
Chapter 5 

Dissipative electron-phonon system 

photoexcited far from equilibrium: 

beyond the Two-Temperature 

model 

5.1 Abstract 

The kinetics of evolution of the electron distribution function for an electron-phonon 

system driven far from equilibrium by photo-excitation is of considerable current in- 

terest, experimentally[69] (the pumpprobe experiments) and theoretically[51, 46, 471 

(e.g., the two-temperature model. In this Chapter[45], we have generalized a stochas- 

tic model known in the literature for the case of a driven dissipative granular gas[48]. 

We have derived the steady-state non-degenerate electron distribution for a semicon- 

ductor driven far form equilibrium by the inter-band photoexcitation assumed uniform 

over the nanoscale sample.Partitioning of the total inelastic electron scattering into the 

dissipative electron-electron and the electron bath(phonons)components is included in 

general. The model is applicable to a photoexcited semiconducting sample with fast 

removal of the electrons by electron-hole recombination from the bottom of the conduc- 



tion band. The model is appropriate for a direct bandgap, disordered semiconducting - 

system where the electron-hole recombination is fast, and the energy is the only state 

label. 

5.2 The model. 

Let ne(E)dE be the number of electrons lying in the energy range f dE/2 centred about 

E in the conduction band of a semiconducting sample of volume R. The electron- 

electron collisions, assumed inelastic in general, are described by the process; Ei + 
E,! --+ Ef + E; = a(Ei + El) with a < 1, in which the tagged electron of energy 

Ei collides with another electron of energy E,! lying in the energy shell E,! f fAE,!, 

and is scattered to the final state Ef .  The scattering rate for this inelastic process 

is taken to be (1 - f)rn(Ei)dE,I. Similarly, the electron-phonon scattering rate is 

given by frnph(E,!)dEi, with nph(Ei)dE,! as the number of thermal phonons in the 

phonon-energy shell E,! f $AE,!. Here, the fraction 0 5 f 5 1 determines the relative 

strengths of the binary electron-electron and the electron-phonon collisions. Also, let 

the electrons be injected through photo-excitation into the conduction band at  energy 

Eex at the rate gexS(E - E,,), and then be removed (depleted) from the bottom of the 

the conduction band through recombination. This depletion rate can be modelled by a 

term -gd6(E)ne(0). Here the phonons are assumed to remain in thermal equilibrium 

at  temperatures T. In our model sample we assume a uniform density of states for 

the electrons and the energy to be the only label for the single particle states. The 

photo-excitation is taken to be homogenous over the sample, which is reasonable for a 

nanoscale disordered semiconducting sample. For the above dissipative model driven 

far from equilibrium, the kinetics for the non-equilibrium electron number density 

ne(E) is given by the rate equation 



In the above, we have assumed the total energy (El + E") for a binary collision to 

be partitioned such that a fraction z, with probability density p(z), goes to the tagged 

electron of initial energy El, and 1 - z to the colliding particle (electron or phonon of 

initial energy El1). The inclusion of a in the electron-electron collision takes care of 

the possibility of inelastic electron-electron collisions. Note that we have suppressed 

the time argument (t) in the non-equilibrium electron-number density ne(E). Taking 

the energy Laplace transform 

of Eq. (I), we obtain, 

In the following, we will consider for simplicity the steady-state condition under 

constant (cw) photoexcitation, gex(t) = gex. A pulsed excitation can, of course, be 

considered in general. Accordingly, we set &&(s) = 0 above, and all quantities on the 

R.H.S. of Eq. (3) are then independent of time. 

In order to calculate the steady-state electron distribution for the system in terms of 

the bath (phonon) temperature and other rate parameters, we expand fie(s) in powers 

of the Laplace-transform parameter s as 

and equate the co-efficients of like powers of s. Thus, from the zeroth power of s, we 

obtain at once 

ne (0) = (gex /gd). (5.5) 



Similarly, from the first power of s, we get, 

In the above, we have taken a uniform limit for the energy partition: p(z) = 1. 

Here, we have defined (e,) = (Ee)/Ne - mean electron energy; (eph) - (Eph)/Nph 

mean phonon energy (= kBTB); and p,-,h = Ne/Nph r electron-to- phonon number 

ratio. It is to be noted that in the limit a = 1 (2. e., for elastic electron-electron collisions 

as is usually expected for an electronic system unlike the case of the granular gas), and 

g,, = 0 (i.e., no photo-excitation), we recover (e,) = (eph), i.e., the electrons and 

the phonons are at  the same temperature, as is physically expected under equilibrium 

conditions. In general, however, the mean electron energy in the steady state is not 

the same as the mean phonon energy, and the former depends on the excitation rate 

(the drive g,,). 

We will now consider the specific case of the extreme partition limit p(z) = !j(6(z) + 
S(x - 1)) to illustrat our treatment. Analytic form for fi,(s) in the steady state will 

be obtained for the case of elastic scattering (a = 1). It can be readily verified that 

for this insertion of p(z) in Eq.(3), the Eqs. (5) and (6) remain unchanged. With this 

choice of p(z), Eq. (3) now becomes 

This can be readily solved to give, 

with 

We have to choose the -ve sign in the above solution so as to satisfy fi,(O) = 

Ne, fiph(0) = Nph. Here, we have assumed that the bath phonons obey the equi- 



librium Boltzmann distribution (i.e., fiPh(s) = Nph/(l + (Eph)s)). NOW, our boundary 

condition for the case of fast electron-hole recombination at  the bottom of the band de- 

mands that the electron number density at the bottom of the conduction band be zero 

i.e., ne(0) = 0. But from the steady-state analysis, we have gex = gdne(0). Thus the 

above boundary condition is implemented mathematically by formally demanding that 

the drain co-efficient gd tend to infinity, so that their product gdne(0) remains finite 

- - gex. With this boundary condition,and using the initial-value theorem for Laplace 

transforms, we get a relation between the electron-to-phonon number ratio (pe-ph) and 

the excitation parameter q as 

The electron number density distribution ne(E)(in the energy E-domain) is now ob- 

tained by numerically inverting fie(s)(in s-domain) in Eq(8), and is plotted in Fig(1) 

for a choise of electron-phonon coupling parameter f .(The noise seen on the lowest 

curve is an artifact of the numerical inversion). 

At this stage, it is in order to comment briefly on our use of the extreme partition 

P(z)  = $(z) + ?6(1 - 2). First, let us note that our approach, based on Eq.(l), is of 

course valid for any general form of ~ ( z ) .  It is, however, only for the above extreme 

limiting form that it admits an analytical solution as presented here in order to illustrate 

the model. The above form can now be justified in the following physical terms. It is 

to be noted that for any given collision, the partitioning of the total incomming energy 

between the out going particles necessarily depends on the kinematic parameters of the 

collision, e.g., on the scattering angles, that vary from one collision to the other. Thus, 

for a fine-grained treatment of the successive collisions under the above extreme form, 

the energy of a 'tagged7 electron colliding with others in the gas will fluctute between 

extreme values. However, a coarse-graining over even a small number of successive 

collisions will suppress these fluctuations. Thus, in a coarse-grained statistical sense 

the partition is expected to become effectively a smooth and broad function. This 



Figure 5.1: Plot of steady-state photoexcited electron distribution function n,(E) 

( e V - l ~ r n - ~ )  for a typical nanoscale semiconducting sample of radius N lOnm with 

lo5 atoms, as function of the electron energy E(eV), for the following choice of 

parameters: the excitation parameter q = and the electron-phonon coupling pa- 

rameter f = 0.3(solid-line), 0.5(dotted - line), 0.8(lower - line). In all cases, the peak 

occurs at  E = l e v  at  which the eletrons are being photo-injected in the conduction 

band. Here the phonons are assumed to remain at the room temperature (300K). 

physically justifies our use of the simple, though admittedly extreme, form for the 

partition p(z)  without resulting in unphysical features, as validated a posteriori from 

Figure 6.1. 

5.3 Discussion. 

We have treated here the problem of energy-distribution of photo excited electrons in 

a semiconducting sample as a generalization of the model for dissipative granular gas 

driven far from equilibrium. A feature of the above non-equilibrium distribution of the 

cw photo-excited electrons is the peak appearing at  the excitation energy(= l e v )  as 

is indeed expected. However, a notable feature of the steady-state electron distribu- 

tion in this case is that,= the electron-phonon interaction strength (f) increases,(l) 

the peak height of the distribution decreases, as also (2) the total area under the 

distribution (the total number of steady-state photoexcited electrons in the conduc- 

tion band). This is physically understandable as follows. Inasmuch as the increased 



electron-phonon interaction implies fast removal of energy from the non-equilibrium 

photo-excited electron distribution to the phonon bath, the electrons get pushed to  

lower energies towards the bottom of the conduction band, from where they get re- 

moved by the fast electron-hole recombination. Hence the decrease in the height of 

the distribution, and also reduction of the area under the curve. It should be pos- 

sible to probe these steady-state features through a cw pumpprobe experiment. As 

for our assumption of non-degeneracy for the photoexcited electron gas, it is readily 

verified that the peak occupation number of the one-particle states is of the order of 

(N,/total number of atoms in  the nanoscale sample) - << 1, thus validating 

the assumed non-degeneracy. Finally, for the case of dissipative electron-electron colli- 

sions (a < I) ,  it can physically derive from the dissipative polarization of the dielectric 

medium that screens the electron-electron Coulombic interaction[49]. 




