
Chapter 5 

Extensions of Landau-deGennes 
theory of liquid crystals 

In the last chapter the experimental results indicated that the nematic order param- 

eter is enhanced in a thin cell compared to a thick cell in two compounds. In this 

chapter we will try to account for the order parameter enhancement with reduction 

in cell thickness on the basis of an appropriate phenomenological Landau theory, in 

which the biaxiality of the molecules is taken into consideration. 

5.1 Landau Theory of Phase Transitions 

The Landau theory is a phenomenological theory initially developed to describe 

phase transitions of the second kind. Generally the more symmetrical (less ordered) 

phase occurs a t  higher temperatures and the less symmetrical (more ordered) one at  

lower temperatures. It is assumed that near a second order phase transition point, 

the free energy density F can be expanded in powers of the order parameter (S) 

characterising the phase with the lower symmetry [51]. The expression for F can be 

written as 
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where F, is the free energy density when S = 0. The dependence of the order param- 

eter near the phase transition point is then determined by minimising F (equation 

5.1) with respect to S .  The term linear in S is absent to ensure the stability of the 

higher symmetry phase. A > 0 ensures that S = 0 corresponds to a minimum in F 

for the higher temperature phase and A < 0 corresponds to that of S # 0 for the 

lower temperature phase. 

A can be written as a ( T  - T*) where T* is the second order transition temper- 

ature and a, B, C ,  D and E are usually assumed to  be temperature independent. 

For a system in which the free energy density is independent of the sign of S the 

cubic and higher odd powers of S are not allowed. In this case for B = 0, and for 

C > 0 a second order phase transition takes place between the states S = 0 and 

S # O a t T = T * .  

The above argument has been extended to describe weakly first order phase 

transitions. For a system in which the free energy density is dependent on the sign 

of S i.e. F (S )  # F(- S) the cubic and higher odd power terms in S are needed. The 

odd power terms will in turn lead to  a first order transition. A first order transition 

can also occur when only even powers are present in the free energy density, when 

the coefficient of the S4 term becomes negative. A tricritical point is the point at  

which the transition changes from first order to second order. I t  can occur when 

both S2 and S4 terms change sign. 

5.1.1 Landau-deGennes Theory for the Nematic-Isotropic 
Phase transition 

In the nematic phase the orientational order parameter(as described in section 1.5) is 

a second rank tensor and for cylindrically symmetric molecules the order parameter 
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is defined as 

In general positive and negative S arise from different distribution functions. The 

distribution function peaks at 0=0 for S >O and at 0=.rr/2 for S <O. This means 

that the third order term in the Landau deGennes free energy density cannot be 

ignored. The free energy density for the nematic phase can be written as 

a ( T  - T*) B C 
F L ~ G  = 2 

S2 + -s3 + -s4 
3 4 

where T* is the hypothetical second order transition temperature and a, B and C 

are assumed to be temperature independent. B is negative to get positive values of 

S in the nematic phase. 

The predicted temperature variation of the order parameter in the nematic 

phase itself does not agree with extensive experimental data available [I]. Expressing 

the dependence in the form 

where T* is the highest possib.le superheating temperature of the nematic, the the- 

ory predicts p = 0.5, while practically all known measurements yield ,d _< 0.25. 

Further SNI/ST* is predicted to be 0.67 while experiments yield 0.8-0.9. This has 

led to the speculation that the nematic-isotropic transition may be close to a tricrit- 

ical point, and also to discussions about the importance of fluctuations [I]. Recently 

there has been an attempt to improve upon the predictions of the original Landau 

theory by including the effect of density [52]. But in that paper, the relevant cou- 

plings have not been taken into account properly. We will show in the next section 

that by including the proper coupling terms, there is a considerable improvement in 

the predictions of the Landau model. 
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5.2 Landau deGennes model with the inclusion of 
order paramet er-density coupling 

It is well known that the orientational order parameter of a nematic depends on the 

density of the medium, as well as on temperature. Indeed the first successful molec- 

ular theory of the nematic proposed by Onsager [53] showed that purely packing 

considerations lead to a nematic order beyond some critical density of long sphero- 

cylinders. Hence it is appropriate to introduce a coupling between the density p and 

the order parameter S .  The free energy density can now be written as 

a(T - T * )  B C M X 
F L ~ G ~  = S2 + -s3 + -s4 - - (6p)s2  + - ( ~ p ) ~  

3 4 2 2 (5.5) 

where 6p = p p ,  in which p, would be the equilibrium density when M=0.  The 

coupling term is negative since a nonzero value of the order parameter increases the 

density of the medium. X is the inverse compressibility of the medium which resists 

changes in the equilibrium value of the density. By minimising the free energy with 

respect to  Sp we obtain ' 

- M S 2  

Eliminating 6p, equation 5.5 becomes 

S2 S3 M2 S4 

fida =a(T - T * ) -  + B- + (C-  -)- 
2 3 2X 4 

It is seen that the coupling with Sp renormalises the fourth order term in S by making 

a negative contribution. X is known from ultrasonic measurements [54] to be 10'' 

cgs units. Horn [55] has measured the order parameter of pentyl cyanobiphenyl 

as a function of pressure and a t  temperatures much lower than TNI ,  [6p/SS]T, = 
0.3. Using equation 5.6 and the measured dependence of the order parameter on 

density a t  constant temperature, obtained from high pressure experiments [55] we 

get M z0.1X. Hence from the value of A, M is estimated to  be - lo9 cgs units. C z 
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4x106 cgs units [50]. Using the values of X and M, the fourth order term can indeed 

become negative. This means that a sixth order term is needed for stability of the 

system. Hence the free energy density becomes 

a(T - T*)  
F=F,+ 

B C1 4 E 
2 

S2 + -s3 + -S + -s6 
3 4 6 

The birefringence An as a function of temperature for the compound CP7B is shown 

in Fig. 4.8. The Landau free energy expansion is in the bulk order parameter S .  In 

order to calculate the bulk order parameter S we have used the birefringence data 

for the thick cell. The approximate order parameter S is calculated using 

where An, is the birefringence for the fully aligned state. The value of An, was taken 

to be 0.19 so that the order parameter corresponds to that obtained by magnetic 

susceptibility measurements in Ref.[33]. The order parameter profile obtained from 

the measured birefringence data for CP7B (see Fig. 4.8) is fitted to  the calculated 

temperature dependence of the order parameter given by equation 5.8. The fit 

parameters obtained using coplot software are a=8.85x lo5 cgs units , B=12.16x 

lo6 cgs units, C1=-1.33~ lo6 cgs units, E=1.002x lo8 cgs units, T*=55.1°C. Note 

that the C1 term is negative. Both the measured and calculated order parameter 

profiles are shown in Fig. 5.1. For these set of parameters the value of SNI/ST* is 

-0.8 which is in accord with the experiments and the value of TNI is 57.g°C. Further 

the inclusion of the sixth order term in the free energy expansion has in turn given 

rise to an effective p - 0.25, as seen in experiments. Inclusion of sixth order term 

leads to a new possibility. For molecules of arbitrary shape the full tensorial nature 

of the order parameter has to be retained in the free energy expansion. The free 

energy contains terms that are invariant combinations of the elements of the order 

parameter tensor. In such a free energy expansion, as has been discussed by several 
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Fig. 5.1: Orientational order parameter as a filnction of temperature. Solid curves 
show the theoretical fit to the sixth order Landau theory for the set of parameters 
mentioned in the text. 

authors earlier, one of the sixth order terms can in principle lead to a biaxial nematic 

phase [56]. 

In general, the organic compounds which exhibit the nematic liquid crystalline 

phase do not have molecules which can be described as cylindrically symmetric 

rods. The molecules have a much lower symmetry. The next best approximation is 

to consider them as biaxial objects with reflection symmetry about three mutually 

orthogonal planes. In the relevant extension of the Landau theory, the macroscopic 

order in the biaxial nematic phase is represented by two independent components 

of a second rank tensor. However, as has been discussed in several molecular the- 

ories, even the uniazial nematic phase of biaxial molecules cannot be adequately 

described by a single order parameter, and requires two independent components 

of a second rank tensor [57, 321. A correct description of the biaxial phase requires 

four independent order parameters which are no longer components of second rank 
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tensors [58]. There has been an attempt to construct an appropriate Landau theory 

using all the four order parameters [58], but there have not been any detailed cal- 

culations in view of the inherent complexities of such a model. We believe that the 

usual theory used to describe the biaxial nematic phase really offers a good model 

for a uniaxial phase made of biaxial molecules. We will be describing such a model 

in the next section. 

5.3 Uniaxial nematic made of biaxial molecules 

As mentioned above the assumption that the molecules are cylindrically symmetric 

is not appropriate. As described in section 1.5, for molecules of arbitrary shape the 

generalised order parameter can be written as: 

where a, P=X, Y, Z refer to a laboratory fixed coordinate system. i, j=(, q, C 

refer to the frame linked to the biaxial molecule (see Fig. 1.7). i,, j p  denote the 

projections of the unit vectors i and j along a and P respectively. Choosing proper 

coordinate systems for the molecules as well as for the medium, the order parameter 

tensor can be written in the diagonal form. The non-zero components of the order 

parameter tensor are Qcc, Q,, and Q(-. From equation 5.10, the second rank tensor 

order parameter can now be written as 

The trace is necessarily zero, as the orientational order parameter vanishes in the 

isotropic phase. A convenient parametrisation of the two independent order param- 

eter components is given by 
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where x=QCC is the usual order parameter S given by eq. 1.1 and y=Q,, - Qtt 

is the difference in the two lateral components of the order parameters for the bi- 

axial rod. A convenient method of measuring the orientational order parameters 

experimentally is through infrared dichroism measurements [59]. Isolated and pro- 

nounced bands available in the infrared spectra of the compounds can be used for 

this purpose, if the orientation of the related transition moment with respect to the 

molecular geometry is known. If the transition moment chosen for the experiment 

is not along the long axis, the measured intensity values have contributions from 

both x and y. In order to determine x and y separately it is essential to have two 

bonds in the same molecule whose transition moments active in the infrared region 

make different angles with the lc-ig axis. 

The Landau theory can now be written in terms of the relevant rotational 

invariants, which are TrQn, where n=2,3 ... As is well known, for n 2 4  the traces 

can be expressed as appropriate combinations of TrQ2 and TrQ3 [56]. The free 

energy expansion is thus,: 

a l (T - T*) 
F = F,+ 

B I C I 
2 

T r  ( Q ~ )  + -Tr (Q3) + Q [ ~ r  (Q2)I2 + 
3 

Comparing equation 5.13 with equations 5.3 and 5.5 we get a1=2a/3, B1=4B/3 

and C1=4C1/9. It is known that El > 0 leads to a nonzero value of y. Following the 

arguments of Vause eta1 [60] we will show in the appendix that D < 0 also leads to  

y #O. As usual we write equation 5.13 as 

where 

3a1(T - T*) 
a ( x )  = 

B I 9C1 9 D  , 9 E  , 9 E' 
x2 + -x3 + -x4 + -x + -x + -x6 (5.15) 

4 4 16 40 16 16 
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The extremum solutions of F ( x ,  y) with respect to y are 

2 y = O  and y = 
- r ( x )  * 4 y 2 ( x )  - 36P(x) 

36 

y=O corresponds to the isotropic phase and for getting real solutions of y in the ne- 

matic phase, it is necessary to have y2(x)  2 36P(x) and the parameters we consider 

usually yield y ( x )  > 0 and P(x)  < 0. As such, only the positive sign is relevant. 

Substituting this back in equation 5.14, the free energy can now be expressed as a 

function of x alone and we get 

where 

+I00 EB'x - 100 Ea'T + 100 ~ U ' T * ) " ~ ]  

Then equation 5.21 is minimised with respect to x to get 
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Fig. 5.2: The temperature variation of the order parameters x using the free energy 
density given by equation 5.14 and the parameter set mentioned in the text. The 
nematic-isotropic transition point(58.37"C) is indicated in the temperature axis. 

In the next section, we will show that for an appropriate set of parameters, 

it is possible to get a stable solution with x #O and with JyJ  having a relatively 

small nonzero value in the entire nematic range. This solution obviously describes 

a uniaxial nematic made of biaxial molecules. 
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Fig. 5.3: The temperature variation of the order parameters y using the free energy 
density given by equation 5.14 and the parameter set mentioned in the text. The 
nematic-isotropic transition point(58.37OC) is indicated in the temperature axis. 

5.4 Results 

The free energy density given by equation 5.13 admits three solutions: x=0, y=O 

which corresponds to the isotropic phase, x # 0, y=O which describes a uniaxial 

nematic phase and x # 0, y # 0 which has been usually assumed to represent a bi- 

axial nematic phase [56]. Gramsbergen eta1 discussed the uniaxial to biaxial nematic 

phase transition using this expression. They used the following set of parameters: 

D=E=O, C'=2.7x107 cgs units, ~ ' = 3 . 6 x 1 0 ~  cgs units, al(T - T*)=-3C'x2/2 and 

B=-9E'x3/2. They found that the solution x #O, y =O which corresponds to a 

uniaxial nematic goes over to a 'biaxial' solution in which x #O and y # 0 as the 

temperature is decreased. 

As we have discussed earlier, equation 5.13 used to describe the biaxial ne- 

matic phase usually, really offers a good model for a uniaxial phase made of biaxial 
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molecules. In other words the solution x # 0 and y # 0 represents a uniaxial ne- 

matic made of biaxial molecules. We looked for a region in the parameter space 

which gives x #O and with lyl a relatively small nonzero value for the entire nematic 

range. After searching many ranges of parameters, we found that the following set 

gives the required type of solutions. The value of a' was chosen to  be 1.2x106cgs 

units to  give a heat of transition of lkJ/mol. Using T*=55OC, B'=0.00284x106cgs 

units, C1=-62.7x106cgs units, D=-O.O27~10~c~s units, E=182.6x106cgs units and 

E'=0.006x106cgs units, the calculated temperature variations of x and y are shown in 

Fig. 5.2 and Fig. 5.3 respectively. The free energy becomes zero a t  58.37OC, which is 

hence the nematic-isotropic transition temperature. This temperature roughly cor- 

resp,)nds with the TNI of the compound CP7B studied in t'ie last chapter. The B' 

term is positive and small. However the fifth order D term is negative and relatively 

large thus giving rise to the required positive order parameter. The negative D term 

also contributes to nonzero values of y as mentioned above. In order to  confirm that 

the solution is stable, we calculated the Hessian matrix. The Hessian matrix for a 

function f(x,y) with respect to the variables x and y is defined as 

For the above mentioned set of parameters we found that the Hessian determinant 

was positive and all the four elements of the Hessian matrix were also positive and 

thus.the solution was indeed stable for the above mentioned set of parameters over 

the entire temperature range. The variation of x with temperature is in broad agree- 

ment with the experimental curve shown in Fig. 5.1, though the calculated values 

are slightly lower in the entire nematic range. The order parameter y has been mea- 

sured for a few nematics using infrared spectroscopy and is shown in Fig. 5.4(taken 

from Ref.[59]). I t  has a small value -0.05-0.1, and depending on the compound, it 
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Fig. 5.4: Order parameter y of CPE7/5 and CPE07/5, two binary mixtures of 
nematogenic compounds, as a function of reduced temperature t,=T/TNI in the 
nematic phase taken from the paper by Keifer 1591. 

can either increase or decrease as TNI is approached 1591. Our calculated values are 

in a comparable range. 

We shall now take up the question of the effective order parameter in a thin 

cell in the context of Landau theories. For this purpose, a surface potential which 

enhances S near the surface is introduced in the Landau-deGennes free energy ex- 

pansion. The order parameter decays to the bulk value over some length. Ping 

Sheng [50] has done such a thin cell calculation for a uniaxial nematic. He [50] has 

used the usual Landau-deGennes theory to calculate the order parameter profile 

of a nematic near the NI phase transition point in thin cells, by adding the gra- 

dient term L ( d S l d ~ ) ~  to equation 5.3, where z is the distance from the substrate. 

L z KNz/(2S$z) = 10-6dyne [I] where KNz is the average elastic constant at  the 

NI transition point. It was found that the surface induced order parameter decays 

to the bulk value over a length which is an order of magnitude larger than the corre- 

lation length E, for the order parameter S where [o=(L/~TNz)0'5 -10 A. The decay 

length decreases as the temperature is decreased. Ping Sheng restricted the calcu- 

lations to temperatures between TNz and 0.12O below TNz.  For these calculations, 
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Fig. 5.5: Variation of Sb (order parameter value at the middle of the sample) (dashed 
curve) and So ( order parameter value at  the surface) (solid curve) as a function 
of temperature (T - Tk), where Tg=TNI is the bulk transition temperature as 
calculated by Ping Sheng [50]. The (haif) thickness of the sample is labelled beside 
each curve. Magnitude of the substrate potential g which is defined by Ping Sheng 
[50] is taken to be 0.008, in the calculations. 

Fig. 5.6: The variation of correlation length to with temperature using the free 
energy density given by equation 5.14 and the parameter set mentioned in the text. 
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Fig. 5.7: The variation of the correlation length to with temperature using the 
Landau free energy density in equation 5.3 for a=1.3xlO%gs units, B=-1.6x106 
cgs units, C=3.9x106 cgs units and T*=34OC. These parameters are taken from the 
paper by Ping Sheng [50]. 
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the order parameter profile is shown in Fig. 5.5 (taken from Ref.[50]). We tried to 

extend the calculations to lower temperatures. But at  temperatures lower than 3" 

below TNI,  the values of the order parameter obtained from the free energy density 

were imaginary. 

In order to extend the thin cell calculations to a uniaxial nematic made of biax- 

ial particles we have to use appropriate surface potentials for both x and y. These 

calculations involve solving two coupled second order differential equations simul- 

taneously. We do not intend to take up this problem in this thesis. Using the free 

energy density given by equation 5.14, the correlation length Q for the main order 

parameter x is given by ( L / ( C ~ ~ F / ~ X ~ ) ) ~ . ~ .  Interestingly for the above mentioned set 

of parameters the free energy density shows a relh.;ively broad minimum as a func- 

tion of x which in turn leads to a relatively large correlation length for that order 

parameter (see Fig. 5.6). For comparison, we have also calculated the correlation 

length 5, using the free energy density in equation 5.3 for the order parameter S 

(to= (L/(d2F/dS2))0.5). We have used the parameter set given in Ref.[50] for the 

calculations (see Fig. 5.7). We can see that the correlation length in Fig. 5.6 is 

much larger compared to that in Fig. 5.7. The correlation length for x remains 

relatively large even 33" below TNI.  Hence in thin cells it can be expected that a 

higher order parameter induced by the surface potential may not decay to  the bulk 

value. This may be the origin of the large enhancement of the order parameter in 

thin cells which was found in the experiments described in the last chapter. 

It is relatively easier to include the effect of an external magnetic field in the 

calculations. The field dependent term -H2(Axx+6xy)/3 is added t o  equation 5.13, 

where H is the magnetic field, Ax=(x( - 9) and 6x=(xn - xt). Minimising the 

free energy density with respect to y and x we get two coupled polynomial equations 

in the variables which can be solved simultaneously. AX and 6% are taken to be 
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Fig. 5.8: The order parameter x variation with magnetic field at  TNI - T=30. 

Fig. 5.9: The oi-der parameter y variation with magnetic field at  TNI - T=30. 
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1.4x10-~ cgs units and 10-gcgs units respectively. For a temperature 30' below TNI, 

x and y are 0.64 and 0.048 respectively when H=O. They change to 0.6405 and 0.02 

for H=5 Tesla as shown in Fig. 5.8 and Fig. 5.9 respectively. At TNI - T=0.6, x 

and y are 0.42 and 0.175 respectively when H=O. They change to 0.4319 and 0.017 

for H=5 Tesla. In the field free case, the same increases in x would have required a 

decrease of the temperature by --0.5K and -0.2K a t  TNI - T=0.6 and TNI - T=30 

respectively. In the experiments that we described in the last chapter we found that 

in thin cells the nematic-nematic (N-N) transition temperature which occurred at  

TNI - T "30 increased by a measurable amount under a similar field. This implies 

a reasonable increase in the order parameter with H. Thus in the extended model 

the calculated values show the corr-!ct trend though they are lower compared to 

the experimental values. On the other hand using the free energy density given by 

equation 5.3 the equivalent decrease in temperature obtained for such fields is only 

-1mK even close to the NI transition point. 

The calculated variations of the order parameter x with the reduced tempera- 

ture, in the presence and absence of a magnetic field are shown in Fig. 5.10. When 

a field is applied to the isotropic phase, it induces a weak orientational order in the 

medium. The NI transition point for H=5 Tesla was calculated by equating the 

free energies of the weakly ordered paranematic phase and the nematic phase. We 

found that the NI transition temperature increased by only 0.4mK compared to the 

field free case. The increase in the order parameter in the presence of a magnetic 

field hardly affects the N I  transition point. However experimentally the N-N transi- 

tion point shifts considerably (see Fig. 4.12). This implies that th-e N-N transition 

temperature depends on the value of the order parameter. The enhancement of the 

N-N transition temperature seen in thin cells as described in the last chapter, as 

well as by strong electric fields as mentioned in Ref. [35] are also in accord with this 
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Fig. 5.10: The variation of the order parameter x with temperature. The dashed 
curve is for a magnetic field of 5Tesla and the solid line is in the absence of any field. 
The inset shows the weak order parameter in the isotropic phase for a magnetic field 
of 5Tesla. 
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dependence. 

Conclusions 

In conclusion the Landau-deGennes model has been modified to take into account 

the coupling of the order parameter with density. This coupling renormalises the 

coefficient of the fourth order term, making it negative. A sixth order term with a 

positive coefficient is then required for stability. This in turn leads to a relatively 

slow variation of the order parameter with temperature as seen in experiments. 

The Landau theory has also been modified to describe a uniaxial nematic made 

of biaxial particles which interestingly gives rise to a relatively large value for the 

correlation length of the order parameter. We believe that the latter model can 

plausibly explain the enhancement in the order parameter in thin cells as well as the 

significant increase in the order parameter under the action of a moderate magnetic 

field, implied by an increase in the nematic-nematic transition point measured in 

CP7B and described in the previous chapter. 

Appendix 

Vause eta1 have expanded the Landau free energy density in terms of two parameters 

p and q where p=-(x + y)/2 and q=-(x - y)/2 (see equation 5.12). For y=O, 

p=q=-x/2. For rod like molecules, x > 0 and p <O. As usual, it is assumed that 

p=q # 0 for the uniaxial nematic phase and p # q #O for the biaxial nematic phase. 

The free energy density is given by 
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Minimising equation 5.24 with respect to p gives 

6D 
a l ( T  - T*)  - B'q + 2C'(p2 + q2 + pq) - ( q ( p  + q ) 2  + p2) 

+ 4 ~ ( ~ ~  + q2 + ~ q ) ~  + 18Etpq2(p + q )  = 0, (5.25) 

while minimising equation 5.24 with respect to q results in equation 5.25 with re- 

placement p +, q. For D=O and E1=O these equations give the uniaxial solution, 

p=q. Since the E term in equation 5.25 is symmetric in p and q, this term does not 

lift the degeneracy between p and q. The E' term in equation 5.25 is asymmetric in 

p and q and will lift the degeneracy between p and q if E' > 0. This may be seen as 

follows. We differentiate the E' term (9E'p2q2(p + q)2)  in equation 5.24 twice with 

respect to p keeping p+q fixed. Finally substituting p=q the second derivative is 

-144E'p4. If E' < O  the second derivative is positive and hence the free energy is 

minimum for p=q, i.e. for E' <O p=q is favoured. When E' >O the second derivative 

is negative and hence the free energy is maximum for p=q. The system energetically 

favours p # q for E' >O. This can also be seen from the free energy density given 

by equation 5.24. If E' <0, the E' term is minimised (keeping p+q fixed) for pq 

maximum which occurs when p=q. Hence if E' < O  p=q is favoured. For E' >0, 

the associated term is minimised when pq is minimum which occurs for p=O or q=O. 

The system energetically favours p # q for positive E'. 

Using a similar argument we can see that D < 0 favours p # q. The D term 
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( Y p q ( p  + q ) ( p 2  + q2 + pq) )  is differentiated twice and for p=q it is found to be 

-yp3. For rod like molecules p  <O. Hence D < 0 favours p  # q .  


