
Chapter 3 

Quantum orbital motion of a 

charged particle on a discrete 

triangular ring linking an A-B flux: 

decoherence of the diamagnetic 

moment through 

Lindblads (phenomenological 

approach) 

3.1 Abstract 

Following the finding of Chapter 2, namely, that the Lindblad operators, despite their 

infinite heating effects, do provide a physically reasonable description of the quantum 

motion on a discrete bandwidth-limited lattice coupled to the dissipative environment, 

we now study in this Chapter yet another quantum phenomenon that has no classical 

analogue-the orbital diamagnetic moment of a charged particle moving on a discrete 



ring linking an A-B flux and presumably 'decohered' through the Lindblad operators. 

For this, we consider a tight-binding 1-band Hamiltonian for a finite three-center- 

system (an idealized annulene), where the A-B flux enters through the Peierls phase 

factors multiplying the tunneling matrix elements. Time(t ) evolutions of several phys- 

ical physical quantities are derived, in particular, those of the orbital magnetization 

(M) and the diagonal elements pii of the reduced density matrix. By eliminating 

the time (t) in favour of a functional relation between M(t) and a certain ratio(to 

be identified with the instantaneous Boltzmann factor) of the diagonal elementspii(t) 

of the reduced density matrix defining the instantanious temperature T(t), we obtain 

the temperature (T) dependance of the magnetization M (T) despite the fact that the 

Lindblads heat up the system to infinite temperature as t + oo. Thusly calculated 

M-T plot is found to be consistent with the equilibrium statistical-mechanical results 

for the system giving a non-zero magnetization. We do, however, demand that the 

heating time be reasonably long as compared to the internal dynamic time-scale of the 

system, namely, FilBand Width. 

3.2 The isolated system(no coupling to the bath): 

The system Hamiltonian H is 

where -V(taken to be negative real) is the transfer matrix element in the absence of 

the flux ), and t9 = &B is the Peierls phase.( Here A is the area of the three-center 

plaquette and is the flux quantum = hc/)e(  ). The energy eigenvalues of the above 

elementary Hamiltonian are readily found to be 



B 

Three-center plaquette 

at temperature T 

Figure 3.1: The three-center plaquette at temperature T with A-B flux. 
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Figure 3.2: Energy level diagram. 
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Figure 3.3: An illustrative plot of system's mean energy(in meV)as a function of tem- 

perature@ K) at magnetic field B = 1/27r tesla. Here the matrix element V = ImeV, 

and inter-site distance = 40nm 

Figure 3.4: MagnetizationM(eV/tesla) as a function of temperature T ( K )  at  B = 1/27r 

tesla. 

For this elementary model, all physical quantities are readily calculable. Thus, from 

the mean energy (Figure 3.3) of the particle 

the system magnetization is calculated by taking the B-field derivative of the mean 

energy, i.e., M = -%. These are plotted in Figure 3.4 and Figure 3.5. 



Figure 3.5: Orbital magnetization vs. magnetic field at temperature T = 10K. 

3.3 Suppression of orbital diamagnetic moment due 

to coupling to the dissipative environment : 

Lindblad operators. 

Next, we couple our three-center system to the dissipative environment through the 

Lindblad operators projecting on to the sites, and investigate the effect of the induced 

decoherence on the mean energy and the magnetization, i.e., how these quantities evolve 

as function of time when the system is prepared in a chosen initial state. In order to 

solve this problem, we (1)derive the time evolution for the reduced density matrix using 

the Lindblad master equation, (2) then from the reduced density matrix and the system 

Hamiltonian, we calculate the mean energy, and finally (3) by differentiating it w. r. t. 

the magnetic field, we get the magnetization. As noted above, the effect of the magnetic 

field is taken into account through the Peierls phase factors in the Harniltonian, and 

the effect of the dissipative environmeht through the Lindblad operators. The latter 

are chosen so as to project on to the sites (17 = a, b, c ) ,  i.e.,L, = f1117)(ql, with C = 

coupling constant. The time evolution given by the Master equation -the Liouville 

equation- for the reduced density matrix (in the Lindblad form) is then 



Equation (3.4) in the site representation becomes 

We now introduce the dimensionless time and coupling parameters, T = tV/h , y = 

C h / V .  With these, the reduced density matrix elements evolve as 

. 24 
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This system of coupled linear differential equations is solved numerically using the 

runge-kutta method (4th order) under the initial condition that the particle is prepared 

in the unperturbed ground state ((Ao)) at  time t = 0. The unperturbed eigenstates for 

the system Hamiltonian in Eq.(3.1) are 
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In the site space then, the density matrix elements have the initial values 

The system's mean energy (E(t)) is calculated by taking the trace of Hp, and the 

magnetization M(t)  is calculated by taking the B-field derivative of the mean mean 

energy (E(t)) i.e., M (t) = - v. These are plotted in Figures (3.6) and (3.7). 

We now ask the question if and how it may be possible to connect this time- 

dependent solution for the open system (evolving under heating by the Lindblads 

towards infinite temperature) with a finite-temperature equilibrium system. We find 

that this can indeed be realized under the condition that the Lindblad heating is 

slow enough as compared to the internal dynamical time scak of the system, i.e., 

1 "nder this condition the system temperature T( t )  can be 'monitored7 

?? Band Width 

by the relative population of the two sublevels 1 and 2(identified with the Blotzmann 

factor), and is given by 

Figure (3.8) illustrates this point. Now, we eliminate the time t between the tempera- 

ture T(t) and the magnetization M(t), and thus obtain magnetization as a function of 

temperature which is plotted in Figure (3.9). Clearly, this graph for an open system is 

equivalent to the graph (Figure 3.4) for a closed system. Thus, we recover the classical 

equilibrium statistical mechanical result(Figure 3.4) from lindblad theory (Figure 3.9) 

provided that the system-bath coupling is weak and therefore the Lindblad heating 

time scales are much larger than the internal dynamical time-scales of the system. 



Figure 3.6: Mean energy (E)(in eV) vs time(in peco-seconds), y = 0.1 , B = 0.16. 

Figure 3.7: The magnetization M in meV/tesla vs time in pico-seconds, y = 0.1 , B = 

0.16. Magnetization goes to zero in about 20 pico-seconds as it should. This clearly 

shows the decohering role of Lindblad operators and in this sense system makes a 

quantum to classical transition. 
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Figure 3.8: The rise of system temperature T in K with time (in peco-seconds) with 

y = 0.1 , B = 0.16 tesla. 

Figure 3.9: Plot shows magnetization M in meV/tesla as a function of system temper- 

ature for y = 0.1 and B = 0.16 tesla. This graph for an open system is equivalent to 

the graph (Fig. 3.4) for a closed system. Thus we obtain classical statistical mechani- 

cal results with Lindblad theory when the system-bath coupling is weak and external 

heating time scales are much larger than internal dynamical time-scales of the system. 



Discussion 

In this Chapter we have shown how under certain quasistatic condition the finite- 

temperature equilibrium statistical mechanical results can be recovered from the time- 

dependent reduced density matrix evolving through the Liouville equation, under con- 

stant heating by the lindblad coupling to the environment. The condition required is 

that the internal dynamical time-scales of the system be much less than the heating 

time scale. We have illustrated this for the simple case of a triatomic annulene threaded 

by an A-B flux. Here the instantaneous temperature T( t )  could be introduced through 

the relative population of any two energy levels(1 and 2 in the present case) identifies 

with the Boltzmann weight factor. Under the above condition, one can eliminate time 

(t) between the two time-dependent physical quantities, e.g., M ( t )  and T(t) ,  in favour 

of a functional relation between the two, obtaining in this case a magnetization ver- 

sus temperature plot which is found to be consistent with the canonical equilibrium 

statistical mechanical M-T plot, with finite M for a finite T. 




