
Chapter 6

Fluorescence from doubly driven
four-level system - A density matrix
approach

6.1 Introduction

In the previous chapter we described the experimental observation of narrow fluorescence

from doubly driven atoms. In this chapter we examine theoretically, using the density matrix

formalism, the various processes that occur when 4-level atoms are subject to two driving

fields.

The state of a system can be described by the density operator ρ, which is defined by

ρ = |ψ〉〈ψ|, where |ψ〉 is the state function. The density operator can be written in terms

of n×n density matrix, where n is the number of state functions that completely spans the

Hilbert space. In general, the state function can be expanded in a basis set |φn〉 as |ψ〉 =
∑n

i=1 ci|φi〉. So that the elements of the density matrix becomes ρi j= 〈φi|ρ|φ j〉 = 〈φi|ψ〉〈ψ|φ j〉
=cic∗j . The normalization of the state function yields Tr(ρ) = 〈ψ|ψ〉 = 1

In the case of a two level atom, n=2, and therefore ρ is a 2 × 2 matrix. The elements ρi j

depend on the basis states |φn〉. The diagonal element |ci|2 is the probability for the atom to

be in state i, which takes a value between 0 and 1. The off diagonal elements cic∗j are called

the coherence since they depend upon the phase difference between ci and c j.

In general for a two level system the state function can be written as

|ψ〉 = c1e
(iξ1)|1〉 + c2e

(iξ2)|2〉 (6.1)
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where c1 and c2 are real.

If ξ1 − ξ2 is constant coherence exists. If ξ1 and ξ2 are random then for a collection of

two level systems 〈ei(ξ1−ξ2)〉 = 0, and ρi j = 0 ( for i � j), and thus the density matrix becomes

diagonal. If the system goes to a coherent state entire system is defined by a density matrix

ρ =

∣∣∣∣∣∣ |c1|2 c1c∗2
c2c∗1 |c2|2

∣∣∣∣∣∣
Diagonal elements satisfy the condition |c1|2+ |c2|2 =1

We have considered 85Rb atoms as a four level system and therefore, ρ is a 4 × 4 matrix.

The initial treatments in literature of alkali elements have been as a two-level system, with

a ground and excited state. This gives rise to the Rabi oscillations under the action of an

external field ( [1] ). However, the existence of fine structure and the D1 and D2 lines show

that a more accurate picture of an alkali element would be in terms of a three-level system.

Numerous treatments of three level systems exist in the literature ( [2] to [5]). These may be

classified as Λ, V, Ξ (ladder) systems as shown in figure 6.1. These give rise to a variety of

phenomena like electro-magnetically induced transparency (EIT), lasing without inversion

(LWI) etc.

The hyperfine splitting of the levels clearly indicates that a three level system too is a

simplification. Therefore, four level systems have been studied ([6] - [8]). Our treatment,

however, differs from these in that we have considered 85Rb as an inverted N system and

have also consider the motion of the atoms in co- and counter-propagating geometries with
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Figure 6.1: Λ, V, and Ξ systems.
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respect to the cooling and repumper beams.

6.2 The Four Level Density Matrix

The four levels under consideration are the two ground hyperfine levels 5S 1/2 F = 2, 3 and

the two excited levels 5P3/2 F′ = 3′, 4′ ( see fig.6.2a ). For simplicity, we have considered an

85 C      Cooling
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Repumper    B D     Repumper

−z +z
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Rb
85

F=4’

3’(2’)

F=3
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Figure 6.2: (a) Four energy levels of our system (b): An one dimensional configuration(along
z) of the cooling and repumper beams with the 85Rb atom taken moving along the +z direc-
tion.

one dimensional situation where the two driving laser fields are in the ±z direction and the

atom is moving along the +z direction with a velocity v ( figure 6.2b ). The detuning of the

cooling laser is δc in the laboratory frame. In the frame of the moving atom, the detuning Δc

= δc−kc · v for an atom approaching the cooling beam. If one were to consider the transition
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from F = 3 − >F′ = 3, the detuning Δc3′ = 121 + δc −kc · v, where 121 MHz is the separation

of the F′ = 3 level from the F′= 4 level 1.

Similarly, for the repumper, detuning Δr = δr − kr · v where δr is the detunings of the

repumper laser in the laboratory frame, and kr is the wavevector of the repumper beam.

Since the frequencies of the cooling and repumper beams differ only by a few GHz we may

take kr = kc. The total Hamiltonian for the system consisting of a stationary atom and the

light fields is written in the interaction picture as

H = H0 + HI (6.2)

where H0 is the Hamiltonian for the bare atom and HI is the atom-light interaction Hamilto-

nian. They are given as

H0 = �ω2|2 >< 2| + �ω3|3 >< 3| + �ω3′ |3′ >< 3′| + �ω4′ |4′ >< 4′| (6.3)

and

HI = −�2[Ω34′ |3 >< 4′| exp (−iωLCt) + Ω33′ |3 >< 3′|exp(−iωLCt)

+Ω23′ exp (−iωLRt)|2 >< 3′| + H.C] (6.4)

Here the �ωi represent the energies of the levels as represented in figure 6.2, with �ω2 taken

as zero, ωLC and ωLR the frequencies of the cooling and repumper laser beams and Ωi j′ is the

Rabi frequency connecting the levels i and j′. The total Hamiltonian can be written in matrix

form as follows

H =

∣∣∣∣∣∣∣∣∣∣∣

�ω2 0 −�2Ω23′e(−iωLRt) 0
0 �ω3 −�2Ω33′e(−iωLCt) −�2Ω34′e(−iωLCt)

−�2Ω23′e(iωLRt) −�2Ω33′e(iωLCt)
�ω3′ 0

0 −�2Ω34′e(iωLCt) 0 �ω4′

∣∣∣∣∣∣∣∣∣∣∣
where the rows and columns correspond to levels 2, 3, 3′, 4′ in sequence. The cooling laser

beam can cause transitions 3 − > 4′ and 3 − > 3′. As the dipole moment matrix elements for

the two transitions are different Ω34′ is different for the same beam from Ω33′ . The dynamics

1levels of 5P3/2 are denoted primed
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of the system described by this Hamiltonian can be studied using the density matrix ρ =

∑
ρi j|i >< j|. The time evolution of the density matrix ρ is given by the Liouville equation

dρ
dt
= − i
�

[H, ρ] − 1
2
{Γ, ρ} (6.5)

where [ A, B] is a commutator and {A,B} is an anti-commutator, with

Γi j = 2γi→ j′δi j′ (6.6)

where the second term of the equation (6.5) is the spontaneous decay term. γi→ j′ is half the

spontaneous decay rate from the j
′th level to the ith level. The decay rate from 4′( due to

the spontaneous transition 4′− > 3) is 2γ4′3 and from 3′ (due to the spontaneous transition

3′− > 3, 3′− > 2) are γ3′3 and γ3′2 i.e.

Γ4′4′ = 2γ4′3 (6.7)

Γ3′3′ = 2γ3′3 + 2γ3′2 (6.8)

Γ33 = −2γ4′3 − 2γ3′3 (6.9)

Γ22 = −2γ3′2 (6.10)

Γi j is diagonal.

The rate equations of the four levels for an atom moving with a velocity v are derived under

the Rotating Wave Approximation (i.e. suitably choosing a rotating frame to eliminate the

rapid time variation in ρi j(t)). They are

dρ22

dt
= − i

2
[Ω23′ρ3′2 − Ω∗23′ρ23′] + 2γ3′2ρ33′ (6.11)

dρ23

dt
= −i(Δc3′ − Δr)ρ23 − i

2
[Ω23′ρ3′3 −Ω∗33′ρ23′ − Ω∗34′ρ24′] (6.12)

dρ23′

dt
= (i(Δr) − (γ3′2 + γ3′3))ρ23′ − i

2
[Ω23′ρ3′3′ −Ω∗23′ρ22 − Ω∗33ρ23] (6.13)

dρ24′

dt
= −i[(Δc3′ − Δc − Δr) − iγ4′3]ρ24′ − i

2
[Ω23′ρ34′ −Ω34′ρ23] (6.14)

dρ32

dt
= i(Δc3′ − Δr)ρ32 − i

2
[Ω33′ρ3′2 + Ω34′ρ4′2 −Ω23′ρ33′] (6.15)

dρ33

dt
= − i

2
[Ω33′ρ3′3 + Ω34′ρ4′3 −Ω33′ρ33′ − Ω34′ρ34′]

+ 2γ3′3ρ3′3′ + 2γ4′3ρ4′4′ (6.16)
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dρ33′

dt
= (iΔc3′ − (γ3′2 + γ3′3))ρ33′ − i

2
[Ω33′ρ3′3′ + Ω34′ρ4′3′

− Ω23′ρ32 −Ω33′ρ33] (6.17)

dρ34′

dt
= (iΔc − γ4′3)ρ34′ − i

2
[Ω33′ρ3′4′ + Ω34′ρ4′4′ − Ω34′ρ33] (6.18)

dρ3′2

dt
= (−iΔr − (γ3′2 + γ3′3))ρ3′2 − i

2
[Ω∗23′ρ22 + Ω

∗
33′ρ32 −Ω∗23′ρ3′3′] (6.19)

dρ3′3

dt
= (−iΔc3′ − (γ3′2 + γ3′3))ρ3′3 − i

2
[Ω∗23′ρ23 + Ω

∗
33′ρ33

− Ω∗33ρ3′3′ − Ω34′ρ3′4′] (6.20)

dρ3′3′

dt
= −2(γ3′2 + γ3′3)ρ3′3′ − i

2
[Ω23′ρ23′ + Ω

∗
33′ρ33′ − Ω33′ρ3′3 −Ω23′ρ3′2] (6.21)

dρ3′4′

dt
= [(iΔc3′ − Δc) − (γ3′2 + γ3′3 + γ4′3)]ρ3′4′ − i

2
[Ω∗23′ρ24′

+ Ω∗33′ρ34′ − Ω34′ρ3′3] (6.22)

dρ4′2

dt
= [(iΔc3′ − Δc − Δr) − γ4′3]ρ4′2 − i

2
[Ω∗34′ρ32 − Ω∗23′ρ4′3′] (6.23)

dρ4′3

dt
= [(iΔc − γ4′3)]ρ4′3 − i

2
[Ω∗34′ρ33 − Ω∗33′ρ4′3′ −Ω∗34′ρ4′4′] (6.24)

dρ4′3′

dt
= [−i(Δc3′ − Δc) − (γ3′2 + γ3′3 + γ4′3)]ρ4′3′ − i

2
[Ω34′ρ33′ − Ω33′ρ4′3

− Ω∗23′ρ4′2] (6.25)

dρ4′4′

dt
= − i

2
[Ω∗34′ρ34′ − Ω34′ρ4′3 − 2γ4′3ρ4′4′] (6.26)

with the constraint ρ22 + ρ33 + ρ3′3′ + ρ4′4′ = 1. Therefore, the number of equations to be

solved is reduced from 16 to 15 now. In the steady state dρ/dt = 0, and the 15 equations can

be written in the form

Mρ + ϕ = 0 (6.27)

⇒ ρ = −M−1ϕ (6.28)

where M is a 15x15 square matrix, ρ is a 15x1 column matrix, and ϕ is also a 15x1 column

matrix. Therefore, to obtain the steady-state values of elements of ρ, the matrix M has to be

inverted and the product of M−1 and -ϕ to be taken.

Calculations were done taking typical values of parameters Ω23′ = 0.3 MHz, Ω34′ = 6.0

MHz, Ω33′ = 5.0 MHz, γ4′3 = 6.0 MHz, γ3′3 = 2.6 MHz, γ2′3= 2.07 MHz, which approxi-

mately corresponds to our experimental situation. For each velocity v steady state values of
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ρi j are obtained by numerically solving the above rate equations for various values of δc and

δr. Thus for an atom with a velocity v we obtain the population of each level and coherence

between various levels for different values of δr and δc. The fluorescence emitted ( due to the

transitions of the atom from the excited state ) by the atom with a velocity v is given by

Fluorescence(Δc,Δr) = Γ4′3ρ4′4′ + Γ3′3ρ3′3′ + Γ3′2ρ3′3′ (6.29)

As the detector collects fluorescence from atoms in a thermal ensemble, we take the ρi j

value over the range of velocities, weighted by the one dimensional Maxwellian velocity

distribution.

Fluorescence(δc, δr) = < Fluorescence(Δc,Δr) >v (6.30)

The four level scheme in figure 6.2 considers the repumping transition 2 - >3′. However, the

transition 2 − >2′ also serves to repump atoms to the cooling cycle. The entire calculation

was therefore repeated, this time for levels 2,3,2′, 4′. In this case Δc3′ is replaced by Δc2′ = δc

+ 183 MHz. The two results were then combined. A representative result is presented with

the corresponding experimental data, in figure 6.3 for a cooling laser detuning δc = −162

MHz. A general agreement between the results of our calculation and that of the experiment

is seen. The individual features will be discussed in detail now.

6.3 Discussion

Consider a situation shown in figure (6.2)b, when both the cooling and repumping beams are

along ± z directions. Initially let us consider the atoms to be at rest. For a given detuning δc

of the cooling (pump) laser, we should get fluorescence peaks corresponding to the Autler-

Townes (AT) dressed states of F ′ = 3′ at the probe (repumper) detunings [9]

δr± =
δc3′

2
±

√
(δ2

c3′ + Ω
2)/2 (6.31)

143



In
te

ns
it

y 
(a

rb
. u

ni
t)

Figure 6.3: Trace A shows the saturation absorption spectrum of the repumper the frequency
of which is scanned in time. Trace B gives the experimentally observed fluorescence. The a,
b, c, d, e(e’) labels represent the peak positions as found in the experiment. Trace C shows
the results of the density matrix calculations for the same δc taking the levels F = 2, 3 and F′

= 3′(2′) and 4′ into account. The T1,T2, DT3, T5 and T6 labels the resultant theoretically
derived peak positions.

Here δc3′ = 121 MHz + δc denotes the detuning of the cooling laser from 3 → 3′ transi-

tion, 121 MHz being the level spacing between F′ = 3′ and 4′ levels andΩ its Rabi frequency.

These peaks arise due to the dynamic Stark splitting of level F′ = 3′. In general, a level with

total angular momentum J will split into J+1 levels. Thus the 5S 1/2 state with J = 0 is not

split; the 5P3/2, with J=1 splits into two levels. Transitions from the unsplit ground state to

each of the split upper level gives rise to two peaks at δr±. The widths of the peaks vary as

Γ± =
Γ

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 ∓
δc3′√
δ2

c3′ + Ω
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6.32)

The equations (6.31) and (6.32) show both the positions and widths of the peaks depend
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upon δc3′ . δc3′ = 0 makes them symmetric and widths same which is half the unperturbed

width Γ. Any non-zero value of δc3′ reduces the width of one peak further while the other

one gets broadend proportionally such that total widths of the two peaks becomes exactly

equal to their unperturbed width Γ. The specific case shown in fig.6.3, for a cooling laser

detuning δc = -162 MHz and for smallΩ, the Autler-Townes peak positions for zero velocity

atoms are δ0
r± ≈ -41 and 0 MHz respectively. The population of levels F = 2 and F′= 3 ( ie

ρ22 and ρ3′3′) are shown in figure 6.4a for stationary atoms. Figure 6.4b gives the absorption

(Im (ρ23′) due to the transition 2 − >3′, that shows the AT doublet.

From figure 6.4a which gives the populations in levels F = 2 and F = 3, we see that

the occurrence of F = 3 peaks at precisely the frequency at which F = 2 gets depopulated,

indicating a transfer of population from F = 2 to F = 3.

Let us now consider an atom in motion (figure 6.2b). If δc < 0 this atom predominantly

absorbs from the cooling beam C coming towards it. This causes AT splitting of the F ′ = 3′

level of this atom. Since the repumper laser is scanned, depending on the sign of δr the atom

absorbs either from B or from D. Thus absorption of repumper will occur at four different

detunings of a given δc of the cooling laser. The same holds for δc > 0 for atoms with

velocity −v.

The AT doublet positions at which absorption will occur in a frame where the atom is

at rest (atom frame) are 0 and (121 + (δc + kv)). However, from the laboratory frame these

positions will get Doppler shifted to

δr− = δ0
r− − kv ≈ −kv; δr+ = δ

0
r+ − kv ≈ δc3′ = 121 + δc (6.33)

when the repumper light is absorbed from D (see figure 6.2)

δr− = δ0
r− + kv ≈ +kv; δr+ = δ

0
r+ + kv ≈ δc3′ + 2kv (6.34)

when the repumper light is absorbed from B.
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Figure 6.4: (a)The population in levels F = 2 and F = 3 ρ33, ρ22 respectively as functions of
δr. (b) The imaginary part of ρ23′ vs the repumper (probe) laser frequency δr showing that
absorption of the repumper (probe) light due to Autler -Townes splitting of the level F ′ = 3′

occurs at the detunings 0 MHz and -41 MHz.
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A simple way to understand this is as follows. We have to apply the suitable detuning

to the laser so that atom absorbs the photons. Depending upon the direction of the velocity

of the atom and that of the photon we have to choose the suitable detuning. As the atom is

moving in the +z direction, if it has to absorb the repumper photon from beam D, then the

beam should have red detuning. When absorbption is from B, then blue detuning is needed.

The same holds for δc > 0.

The gas contains Rb atoms with a Maxwellian distribution of velocity. Not all atoms can

participate in fluorescence, as the Doppler shift will cause most of the atoms to find the lasers

out of resonance. In fact, only a small velocity class around vc which satisfies the relation

vc = |δc|/k (6.35)

will give rise to fluorescence. This is the mechanism that gives rise to narrow velocity se-

lection from a hot gas. This velocity selection effect is confirmed by our calculations and is

shown in figure 6.5 which gives ρ4′4′ and ρ3′3′ as functions of the velocity of the atom for

δc = δr= -162 MHz.

We see that the population in F′ = 4′ (ρ4′4′) is two orders more than that in F′ = 3′ (ρ3′3′)

and it peaks at the critical velocity vc = 126 m/sec. Therefore, only for atoms with velocities

around vc both the repumper and the cooling laser become resonant to the corresponding

transitions, showing that indeed the (k · v = δc) resonance condition selects a narrow velocity

class for fluorescence from a thermal ensemble with a Doppler width ≈ 2 GHz.

Using the resonance condition, we get the position of the AT peaks

δr− = δc; δr+ = 121 MHz + δc (6.36)

when absorption takes place from D (see figure 2) and

δr− = −δc; δr+ = 121 MHz − δc(v = vc) (6.37)

δr+ = 121 MHz + δc + 2kv(v � vc) (6.38)

when the repumper absorption takes place from B.
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Figure 6.5: (a) Populations in the upper levels F′ = 4′ and F′ = 3′. (b) Zoom-in of the
population in F′ = 3′ (Note reduced y axis scale in (b).)
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These peak positions, given δc = -162 MHz will occur for repumper detunings at -162

MHz(T2), -41 MHz(DT3), +162 MHz(T6) (see fig. 6.3) and 283 MHz. We see that exper-

imentally we get all expected peaks within the range of our repumper scan. The same peak

positions are obtained for atoms with a velocity −v, for δc > 0.

It has been estimated in [10] that the peak at δr− is broad and the one at δr+ is narrow.

The height of the AT peaks decide the prominence of a fluorescence peak as it decides the

number of atoms participating in the fluorescence. Thus for peak positions δr− = δc & −δc

we expect a large fluorescence whereas for the peak at δr+ = 121 MHz+δc we expect a much

smaller fluorescence as is indeed seen from experiment and from our calculations (fig.6.3).

The peak at 283MHz around δr+ = 121 MHz + δc + 2kv is absent both in experiment and

in our density matrix calculation. For this case, the repumper absorption takes place from

B whereas the cooling is absorbed from C. When the absorption takes place from counter-

propagating cooling and repumper beams the velocity class satisfying the double resonance

is severely restricted. In fact only for v = vc will the double resonance condition be satisfied.

Atoms with v � vc will see the cooling and repumper to be shifted by opposite detunings and

hence will not contribute to the fluorescence. Thus the peak resulting from this configuration

will not be seen as only a very small number of atoms contribute to it. The severely restricted

velocity range at resonance resulting in the absence of the peak at 121 MHz + δc + 2kv is

illustrated in figure6.6b which is obtained from the density matrix calculation. As we see

here, only a small number in a very narrow velocity range contribute to population in F ′ = 4′

in contrast to the case δr− = −δc (fig.6.6a).

The peaks marked T1, DT3 and T5 in figure 6.3 are the peaks corresponding to the AT

levels of F′ = 2′ due to absorption from counter and co propagating repumper beams. These

peaks can be obtained from the same four-level density matrix calculation by replacing the

level F′ = 3′ by F′ = 2′. Thus the peaks are obtained at

δr− = ±δc = ±162 MHz (6.39)

δr+ = (184 MHz + δc) = +22 MHz (6.40)
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Figure 6.6: Population in the level F′ = 4′ as a function of the velocity of atoms for the
Autler-Townes peaks at (a) δr = −δc = 162 MHz (b) δr = 121 MHz + δc +2kv (Note reduced
y- axis scale in (b)).
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with 184 MHz being the hyperfine separation between F ′ = 4′ and F′ = 2′ level. Here

the detuning δc is measured from the F ′ = 2′ transition. But in the experimental scan we

measured separations from F ′ = 3′ transitions. This gives rise to peaks T1 and T5 and

another peak at the position of DT3 peak of F ′ = 3′ transition (see figure6.3). It is seen that

the peak positions of T1 and T5 can be simply obtained from the corresponding peaks for

F′ = 3′ by shifting them by - 63 MHz, this being the hyperfine separation between F ′ = 3′

and F′ = 2′. The theoretically calculated widths of the fluorescence peaks match with

the experimentally observed narrow width of about 30 MHz. It should be emphasised that

this does not arise due to the cooling of atoms in the optical molasses like configuration but

due to the existence of a velocity selection as discussed before. These fluorescence peaks

are experimentally seen to be narrow even for blue detunings of the cooling beam where no

cooling occurs and the atoms are at room temperature. The expected Doppler width at this

temperature is nearly 2 GHz.

6.4 Conclusions

Existence of narrow fluorescence peaks in the absence of induced coherence in a doubly

driven multi-level atomic system has been explained using a four-level density matrix for-

malism. The theory finds that the fluorescence peaks are given rise by the Autler-Townes

(AT) splitting of F ′ = 3′ and F′ = 2′ levels for atoms around a particular velocity class. The

AT splitting is seen to occur due to the strong cooling laser and hence is dependent on its

detuning δc. The repumper which connects F ′ = 3′ and F′ = 2′ to F = 2 pumps the atoms

from F = 2 to F = 3. The cooling laser connects F = 3 to F ′ = 4′ and causes fluorescence.

Because the repumper becomes efficient in pumping atoms from 2 -> 3 for the velocity class

of atoms satisfying the double resonance condition the fluorescence shows a narrow peak

at double resonance. The theory accounts for all the peaks seen in the experiment and also

explains the experimental absence of the other two peaks. The widths of the peaks agree

quite well with the experimentally obtained widths.
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