Chapter 5

Extensions of Landau-deGennes
theory of liquid crystals

In the last chapter the experimental resultsindicated that the nematic order param-
eter is enhanced in a thin cell compared to a thick cell in two compounds. In this
chapter we will try to account for the order parameter enhancement with reduction
in cell thickness on the basis o an appropriate phenomenological Landau theory, in

which the biaxiality of the moleculesis taken into consideration.

51 Landau Theory of Phase Trandgtions

The Landau theory is a phenomenological theory initially developed to describe
phase transitions of the second kind. Generally the more symmetrical (lessordered)
phase occurs at higher temperatures and the lesssymmetrical (more ordered) one at
lower temperatures. It is assumed that near a second order phase transition point,
the free energy density £ can be expanded in powers of the order parameter (S)
characterising the phase with the lower symmetry [51]. The expression for F' can be
written as

_ A 2 B 3 C 4 D 5 E 6
F=F+58+ 28+ 8+ T8+ =5+ . (5.1)
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where F;, isthe free energy density when S = 0. The dependence of the order param-
eter near the phase transition point is then determined by minimising F (equation
5.1) with respect to S. The term linear in Sis absent to ensure the stability of the
higher symmetry phase. A > 0 ensures that S= 0 corresponds to a minimum in F
for the higher temperature phase and A < 0 corresponds to that of S # 0 for the

lower temperature phase.

A can be written asa(T — T*)where T* is the second order transition temper-
ature and a, B, C, D and E are usually assumed to be temperature independent.
For a system in which the free energy density is independent of the sign of S the
cubic and higher odd powers of S are not alowed. In this case for B = 0, and for
C > 0 a second order phase transition takes place between the states S = 0 and
S#£0atT=T".

The above argument has been extended to describe weakly first order phase
transitions. For a system in which the free energy density is dependent on the sign
of Si.e. F(S)# F(— S)the cubic and higher odd power termsin Sare needed. The
odd power termswill in turn lead to afirst order transition. A first order transition
can also occur when only even powers are present in the free energy density, when
the coefficient of the S* term becomes negative. A tricritical point is the point at
which the transition changes from first order to second order. It can occur when

both S and S' terms change sign.

511 Landau-deGennes Theory for the Nematic-Isotropic
Phase transition

In the nematic phase the orientational order parameter(as described in section 1.5) is

a second rank tensor and for cylindrically symmetric molecules the order parameter
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is defined as
S=%<3cos20—1>. (5.2)

In general positive and negative S arise from different distribution functions. The
distribution function peaks at §=0 for S >0 and at 8==/2 for S <O. This means
that the third order term in the Landau deGennes free energy density cannot be
ignored. The free energy density for the nematic phase can be written as
a(T —T%) 2+B 3+C 4

> S 35' 45 (5.3)

where T* is the hypothetical second order transition temperature and a, B and C

Frac =

are assumed to be temperature independent. B is negative to get positive values of

Sin the nematic phase.

The predicted temperature variation o the order parameter in the nematic
phase itself does not agree with extensive experimental dataavailable [1]. Expressing

the dependence in the form
S=8,+k(T*-T)>°, (5.4)

where T** is the highest possible superheating temperature of the nematic, the the-
ory predicts 8 = 0.5, while practically all known measurements yield 8 < 0.25.
Further Sy;/Sr- is predicted to be 0.67 while experiments yield 0.8-0.9. This has
led to the speculation that the nematic-isotropic transition may be close to a tricrit-
ical point, and also to discussionsabout the importance o fluctuations[1]. Recently
there has been an attempt to improve upon the predictions of the original Landau
theory by including the effect of density [52]. But in that paper, the relevant cou-
plings have not been taken into account properly. We will show in the next section
that by including the proper coupling terms, there is a considerable improvement in

the predictions of the Landau model.
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5.2 Landau deGennes model with the inclusion of
order parameter-density coupling

It iswdl known that the orientational order parameter of a nematic dependson the
density of the medium, as well as on temperature. Indeed the first successful molec-
ular theory of the nematic proposed by Onsager [53] showed that purely packing
considerations lead to a nematic order beyond some critical density of long sphero-
cylinders. Hence it is appropriate to introduce a coupling between the density p and

the order parameter S. The free energy density can now be written as

M

s+ Cs - M5+

a’(T_T*)SZ-l-E
2

5 3 (6p)° (5.5)

Frag, =

where dp = p-p, in which p, would be the equilibrium density when M=0. The
coupling term is negative since a nonzero value o the order parameter increases the
density of the medium. X isthe inverse compressibility of the medium which resists
changes in the equilibrium value of the density. By minimising the free energy with

respect to dp we obtain

MS?2
ép = 7 (5.6)
Eliminating dp, equation 5.5 becomes
S? S3 M2 s*
=a(T-T=—*+B=—+(C-—)— .
FLde a( T)2 B3 (C 2X)4 (57)

It isseen that the coupling with §p renormalisesthefourth order termin S by making
a negative contribution. X is known from ultrasonic measurements [54] to be ~ 10*°
cgs units. Horn [55] has measured the order parameter of pentyl cyanobiphenyl
as a function of pressure and at temperatures much lower than Ty, [6p/6S]r, ~
0.3. Using equation 5.6 and the measured dependence of the order parameter on
density at constant temperature, obtained from high pressure experiments [55] we

get M =0.1X. Hence from the value of A, M is estimated to be ~10° cgs units. C =
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4x108 cgs units [50]. Using the values of X and M, the fourth order term can indeed
become negative. This means that a sixth order term is needed for stability of the
system. Hence the free energy density becomes

a(T -T*

B ¢y 4, E
F=F, 2 gLl I .
+ = X 7St gt Es (5.8)

The birefringence An asafunction of temperature for the compound CP7B isshown
in Fig. 4.8. The Landau free energy expansion isin the bulk order parameter S. In
order to calculate the bulk order parameter S we have used the birefringence data
for the thick cell. The approximate order parameter Sis calculated using

NAn

S~ An,

(5.9)

where An, isthe birefringencefor thefully aligned state. The value of An, wastaken
to be 0.19 so that the order parameter corresponds to that obtained by magnetic
susceptibility measurements in Ref.[33]. The order parameter profile obtained from
the measured birefringence data for CP7B (see Fig. 4.8) isfitted to the calculated
temperature dependence of the order parameter given by equation 5.8. The fit
parameters obtained using coplot software are a=8.85x 10 cgs units , B=12.16x
108 cgs units, C;=-1.33x 106 cgs units, E=1.002x 108 cgs units, T*=55.1°C. Note
that the C; term is negative. Both the measured and calculated order parameter
profiles are shown in Fig. 5.1. For these set o parameters the value of Sy;/Sr- is
—0.8 whichisin accord with the experiments and the value of Ty is57.9°C. Further
the inclusion of the sixth order term in the free energy expansion has in turn given
rise to an effective 8 ~ 0.25, as seen in experiments. Inclusion of sixth order term
leads to a new possibility. For molecules of arbitrary shape the full tensorial nature
o the order parameter has to be retained in the free energy expansion. The free
energy contains terms that are invariant combinations of the elements of the order

parameter tensor. In such afree energy expansion, as has been discussed by several
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Fig. 5.1: Orientational order parameter as a fiznction of temperature. Solid curves

show the theoretical fit to the sixth order Landau theory for the set of parameters

mentioned in the text.

authorsearlier, one of the sixth order termscan in principle lead to a biaxial nematic
phase [56).

In general, the organic compounds which exhibit the nematic liquid crystalline
phase do not have molecules which can be described as cylindrically symmetric
rods. The molecules have a much lower symmetry. The next best approximation is
to consider them as biaxial objects with reflection symmetry about three mutually
orthogonal planes. In the relevant extension o the Landau theory, the macroscopic
order in the biaxial nematic phase is represented by t wo independent components
o a second rank tensor. However, as has been discussed in several molecular the-
ories, even the uni azial nematic phase of biaxial molecules cannot be adequately
described by a single order parameter, and requires two independent components
o asecond rank tensor {57, 32]. A correct description of the biaxial phase requires

four independent order parameters which are no longer components o second rank
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tensors [58]. There has been an attempt to construct an appropriate Landau theory
using all the four order parameters [58], but there have not been any detailed cal-
culations in view of the inherent complexities of such a model. We believe that the
usual theory used to describe the biaxial nematic phase really offers a good model
for a uniaxial phase made of biaxial molecules. We will be describing such a model

in the next section.

5.3 Uniaxial nematic made of biaxial molecules

As mentioned above the assumption that the molecules are cylindrically symmetric
Is not appropriate. As described in section 1.5, for moleculesof arbitrary shape the

generalised order parameter can be written as:

@T=§<3mm—&wg» (5.10)
where a, =X, Y, Z refer to a laboratory fixed coordinate system. i, j=¢, n, ¢
refer to the frame linked to the biaxial molecule (see Fig. 1.7). i,, jg denote the
projections of the unit vectorsi and j along a and 3 respectively. Choosing proper
coordinate systems for the molecules as well asfor the medium, the order parameter
tensor can be written in the diagonal form. The non-zero components of the order
parameter tensor are Q¢, Q, and Q.. From equation 5.10, the second rank tensor
order parameter can now be written as
Qg 0 0
Q=( 0 Q= 0 ) (5.11)
0 0 Qg

The trace is necessarily zero, as the orientational order parameter vanishes in the
isotropic phase. A convenient parametrisation of the two independent order param-
eter componentsis given by

—3(z+y) 0 0
Q= ( 0 —iz-y) O ) (5.12)
0 0 T
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where z=Q¢ is the usual order parameter S given by eq. 1.1 and y=Qy, — Qe
Is the differencein the two lateral components of the order parameters for the bi-
axial rod. A convenient method of measuring the orientational order parameters
experimentally is through infrared dichroism measurements [59]. Isolated and pro-
nounced bands available in the infrared spectra of the compounds can be used for
this purpose, if the orientation of the related transition moment with respect to the
molecular geometry is known. If the transition moment chosen for the experiment
Is not along the long axis, the measured intensity values have contributions from
both x and y. In order to determine X and y separately it is essential to have two
bonds in the same molecule whose transition moments active in the infrared region
make different angles with the lcag axis.

The Landau theory can now be written in terms of the relevant rotational
invariants, which are TrQ", where n=2,3... Asis well known, for n >4 the traces
can be expressed as appropriate combinations of TrQ? and TrQ® [56]. The free
energy expansion is thus;:

(T -T*)
2

D NP (3Y] 2 NS L B 312

DT @I (@] + ST @) + ETr@)P (5.13

F = F+ Tr(Q2)+%—ITT(Q3)+%’{TT(Q2)]2+

Comparing equation 5.13 with equations 5.3 and 5.5 we get a'=2a/3, B'=4B/3
and C'=4C}/9. It isknown that E’' > 0 leads to a nonzero value of y. Following the
arguments of Vause etal [60] we will show in the appendix that D < 0 also leads to

y #0. As usual we write equation 5.13 as
F(z,y) = o(z) + y*B(z) + y*v(z) +y° (5.14)

where

! / 1 !
30T = T")0 4 By 9C°a 4 9D 5 98 51 9F' 6 (515

o(z) = 4 4 16 20 16 16
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@(T-T B 3¢, 3D, 9E , OF ,

,B(l‘) = —7‘———?.73‘%' 3 IL‘ 20.’13 +E.’E —TIL' (516)
C' 3D 3E, 9E ,
y(z) = 6 0%t 6% 24 T (6.17)
E
b= & (5.18)
(5.19)

The extremum solutions of F(z,y) with respect toy are

)+ \/7 — 366(z

(5.20)

y=0 and y2=—

y=0 corresponds to the isotropic phase and for getting real solutions of y in the ne-
matic phase, it is necessary to have v*(x) > 364(z) and the parameters we consider
usualy yield y(z) > 0 and g(z) < 0. As such, only the positive sign is relevant.
Substituting this back in equation 5.14, the free energy can now be expressed as a

function of x alone and we get

F(z) = %'(T-T*) <§x—+2N) B;’x(z2—4N)+g(——+2N)2

2 4\ 2
3 3 2 E (3x2 3
+—D[=—+2 2_4 — | ==~+2N
20 ( 5 + N) (:r N)+ 5 ( 5 + )
9 ., 270 2
+g E'e (22 —4N) (5.21)

where

1(3Ez*? 9E'z* 3Dx (' 1
N = ——[ — — 1 4 3
== =2+ 22— = 4 (1800 B4t - 120 E4*D

+2025 Ex* — 540 E' 23D + 450 E' 2°C’ + 36 D*x% — 60 DzC’ + 25C"

0.5
+100 EB'z — 100 Ea'T +100ed'T*) J

Then equation 5.21 is minimised with respect to x to get



Chapter 5

0.6

0.55

0.5r

0.45-

04

30 Sls 410 4A5 5.0 53 80
T(°C)
Fig. 5.2: The temperature variation o the order parameters x using the free energy

density given by equation 5.14 and the parameter set mentioned in the text. The
nematic-isotropic transition point(58.37°C) is indicated in the temperature axis.
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In the next section, we will show that for an appropriate set of parameters,
it is possible to get a stable solution with X #0 and with |y| having a relatively
small nonzero value in the entire nematic range. This solution obviously describes

a uniaxial nematic made of biaxial molecules.
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Fig. 5.3: The temperature variation d the order parameters y using the free energy
density given by equation 5.14 and the parameter set mentioned in the text. The
nematic-isotropic transition point(58.37°C) is indicated in the temperature axis.

5.4 Results

The free energy density given by equation 5.13 admits three solutions. z=0, y=0
which corresponds to the isotropic phase, x # 0, y=0 which describes a uniaxia
nematic phase and x # 0, y # 0 which has been usually assumed to represent a bi-
axial nematic phase [56]. Gramsbergen etal discussed the uniaxial to biaxial nematic
phase transition using this expression. They used the following set of parameters:
D=E=0, C'=2.7x10" cgs units, E'=3.6x10 cgs units, /(T — T*)=-3C"z?/2 and
B=-9E'x%/2. They found that the solution x #0, y =0 which corresponds to a
uniaxial nematic goes over to a 'biaxial’ solution in which x #0 and y # 0 as the

temperature is decreased.

As we have discussed earlier, equation 5.13 used to describe the biaxia ne-

matic phase usually, really offers a good model for a uniaxial phase made d biaxial
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molecules. In other words the solution x # 0 and y # 0 represents a uniaxial ne-
matic made of biaxial molecules. We looked for a region in the parameter space
which gives X #0 and with |y| a relatively small nonzero value for the entire nematic
range. After searching many ranges of parameters, we found that the following set
gives the required type of solutions. The value o d@ was chosen to be 1.2x10%cgs
units to give a heat of transition of 1kJ/mol. Using T*=55°C, B'=0.00284x10%cgs
units, C'=—62.7x10%gs units, D=—0.027x10%gs units, E=182.6x106cgs units and
E'=0.006x10%cgs units, the calculated temperature variationsof X and y areshown in
Fig. 5.2 and Fig. 5.3 respectively. The free energy becomes zero at 58.37°C, which is
hence the nematic-isotropic transition temperature. This temperature roughly cor-
responds with the Ty, of the compound CP7B studied in the last chapter. The B'
term is positive and small. However the fifth order D term is negative and relatively
large thus giving rise to the required positive order parameter. The negative D term
also contributes to nonzero values of y as mentioned above. In order to confirm that
the solution is stable, we calculated the Hessian matrix. The Hessian matrix for a
function f(x,y) with respect to the variables x and y is defined as

f(zy) 2 f(zy)

9z 8yox
H= (5.23)
Ff(zy) Oflzwy)
Sydz y?

For the above mentioned set of parameters we found that the Hessian determinant
was positive and all the four elements of the Hessian matrix were also positive and
thus.the solution was indeed stable for the above mentioned set of parameters over
the entire temperaturerange. Thevariation of X with temperature isin broad agree-
ment with the experimental curve shown in Fig. 5.1, though the calculated values
are slightly lower in the entire nematic range. The order parameter y has been mea-
sured for a few nematics using infrared spectroscopy and is shown in Fig. 5.4(taken

from Ref.[59]). It has a small value —0.05-0.1, and depending on the compound, it
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Fig. 54: Order parameter y of CPE7/5 and CPEQ7/5, two binary mixtures of
nematogenic compounds, as a function of reduced temperature ¢,=T /Ty, in the
nematic phase taken from the paper by Keifer [59].

can either increase or decrease as T is approached |59]. Our calculated values are

in a comparable range.

We shall now take up the question o the effective order parameter in a thin
cell in the context of Landau theories. For this purpose, a surface potential which
enhances S near the surface is introduced in the Landau-deGennes free energy ex-
pansion. The order parameter decays to the bulk value over some length. Ping
Sheng [50] has done such a thin cell calculation for a uniaxial nematic. He [50] has
used the usual Landau-deGennes theory to calculate the order parameter profile
o a nematic near the NI phase transition point in thin cells, by adding the gra-
dient term L(dS/dz)? to equation 5.3, where z is the distance from the substrate.
L ~ Kn1/(25%;) =~ 10~%dyne [1] where Ky is the average elastic constant at the
NI transition point. It wasfound that the surface induced order parameter decays
to the bulk value over a length whichisan order d magnitude larger than the corre-
lation length &, for the order parameter Swhere &,=(L/aTy1)%% —10 A. The decay
length decreases as the temperature is decreased. Ping Sheng restricted the calcu-

lations to temperatures between Ty and 0.12° below Ty;. For these calculations,
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Fig. 5.5: Variation of S, (order parameter value at the middle of the sample) (dashed
curve) and S, ( order parameter value at the surface) (solid curve) as a function
of temperature (T — Tx), where Tg=Ty; is the bulk transition temperature as
calculated by Ping Sheng [50]. The (haif) thickness of the sample is labelled beside

each curve. Magnitude of the substrate potential g which is defined by Ping Sheng
[50] is taken to be 0.008, in the calculations.
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Fig. 5.6: The variation of correlation length & with temperature using the free
energy density given by equation 5.14 and the parameter set mentioned in the text.
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Fig. 5.7 The variation of the correlation length &, with temperature using the

Landau free energy density in equation 5.3 for a=1.3x10° cgs units, B=-1.6x10°

cgs units, C=3.9x10° cgs units and T*=34°C. These parameters are taken from the

paper by Ping Sheng [50].
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the order parameter profile is shown in Fig. 5.5 (taken from Ref.[50]). We tried to
extend the calculations to lower temperatures. But at temperatures lower than 3"
below Ty, the values of the order parameter obtained from the free energy density
were imaginary.

In order to extend the thin cell calculations to a uniaxial nematic made of biax-
ial particles we have to use appropriate surface potentials for both x and y. These
calculations involve solving two coupled second order differential equations simul-
taneously. We do not intend to take up this problem in this thesis. Using the free
energy density given by equation 5.14, the correlation length &, for the main order
parameter x isgiven by (L/(8*F/8x?))%>. Interestingly for the above mentioned set
of parameters the free energy density shows a rela:ively broad minimum as a func-
tion of x which in turn leads to a relatively large correlation length for that order
parameter (see Fig. 5.6). For comparison, we have also calculated the correlation
length &, using the free energy density in equation 5.3 for the order parameter S
(€= (L/(0*F/05?))°®). We have used the parameter set given in Ref.[50] for the

calculations (see Fig. 5.7). We can see that the correlation length in Fig. 5.6 is

much larger compared to that in Fig. 5.7. The correlation length for X remains
relatively large even 33° below Ty;. Hence in thin cells it can be expected that a
higher order parameter induced by the surface potential may not decay to the bulk
value. This may be the origin of the large enhancement of the order parameter in

thin cells which was found in the experiments described in the last chapter.

It is relatively easier to include the effect of an external magnetic field in the
calculations. Thefield dependent term - H?(Axz +dxy)/3 isadded to equation 5.13,
where H is the magnetic field, Ax=(x, — 23%¢) and §x=(x» — X¢). Minimising the
free energy density with respect to y and x we get two coupled polynomial equations

in the variables which can be solved simultaneously. Ax and dx are taken to be
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Fig. 5.8: The order parameter x variation with magnetic field at Ty; — T=30.
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1.4x1077 cgs units and 10~°cgs units respectively. For a temperature 30° below Ty,
x and y are 0.64 and 0.048 respectively when H=0. They change to 0.6405 and 0.02
for H=5 Tesla as shown in Fig. 5.8 and Fig. 5.9 respectively. At Ty; — T=0.6, X
and y are 0.42 and 0.175 respectively when H=0. They change to 0.4319 and 0.017
for H=5 Tesla. In the field free case, the same increases in X would have required a
decrease of the temperature by ~0.5K and ~0.2K at Tx; — T=0.6 and Ty; — T=30
respectively. In the experiments that we described in the last chapter we found that
in thin cells the nematic-nematic (N-N) transition temperature which occurred at
Tn; — T ~30 increased by a measurable amount under a similar field. This implies
a reasonable increase in the order parameter with H. Thus in the extended model
the calculated values show the corr«ct trend though they are lower compared to
the experimental values. On the other hand using the free energy density given by
equation 5.3 the equivalent decrease in temperature obtained for such fieldsis only

~1mK even close to the NI transition point.

The calculated variations of the order parameter X with the reduced tempera-
ture, in the presence and absence of a magnetic field are shown in Fig. 5.10. When
afield is applied to the isotropic phase, it induces a weak orientational order in the
medium. The NI transition point for H=5 Teda was calculated by equating the
free energies of the weakly ordered paranematic phase and the nematic phase. We
found that the NI transition temperature increased by only 0.4mK compared to the
field free case. The increase in the order parameter in the presence of a magnetic
field'hardly affectsthe N1 transition point. However experimentally the N-N transi-
tion point shifts considerably (see Fig. 4.12). This implies that the N-N transition
temperature depends on the value of the order parameter. The enhancement of the
N-N transition temperature seen in thin cells as described in the last chapter, as

well as by strong electric fields as mentioned in Ref. [35] are also in accord with this
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dependence.

5.5 Conclusions

In conclusion the Landau-deGennes model has been modified to take into account
the coupling of the order parameter with density. This coupling renormalises the
coefficient of the fourth order term, making it negative. A sixth order term with a
positive coefficient is then required for stability. Thisin turn leads to a relatively
dow variation of the order parameter with temperature as seen in experiments.
The Landau theory has also been modified to describe a uniaxial nematic made
of biaxial particles which interestingly gives rise to a relatively large value for the
correlation length of the order parameter. We believe that the latter model can
plausibly explain the enhancement in the order parameter in thin cells as well asthe
significant increase in the order parameter under the action of a moderate magnetic
field, implied by an increase in the nematic-nematic transition point measured in

CP7B and described in the previous chapter.

5.6 Appendix

Vause etal have expanded the Landau free energy density in terms of two parameters
p and q where p=—(z t y)/2 and g=—(x — y)/2 (see equation 5.12). For y=0,
p=g=—z/2. For rod like molecules, x > 0 and p <O. As usual, it is assumed that

p=q # 0 for the uniaxial nematic phase and p # q #0 for the biaxial nematic phase.

The free energy density is given by
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F(p,q) = F,+d(T-T")(p*+¢ +pq) — Bpglp+q) +C'(p* + ¢* + pg)*

6D

4
——=pe(p+9) (»* + ¢* + pg) + 515(102 +¢* + pq)®

+9E'p*¢*(p + q)? (5.24)

Minimising equation 5.24 with respect to p gives

AT -T)- B+ 20w+t + p) - gt g+ p)

+4E(p* t o? +pg)* + 18E'pg*(ptq) = 0, (5.25)

while minimising equation 5.24 with respect to g results in equation 5.25 with re-
placement p +, g. For D=O and E’'=0 these equations give the uniaxial solution,
p=q. Since the E term in equation 5.25 is symmetric in p and q, this term does not
lift the degeneracy between pand g. The E’ term in equation 5.25 is asymmetric in
p and q and will lift the degeneracy between pand qif E’ > 0. This may be seen as
follows. We differentiate the E term (9E'p%¢%(p T ¢)?) in equation 5.24 twice with
respect to p keeping ptq fixed. Finally substituting p=q the second derivative is
—144E'p*. If E' <0 the second derivative is positive and hence the free energy is
minimum for p=gq, i.e. for E' <0 p=q isfavoured. When E' >0 the second derivative
Is negative and hence the free energy is maximum for p=q. The system energetically
favours p # q for E/ >0. This can aso be seen from the free energy density given
by equation 5.24. If E' <0, the E’ term is minimised (keeping p+q fixed) for pg
maximum which occurs when p=¢q. Hence if E' <0 p=q is favoured. For E’' >0,
the associated term is minimised when pq is minimum which occursfor p=0 or ¢=0.

The system energetically favours p # q for positive E'.

Using a similar argument we can see that D < 0 favours p # q. The D term
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(Lpg(p T q)(p* + ¢* + py)) is differentiated twice and for p=qg it is found to be

—282p3. For rod like molecules p <O. Hence D < 0 favours p # q.



