REAL-TIME SIGNAL PROCESSING INSTRUMENTATION FOR SEARCH AND STUDIES OF PULSARS

THESIS Submitted for the Degree of DOCTOR OF PHILOSOPHY

ТΟ

THE FACULTY OF ENGINEERING, KAKATIYA UNIVERSITY, WARANGAL (A.P.), INDIA

By

PERAMACHANAHALLI SACHIDANANDA RAMKUMAR

Department of Electronics & Communication Engineering Regional Engineering College WARANGAL – 506 004, INDIA JANUARY 1998

SPHS.

Dedicated to

my parents

Smt. C.Nagarathna and Sri. P.N.Sachidananda

CERTIFICATE

This is to certify that the thesis titled **"REAL-TIME SIGNAL PROCESSING INSTRUMENTATION FOR SEARCH AND STUDIES OF PULSARS "**being submitted by Sri. **P.S.Ramkumar** for the award of the degree of **DOCTOR OF PHILOSOPHY** to the faculty of Engineering of **KAKATIYA UNIVERSITY**, **WARANGAL** is a record of Bonafide Research work carried out by him under our supervision and it has not been submitted elsewhere for any degree.

Dr. A.A. Deshpande Associate Professor Astronomy & Astrophysics Department Raman Research Institute Bangalore – 560 080 KARNATAKA, INDIA

luo 198

Dr. K. Kishan Rao Professor, Electronics & Comm. Engg. Department Regional Engineering College Warangal – 506 004 ANDHRA PRADESH, INDIA

ACKNOWLEDGEMENTS

I thank the concerned authorities of the **Raman** Research Institute, Bangalore and Regional Engineering College, Warangal, for permitting me to conduct this work and providing all the required facilities. I am extremely grateful to Prof. V. Radhakrishan and **Prof.G.Swarup** for their guardian advice and support and for inducting me into the GMRT project, which has resulted in forming the material for this thesis.

I acknowledge with gratefulness the constant help and guidance extended to me by **Prof.K.Kishan** Rao. I am indebted to my friend, philosopher and guide, **Prof.A.A.Deshpande**, who has been my source of inspiration and particularly for the freedom and help I have enjoyed under his guidance throughout this work.

I am thankful to **Prof.N.V.G.Sarma**, **Prof.G.Srinivasan** and **Prof.D.K.Ravindra** for their encouragement at various stages of development of the instrument and to **Prof.Dipankar** Bhattachatya., for many useful discussions during pulsar observations. I am highly obliged to **Prof.V.Balasubramanian** and **Prof.S.Ananthakrishan**, for permitting me to install the instruments and **carryout** various tests at the ORT and GMRT respectively, and the observatory staff, for providing timely support which have helped to complete the tests quickly.

I am thankful to **Markandeyulu.G.**, Madhu Girimaji, Sindhu and **Raghavendra.N.G.** for their help in the fabrication and testing of the Pulsar Search Pre-processor and **Prabu.T.** for his help in interfacing the array-combiner to the pulsar search pre-processor and conducting the associated field tests. Many thanks are due to **Raghavendara.S.P.**, **Srivani.K.S.**, Uday **Shankar.B.K.** and **Madhavi.S.** for their help in fabrication and testing of the Signal Processor for Pulsar Studies. I am grateful to my friend **B.Sridhar** who stood by me at all times and helped tirelessly during various stages of fabrication and testing the systems.

Special thanks are due to Mrs. Mamtha **Bai** for promptly typing the contents of this thesis, Mr. Gopalkrishna for carefully correcting the typographical errors and to **Ms.Srivani**, **Mr.Uday** Shankar and **Mr.Raju** Verghese for their valuable help in making the drawings and photographs. I am highly obliged to **Ms.Indrani**, **Prof.Deshpande** and **Prof.N.V.G. Sarma** for their critical reading of this thesis. I thank **Mr.Rathnakar** and the library staff for providing excellent library facilities.

My inexpressible gratitude is due to my parents Smt. Nagarathna and Sri. P.N. Sachidananda, my wife **Anitha** and my four-year-old son Adivandhya, without whose love, affection, encouragement and cooperation, this work could not have been possible.

ABSTRACT

During the past thirty years of Pulsar research, several sensitive observations experiments have been conducted to discover pulsars and study their properties in detail. The current sensitivity limit is about a milli-Jansky for Pulsar searches and much better for pulsar studies. To reach this sensitivity, the surveys use low frequency telescopes with large apertures, large R.F. bandwidth and the observed time sequence is folded with the pulsar period for several thousands of periods. It is also required to remove the effects of dispersion, Faraday rotation and Doppler acceleration and integrate the power in time and frequency for maximizing the sensitivity. The data rate of the digitized samples at the output of these receivers runs into several tens of Mbytes per second, and the offline-processing jobs demand high through-put (several gigaoperations-per second), making it extremely difficult to store the raw data of large bandwidths and do the processing later with presently available computers. In practice, a hybrid solution is sought using dedicated, real-time processing instruments to perform specific real-time processing tasks so as to reduce the data rate and size and thus the offline processing load. So far, such instruments have been limited in their flexibility to handle different types of pulsar observations and cater to small bandwidths(typically a few MHz). The first part of the work presented in this thesis (chapters 2, 3 and 4) describes in detail the design and development of a 'real-time signal processor "to be used in pulsar search and different types of pulsar studies. The instrument is designed primarily for use with the Ooty Radio Telescope and the GMRT radio telescope and perform the above mentioned operations over dual, orthogonal-polarization data samples of 512 frequency channels covering a maximum bandwidth of **32MHz**. The digital design exploits the advantages in using lookup-tables, reprogramable logic circuits and DSP chips to provide full programability and a modular architecture so that the bandwidth can be scaled from 1MHz to 32MHz and interfaced to work with any other telescope. The optimizations used in the signal processing algorithms and the associated software development are discussed.

During the real-time processing, it is desirable to know the amount of Faraday rotation due to the ionosphere with reasonable accuracy. For real-time estimation and correction of Faraday rotation, a possibility of using pulsars themselves as probes of the ionosphere is investigated. Suitable signal processing methods for measuring the rotation measure (RM) of pulsars with a single polarization telescope are developed. The second part of the work presented in this thesis (chapter 5) discusses these methods and the results of observational tests.

This thesis is concluded with a discussion of the current status and future scope of this work. Even though the signal processing system is designed primarily for pulsar work, parts of this machine will be suited for several other signal processing applications. Some of such applications are highlighted towards the end of the chapter.

CONTENTS

	ABB	BREVIATI	ONS	V
	LIST	OF FIG	JRES	vi
	LIST	OF TAB	LES	xi
1	INTE		ION	1_1
•				1-1
	1.1	Genera	Il Characteristics of Pulsar Signals	1-1
		1.1.1	Pulse Period	1-1
		1.1.2	Pulse Shape	1-2
		1.1.3	Pulse Energy	1-2
		1.1.4	Polarization	1-2
	1.2	Propag	ation Effects on Pulsar Signals	1-3
		1.2.1	Dispersion	1-3
		1.2.2	Faraday Rotation	1-7
		1.2.3	Interstellar Scattering	1-8
	1.3	Effects	Due to Motion of the Earth and Pulsar	1-9
		1.3.1	Period Changes	1-9
		1.3.2	Changes in Apparent Linear Polarization Angle (Parallactic Angle)	1-10
	1.4	Instrum	ental Stability and Accuracy	1-10
	1.5	Types o	of Pulsar Observations	1-13
		1.5.1	Pulsar Search Observations	1-13
		1.5.2	Observations for Studies of Pulsars and ISM	1-14
	1.6	Overvie	w of the GMRT (Giant Metre Wave Radio Telescope)	1-15
		1.6.1	Front-end System	1-15
		1.6.2	Antenna Phasing	1-16
		1.6.3	Array Combiner (AC)	1-17
	1.7	Overvie	w of the ORT (Ooty Radio Telescope)	1-17
		1.7.1	Front-end System	1-18
		1.7.2	IF and Base Band System	1-19
	1.8	Layout	of the Thesis	1-20
2	DES	IGN PHIL	OSOPHY	2-1
	2.1	Signal F	Processing Considerations for System Design	2-1
		2.1.1	Signal Processing for Pulsar Search	2-1
			2.1.1.1 Sensitivity Considerations at Radio Wavelengths	2-2
			2.1.1.2 Choice of Optimum Bandwidth	2-4

		2.1.1.3	Considerations for On-Line Data Reduction					
		2.1.1.4	.1.4 Off-line Post-processing					
	2.1.2	Signal Pr	rocessing for Studies of Pulsars	2-9				
		2.1.2.1	Full Polarization, Single-Pulse Studies	2-10				
		2.1.2.2	Studies of Average Profiles	2-12				
		2.1.2.3	Dynamic Spectra Studies	2-14				
		2.1.2.4	Pulsar Timing Observations	2-16				
		2.1.2.5	Average Profile Measurements of Polarization Properties of Pulsar .	2-16				
	2.1.3	Signal Pr	ocessing for using Pulsar as Probes of the ISM	2-18				
2.1.3.1			Measurement of RM/Magnetic Field Distribution in the Galaxy	2-18				
	2.1.3.2 HI line studies							
	2.1 .4	Deriving	a Common Processing Algorithm	2-20				
2.2	Enginee	ering Consi	iderations for System Design	2-26				
	2.2.1	High Spe	ed Discrete Logic Design Optimizations	2-27				
		2.2.1.1	Look-Up Table Implementations	2-27				
		2.2.1.2	Pipelined Logic Implementation	2-28				
	2.2.2	High Spe	Speed Programmable Logic Design Optimizations					
	2.2.3	Microproc	processor Based Design					
	2.2.4	High-spe	ed Memory Interfacing Considerations					
	2.2.5	Compute	r Based Control and Diagnostics	2-36				
	2.2.6	Interconn		2-37				

3 PULSAR SEARCH PRE-PROCESSOR

31	Specifi	cations of F	PSP	3-1				
3.2	System Architecture							
	3.2.1	Input Lin	k	3-3				
	3.2.2	Input Sel	lector for Search Pre-processor (ISSP)	3-4				
		3.2.2.1	Phased Array Power Detection	3-5				
		3.2.2.2	Pre-integration	3-5				
	3.2.3	Search P	re-processor (SP)	3-8				
		3.2.3.1	Running Mean Calculation	3-9				
		3.2.3.2	Calculation of Gain Calibration Factors	3-10				
		3.2.3.3	Feedback System	3-10				
		3.2.3.4	Bit Field Selection Logic (BFSL)	3-12				
	3.2.4	Data Sto	rage System (DSS)	3-12				
3.3	System	Software		3-14				
3.4	Test an	d Results		3-15				

3-1

	3.5	Portable Pulsar Receiver (PPR)	3-22						
4	SIG	3NAL PROCESSOR FOR PULSAR STUDIES 4							
	4.1 4.2	Specifications for the SPPS 4 Implementation of Polarimeter 4 A 2 1 Calculation of Stokes Parameters							
		4.2.2 Data distribution	4-6						
	4.3	Design of DSP Parallel Processing System (DSP-PPS)	4-10						
		4.3.1 Specifications for DSP-PPS	4-10						
		4.3.2 Architecture of a Single DSP Node	4-12						
		4.3.3 Software architecture of a DSP node	4-14						
		4.3.3.1 Booting the System	4-15						
		4.3.3.2 Processing Program Shell	4-18						
		4.3.3.3 Task-1	4-21						
		4.3.3.4 Task – 2 · · · · · · · · · · · · · · · · · ·	4-24						
		4.3.4 Exploiting Parallelism in Operations	4-27						
		4.3.5 Data Collection system (DCS)	4-29						
		4.3.6 Parallel Architecture of Nodes	4-35						
	4.4	System Software	4-36						
		4.4.1 Offline Jobs	4-37						
		4.4.2 Online Jobs	4-38						
	4.5	FFT Module	4-39						
	4.6	Tests and Results	4-42						
5	NEW MEA	SIGNAL PROCESSING METHODS FOR ESTIMATION OF PULSAR ROTATION SURE	5-1						
	5.1	RM Measurements with a Single Polarization Telescope	5-1						
	5.2	Autocorrelation Domain Processing	5-3						
	5.3	Non-Linear Least-Square Error Fitting Algorithm	5-8						
	5.4	Tests and Results	5-11						
	5.5	Discussion	5-16						
6	DISC	USSION & CONCLUSION	6-1						
	6.1	Present Status and Possible Improvements	6-1						
		6.1.1 Pulsar Search Pre-processor (PSP)	6-1						

	6.1.2	Polarimeter	2
	6.1.3	DSP Parallel Processor	3
	6.1.4	Data Recording System	4
6.2	Scope	for other Applications	4
6.3	Summa	ary	7

APPENDIX A : Photographic copies of the various hardware modules of the system

APPENDIX B : Copy of published paper

REFERENCES

ABBREVIATIONS

μο	Permeability of Free Space (1.3566x 10 ⁻⁶ H/m)	IDT	Integrated Device Technology
εο	Permitivity of Free Space (8.8544x 10 ⁻¹² F/m)	IF Amp	Intermediate Frequency Amplifier
m	Rest Mass of Electron (9.109x 10 ⁻³¹ kg)	IIR	Infinite Impulse Response
е	Charge of an electron (1.602 x 10 ⁻¹⁹ C)	lmag.	Imaginary part
A/D	Analog to Digital	ISA	Industry Standard Architecture
AC	Array Combiner	ISM	Inter-Stellar Medium
ACF	Auto correlation Function	ISSP	Input Selector for Search Pre-processor
ASIC	Application Specific Integrated Circuits	JY	Jansky
BFSL	Bit Field Selection Logic	k bytes	Kilo bytes
BICMOS	Bi-Complimentary Metal Oxide Semiconductor	Κ _b	Boltzman Constant (1.380 x 10 ⁻²³ J/degree)
BPF	Band Pass Filter	LNA	Low Noise Amplifier
CAD	Computer Aided Design	LO	Local Oscillator
CMOS	Complimentary Metal Oxide Semiconductor	LPF	Low Pass Filter
DAG	Data Address Generation	LSB	Least Significant Bit
DAS	Data Acquisition System	Mbaud	Million bits per second
DCS	Data Collection System	MHz	Mega Hertz
DM	Dispersion Measure (cm⁻³ parsec)	MIMD	Multiple - Instruction - Multiple - Data
DMA	Data Memory Address bus	MOPS	Million Operations per Second
DMD	Data Memory Data bus	MSB	Most Significant Bit
DPRAM	Dual Port Random Access Memory	MUX	Multiplexer
DSP	Digital Signal Processing	NLS	Non-linear Least Square
DSP-PPS	DSP - Parallel Processing System	O/p	Output
ECL	Emitter Coupled Logic	ORT	Ooty Radio Telescope
EDN	Electronic Design News	PA	Phased Array
EMI	Electro Magnetic interference	PC-AT	Personal Computer – Advanced Technology
EPLD	Erasable Programmable Logic Device	PCB	Printed Circuit Board
EPROM	Erasable Programmable Read Only Memory	PLD	ProgrammableLogic Device
FCT	Fast CMOS Technology	PM	Program Memory
FFT	Fast Fourier Transform	PMA	Program Memory Address bus
FIFO	First In First Out	PMD	Program Memory Data bus
FTP	File Transfer Protocal	PPI	Programmable Peripheral Interface
FIR	Finite Impulse Response	PPR	Portable Pulsar Receiver
FLEX	Flexible Logic Element Matrix	PROM	Programmable Read Only Memory
FPGA	Field Programmable Gate Array	RAMs	Random Access Memories
GAC	Giant metre wave radio telescope Array Combiner	RF	Radio Frequency
GB	Giga Bytes	RM	Rotation Measure (radians m ⁻²)
Gflops	Giga floating point operations per second	RMS	Root Mean Square
GMRT	Giant Metre wave Radio Telescope	SCSI	Small Computer System Interface
GPS	Global PositioningSystem	SNR	Signal to Noise Ratio
HA	Hour Angle	SP	Search Pre-processor
HCT	High Speed CMOS Technology	SRAM	Static Random Access Memory
I/O	Input Output	SSB	Singe Side Band
l/p	Input	TCP/IP	TransmissionControl Protocol / Internet Protocol
IA	Incoherent Array	TTL	Transistor – Transistor Logic
IC	IntegratedCircuit	USB	Upper Side Band

List of Figures

Figure No.	Description	Page No.
1.1	Pulse Profiles at various frequencies within the observed band-width in presence of dispersion	1-4
1.2	Incoherent de-dispersion technique	1-6
1.3	The pulse profile smoothening due to error in the folding period	1-11
1.4	GMRT Front-end block diagram	1-15
1.5	Block Diagram of GMRT base-band system	1-16
1.6	Data sequence and format at the output of GAC	1-18
1.7	Block diagram of front-end system of ORT	1-18
1.8	Block diagram of ORT IF and Base-Band system	1-19
2.1	Flux density distribution of known pulsars	2-2
2.2	(a) Optimal Bandwidth Vs DM for 38, 155, 233, 327, 610, 1420 MHz	2-5
	(b)Time smearing within a single channel for optimal bandwidth	2-5
2.3	Degradation of signal to noise ratio for quantized noise	2-6
2.4	Distribution of observed duty cycles of pulsars	2-10
2.5	Gating efficiency for observation of known pulsars	2-11
2.6	Memory layout for hosting profiles of De-dispersed output frequency channels	2-22
2.7	Address and Data bus Architecture of a modified Harvard DSP Chip	2-31
2.8	The sequence of events in VonNueman architecture and DSP architecture	2-33
3.1	Block Level Architecture of Pulsar-Search-Preprocessor	3-3
3.2	Block level ISSP module architecture	3-4
3.3	Organization of Sliding Window Logic	3-4
3.4	Block level architecture of Pre-integrator	3-6
3.5	Block level architecture of search Pre-processor module	3-8
3.6	Organization of feed back memory containing gain scale factors and running mean values	3-11
3.7	Block level architecture of Data storage system	3-13

3.8	Sequence of control PC operations for an observation session	3-14
3.9	Block-Average Power spectrum obtained by Pulsar search pre-processor using ORT	3-16
3.10	Block diagram of the test setup to generate modulated noise source to the inputs of PSP	3-16
3.11	Folded profile from modulated noise test	3-17
3.12	Folded profile and individual pulses (12 periods) of Pulsar 0740-28 observed at ORT using PSP	3-18
3.13	Amplitude spectrum of pulsar signal	3-19
3.14	Folded profiles of pulsars observed at ORT using PSP (Published results)	3-20
3.15	Pulsar 1133+16 observed at GMRT using PSP	3-21
3.16	Block level architecture of Portable Pulsar Receiver (PPR)	3-22
3.17	Block diagram of the BIT packing logic for PPR	3-23
3.18	(a) Train of individual pulses from pulsar 0950+08 observed at ORT, (b) time folded profile of the pulsar	3-25
4.1	Overall block diagram of signal processor for pulsar studies	4-2
4.2	Block diagram indicating the functional blocks of polarimeter	4-6
4.3	Input and output data sequence for channel reordering using DPRAMs in the distributor module.	4-7
4.4	(a) Functional Diagram of a single bit synchronous multiplier for Stokes Parameter. (b) Truth table of operations and input source to flip-flops. (c) Control Signal sequence for synchronous operation	4-8
4.5	Block layout of shift register modules to handle all Stokes parameters and channels of one DSP node	4-9
4.6	Layout of shift register banks to handle distribution of 256 channels and four Stokes parameters to eight DSP nodes	4-9
4.7	Timing diagram showing sequential loading operation of different Shift Register Bank (SRB)s.	4-10
4.8	Block level architecture of one DSP node	4-13
4.9	Page layout of DPRAMs for linking control PC to DSP nodes	4-15

4.10	Protocol of Boot routine on a DSP node showing operations on the control PC and the DSP node	4-16
4.11	Status word format for self check of DSP node	4-18
4.12	(a) Flow chart of outer shell of signal processing program (b) Header pattern	4-19
4.13	(a) Logical partitions in DPRAM (DSP Node's Program Memory). (b) Layout of initial parameter table. (c) Layout of update parameter table	4-20
4.14	Initial allocation of registers for various parameters in Pulsar Signal Processing	4-21
4.15	Flow of operations for index calculation	4-22
4.16	Possible alignment of pulse phase between the highest frequency channels of each mode by skipping appropriate number of sample	4-22
4.17	Operations for generating the physical address of profile memory for any given channel, Stokes parameter and time frame	4-23
4.18	Allocation of SRAM for primary and alternate banks of Stokes parameters, frequency channels and profiles	4-23
4.19	(a) Flowchart of TASK 2 operations, (b) Pulse Phase Error Correction operation	4-25
4.20	(a) Sequence of operations in transfer of results, (b) Flow of operations for parameter update	4-26
4.21	The data acquisition process by DCS	4-30
4.22	Block diagram of Data Collection System (DCS)	4-31
4.23	Architecture of DCS Controller	4-32
4.24	Control Signal sequence for operation of DCS	4-33
4.25	Parallel architecture of eight nodes for one sub-band	4-35
4.26	Flow chart of pre-calculation program	4-37
4.27	Configuration file specifying observation details	4-38
4.28	Logic blocks of FFT module	4-40
4.29	Sequence for a reset cycle of FFT module	4-41
4.30	EPLD circuit for Ramp Pattern Generation	4-42
4.31	EPLD circuit for Pulse Pattern Generation	4-43

4.32	Pulse Pattern	4-44
4.33	Ramp Pattern	4-44
4.34	Polarimeter outputs for 8 DSP nodes obtain for a Ramp input pattern at 16 MHz clock	4-45
4.35	64-Channel average spectra obtained from DSP nodes fdr digital ramp input pattern	4-46
4.36	64-Channel average spectra obtained for sinusoidal analog input signal at different frequencies	4-47
4.37	Contour plot of total intensity as a function of time and frequency for digital pulse input pattern	4-48
4.38	Plot of ${\sf Q}$ and U Stokes parameters as a function of frequency with RM correction for digital pulse input pattern	4-48
4.39	Test setup at ORT	4-49
4.40	Shows the difference in the power spectra of the two receiver polarization inputs channels	4-51
4.41	Observed differences in the phase offsets and gradients between the two polarization inputs as a function of relative path-length difference	4-52
4.42	Pulsar PSR 1749-28 observed on 12-12-1997	4-53
4.43	Folded average profile with identical digital pulse pattern inputs to both polarization channels	4-54
4.44	Profile of pulsar PSR 1133+16 showing pulse smearing due to uncertainty in assumed frequency of FFT system clock	4-55
4.45	Folded total-power (I) profile of PSR 1749-28 observed on 05-10-1997	4.56
4.46	Folded total Power (I) profile of Pulsar PSR 1749-28 observed on 05110/1997	4.57
4.47	Signal to Noise Ratio(SNR) change for different integration of pulsar PSR 1749-28 observed on 13-12-1997	4-58
4.48	Plots of pulsars observed through SPPS	4-60
5.1	Power Spectrum modulation due to Faraday Rotation in a Linearly Polarized, Single Polarization Telescope	5-2
5.2	Uncertainty in Modulation frequency due to Noise in Auto-correlation function	5-6

5.3	Pulse inter	nsity as	a function	n of freque	ncy and the	e longitu	de (relative te	o the pulse	5-12
	centroid).	Pulsar	0740-28,	observed	on 19-03-94	at ORT	using pulsar	search pre-	
	processor								

- 5.4 Position angle (a) and intensity (b) profiles as a function longitude. PSR 0740-28, 5-13 observed on 1993 94 at ORT using pulsar search pre-processor, (c) profile of the same pulsar observed at 631 MHz using dual polarization telescope by Mc.Culloch.et.al, 1978
- 5.5 Average power spectrum showing modulation due to Faraday rotation observed at the 5-14 same pulse longitude on three consecutive delays
- **5.6** Best-fit values of model parameters as a function of longitude 5-15

LIST OF TABLES

Page.No.

1.1	Performance of different pulsar receiver systems	1-21
2.1	Calculation of maximum data recording rate for observations with the GMRT	2-12
2.2	Mernory requirement at different full polarization, single pulse observing frequencies of GMRT	2-13
2.3	Growth in word width for average profile observations with GMRT	2-14
2.4	Growth in word width for Dynamic Spectra observations with GMRT	2-15
2.5	Memory requirement for Dynamic Spectra observations with GMRT	2-16
2.6	Polarization smearing at different operating frequencies of GMRT	2-17
3.1	Input base-band specifications of pulsar search pre-processor	3-1
3.2	Specifications of Pulsar Search Pre-processor	3-2
3.3	Quantizationthresholds and codes for 2 bit, 4 level digitizer	3-23
4.1	Specification of the front-end system for SPPS	4-1
4.2	Specification of polarimeter	4-3
4.3	Basic equations relating the complex voltage samples to the Stokes parameters.	4-4
4.4	Specifications for the DSP - PPS	4-11
4.5	DSP internal control registers configuration	4-17
4.6	Number of instruction cycles consumed by different parts of the signal processing	4-29
	program in DSP nodes	
4.7	Memory mapping of DCS	4-31
4.8	Node sequence codes for the DCS	4-34
4.9	Representation of Stokes parameters in terms of power and voltage	4-50