photosynthetic light harvesting materials	57
1.14.7	'.	Discotics as gas sensors	62
1.14.8	3.	Discotics as precursors of novel carbonaceous nanostructures	63
1.15.	Non-ce	onventional liquid crystals	64

CHAPTER 2: Novel Benzene-Bridged Triphenylene-Based Discotic Dyads

2.1.	Liquid crystalline dimers	66
2.2.	History of liquid crystalline dimers	66
2.3.	Classification of liquid crystal dimers	67
2.3.1.	Calamitic dimers	67
2.3.2.	Discotic dimers	68
2.4.	Objective	86
2.5.	Synthesis of monohydroxypentaalkoxy triphenylene	87
2.6.	Synthesis of dimers of ester series	87
2.6.1.	Characterization of dimers of ester series	89
2.6.2.	Thermal behavior of dimers of ester series	91
2.7.	Synthesis of dimers of ether series	91
2.7.1.	Characterization of dimers of ether series	93
2.7.2.	Thermal behavior of dimers of ether series	95
2.8.	Mesophase induction via charge transfer complex formation	96
2.9.	Preperation of charge transfer complexes of dimers with	
	Trinitrofluorenone (TNF)	97
2.9.1.	Thermal behavior of charge transfer complexes	97
2.9.2.	X-ray diffraction studies of charge transfer complexes	105
2.9.3.	Electrical conductivity study	107
2.9.4.	Scanning Tunneling Microscopy (STM) Imaging	110
2.10.	Conclusion	112
2.11.	Experimental	112
2.11.	1. General information	112
2.11.	1.1. Column chromatography	113

2.11.1.2.	Thin-layer chromatography	113
2.11.1.3.	Transition temperatures	113
2.11.1.4.	X-ray diffraction studies	113
2.11.1.5.	Ultraviolet spectra	114
2.11.1.6.	IR spectra	114
2.11.1.7.	¹ H NMR & ¹³ C NMR	114
2.11.1.8.	Elemental analysis	114
2.11.2.	Synthesis	114
2.11.2.1.	General procedure for the synthesis of	
	Monohydroxypentaalkoxytriphenylene 35	114
2.11.2.2.	General procedure for the synthesis of hydroxyl-functionalized	
	triphenylene 36	115
2.11.2.3.	Synthesis of ES14	115
2.11.2.4.	Synthesis of ES13	116
2.11.2.5.	Synthesis of ES12	116
2.11.2.6.	General procedure for the synthesis of ω -bromo-substituted	
	triphenylene 40	116
2.11.2.7.	Synthesis of ET13	117
2.11.2.5.	Synthesis of ET14	118
2.11.2.6.	Synthesis of ET27	118
2.11.2.7.	Synthesis of ET44'	118
CHAPT	ER 3: Synthesis and Characterization of Discotic Liquid Crystalline Amphiphlies	Gemini
3.1. Intro	duction	119
3 1 1 Ionic	liquide	119

-		· · ·
3.1.2.	Ionic liquid crystals	120
3.1.3.	Ionic discotic liquid crystals	121
3.1.4.	Gemini Amphiphiles	132
3.1.5.	Gemini ionic liquid crystals	132
3.2.	Objective	133
3.3.	Imidazolium based discotic gemini amphiphiles	134
3.3.1.	Synthesis	134
3.3.2.	Cheracterization	136
3.3.3.	Thermal behavior	139
3.3.4.	X-ray diffraction studies	142
3.3.5.	Ionic conductivity study	144
3.3.6.	Photoconductivity study	146
3.3.7.	Langmuir Monolayer Study	147
3.3.8.	Conclusion	148
3.4.	Ammonium based gemini amphiphiles	148
3.4.1.	Synthesis	149
3.4.2.	Cheracterization	150
3.4.3.	Thermal behavior	152
3.4.3.	L. Phase transition behavior of 4T8N2BF4	153
3.4.3.	1.1. Diffrential Scanning Calorimetry	153
3.4.3.:	1.2. Polarizing Optical Microscopy	154
3.4.3.	2. Phase transition behavior of 6T12N2BF4	155
3.4.4.	X-ray diffraction studies	156
3.4.4.	1. 4T8N2BF4	157
211	O 6T12N2RF4	158

#

v		
3.4.5.	Conclusion	160
3.5.	Experimental	160
3.5.1.	General information	160
3.5.2.	General procedure for the synthesis of imidazolium dimers IM-n-IM	160
3.5.3.	General procedure for the synthesis of triphenylene-imidazolium-imidazolium triphenylene-based gemini discotic ionic liquid crystals nIMmTP	1- 162
3.5.4.	General procedure for the synthesis of triphenylene-ammonium-ammonium-triphenylene-based gemini discotic ionic liquid crystals	164
CHAP	TER 4: Discotic Liquid Crystalline Donor-Acceptor-Donor Systems: Synthesis of Triphenylene-Anthraquinone-Triphenylene Triads	f Novel
4.1.	Introduction	166
4.2.	Rufigallol as a electron deficient discotic core	166
4.3.	Triphenylene as a electron donor discotic core	167
4.4.	Discotic trimers	168
4.5.	Discotic donor-acceptor systems	175
4.6.	Objective	178
4.7.	Synthesis and Chemistry of rufigallols	180
4.8.	Synthesis of donor-acceptor-donor triads	182
4.8.1	. Characterization of donor-acceptor-donor triads	184
4.8.2	. Thermal behavior of donor-acceptor-donor triads	187
4.8.3	. X-ray diffraction studies	191
4.8.4	. Absorption studies	194
4.8.5	. Electrical conductivity study	195
4.9.	Conclusion	196
4.10.	Experimental	197

4.10.1.	General information	197		
4.10.2.	Synthesis	197		
4.10.2.1.	Synthesis of 1,2,3,5,6,7-hexahydroxyanthraquinone (16) (rufigallol)	197		
4.10.2.2.	Synthesis of 1,5-dihydroxy-2,3,6,7-tetraalkoxy-9,10-anthraquinone			
	(19): General procedure.	197		
4.10.2.3.	Preparation of ω-bromo-substituted triphenylene (23):			
	General Procedure.	198		
4.10.2.4.	Synthesis of donor-acceptor-donor triads (TATa10):			
	General Procedure.	198		
	CHAPTER 5: Novel Imidazole-fused Triphenylene Discotics			
5.1. Introd	luction	203		
5.2. Object	etive	207		
5.3. Synth	nesis	207		
5.4. Chera	acterization	208		
5.5. Therr	nal behavior	212		
5.5.1. Therr	mal behavior of 6TPIMO:	213		
5.5.1.1 .	Optical microscopy.	213		
5.5.1.2.	DSC.	214		
5.5.2. Thermal behavior of 6TPIM6:		215		
5.5.2.1.	Optical microscopy.	215		
5.5.2.2.	DSC.	215		
5.6. X-ray diffraction studies				
5.6.1. 6TPIMO		217		
5.6.2. 6TPIM6 21				

5.7.	Photoconductivity study	220
5.8.	Conclusion	224
5.9.	Experimental	225
5.9.1.	General information	225
5.9.2.	General procedure for the synthesis of 6TPCO2	225
5.9.3.	Synthesis of 6TPIMx: General Procedure.	225

CHAPTER 6: Summary

<u>List of abbreviations used in this Thesis</u>

	•		
LC	Liquid Crystal	DNA	Deoxyribonucleic Acid
LCD	Liquid Crystal Display	N	Nematic
Sm	Smectic	N _D	Discotic Nematic
Col	Columnar	N*	Chiral Nematic
1 D	One Dimensional	TGB	Twist Grain Boundary
Ps	Spontaneous Polarization	N _b	Biaxial Nematic
2D	Two Dimensional	N _D *	Chiral Discotic Nematic
N _{Col}	Columnar Nematic	NL	Nematic Lateral
Colh	Columnar Hexagonal	Colp	Columnar Plastic
Colr	Columnar Rectangular	Colob	Columnar Oblique
Col _L	Columnar Lamellar	Coltet	Columnar Tetragonal
Н	Helical	UV	Ultraviolet
DLC	Discotic Liquid Crystal	POM	Polarizing Optical Microscopy
XRD	X-ray Diffraction	DSC	Differential Scanning Calorimetry
CT	Charge Transport	LED	Light Emitting Diode
FET	Field Effect Transistor	TOF	Time of Flight
NMR	Nuclear Magnetic Resonance	HBC	Hexabenzocoronene
PAH	Polyaromatic Hydrocarbon	TP	, Triphenylene
LB	Langmuir Blodget	TN	Twisted Nematic
STN	Super Twisted Nematic	NMP	N-Methyl Pyrolidinone
TNF	Trinitrofluorenone	ITO	Indium Tin Oxide
AFM	Atomic Force Microscope	STM	Scanning Tunneling Microscope
CNT	Carbon Nanotube	DC	Direct Current
AC	Alternating Current	Cr	Crystalline

HOPG Highly Oriented Pyrolytic Graphite

Isotropic

MW Microwave

DMSO Dimethy Sulphoxide

MEK Methyl Ethyl Ketone

DMF Dimethylformamide

ppm parts per million

TCQ Tricycloqunazoline

AR Analytical Reagent

TLC Thin Layer Chromatography

Cat-B-Br

Catechol B-Bromoborane

HPLC High Pressure Liquid Chromatography

PR-TRMC

Pulse Radiolysis Time Resolved Microwave Conductivity

ILCC International Liquid Crystal Conference