
REAL-TIME SIGNAL PROCESSING INSTRUMENTATION 

FOR SEARCH AND STUDIES OF PULSARS 

THESIS 

Submitted for the Degree of 

DOCTOR OF PHILOSOPHY 

THE FACULTY OF ENGINEERING, 

KAKATIYA UNIVERSITY, WARANGAL (A.P.), INDIA 

PERAMACHANAHALLI SACHIDANANDA RAMKUMAR 

WARANGAL v 
Department of Electronics & Communication Engineering 

Regional Engineering College 

WARANGAL - 506 004, INDIA 

JANUARY 1 998 



my parents 

~ m t .  ~.Nagarathna and Sri. ~ N ~ a c h i d a n a n d a  



This is to certify that the thesis titled " REAL-TIME SIGNAL PROCESSING INSTRUMENTATION 

FOR SEARCH AND STUDIES OF PULSARS " being submitted by Sri. P.S.Ramkumar for the award of the 

degree of DOCTOR OF PHILOSOPHY to the faculty of Engineering of KAKATIYA UNIVERSITY, 

WARANGAL is a record of Bonafide Research work carried out by him under our supervision and it has not 

been submitted elsewhere for any degree. 

Dr. A.A. Deshpande 

Associate Professor 

Astronomy & Astrophysics Department 

Raman Research Institute 

Bangalore - 560 080 

KARNATAKA, INDIA 

Professor, 

Electronics & Comm. Engg. Department 

Regional Engineering College 

Warangal - 506 004 

ANDHRA PRADESH, INDIA 



ACKNOWLEDGEMENTS 

I thank the concerned authorities of the Raman Research Institute, Bangalore and Regional 

Engineering College, Warangal, for permitting me to conduct this work and providing all the required 

facilities. I am extremely grateful to Prof. V. Radhakrishan and Prof.G.Swarup for their guardian advice and 

support and for inducting me into the GMRT project, which has resulted in forming the material for this thesis. 
4 

I acknowledge with gratefulness the constant help and guidance extended to me by Prof.K.Kishan 

Rao. I am indebted to my friend, philosopher and guide, Prof.A.A.Deshpande, who has been my source of 

inspiration and particularly for the freedom and help I have enjoyed under his guidance throughout this work. 

I am thankful to Prof.N.V.G.Sarma, Prof.G.Srinivasan and Prof.D.K.Ravindra for their 

encouragement at various stages of development of the instrument and to Prof.Dipankar Bhattachatya., for 

many useful discussions during pulsar observations. I am highly obliged to Prof.V.Balasubramanian and 

Prof.S.Ananthakrishan, for permitting me to install the instruments and carryout various tests at the ORT and 

GMRT respectively, and the observatory staff, for providing timely support which have helped to complete 

the tests quickly. 

I am thankful to Markandey~1u.G.~ Madhu Girimaji, Sindhu and l3aghavendra.N.G. for their help in 

the fabrication and testing of the Pulsar Search Pre-processor and Prabu.T. for his help in interfacing the 

array-combiner to the pulsar search pre-processor and conducting the associated field tests. Many thanks 

are due to Raghavendara.S.P., Srivani.K.S., Uday Shankar.B.K. and Madhavi.S. for their help in fabrication 

and testing of the Signal Processor for Pulsar Studies. I am grateful to my friend B.Sridhar who stood by me 

at all times and helped tirelessly during various stages of fabrication and testing the systems. 

Special thanks are due to Mrs. Mamtha Bai for promptly typing the contents of this thesis, Mr. 

Gopalkrishna for carefully correcting the typographical errors and to Ms.Srivani, Mr.Uday Shankar and 

Mr.Raju Verghese for their valuable help in making the drawings and photographs. I am highly obliged to 

Ms.lndrani, Prof.Deshpande and Pr0f.N.V.G. Sarrna for their critical reading of this thesis. I thank 

Mr.Rathnakar and the library staff for providing excellent library facilities. 

My inexpressible gratitude is due to my parents Smt. Nagarathna and Sri. P.N. Sachidananda, my 

wife Anitha and my four-year-old son Adivandhya, without whose love, affection, encouragement and 

cooperation, this work could not have been possible. 



During the past thirty years of Pulsar research, several sensitive observations experiments have 

been conducted to discover pulsars and study their properties in detail. The current sensitivity limit is about a 

milliJansky for Pulsar searches and much better for pulsar studies. To reach this sensitivity, the surveys use 

low frequency telescopes with large apertures, large R.F. bandwidth and the observed time sequence is 

folded with the pulsar period for several thousands of periods. It is also required to removb the effects of 

dispersion, Faraday rotation and Doppler acceleration and integrate the power in time and frequency for 

maximizing the sensitivity. The data rate of the digitized samples at the output of these receivers runs into 

several tens of Mbytes per second, and the offline-processing jobs demand high through-put (several giga- 

operations-per second), making it extremely difficult to store the raw data of large bandwidths and do the 

processing later with presently available computers. In practice, a hybrid solution is sought using dedicated, 

real-time processing instruments to perform specific real-time processing tasks so as to reduce the data rate 

and size and thus the offline processing load. So far, such instruments have been limited in their flexibility to 

handle different types of pulsar observations and cater to small bandwidths(typical1y a few MHz). The first 

part of the work presented in this thesis (chapters 2, 3 and 4) describes in detail the design and development 

of a 'real-time signal processor " to be used in pulsar search and different types of pulsar studies. The 

instrument is designed primarily for use with the Ooty Radio Telescope and the GMRT radio telescope and 

perform the above mentioned operations over dual, orthogonal-polarization data samples of 512 frequency 

channels covering a maximum bandwidth of 32MHz. The digital design exploits the advantages in using look- 

up-tables, reprogramable logic circuits and DSP chips to provide full programability and a modular 

architecture so that the bandwidth can be scaled from 1 MHz to 32MHz and interfaced to work with any other 

telescope. The optimizations used in the signal processing algorithms and the associated software 

development are discussed. 

During the real-time processing, it is desirable to know the amount of Faraday rotation due to the 

ionosphere with reasonable accuracy. For real-time estimation and correction of Faraday rotation, a 

possibility of using pulsars themselves as probes of the ionosphere is investigated. Suitable signal processing 

methods for measuring the rotation measure (RM) of pulsars with a single polarization telescope are 

developed. The second part of the work presented in this thesis (chapter 5) discusses these methods and the 

results of observational tests. 

This thesis is concluded with a discussion of the current status and future scope of this work. Even 

though the signal processing system is designed primarily for pulsar work, parts of this machine will be suited 

for several other signal processing applications. Some of such applications are highlighted towards the end 

of the chapter. 
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