
Chapter 5 

Testing post-Newtonian theory with 
gravitational wave observations 

5.1 Introduction 

Ever since the formulation of general relativity (GR), there have been many proposals to 

test its predictions. Most important of them are the solar system tests and tests using binary 

pulsars [192]. The binary pulsar test provides one of the most stringent tests of gravity in 

the strong field regime of GR and its alternatives [193]. The direct detection of gravitational 

waves, one of the most fundamental predictions of GR, will only be a test of the relativistic 

nature of gravity. Since any relativistic theory of gravitation, not necessarily GR, predicts 

radiative solutions of the field equations, one has to be careful in interpreting the detection 

in favour of any theory. 

Post-Newtonian theory has been highly successful in explaining the decay of the orbital 

period in binary pulsars and in confirming the emission of gravitational radiation by these 

relativistic systems (cf. [I941 and references therein). Nevertheless, the binary pulsar radio 

observations do not test PN theory to a high order. This is because the typical velocity in 

the most relativistic of binary pulsars is u/c - 3 x which is not large enough for higher 

order terms to be important. 

GW observations of the coalescence of binary black holes (BBH) will provide a unique 

opportunity to test PN theory to very high orders. This is because the velocities in the 

system, close to the merger, could be as high as u/c - 0.2-0.4, making the highest order 

known PN term 1012-1014 times more important for GW observations than for radio binary 

pulsars. Several tests of general relativity have already been proposed by various authors 

[167, 195, 1961. 

The possibility of using GW observations to discriminate GR from other theories of grav- 
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ity such as Brans-Dicke (BD) theory or massive graviton theory, has been studied exhaus- 

tively by Will and his collaborators [196]. BD theory is a scalar tensor theory which, unlike 

GR, predicts dipole GWs. Using ground-based detectors Ref. [I971 examined the possibility 

of testing the dipole term in the phasing formula and bounds that can be put on the BD cou- 

pling parameter OBD. The bound, as they found, can be as high as 2000 which is about four 

times higher than that possible with solar system measurements. The bounds that are pos- 

sible with future space-based experiments such as LISA were examined in Ref. [198]. The 

bound with LISA may be as high as 240,000. For testing BD theory, the suitable systems 

are those whose mass ratio is small; typically a NS spiralling into a massive/intermediate 

mass/supermassive BH where the effect of the coupling term is most dominant. 

Another possible theory of gravity is the theory of the massive graviton where Compton 

wavelength A, of graviton is not infinite as in GR. Bounds can be placed on A, from GW 

observations. With the ground-based detector the bound is about 2 x 1012 krn [I951 (for an 

equal mass binary BH of IOM, ). Space based experiments would place a more stringent 

bound on it, which may be about 7 x 1012 km [I951 (by the observation of inspiral of a 

SMBH binary of 106M, each). The calculation in the above mentioned work used the A,- 

dependent term which occurs at IPN in the phasing formula. A critical paper by Damour 

and Esposito-Farbe contrasted the subtleties involved in interpreting the results in the case 

of GW observations against those in the binary pulsar case [199]. These should be kept 

in mind while assessing the works discussed above. The possibility to set up these tests 

is based on being able to estimate the parameters of the source by GW observations. We 

begin by reviewing the basic elements of parameter estimation to the extent we require in the 

following section. 

5.2 Phasing formula 

In a black hole binary, as the two holes orbit about their centre-of-mass, the energy and 

angular momentum from the system is dissipated into gravitational radiation. The radiation 

back-reaction force causes the two bodies to gradually spiral in towards each other, resulting 

in a strong burst of radiation just before they merge to form a single black hole. The radiation 

emitted at the end of the binary evolution is the primary target of both the ground- and space- 

based interferometric gravitational wave (GW) antennas [33]. It has become necessary to 

gain an accurate understanding of the late-time evolution of binaries in order to help data 

analysts in detecting the signal and measuring the parameters by fitting the observed signal 

with that expected from general relativity. 

In the general theory of relativity there is no exact solution to the two-body problem. 

In the absence of an exact solution (analytical or numerical) theorists have resorted to an 
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approximate solution to the problem using post-Newtonian (PN) theory. Briefly, the pro- 

gramme of PN theory is the following. Let us consider a binary consisting of two non- 

spinning black holes of masses ml and m2 (total mass M = ml + m2, symmetric mass ra- 

tio v = m l m 2 / ~ ~ )  separated by an orbital (Schwarzschild coordinate) distance r(t). Post- 

Newtonian theory expresses the relevant physical quantities as a series in the 'small' veloc- 

ity parameter t = u/c E d m .  For a system consisting of non-spinning black holes the 

only relevant quantities are the (specific) binding energy E and the GW flux 7 ,  which are 

obtained as perturbative expansions in v. Following the standard convention, in units where 

G = c = 11, rr" corresponds to a term of order :-PN. Currently, these expansions are known 

to order u7 or 3.5PN [200, 108, 109, 86, 102, 89,951: 

where Ek and Fk are the PN expansion coefficients that are all functions of the dimensionless 

mass ratio v = mlm2/M2. Here M = ml + m2 is the total mass of the binary. (Though for 

this schematic presentation we write above a Taylor-expansion in vk, recall that there are also 

log v in the expansion.) 

In the adiabatic approximation one then uses the energy balance equation, -dE/dt = 
7 ,  to compute the evolution of the orbital phase cp(t) using the following coupled ordinary 

differential equations: 

where Et(u) dE/dv. The phase @(t) of the emitted radiation at dominant order is simply 

twice the orbital phase: @(t) = 2cp(t). 

The phasing formula obtained by solving the above differential equations includes differ- 

ent PN terms arising from nonlinear multipole interactions as the wave propagates from the 

source's near-zone to the far-zone [63, 145, 1581. As discussed in Chapter 1 the 1.5PN and 

2.5PN terms arise solely due to the interaction of the Amowitt-Deser-Misner (ADM) mass 

of the source and the quadrupole moment. It is physically due to the scattering of quadrupo- 

lar waves off the Schwarzschild curvature generated by the source and is referred to as the 

gravitational wave tail. The 3PN term includes, in addition to the terms at the retarded time, 

'In this chapter and the next in some of the formulas the dependence on c is indicated for convenience, even 
though for consistency those c's should be set equal to one in the numerical calculations. 
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more interestingly the cubic nonlinear interactions due to the scattering of the wave tails by 

the ADM mass energy of the spacetime. The observational tests of these PN terms in effect 

test the nonlinear structure of Einstein's gravity. 

In the restricted PN approximation (so called because one keeps only the PN corrections 

to the phase of the radiation but neglects the PN corrections in the amplitude), the response 

of an interferometric antenna to the incident radiation from a source at a luminosity distance 

DL is 

4CM 
h(t) = - [ n ~  ~ ( t ) ] ~ ' ~  cos @(t), 

DL 

where M = v3I5M is the so-called chirp mass of the system. In the above, M and M are 

the observed chirp and total masses. They are related to masses measured in the source rest 

frame by 

M = (1 + ~)Msource M = (1 + ~)Msowe , (5.4) 

where z is the cosmological redshift. Further, F(t )  I & is the instantaneous frequency 

of the radiation, 0 I C 5 1 is a dimensionless geometric factor that depends on the relative 

orientation of the binary and the detector whose average over all orientations is C = 215. 

The importance of including PN corrections in the phase but conveniently neglecting them 

in the amplitude was realized quite early on [I371 and led to a lot of simplification of the 

data analysis problem. For the tests proposed in this chapter it may eventually be necessary 

to incorporate these amplitude corrections [110,43]. For the sake of simplicity, however, we 

have refrained from doing so in this work. 

A brief summary of the cosmological model we employ is in order. Let RM be the matter 

(dark plus baryonic) density parameter, IRA, the cosmological constant or vacuum density 

parameter and R,, the density parameter associated with the curvature constant. For a zero- 

spatial-curvature universe R, = 0 and matter density IRA + RM = 1, the luminosity distance2 

is given by 

DL = 
dz' 

[RM(l + z ' ) ~  + nA]lJ2 ' 

In our calculations we used RM = 0.3, RA = 0.7 and Ho = 70 Km/sec/Mpc. 

For our purposes it will be useful to work with the Fourier transform of the signal h(t) 

Eq. (5.3), which is given by 

2~uminosity distance, DL, is a term used in astronomy to describe the distance at which an astronomical 
body would lie based on its observed luminosity in the absence of any unanticipated attenuation. 
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Using the stationary phase approximation it has been shown that [33,201] 

with the Fourier amplitude 3 given by 

and phase Y(v(f)), (where v = (n M f)'I3), given by [26,40]: 

Here tc and @, are the fiducial epoch of merger and the phase of the signal at that epoch. 

y = 0.5772156649 ... the Euler Gamma Function3 

5.2.1 Dealing with the log terms 

An examination of the above formula reveals that in addition to a polynomial dependence on 

v, there is also a log v dependence. This is a consequence of the fact that the post-Newtonian 

series is an asymptotic series in gauge functions c-"(log c)". This additional complication 

requires a strategy to treat that log dependence. The log-terms are treated in three different 

ways as discussed below: 

1. Log-Constant: In this method the log terms are treated as constants with respect to the 

3Note that y denotes the Euler Gamma function and not ~rn lc ' r  as in the literature on the generation 
problem as in the earlier chapters. 
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frequency with the justification that the log-dependence on the frequency is weak in 

the relevant bandwidth. The Y( f )  in compact form then looks like 

The +k now are given by 

where. 

2. Log-Expanded : In this method the log terms are expanded about y,, which is the 

invariant speed at the last stable orbit during the coalescence of the binary. For a 

test mass in a Schwarzschild spacetime v,,, is equal -1- Substituting the expanded 4. 
expression in the formula of Y(f )  keeping the needed terms and neglecting the terms 

higher than 3.5PN, the YCf) then becomes 

The (C/k's are independent off and given by 
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hk = ak fork = 0,2,3,4 and for the remaining, ao, a,, a3 and a 4  are as given in 

Eq. (5.12). For the remaining 

3. Independent parameters for Logs: In this choice the coefficients of the log-terms are 

treated as additional signal parameters. This choice indeed increases the dimensional- 

ity of the parameter space making the Fisher matrix highly ill-conditioned. The Y(f) 

may be written as 

where, @k and @kl are independent off  and given by 

lik = ak, for k=O, 2, 3,4. akl = 0 for k = 0,1,2,3,4. 
For the rest, 
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5.3 Ground-based detectors 

In this section we list the noise psd and the calculation of the signal to noise ratio(SNR) 

of the various ground based detectors that we will employ in our analysis. These include 

the kilometer class GW detectors Initial LIGO and Virgo followed by the next generation 

american detector Advanced LIGO and finally the third generation European EGO. 

5.3.1 Sensitivity curves 

5.3.1.1 Initial-LIGO 

The LIGO noise curve [26] is given by 

f -56 
Sh(f) = S o  4.49- + 0.16 - 4 ' 5 2  + 0.52 + 0.32 (i)21 , (5.19) li fa) (fa) 

where fo = 150 Hz , f ,  = 40 Hz, and S o  = 9.00 x HZ-'. 

5.3.1.2 Virgo 

The Virgo noise curve [26] is given by 

where fo = 500 Hz, f, = 20 Hz, and So = 3.24 x HZ-'. 

5.3.1.3 Advanced-LIGO 

The Advanced LIGO noise curve [202] is given by 

where fo = 215 Hz, f, = 20 Hz, and S o  = 1 x Hz-'. 
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Figure 5.1 : Noise amplitude plots of ground-based detectors V i o ,  Initial-LIGO, Advaoch- 
LIGO and EGO as a function of frequency f(Hz). The minima of the noise amplitude appear 
at the frequencies f e fo = 1500, 150,215,200) Hz for {Virgo, Initial-LIGO, A d u d -  
LIGO, EGO) respectively. 

5.3.1.4 EGO 

Finally, the EGO noise curve [203,204] is given by 

where fo = 200 Hz, f, = 10 Hz, and So = 1.60 x 10'~' Hz-'. 
r 
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In above equations fo, is a scaling frequency chosen to be the frequency at which the 

noise amplitude is minimum or where the sensitivity is maximum. See Fig. [5.1]. 

In Fig. [5.1] we plot the noise amplitude for Initial-LIGO, Virgo, Advanced-LIGO and 

EGO. The ground-based detectors are sensitive in the frequency range 10-1000 Hz. For all 

the detectors the maximum sensitivity is in the frequency range 100-500 Hz. 

5.3.2 Signal to noise ratio 

Following the discussion in Sec. 1.9, if Sh(f) is the one-sided noise spectral density of a 

detector, the inner product between two signals h,(t) and hb(t) is defined by 

where h,(f) and hb(f) are the Fourier transforms of the respective gravitational waveforms 

h,(t) and hb(t). The signal-to-noise ratio (SNR) for a given h is then 

In the stationary phase approximation (SPA), the Fourier transform of the restricted wave- 

form can be shown to be [205]: 

where, 3 = 
1 M 5 I 6  

4%2/3 DL ' 

where 3 is the average of 9 over all orientation. 

With the restricted post-Newtonian form for h in Eq. (5.25), with help of Eq. (5.24)we 

can express the SNR p in the form 

In Fig. [5.2] we plot the variation in the SNR p at a luminosity distance DL = 200 Mpc 

as a function of the total binary mass using Eq. (5.26) for EGO, Advanced-LIGO, Initial- 

LIGO and Virgo detectors respectively. We choose 200 Mpc for these calculations since it 

is expected that the advanced interferometers will detect a few NS-NS events per year at 

this distance and BH-BH binaries lead to large enough SNR's to implement these tests [28]. 



Figure 5.2: SNR of ground-based detectors, current and future, for equal mass binaries as 
a function of the total mass of the binary M for the luminosity distance DL = 200 Mpc. 
The typical SNR for neuson- neutron star (NS-NS) binaries at 2200 Mpc varies from 0.2 for 
Initial-LIGO to 30 for EGO. For Vigo and Advanced-LIGO the corresponding values are 0.3 
and 8 respectively. A black hole binary of total mass 20Ma leads to a S N R  of 2,2.25,25 and 
135 in Initial LIGO, VIRGO, Advanced-= and EGO respectively. Initial-IJGO achieves 
a maximum SNR - 3 corresponding to at total mass of about -35 Mo. The cmespnding 
numbers for V I ,  Advanced-LIGO and EGO are -3 and -70 Mo; -50 and -50 Mo; and 
-300 and -200 Mo respectively. 
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From the figure it is clear that the typical SNR for neutron- neutron star (NS-NS) binaries 

at 200 Mpc varies from 0.2 for Initial-LIGO to 30 for EGO. For Virgo and Advanced-LIGO 

the corresponding values are 0.3 and 8 respectively. For BBH with total mass 40M, the 

corresponding values are 3, 3, 50, 100 for Initial-LIGO, Virgo, Advanced-LIGO and EGO 

respectively. Not only is each detector the most sensitive at different values of the frequency 

but also the maximum SNR attained by them differs. For Initial-LIGO it is -3 at total mass 

-35 M,, whereas, for Virgo it is -3 at total mass -70 M,. For Advanced-LIGO on the other 

hand, it is -50 at total mass -50 M, while for EGO, it is -300 at total mass -200 M,. Thus 

the technological advances are expected to improve the SNR for EGO by about 100 times 

that of Virgo and for Advanced LIGO by about 20 times that of Initial-LIGO. 

5.4 Testing general relativity with gravitational wave 

observations 

Our proposal to test the PN theory is the following. Let us suppose we have a GW event 

with a high signal-to-noise ratio (SNR), say more than 1,000. Once an event is identified 

we suggest to fit the data to a signal wherein each term in the PN expansion is treated as 

an independent parameter. More precisely, instead of fitting the detector output with a sig- 

nal that depends on only the two mass parameters, we could fit it with the same signal but 

by treating all the t,bk9s (cf.Eq. (5.1 1)) as independent. For example, if we want to test the 

PN theory to order v4 then we should use a four-dimensional grid of templates consisting of 

{t,bO, t,b2, t,b3, t,b4} rather than the two-dimensional one that is used in the detection problem. 

This higher-dimensional fitting of the data with our model would measure each of the PN 

coefficients independently of the others. In Einstein's theory, for the case of non-spinning bi- 

naries, each of the t,bk7s has a specific relationship to the masses, t,bk = t,bk(ml, m2), whereas in 

a different theory of gravity (for example, a theory in which the graviton has non-zero mass) 

the relationship will be different and might involve new parameters. Thus, the measured c/lk's 

could be interpreted, in principle, in the context of different theories of gravitation. 

In the case of general relativity we know that the t,bk7s are given in terms of the masses 

by Eqs. (5.1 I), (5.14) and (5.17). If general relativity (or, more precisely, the PN theory 

that approximates general relativity) correctly describes the dynamics of the system then 

the parameters must be consistent with each other within their respective error bars. One 

way to check the consistency would be to invert the relationships between the t,bk7s and the 

masses to obtain m2 = mk,(ml, t,bk), and plot m2 as a function of ml for various c/lk9s, and 

see if they all intersect at a common point. If they do, then the theory is correct to within 

the measurement errors, if not, the theory is in trouble. In addition to the PN theory we 
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could also test other approximants, such as the P-approximant [39] or the effective one- 

body approximation [24,44] that have been proposed as alternatives to the orbital dynamics 

of binary inspirals as also numerical relativity predictions. 

Although these tests are in principle possible, an important question is whether the vari- 

ous PN coefficients can really be measured accurately enough for the test to be meaningful. 

We already know that a simpler test proposed in Ref. [167], in the context of ground-based 

detectors, requires events with SNRs in excess of 25. The generalized tests proposed in this 

chapter would require much stronger signals, SNRs of 100 to test lower-order terms and in 

excess of 1,000 to test all terms currently known. Initial ground-based interferometers are 

unlikely to observe events with such large SNRs. As we shall show, while some of these 

tests might be possible with advanced detectors, a supermassive BBH merger in LISA is our 

best bet. 

To test an approximation it should be possible to measure the various PN coefficients with 

a good accuracy. We shall require that the relative error in the measurement of a parameter 

be less than loo%, i.e. At,bk/t,bk I 1, where At,bk is the error in the estimation of the parameter 

t,bk, in order that its presence is tested with confidence. A little thought will also reveal that 

in order to measure more and more higher order PN coefficients independently will require 

higher SNR's. In the Appendix we surnmarise the effect on the errors in the lower order 

coefficients, caused by the increased dimensionality of the parameter space, due to the in- 

clusion of higher order PN coefficients as independent parameters. As expected, covariances 

between the increasing number of PN parameters systematically worsen the determination 

of the PN coefficients. 

For the binary system in question define a parameter vector 8 = {t,, a,, t,bk} for the 

cases when the log terms are treated as constant or expanded. The parameter vector 8 = 
Itc, (Dc, t,bk, t,bkl) is chosen in the case when the log terms are treated as independent. We then 

have 

Note that we have now introduced specific values for the limits in the integration: f, is simply 

the lower frequency cutoff chosen such that the loss in the SNR due to this choice is negli- 

gible compared to the choice f, = 0. f;,, is the frequency of the radiation at the last stable 

orbit of the system which we assume to be the value given in the test mass approximation, 

namely Ji,, = 1 /(6312~M). Using the Fourier domain waveforms given in Eqs. (5. lo), (5.13) 

and (5.16), it is straightforward to compute fab which is 8 x 8 matrix in both the log-constant 
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and log-expanded cases: 

In the case where the log terms are parametrised by independent parameters, j&, is a 10 x 10 

matrix whose first five columns are given by 

and whose last five columns read 
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In the above x = f 'I3. [Beware of the change in notation for x different from the one normally 

used in the generation context (See Chapters 2 and 3) where it denotes the gauge-invariant 

parameter x = ( G r n n K / ~ ~ ) ~ / ~  .] 

We see that the information matrix will involve moments of the noise spectrum of the 

form Jm f - j l 3 L  where j runs from 1 to 17. The elements of the information matrix, 
0 S h ( f ) '  

therefore, take on values in a very large range leading to a highly ill-conditioned matrix. 

Extreme caution should be exercised in computing the moments, else it is easy to end up 

with values in the covariance matrix that are negative, and even imaginary, while we know 

that the covariance matrix should be real. 

5.5 Results for ground-based detectors 

In this section we summarise the results following the procedure described in the pre- 

vious section. We proceed systematically starting from the presently operating ground- 

based detectors like initial-LIGO and Virgo and moving on to the next generation detectors, 

Advanced-LIGO and the third generation one like EGO. An examination of these results 

then makes obvious the need and advantages of going to a space-based detector like LISA, 

which we analyse later. In each of the cases we have also examined the differences arising 

from different strategies to treat the log terms in the phasing formula. 

In view of the structure of the noise functions of the various detectors mentioned in Sec. 

5.3, the integrals in Eq(5.27) can only be evaluated using numerical methods. We use three 

different methods to check our evaluations: 

1) Gauss program using C++ from Numerical Methods [206], 

2) NIntegrate Package in Mathematica version 5.2, and 

3) ListIntegrate Package in Mathematica version 5.2. 

We used these three methods and varied the number of integration points to check our results 

for the Fisher information matrix rub. In this regard, we find that irrespective of the three 

different ways in which the log terms are treated (constant, Taylor expanded or characterized 

by new independent parameters) the difference in the values of Tab coming from the three 

numerical methods is very small and within the limit of numerical errors. The values of Tab 

do not depend on the number of integration points in the range lo3 to lo6. We can thus be 

confident of our numerical evaluation of the integrals in the definition of the Tab. 

However, our problem does not end here. We next need to calculate the matrix inverse of 

rub to obtain Cub.'In this calculation more serious numerical problems arise because of the 

ill-conditioned nature of the matrix rub especially in the higher mass range. The numerics in 

this case seem to be very sensitive to the precision used and a careful analysis showed that 

the problem is alleviated to a large extent by using 'infinite precision'. More explicitly, the 
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use of a rational number representation of the matrix elements in our Mathematica programs 

seems to circumvent the problem of a badly computed matrix inverse. With this prescription 

the inverse is numerically well determined (T.C = I!) as long as the determinant of Tab is 

well within the machine precision. For high values of mass the determinant is either too large 

or too small and in these cases there are large differences in the values of Zab [including even 

(the obviously incorrect) imaginary values] between the different methods. In particular, 

note that for all the detectors and for the case where the log terms are treated as independent 

parameters the curves are not smooth and the data points are fewer. See Figures [5.3] and 

[5.4]. This could be due to the fact that when the dimensionality of the parameter space 

increases, the covariance matrix is highly ill-conditioned leading to an unreliable inverse. 

For many values of the binary mass the unreliable numerical situation leads to unphysical 

imaginary values resulting in fewer reliable points and a consequent more jagged curve. For 

a lower range of masses (and other ways of dealing with logs), the curves are smooth and 

this leads us to believe in their reliability. More careful studies are needed to deal with these 

delicate numerical issues and ascertain the reliability of the results in the problematic mass 

ranges. We hope to return to this in the future. 

Let us begin with a study of the current generation detectors Initial- LIGO and Virgo. 

Fig. [5.3] plots the relative errors in IC/k's at DL = 200 Mpc in a six panel format. The top 

panels corresponds to Virgo and the bottom panels to Initial LIGO. The first column on the 

other hand corresponds to the case where the log terms are treated as constants, the second 

column where the log terms are Taylor-expanded and retained up to 3.5PN and finally the 

third column where the log terms are treated as independent terms and parameterized by new 

additional parameters. From the first row for the Virgo detector we see that we can only test 

the lowest order parameter and that too for a very small range of binary masses. Even so, 

this is only possible for the first two ways of dealing with logarithms, (either in the constant 

log or in the expanded log case). For Initial LIGO none of the Gk's can be tested. 

We next move on to the next generation detectors, Advanced LIGO and EGO. Fig. [5.4] 

summarizes similarly the situation for these two detectors with Advanced LIGO in the top 

panels and EGO in the bottom panels. From the figures one can see that for Advanced LIGO 

once again one can only test go. However it can be tested for a larger range of binary masses 

in the log-constant and log-expanded cases and even for the log-independent case though 

for a smaller range of masses. With EGO the situation is the best among the ground-based 

detectors. Not only Go but also q2 can be tested, both in the log-constant and log-expanded 

cases. However when the log terms are independently parametrised only Go can be tested. 

From the discussion of the results above for ground-based detectors, both present and 

future third generation, it is clear that one can only test PN theory to order 1PN at most, 

and as expected with a binary black hole system. Testing the higher order PN terms would 
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Figure 5.3: Relative errors in #k as a act ion  of the total mass of the binary M for Virgo 
(Top Panels) and Initial-LIGO (Bottom Panels) and three different ways of dealing with 
the log terms: The first column where the log tams are treated as constants, the second 
column where the log terms are Taylor expanded about q, and retained to 3.5PN and the 
third column where the log terms are parameterized by indepenhnt parameters. The source 
is at luminosity distance of DL = 200 Mpc. For Virgo (both when the log terms are reated 
as constants or are expanded), only t,bo can be tested and that too only in a smdl range of 
masses (2-3 Mo). If the log terms are parameterized by independent parameters none of the 
#k's can be tested at the luminosity distance of DL = 200 Mpc. For Initial-LIGO, in all the 
three cases, none of the &'s can be tested at DL = 200 Mpc. 
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Figure 5.4: Relative errors in @k as a function of the total mass of the binary M for Advanced- 
LIGO (Top Panels) and EGO (Bottom Panels) and three different ways of dealing with the 
log terms: The first column where the log terms are treated as constants, the second colwnn 
where the log term are Taylor expanded about q, and retained to 3.5PN and the third column 
where the log terms are parameterized by independent parameters. The source is at luminos- 
ity distance of DL = 200 Mpc. For Advanced-LIGO (and in all three ways of treating the log 
terms), only can be tested. The range of masses is bigger and corresponds to (2- 10Mo). 
For EGO (in all the three cases) can be tested for a wide range of binary masses. Further, 
q2 can be tested (if the log terms are treated as constants or Taylor expanded) in the range 
(2-4Mo). 
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require larger SNRs and these are expected in space-based GW detectors like LISA. In the 

next section, we explore this possibility in more detail. 

The Laser Interferometric Space Antenna (LISA) will observe supermassive black hole bi- 

nary mergers with amplitude signal-to-noise ratio of several thousands. We investigate the 

extent to which such observations afford high-precision tests of Einstein's gravity. We show 

that LISA provides a unique opportunity to probe the non-linear structure of post-Newtonian 

theory both in the context of general relativity and its alternatives. 

There are some major differences between the ground-based detectors discussed in the 

previous section and space detector like LISA. The important difference is that LISA will be 

sensitive to gravitational waves in a much lower frequency band: 10-4-10-1 Hz, a frequency 

range not accessible to the ground-based detectors due to seismic and more importantly 

gravity gradient noise. Another important difference between LISA and the ground-based 

interferometers relates to how they identify the angular position of the source in the sky. 

LISA is not a pointed instrument; it is an all-sky monitor with a quadrupolar beam pattern. 

The ground-based detectors share this characteristic, but because there will be at least three 

ground-based detectors, and because they will be sensitive to gravitational radiation whose 

wavelength is much shorter than the distance between detectors, they will be able to deter- 

mine the source position to within - lo by a standard time-of-flight method [20]. This 

method is not available to LISA. Only one space-based detector is currently planned. More- 

over the gravitational wavelength at the heart of the LISA band (- Hz) is of order l 

AU, so a second detector would have to be placed at least several AU away from the Earth 

for time-of-flight measurements to give useful constraints on source positions [207]. The 

argument presented here is not the full story. LISA measures the direction to its sources in 

the same way as a single ground-based interferometer measures direction to a GW source, 

viz by demodulating the doppler modulation on the waveform due to the motion of LISA 

relative to the source. 

The frequency band, 10-4-10-1 Hz, contains many known gravitational wave sources 

that LISA is able to see. These guaranteed sources comprise a wide variety of short-period 

binary star systems, both galactic and extragalactic, including close white dwarf binaries, 

interacting white dwarf binaries, unevolved binaries, W Ursae Majoris (W UMa)4 binaries 

and neutron star binaries. 

Indeed, our galaxy probably contains so many short-period, stellar-mass binaries that 

LISA will be unable to resolve them individually, and the resulting confusion noise will ac- 

4~ UMa is a variable star in the constellation Ursa Major. 
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tually dominate over instrumental noise at frequencies 5 Hz, as the principal obstruction 

to finding other sources of GWs in the data-stream. In addition to stellar-mass binaries, other 

possible LISA sources include: a stochastic GW background generated in the early universe, 

the inspiral of compact, stellar-mass objects into supermassive black holes (SMBHs) and the 

merger of two SMBHs . The detection of any one of these would clearly be of immense 

interest. The events involving supermassive black holes must surely occur in the universe, 

but the event rates are highly uncertain [207]. 

5.6.1 Sensitivity curve of LISA 

The power-spectral-density of LISA is more complex and includes both instrumental and 

astrophysical contributions. The details are beyond the scope of the present study and treated 

in e.g. [207,208, 209, 1961. We only list the expressions we require. The total noise curve 

of LISA is given by [I961 

In the above S P C f )  denotes the non-sky-averaged noise spectral density of LISA and 

is given by 

sY1(f) is the galactic estimated white-dwarf confusion noise which is approximated as 

Finally, s;-"'(f) is the contribution from extra-galactic white dwarfs and given by 

In the expression above fo = 1 Hz and dN/df the number density of galactic white-dwarf 

binaries per unit gravitational-wave frequency, represented as 

In our calculations we always assume that the duration of the LISA mission TisSion = 1 yr 

and K = 4.5 [196]. 
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5.7 Antenna pattern function for LISA detector 

The signal measured by LISA, h(t) , can be written as: 

where r(t) is the relative distance between the two compact bodies, cpp(t) is the waveform 

polarization phase [see Eq. (5.39a)l and cpD(t) the Doppler phase [see Eq. (5.39b)l. A(t) is 

defined by 

A(t) = d[1  + (f, n)2]2 F + 2  + 4(L . n)2 FX2. 

where L is the orbital angular momentum unit vector of the source, and n is a unit vector in 

the direction of the source on the sky. The quantities F+,' are the pattern functions, defined 

by 

1 
F'(@s,k,+s) = ~ ( 1 + ~ o s ~ 8 ~ ) c o s 2 ~ c o s 2 + ~  

- cos 8s sin 2q5s sin 2qs , 
1 

F'(&,&,+S) = $1 + C O S ~ ~ S ) C O S ~ $ ~  sin2+hs 

+ cos 8s sin 2@s cos 2t,bs . 

In the above equations we have denoted by (Os, 4s) the source location and by t,hs the polar- 

ization angle defined as 
L . z - (L . n)(z. n) 

tan +s (0 = 
n (L x z) 

1 

with &, z and -n being the unit vectors along the orbital angular momentum, the unit normal 

to LISA'S plane and the GW direction of propagation, respectively. 

The waveform polarization and Doppler phases that will enter the GW signal (see 

Eq. (5.42) later) are 

[ 2(f,n)FX(t) ] 
qp(t) = tan-' 

(1 +(f,.n)2)F+(t) ' 

cp~(t) = 2nf c R sin cos($(t) - &) , (5.39b) 

with R = 1 AU and $(t) = $o + 2rtlT. Here T = 1 year is the orbital period of LISA, and 

$0 is a constant that specifies the detector's location at time t = 0. In this chapter we always 

assume that there is no precession, so i" points in a fixed direction (&, &). The angles 

gs, $s, GL, $L  describe the source location and orbital angular momentum direction in the 

reference frame attached to the solar system barycenter. 
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The relations between the angles (Bs, #s, qs)  evaluated with respect to the rotating 

detector-based coordinate system and the angles (as, & ,  gL, 4L) evaluated with respect to 

the fixed solar-system-based coordinate system are given by [207]: 

1 4 3 . -  
cos 0s (t) = - cos 8s - - sin 0s cos($(t) - i s )  , 

2 2 
22rt fi cos gs + sin 8s cos($(t) - 4,) 

@s(t) = G O +  - +tan-'[ 
T 2 sin 8s sin(&) - gs ) ] , (5.40b) 

where ho is a constant specifying the orientation of the arms at t = 0. Following Cutler [207], 

we choose = 0 and $0 = 0, corresponding to a specific choice of the initial position and 

orientation of the detector. In addition [207, 1961, 

L n = cos GLcos 8s + sin gL sin as cos (4L - 4s) , (5.41~) 
1 

n . ( i x z )  = -sinaLsinas sin(qL-$S) 
2 

cos gL sin 8s sin - cos 8s sin gL sin 4L 
2 1 

-- " sin)(t)(cos & sin aL cos $L - cos BL sin as cos 
2 

The Fourier transform of the measured signal can be evaluated in the stationary phase ap- 

proximation, since A"(t), cp,(t) and cpD(t) vary on time scales on the order of 1 year (thus much 

larger than the binary orbital period - 2/ f). The result is 

where is defined in Eq. (5.25b), and t(f) is given by 

To proceed we list below the explicit expression for t(f) we will require in the computation 

in the different methods of dealing with the log terms. 

1. Log-Constant: 
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where qk are given be Eq. (5.10). 

2. Log-Expanded: 

here @k are given be Eq. (5.13). 

3. Independent parameter for log terms: 

where @k are given be Eq. (5.16). 

5.7.1 Signal to noise ratio with orientation pattern 

From the general definition of SNR in Eq. (5.24) , the non-averaged SNR is given by 

Following [I961 the limits in the integral appearing in the above equation can be chosen. 

The upper limit of integration is ffin = min(fIsco, fend). Here fisco is twice the conventional 

(Schwarzschild) frequency of the innermost stable circular orbit for a point mass, namely 

hsco = (6312n~)- ' ,  and fend = 1 Hz is a conventional upper cutoff on the LISA noise curve. 
The initial frequency in in the integrals of the Fisher matrix is determined by assuming that 

we observe the inspiral over a time Tobs before the ISCO, and by selecting a cutoff frequency 

below which the LISA noise curve is not well characterized. Our default cutoff is jow = 

Hz. The initial frequency is then given, in Hz, by the larger of these frequencies, 

The frequency at a given observation time is calculated using the quadrupole approximation 

for radiation damping. In our calculations we assume that Tobs = 1 yr, consistently with the 

choice we made for the LISA mission duration Tabs in Eq. (5.30). 

In the Fig. [5.5] we plot the signal to noise ratio (SNR) for different orientations for the 

sources at a luminosity distance DL = 3 Gpc starting from the orientation {Os, @s,  OL, @ L )  = 

{(13/40)n, n, (27/40)n, 0}, which gives a large SNR. The other directions have been arbi- 
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-a- (0.52, n,-0.52, 0) 
-*- { 0.9,2, -0.8, -5) 

-v- {-0.8, 1, 0.5, 31 

I o3 I o4 I u5 I o6 I o7 
Total Mass of the Binary ( M,) 

Figure 5.5: Signal to noise ratio p for LISA as a function of total mass of the binary (in 
M,) located at a luminosity distance DL = 3000 Mpc. (as , &, &, &) describe the source 
location and orbital angular momentum direction in the reference frame attached to the so- 
lar system barycenter. In our calculations, we use the orientation (cos Bs, 4$, cos &, &) = 
(09, 2, -0.8, -5) ("optimdly oriented") for which the maximum SNR is - 6.4 x lo3 for a 
binary mass 1 06. Even in this limited set of angles there exists an orientation which gives a 
larger SNR - 1.15 x 1 o4 at the total binary mass 10'. 
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trarily taken. For all the curves the maximum values of SNR appear at total mass lo6 MQ. 
The dips which occur at 2 x lo6 M, are due to the white-dwarf confusion noise. 

5.8 Pattern averaged waveform and its SNR 

Taking the average of the waveform for one LISA detector over the pattern functions in the 

stationary phase approximation, the waveform in the Fourier domain is given by 

Recall, that using Eq. (5.24), we can express the SNR p in the form 

fend 3 f -713 

= 2 g  

The limits in the integral have already been discussed in the previous Sec. 5.7.1. 

Fig. 15.61 shows the SNR with averaged orientation waveform pattern and with one par- 

ticular orientation pattern waveform. The orientation of the source is chosen to be 

(cos Gs, & ,  cos gL, $L) = (09, 2, -0.8, -5) an "optimal orientation" in the sense that it leads 

to a high SNR. The two curves in the log-log scale look almost parallel. The maximum 

SNR for both curves is more than 4000 and 6000 respectively and they occur at total mass 

of MBBH of lo6 M,. 

5.9 Parameter estimation for LISA 

In this section we discuss our results for parameter estimation using the LISA noise PSD. 

The results for the two cases, one where the pattern averaged waveform is used and the other 

where waveform is used without pattern averaging, are explained. For the case when one 

ignores the antenna pattern of LISA (which assumes that source lasts for smaller duration in 

the LISA band that modulations are not significant), the analysis is very much similar to the 

ground-based detectors. 

The calculation is more involved when one incorporates the modulations induced by 

LISA motion. The dimensionality of the parameter space is increased, as compared to the 

previous cases, by five. Luminosity distance DL, and the four angles corresponding to the 

source's location and orientation in the sky are added to the space of parameters. Thus in 

this case, when logs are treated as constants, the total dimensionality is 13. It increases to 15 

when one treats logs as independent parameters. Another difference in the calculation is the 
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I o3 I o4 I o5 I o6 I o7 
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Figure 5.6: Signal to Noise Ratio p for LISA as a function of total mass of the binary (in 
Mo) located at a luminosity distance DL = 3000 Mpc., for two cases: 1) using orientation 
pattern waveform where the orientation of the source is chosen to be (cos &, &, cos gL, &) = 
(09, 2, -0.8, -3, an "optimal orientation" . 2) pattern averaged case. The two curves on 
this scale look parallel. The maximum S N R  for both curves is more than 4000 and 6000 
respectively and they occur at a binary mass of 1 O6 Ma. The whitedwarf confusion noise is 
responsible for the dip in the curves at masses - 2 x lo6&. 
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occurence of tCf) of Eq. (5.43) to account for the amplitude and phase modulations. As is 

evident from Eq. (5.43), the expression for t(f) has an additional dependence on (CIks which 

has to be taken into account. Finally, the Fisher matrix is computed incorporating all the 

above aspects and inverted to obtain the covariance matrix. The results of this exercise are 

discussed in what follows. 

5.9.1 Results for LISA 

We shall show in this section that the brightest events that can be expected in the space-based 

Laser Interferometer Space Antenna (LISA) will test all the PN terms computed so far. 

We assumed that LISA consists of only one interferometer with sensitivity as in 

Ref. [207, 208, 1961 and the binary consists of two black holes of equal masses in quasi- 

circular orbit and observed for the last one year before merger. 

Fig. [5.7] summarises in a six panel format the relative errors in the various parameters 

(CIk as a function of the total mass at a distance of DL = 3000 Mpc. The top panels correspond 

to the relative error when the pattern orientation waveform is used and the orientation of the 

sources is chosen to be (cos Gs , &,  cos GL7 $L) = (09, 2, -0.8, -5) ("optimal orientation"). 

The bottom panels correspond to the relative error when the averaged waveform pattern 

is used. As before, the three columns correspond to the three different ways of dealing 

with log terms. The first column corresponds to the case where the log terms are treated as 

constants, the second column where the log terms are expanded and retained to be consistent 

with a 3.5PN accurate waveforms and the third column where the log terms are treated as 

independent terms and parameterized by two more new parameters. In the first column 

wherein the log-terms are treated as constants, it is clear that in the mass range lo5 - 106M,, 

fractional errors associated with most of the parameters are less than 1, except for the (C16,Jow 3 

(C16(f - An) which is two times higher. In the second column the case is better: all the 

relative errors are much small compared to one and for a wide range of masses except for (C14 

for which the fractional error is less than one only for small range of masses - 2 x lo5 M,. 

Thus, LISA will provide an unique opportunity to test the PN and related approximations 

to a high degree of accuracy using the scheme proposed in this chapter. On the scale of 

the present graph in the first and second columns the visual difference between the top and 

bottom panels is too small to be critically commented upon. To examine in more detail the 

difference between the pattern averaged waveform and the waveform including orientation, 

we plot in Figures [5.8]-[5.10] the two results and in an adjoining panel the associated 

fractional difference in the case where the log terms treated as constants. From this graph we 

can conclude that in the mass range 2000-2 x lo7 M, the difference can be as large as 20% for 

this choice of orientation. However, one must beware that this is not a generic statement and 
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Figure 5.7: Relative errors in t,bk as a function of the total mass of the binary M for the LISA 
Detector. The top panels correspond to the case with orientation pattern. The orientation 
of the source is chosen to be (cos as, &,  cos gL, $L) = (09, 2, -0.8, -3 ,  an "optimal orien- 
tation". The bottom panel corresponds to the case with an average orientation pattern. As 
before the three columns correspond to the three ways of dealing with logs: log-constant, 
log-expanded and log-independent respectively. The luminosity distance is DL = 3000 Mpc. 
In the top panels (when the log terms are treated as constants or Taylor expanded), all the 
t,b's, except t,b610w, can be tested in the mass range between (2-3)x105. 
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Figure 5.8: The left panels are the relative errors as a function of total mass of the binary. 
At,bk/t,bk and At,bk Ang/t,bk are the relative errors in the cases with average orientation pattern 
and with orientation pattern respectively. The right panels are the percentage differences 
between the errors in the two cases relative to the error in the case of the average orientation 
pattern. The top panels corresponds to t,bo and the bottom panels corresponds to t,b2. 
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Figure 5.9: The left panels are the relative errors as a function of total mass of the binary. 
Aqk/+k and A+k Ang/+k are the relative errors in the cases with average orientation pattern 
and with orientation pattern respectively. The right panels are the percentage differences 
between the errors in the two cases relative to the error in the case of the average orientation 
pattern. The top panels corresponds to +3 and the bottom panels corresponds to +4. 
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Figure 5.10: The left panels are the relative errors as a function of total mass of the binary. 
A $ k / @ k  and A$k Ang/$k are the relative errors in the cases with average orientation pattern 
and with orientation pattern respectively. The right panels are the percentage differences 
between the errors in the two cases relative to the error in the case of the average orientation 
pattern. The top panels corresponds to $b6 1, and the bottom panels corresponds to $b6 ,. 
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could well be different for a different choice of orientation and parametrization [196,210]. 

5.9.2 Test of general relativity: Representation in the ml-rn2 plane 

A graphical plot in the ml-rn2 plane best illustrates how one might test the consistency of the 

individual masses of the specific system in the merger of black holes each of mass lo5.' M,. 

We have chosen a system that gives the lowest errors in different parameters (cf. Fig. [5.7]) 

and assumed that the source is at a distance of 1 Gpc. For each parameter qk we have 

plotted the region enclosed by the boundaries t,bk + A+k and t,bk - A+k, where Aqk is the 

one-sigma error in the estimation of t,bk. The region in the ml - rn2 plane for a binary of 

total mass Mo corresponding to the parameter t,bk is determined as follows. It is given by 

Rk(m1, m2; (@k)lil.~=il.~~ - 6k))=O, where -A@klil.~=il.I~ I 6k 5 A+klil.~=~~. (In the above A+k 
corresponds to the estimated errors in qbk for a particular detector and particular source of 

total mass Mo.) 

In Fig. [5.11] the top-left panels correspond to the case where the log terms are treated 

as constants, the top-right panels to where the log terms are expanded and the bottom panels 

correspond to the case where the log terms are treated as independent parameters. The higher 

order +k's will have to enclose the region determined by, say +o and q2. This will be a 

stringent test for the various parameters and will be a powerful test if LISA sees a merger 

event with a high SNR of - lo4. For binaries that merge within 1 Gpc the test would confirm 

the values of the known PN coefficients to within a fractional accuracy of - 1. 

Finally, one may wonder that there is no test corresponding to t+h5 in Fig. [5.7] and 

Fig. [5.11]. The reason is simple. This term has no frequency dependence and consequently 

the associated constant t,b5 gets absorbed into a redefinition of the coalescence phase a,. 

5.9.3 Bounds on Compton wavelength of the graviton using the current 

proposal 

Based on the discussions of the previous section, it would be interesting to ask whether the 

proposed tests can, in principle, distinguish general relativity (GR) from, say a theory that 

also includes a massive graviton [ 1951. In this theory the 1PN parameter 992 is different from 

that in GR [195]. The accuracy with which t,b2, which contains the massive graviton term, 

can be determined, can be used to put bounds on A, once we assume the additional term at 

this order is same as in Ref. [195]. 

We adopt the following procedure to calculate the bounds on the mass of graviton. The 

presence of the massive graviton modifies the IPN terms of the phasing formula which can 

be conveniently rewritten as 

992 = @y + @YG (5.51) 
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Figure 5.1 1: The ml-mz plane plots for different h ' s  for the three ways of dealing with 
log terms: Top left is the case where the log terms are treated as constants, the top right 
where the log terms are Taylor expanded about y, and retained to 3.5PN and the plot at 
the bottom refers to the case where the log terms are parameterized by independent vari- 
ables. The source is assumed to be a binary BH of mass Mo = 2 x 10$.'M,, at a luminosity 
distance of 1000 Mpc for the LISA detector. The orientation of the source is chosen to be 
(cos 8s, & , cog &, &) = (09, 2, -0.8, -3, an "optimal orientation". For each parameter t,bt 
we have plotted the region enclosed by the boundaries + A@k and t,bk - At,bk, where Aqk 
is the one-sigma error in the estimation of t,bk. A larger region means a weaker test and a 
less certain determination for ml and m. The existence of a non-empty intersection for the 
regions associated with each t,hk constitutes the test. In the last case, the plot includes only 
first three @k's since others are estimatd with very large errors. 
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where 

and qyG, the leading correction due to the effect of the massive graviton, is given by 

+yG will alter the arrival time of the waves of a given frequency and depends only on the 

size of the graviton Compton wavelength A, and on the 'distance' D which is defined as 

- .  

D =  
dz' 

(1 + 1')' [ a M ( l  + z ' ) ~  + nn]liz ' 

It should be noted that D is not a conventional cosmological distance measure, like the lumi- 

nosity distance DL [I951 and differs from it by a factor (1 + z")-~ in the integrand. 

For a BH binary of total mass 2 x lo6 Ma at the luminosity distance DL = 3000 Mpc, 

that is, (z = 0.5241 16 and D = 2007.42 Mpc) in the LISA band we find t,bfR = 0.0195 and 
MG 3.8 From our results in the previous section 5.9.1 the error in estimating t,b2 " - ( ~ ~ / ( 1 0 ~ ~  ~rn)) '  ' 

is At,b2 = 446. Thus the massive graviton theory can be distinguished from GR if @YG 2 A@', 
p(z) 

say, cl/yG = 10 x Aq2, which we choose as our criterion. For the system considered, one 

can then use the estimate of A q 2  to obtain the value of A, which satisfies this criterion. 

Any massive graviton theory of this type, with A, less than or equal to this value can be 

distinguished from GR by the proposed test. 

Remarkably, we find that an year's worth of observation of BBH mergers in the mass 

range 2 x lo4 - 2 x 1 0 7 ~ ,  should be sufficient to discriminate GR from a massive graviton 

theory provided the Compton wavelength of graviton A, I 5.5 x 1014 - 3.8 x 10'' kms. 

These limits make the simplifying assumption of neglecting the as yet uncomputed higher 

PN order corrections to GW phase in the massive graviton case. (See also [211] for a 

discussion regarding the extent to which GW observations can critically distinguish between 

different theories of gravitation in comparison to the binary pulsar tests.) 

5.9.4 Summary and future directions 

Let us begin with a tabular summary of the results of this chapter to highlight the main 

results. In Table 5.9.4 we summarise the minimum SNR required by the various ground- 

based detectors to test the various PN order coefficients with the proposed scheme (treating 

all PN coefficients as independent). From the table one can conclude that it will not be 

possible to test any of the PN coefficients qk using the ground-based detectors. The situation 

in regard to LISA is similarly paraphrased in Table 5.9.4. In this case, at the generally 
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Table 5.1: This table lists the relative error At,bk/t,bk) for a prototypical binary black hole 
system each of 10MQ at a distance of 200 Mpc for the different ground-based detectors 
Virgo, Initial LIGO, Advanced LIGO and EGO. From the table it follows that the ground- 
based detectors cannot test any PN coefficient t,bkr if all the t,bk9s are treated as independent 
Parameters. 

Table 5.2: This table summarizes the minimum values in the SNR required by LISA to test 
the PN coefficient t,bk (more precisely at which the relative error At,bk/t,bk - 1) if all the t,bk's 

SNR= p 

M = 20MQ 
DL = 0.200 GPC 

are treated independent. The last two columns give the associated maximum values of DL in 
Gpc up to which this test is feasible. With a SNR of 1050, one can determine t,bo, t,bz and t,b3 
using LISA. 

M = ~ X ~ O ~ M ~  

Virgo 

1.92964 

LISA 
(With pattern) 

LISA 
(Without pattern) 

Initial 
LIGO 

2.38892 

Minimum in SNR=p 
to test t,bk 

LISA 
(With pattern) 

Advanced 
LIGO 

37.5313 

Maximum in DL (Gpc) 
to test t,bk 

LISA 
(Without pattern) 

EGO 

143.923 



Table 5.3: This table lists the SNR and fractional accuracies At,bk/t,bk) with which the PN coefficients t,bk can be tested by LISA using a 
prototypical supermassive binary black hole system (2 x 106M0) at three representative distances of 1 Gpc, 3 Gpc and 6.6122 Gpc ( z  = I). 
From the table it follows that, if all the PN coefficients are treated as independent parameters, only t,bo, t,b2 and t,b3 can be tested at all the 
three distances. t,b7 can be tested only if the source is relatively closer at DL = 1 Gpc. 

SNR= p 

LISA M = 2 x  
DL = 1 GPC 

(Without pattern) 

6424.64 
(With pattern) 

9915.61 

DL ~ G P C  
(Without pattern) 

2141.55 

DL = 6.6122 G ~ c  
(With pattern) 

3305.2 
(Without pattern) 

97 1.629 
(With pattern) 

1499.59 
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realistic SNR of about 1050 LISA can test for qo, q2 and q3. The last two columns of 

this Table 5.9.4 on the other hand provides a similar comparison in terms of the maximum 

luminosity distance to which the LISA detector can test a particular PN coefficient. Finally, 

in Table 5.9.4, for the case of LISA we provide a ready-reckoner of the relative errors in 

various PN parameters qk for a prototypical supermassive binary black hole (2 x 1O6M,) at 

three typical distances. 

Let us finally conclude with the limitations of the present work and an indication of the 

possible directions in which the results can be extended. 

In the present work we have dealt with only non-spinning binaries. The spin param- 

eters, ,t3 from spin-orbit coupling at 1.5PN and u from spin-spin coupling at 2PN, are 

assumed to be less significant for these equal mass systems. For the unequal mass case 

the spin effects are expected to be more important. 

Orbital eccentricity, which might introduce systematic effects in these tests, has not 

been included as we have restricted our analysis to binaries in quasi-circular orbits. 

Especially for many LISA sources the binaries could be in quasi-eccentric orbits and 

thus require an extension to include eccentricity. 

a Massive graviton theories can be tested since they lead to a phasing formula that is 

structurally similar to general relativity but with terms modified due to the propagation 

delay. Further work would eventually require the computation of higher PN order 

effects in such theories beyond the lowest order effect considered usually including the 

present work. 

a Alternative theories of gravity, such as the Brans-Dicke theory, where the PN structure 

of the phasing is different due to the presence of dipolar radiation, may also be tested 

by an extension of the above proposal. 

These and other issues should be investigated in the future. 



Chapter 5 

Appendix 

5.10.1 Effect of increasing dimensionality on parameter estimation due 

to inclusion of higher post Newtonian terms 

In this Appendix we study the effect of increasing dimensionality caused due to the inclusion 

of higher PN order terms as independent parameters on the errors in the estimation of qks. 

For this, we estimated the errors, say in go, when the signal is progressively more accurate 

starting from Newtonian, lPN, ... to 3.5PN. A similar exercise is repeated for other t,bk7s also 

and the results for the Advanced LIGO, EGO and LISA detectors are presented below. One 

should bear in mind that systematic errors due to the neglect of higher orders will be domi- 

nant in many cases. The increase in dimensionality degrades the accuracy of determinations 

of a particular qk ,  as one would expect. For simplicity the log terms are treated as constants. 

For each detector, Advanced LIGO (Fig [5.12]), EGO (Fig [5.13]) and LISA (Fig [5.14]) 

there are five panels corresponding to the relative errors of qo, q2, q3, t,b4 and {t,b6,10w and 

$6,up } respectively. In each panel the test is performed successively with progressively 

more accurate PN waveforms. Increased dimensionality of the parameter space leads to a 

poorer determination of a particular PN coefficient if all the PN coefficients are treated as 

independent parameters. 
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Figure 5.13: Effect of increasing dimensionality on parameter estimation due to inclusion of 
higher post Newtonian terms as independent parameters for the EGO Detector 
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Figure 5.14: Effect of increasing dimensionality on parameter estimation due to inclusion of 
higher post Newtonian terms as independent parameters for the USA Detector 




