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Optical propertiesof magnetically doped cholesterics

by YUVARAJ SAH, K. A. SURESH* and G. S. RANGANATH
Raman Research Institute, Bangalore 560080, India

(Received 4 October 1992; accepted 16 February 1993)

We have computed the optical diffraction pattern for linearly polarized light
incident normal to the twist axis (phase grating mode) of a magnetically doped
cholesteric (ferrocholesteric). The intrinsic Faraday rotation of the magnetic
grains results in extra orders of diffraction. Also we find diffraction for any
azimuth of the incident vibration. Further, using the Jones N matrices we have
worked out the optical properties for light propagation along the twist axis on
the very low wavelength side of the reflection band. We find that the medium
behaves very differently from a normal cholesteric.

1 Introduction

Cholesteric phases in which magnetic grains are suspended have become import-
ant in recent times. Cholesteric phases of rod-shaped molecules in which needle-
shaped magnetic grains are aligned along the local director have been realized in the
laboratory. There are systems with grains having magnetization parallel to the local
director [1] as wel as magnetization perpendicular to the local director [2]. The
former will give riseto a magnetically doped cholesteric (ferrochol esteric) phase with
magnetization gradually twisting with the local director much like a helimagnetic
system and in the latter case we get the same phase with the magnetization of the
grains parallel to the twist axis. Since these grains can even be optically transparent
(for example garnets), their inherent Faraday rotation becomes very important.

The rotatory power due to magnetic grains depends on the direction of
propagation of light with respect to the magnetization m and is given by

p=pB|m| cos 8=p, cosf

where g isa constant and 6 is the angle between m and the direction of propagation.
This dependence of the Faraday rotation on 6 leads to optical properties which are
very different from those of the normal cholesterics. We have tried to bring out
salient differences between the magnetically doped cholesterics (MDCs) and normal
cholesterics.

In §2 we have considered linearly polarized light propagating perpendicular to
the twist axis (phase grating mode) of MDCs. The optical periodicity for such a
medium is P, the pitch, instead of P/2 asin cholesterics. This modification of the
periodicity gives rise to extra orders (odd orders) of diffraction in addition to those
orders (even orders) obtained in cholesterics. In this sense the diffraction pattern is
very similar to that of a S¥ phase[3, 4].

In §3 we have worked out the properties of the medium for light propagation
along the twist axis, far away, on the lower wavelength side of the reflection band.
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We find that depending upon the sign of optical rotation, the medium can act asa
Mauguin retarder or a de Vries rotator.

2. Light propagation perpendicular to the twist axis
2.1. Theory

We consider the magnetization m of the grains to be parallel to thelocal director.
We further assume that the medium is locally uniaxial about the local director. The
linearly polarized light incident on the medium will seea variation of refractive index
along Z, the twist axis, so that the incident plane wavefront emerges as a periodically
corrugated wavefront with fluctuations in azimuth and dlipticity of the state of
polarization. As linearly polarized light travels along any layer it splits into two
orthogonal dliptic vibrations. The refractive indices of the medium for these two
cilipuc vibrations are given by [5]

= [(m()wm) ‘(\/[(m(Z) 1,(2)?
}

3= 2[(m(:) +1.2))+ ‘(\/ [(n.(2)—n,(2)*+4%])

where

na(2)= cos? (oc) N sinzz(a)’

1 n;

n (s)—nl
Herex=(2n/P)z, and n,, n, are the refractive indices along and perpendicular to the
local director in the absence of Faraday rotation.

The parameter 7 is related to the rotatory power p of the medium by the relation

Here 4 is the wavelength of light and 7 is the mean refractive index of the medium.
These dliptic vibrations have ellipticity given by

1 2
a)R=§tan‘1 l:” _y” ] and o,=mn/2—w.
i 4

The dlliptic vibration can be mathematically resolved at each point of the emergent
wavefront into two linear vibrations polarized along and normal to the twist axis.
This results in two periodically corrugated, orthogonally linearly polarized wave-
fronts given by

U (2)=A,(z) exp [y (2)],
and
U,(z2)=4,(2) exp [iy (2)],

where A,(z) and A4,(z) are the amplitude fluctuations and ¥ (z) and y,(z) are the
phase fluctuations of these wavefronts, respectively. We assume that the wavelength
of the corrugation islarge compared to itsamplitude. The diffraction patterns due to
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these two wavefrontsare given by their individual Fourier transforms. The complete
diffraction pattern is obtained by coherently adding the diffraction pattern due to
the two wavefronts.

2.2. Results and discussion

Using the above theory we have computed the diffraction pattern for experimen-
tally realisable parameters.

The Faraday rotation due to the magnetic grains results in diffraction for any
azimuth 4 (with respect to the twist axis) of the incident, linearly polarized light,
unlike cholesterics where it occurs only for 0<¢ <n/2. Also the MDC has a
periodicity of 2z due to the magnetization m which will result in extra orders of
diffraction. Wefind that for ¢ =0 or =n/2 the odd orders are linearly polarized in the
state orthogonal to that of the incident light whereas the even orders are linearly
polarized in the same state as that of the incident light. We also find that for any
other general azimuth 4 in the range 0 <¢ <n/2 the odd and even orders are in
general dliptically polarized.

The computed diffraction patterns with intensity as a function of scattering
vector are shown in figures | (a), (b), 2(a) and (b). Each set gives patterns
corresponding to a given value of the Faraday rotatory power p and for ¢ =0, n/4
and n/2. We find the interesting result that the intensity of any odd order is
independent of the azimuth of theincident light and only varies with p. The Faraday
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Figure 1. Computed diffraction pattern in a MDC showing intensity as a function of
scattering vector gq for A=0633 um; Arn=0-07, n,=1535, n,=1.605 P=5pm:
sample thickness (t)=20pm. For (&) p,=192x10 radem™', and for
(b) po=3-84 x 10®radcm 1.
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Figure2. Computed diffractionpattern for the same vauesof 4, An, n,, n,, Pand t given
figure 1. For (a)p,=192x10?radcm~!, and for (b)p,=0, i.e. @ normal cholestcric.

rotation not only results in extra orders but also alters the intensities of the even
orders as can be seen from the figures. All these features are seen even at extremely
low values of p (see figure2(a)). It should be noted that in the diffraction patterns
calculated for higher values of p, the intensities of the higher orders grow at the
expense of lower orders (see figure 1 (a)). For comparison we give in figure 2(h)the
diffraction patterns for zero Faraday rotation (i.e. a normal cholesteric). Asis to be
expected, in this case the odd orders do not exist at all for any value of ¢ and for
¢ =0 the entire pattern degenerates to the zeroth order. We would like to remark
that in many respects the intensity and polarization features of the odd orders of
diffraction pattern are very similar to those found for the Sg phase [3].

3. Light propagation paralle to the twist axis
3.1. Theory
In this case we assume that the magnetic grains are parallel to the local director
but with m along the twist axis. The medium at any point acts as a linearly
birefringent plate having Faraday rotation.
In the Jones matrix formulation, the N matrix for such a plate is given by [6]

N —ik +igg —p
Lo —~ik—igq |

where 2g, is the phase retardation per unit thickness, k is the wave vector in the
medium and p is the Faraday rotatory power. We assume the medium to be twisting
along the Z axis. Then the N matrix of a layer at z is given by
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N =5(¢02)N,S(—¢02),
where go = 2n/P,

€0S oz  —Sin gy 2
S(qo2)=| .
SiNgez  COSgyz

so that the Jones M matrix for the entire sample can be written as
M =S5(402) exp [{No— 40 S(n/2)}z].
If the electric vector of the incident light is

E,
E= ,
E)'

then the emergent electric vector is given by

E; E,
E': :M :ME.
E, E,

3.2. Results and discussion
321 Casel
lp—qol > |gol With p and ¢, of opposite signs (i.e. when the direction of
propagation of light is opposite to that of m). Then

M =exp (ikz)S(pz).

The medium, to a very good approximation, acts as a pure rotator, i.e. there will be
arotation in the plane of polarization of the incident light entering the medium.

322 Case?2
[(p—q0)| <€|go] With p and q of the same sign (when the propagation of light isin
the same direction as that of m). Then

TR it | I

Sin g,z COSqq2 0 exp (—igoy2)

This leads to Maugin’s solution, i.e. the incident vibration splits into two linear
orthogonal vibrations polarized along and perpendicular to the local director. As
these vibrations travel they follow the director asin a twisted nematic.

Therefore depending on the propagation of light along or opposite to the
direction of m the medium can act as a Mauguin retarder or as a de Vries rotator,
respectively. For example, this happens for a MDC of pitch~30um.,.
Po~2.0x103radcm™* and birefringence An=0.025. Such a medium between two
appropriately aligned polaroids can act as an optical diode, i.e. transmitting light in
one direction and blocking it completely in the opposite direction.

Interestingly, the condition |(p —¢,)| > g,/ need not imply that |¢g,! > |go!. Here
this condition can also be satisfied for small values of ¢, i.e. for large values of
pitch. Thus the existance of Faraday rotation can lead to a de Vries limit even for a
medium of large pitch. Thisis contrary to the case of normal cholesterics where the
de Vries limit is reached only for very small pitch values.
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Further the condition |(p—g,)| <|ge| does not mean that |g,l <|gol. In fact
lg0] > 19, 1S also possible. In this situation, in the absence of Faraday rotation, the
solution will not go over to Mauguin's limit, but to the de Vries limit [7].

The authors would like to thank Sunil Kumar for discussions. Our thanks are
also due to the referee for suggestions.
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We consider theoretically light propagation at oblique incidence in absorbing cholesteric liquid crystals in
the Bragg mode. Using 2 X 2 matrix procedure, we analyze the eigenmodes in terms of the forward- and
backward-propagati ng el genwavesinside the i sotropic medium bounding the cholesteric liquid crystal. The na-
ture of the eigenmodesin the medium changes continuously from the circular to the linear state with increase
in the angle of incidence. Using the appropriate eigenmodes, we studied anomalous transmissionin first and
second Bragg ordersin these systemsand its relevance to the reported experimental results. Wefind somein-
teresting polarization features that arise as a result of the absorption in the cholesteric medium.

INTRODUCTION

The cholesteric liquid crystalline phase (cholesterics) hasa
locally birefringent structure that twists uniformly about
aparticular direction. Theoptical propertiesaf cholester-
ics have been studied extensively both theoretically and
experimentally.”® The helical structure of the phase
gives rise to many interesting optical properties, namely,
selective Bragg reflections, non-Bragg total reflection,
and anomalous transmission i n absorbing cholesterics.

Anomalous transmission at normal incidence has been
studied theoretically and confirmed experimentally.>® A
related effect at oblique incidence was studied by Endo
et al.’ Theseauthorsfound that anomal ous transmission
occurs only at small angles of incidence, i.e., below 19°.

Here we undertake theoretical studieson light propaga
tion at obliqueincidencein absorbing cholesterics that are
aligned in planar geometry (the twist axis perpendicular
tothesample plane). Our computations show that the na-
tureof the eigenmodes inside theisotropic medium bound-
ing the cholesteric changes gradually from circular to
linear as we increase the angle of incidence. Since the
polarization of the eigenmodes changes with the angle of
incidence, one must choose an incident wave with proper
polarization to observe anomalous transmission. Thisis
the main reason that Endo et al.? did not observe the ef-
fect experimentally at large angles of incidence.

It is well known that higher-order reflection bands
occur when light isincident obliquely to the planar
cholesteric.®2  We have also worked out the effect of ab-
sorption on the second-order reflection band.

THEORY

According to Oseen's model of cholesterics, the dielectric
tensor for the cholesteric is given by

etscos22 6sin2pz O
" 8sin 2Bz e — 6cos 2Bz 0
0 0 é2

e= (&1t £2)/2, 6 = (&1 — £5)/2, and B = 27/P, where Pis
0740-3232/94/020740-05$06.00

the pitch of the medium and &, and &, are the principal
values of the dielectric tensor.

In Berreman's 4 X 4 matrix formulation®® Maxwell's
equations can be written as

W) _ )\ ), @
0z c
where
E.
| H
Y(z) = E,|
—H,

A(z) isa 4 X 4 matrix that is periodic in z. E., E, and
H,, H, arethex and they components of the electric and
magnetic fields, respectively, with z being the propagation
direction.

Equation (Dcan be solved numerically for one pitch to
produce the propagation matrix F(z, P) for the cholesteric
medium. F(z, P) relates the field at the point (z + P) to
thefield at 2 given by

Yz + P) = F(z, P)Y(2). 2)

The eigenvectors & (wherej =1, 2, 3, and 4) of F(z, P)
correspond to the eigenfields of the four eigenmodes (two
forward and two backward modes). The eigenfield of the
particular eigenmode at any point z, situated at an infini-
tesimal distance h from z can be obtained by

& (z) = exp[i%A(z)h £(2). 3)

In computing the total intensity of the E field inside the
medium for the obliquely incident light, we have also con-
sidered the z component of the E field. The transmit-
tance and reflectance for incident waves of different
polarization are computed with use of the propagation
matrix for an integral number of pitches.

In an experimental situation the cholesteric is sand-
wiched between two glass plates (isotropic medium). Itis

© 1994 Optical Society of America
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convenient to analyze the transmitted and reflected
wavesin terms of the forward- and backward-propagating
modes inside the bounding isotropic medium. We use
Oldano’s transformation matrix T (Ref. 14) for the trans-
verse magnetic (TM) and transverse electric (TE) polar-
izations (with respect to the plane of incidence) to analyze
the reflected and transmitted waves. Weemploya 2 X 2
matrix procedure'® to analyze the eigenmodes in the
cholesteric medium (bounded by the glass plates).
One can write at thefirst glass-cholesteric interface,

V(2) = Toi(2), €Y

where
¢I(z) = ]

and at the second interface,
Y(z + nP) = T¢(z + nP), (5)

where
t;

¢z + nP) = tg .

0

Herei,, i, aretheincident, r1, r; are the reflected, and ¢,
ty are the transmitted amplitudes of the TM and the TE
waves, respectively, inside theisotropic medium, the num-
ber of pitches in the cholesteric medium being n.

Using Eq. (2) and the property of the propagation ma-
trix F(z,nP) = [F(z, p)]", for n pitches one can write that

W(z) = Fz,nP)y(z + nP). 6)

Using Egs. (4)-(6), we get
¢1(2) = Cos(z + nP), (N

where C = T™'F ™! (2, n P)T.
With use of Eq. (7) it followsthat

A Rt O Y R ST
tz lg I's 12}

The eigenvectors of Dy and D, represent the forward- and
the backward-propagating eigenmodes, respectively, in
theisotropic medium. These eigenmodes in the isotropic
medium bounding the cholesteric give us the waves that
areresponsiblefor forming the standing and the propagat-
ing waves inside the cholesteric medium. For example, at
normal incidence the eigenvectors of D, and D, are orthog-
onal circular waves. The resultant vibrations of these
waves gives rise to the linearly polarized standing waves
with E||H (Ref. 15) and a propagating circular wave. At
high angles of incidence these eigenwavesare linearly po-
larized. It isinteresting to note that these eigenwaves
are similar to the eigenwaves inside the cholesteric me-
dium calculated by Miraldi et al.,' which are circular at
normal incidence and predominantly linear at largeangles
of incidence. From Eg. (8) one can also compute the re-
flectance and the transmittance for TM and TE waves.

Vd. 11, No. 2/February 199415. Opt. Soc. Am. A 741

RESULTSAND DISCUSS ON

Throughout, we have assumed a right-handed cholesteric
medium. In our calculations we have chosen s; =
2.3228 t i % 0.0063 and &, = 2.5673 * i X 0.063 for the
absorbing cholesteric medium. The reflectance and
transmittance were computed for 25 pitches for different
values of P/A, where A is the wavelength of light.

Firs-Order Bragg Reflection

When the right circularly (RC) polarized waveis incident
normally upon a planar-aligned cholesteric, it experiences
enhanced transmission® in the short-wavelength side of
the Bragg band compared with theleft circularly (LC) po-
larized wave. The LC wave does not sense the helica
structure and hence experiences the average absorption of
the medium. Endo et al.? used RC and LC waves and
found that the anomalous transmission occurs only at
small angles. Since at these small angles the eigenmodes
deviate very little from the circular state, anomalous
transmission can be observed. For angles of incidence
6 > 30° the circular waves are no longer the eigenmodes.
Hence using these wavesat large anglesis not appropriate
while one is performing anomal ous-transmission exper-
iments. One has to choose the proper polarization of the
incident wave, which is the same as that of the eigenmode
of D, to observe anomalous transmission. At intermedi-
ate angles (30-55°) the eigenvectors of D, and D, matrices
depend on A even within the reflection band and are in
general elliptic. Experimental observation of the effect
at these angles can be difficult, asthe nature of the polar-
ization of the eigenmodes varies with both angle and
wavelength.

For large angles of incidence the eigenvectors of D; and
D, matrices are predominantly linear, and the nature of
the eigenmode does not change within the reflection
band. At these large angles for nonabsorbing cholesteric,
the Bragg band splitsinto three subbands. One can use
the TE and TM waves that are the eigenvectors of D, and
D, to study anomalous transmission in the absorbing
cholesteric medium. The propagation of the TE and TM
waves in the absorbing cholesterics is such that in the
short-wavelength region the TM wave that is reflected
more also shows an enhanced transmission. Thisis
shown in Figs. 1and 2.

We have calculated the dependence of reflectance and
transmittanceon the angle between the plane of incidence
and the director (major principal axis of the dielectric
tensor) of the cholesteric layer at the boundary. We find
that the dependence of the transmittanceon thisangleis
almost negligible, whereas the dependence of the reflec-
tance is pronounced, particularly for TE-TE polarization
as shown in Fig. 3.

I n nonabsorbing cholesterics in the non-Bragg reflec-
tion region, the reflectance is aways unity and is inde-
pendent of the polarization of the incident light. Our
results show that in the absorbing case the reflectivity in
thisregionis highly dependent on the state of polarization
of the incident light. One can understand this depen-
dence of the reflectance on polarization by looking at the
intensity of the electric field of the nonpropagating eigen-
modes computed from Berreman's 4 X 4 matrices.”® In
the absence of absorption the fields of the two nonpropa-
gating eigenmodes suffer attenuation to the same extent
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Fig. 1. Reflectance of TM-TM (solid curve), TE-TM (short-

dashed curve), TE-TE (long-dashed curve) waves for an ab-
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Fig. 2. Transmittance o TM-TM (solid curve), TE-TM (short-
dashed curve), and TE-TE (long-dashed curve) wavesfor an ab-
sorbing cholestericat 8 = 60°.
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Fig. 3. Peak reflectance (R,) for TM-TM (solid curve), TM-TE
(short-dashed curve), and TE-TE (long-dashed curve) as a func-
tion of a (in degrees), the angle between the plane of incidence
and the director of the cholestericlayer at the boundary.
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(seeFig. 4). But in the presence of absorption, the two
eigenmodes experience the absorption of the medium
differently and one eigenmode gets attenuated morethan
the other. Hence the reflectance becomes polarization
dependent.

Second-Or der Bragg Reflection

In the nonabsorbing cholesteric, as in the first-order re-
flection, the second order reflection aso has three sub-
bands. Wefind that in the absorbing cholesteric the T™M
wave experiences less attentuation throughout the band
and is transmitted more than the TE wave. In fact, the
transmittance isamost zero for the TE wave (seeFig. 5).
For comparison, the reflectance for TE and TM wavesis
showninFig. 6. Wefind that in thisorder the anomalous
transmission for the TM wave that occurs at the short-
wavelength regionis not so pronouncedasit isin thefirst
Bragg order.
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Fig. 4. Intensity of the E field of the two nonpropagating modes
in the non-Bragg region for nonabsorbing (long-dashed curve)
cholesteric as a function of number of pitches (in this case the
two modes are attenuated by the same amount) and the intensity
of the E field for the same two modes (solid and short-dashed
curves) in the same region for the absorbing cholesteric medium
at 6 = 60°.
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Fig. 5 Transmittanceof TM (solid curve) wave for an absorbing
cholestericat & = 60° in the second-order Bragg reflection. The
dashed vertical lines indicate the region of anomalous transmis-
son. Here the transmittance for the TE waveisamost zero.



Y. Sah and K. A. Suresh

0.02
=
: -~
<t Ve \
3 < \
m0.01 4 -~
P | -
2 \
= \
\
\
\
------ ~ -
0.00 T
2.4 2.5 2.6

P/N

Fig. 6. Reflectance of TM-TM (solid curve), TE-TM (short-
dashed curve), TE-TE (long-dashed curve) wavesfor an absorbing
cholesteric at 8 = 60° in the second-order Bragg reflection.
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dashed line represents the transmittance of the same wave
through a medium that has an absorption coefficient given by
[Im(Ve1) T Im(Vee;))/2 for the same 8

Optical Analogueof the Borrmann Effect

We now consider the optical analoguedf an interesting ef-
fect in x-ray diffraction of crystals. X raysincident upon
a nonabsorbingcrystal set at the Bragg angle undergo re-
flection, and hence the transmitted wave suffers attenu-
ation. When an absorbingcrystal is at the Bragg setting
one expects further attenuation in the transmitted wave.
Borrmann found an enhanced transmission that was
more than the transmission that is due to average absorp-
tion aone of the crystal not at the Bragg setting. This
phenomenon of anomalous transmission is called the
Borrmann effect.”

In the optical region, for absorbing cholestericsthe RC
and LC wavesincident normally upon a planar cholesteric
are the eigenwaves. Here the LC wave does not experi-
encethestructure, and it experiencesaverage absorption.
Hence the anomalous transmission of the RC wave can be
compared with the LC wave, and it is a clear analogue of
the Borrmann effect in x rays. At high angles of inci-
dence both eigenwaves, TE and TM, experiencethe struc-
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ture, and therefore the transmitted intensity of these
waves cannot be compared analogoudy with the Borrman
effect. Therefore we take a value of the absorption coef-
ficient equal to [Im(Ve;) T Im(Ve,)]/2 that is experi-
enced by the LC wave at normal incidence. Using this
value, we calculate the transmittance at obliqueincidence
for the TM waves through an isotropic medium. Thisis
anaogous to the transmittance o the x rays through an
absorbing crystal not at the Bragg setting. We compare
this transmittance with the transmittance of the TM
wave through the cholesteric medium and bring out the
anaogy with the Borrmann effect. Wefind that the T™M
wave is anomaloudy transmitted over the entire Bragg
band, exhibiting the Borrmann effect (seeFig. 7). This
effect is aso found in the second-order Bragg reflection.

Anomalous transmission at oblique incidence is sensi-
tive to the polarization of the incident light. Also, at
large angles when a TM wave is incident upon a planar
cholesteric, anomalous transmission occurs in the short-
wavelength region o the Bragg band. Only careful ex-
perimental studies on absorbing cholesterics at oblique
incidence will give more insight into the phenomenon of
anomal ous transmission.
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Optical Diffraction in Chiral Smectic-C Liquid Crystals
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We report a study an the optical diffraction for light propagation perpendicular to the twist axisin the
chiral smectic-Cliquid crystal. In this phase grating mode, we find very unusud intensity and polarize-
tion features in the diffraction pattern. These observed features can be explained by invoking the theory
d anisotropicgratings which takes into account the internal diffractions.

PACS numbers: 42.70.Df, 42.25.Fx

The chiral smectic-C (S¢») liquid crystal phase has a
helical stack of layers of uniformly tilted molecules. The
tilt of the molecules is coupled to the layer thickness pro-
ducing local biaxiality in the medium. The chirality in
the -medium removes the mirror symmetry in the system
leading to the possibility of sustaining an electric polar-
ization P (along the loca twofold axis), spiraling uni-
formly about the twist axis of the helical structure.
Meyer et al. [1] discovered the existence of ferroelectrici-
ty in Sc.. Technologically, S« became very important
after Clark and Lagerwall [2] demonstrated the submi-
crosecond dynamics and other related properties like
symmetric bistability, threshold behavior, and large
electro-optic response that are exploited in the fast
switching display devices. Further, studies on pyroelectri-
city [3], shear induced polarization [4], electroclinic
effect [5], second harmonic generation 6], and other phe-
nomena [7} have established the rich physical properties
exhibited by Sc«. In addition, S« has many interesting
optical properties. These arise due to the fact that in the
successive layers, the local index ellipsoid (triaxial ellip-
soid) spirals uniformly about the twist axis at a constant
angle. The study of propagation of light in the Bragg
reflection mode has shown some distinct optical polariza-
tion properties peculiar to this phase [8-11]. The study
of propagation of light perpendicular to the twist axis is

equally interesting, but hasdrawn very little attention. In
this geometry, the medium acts as a phase grating; i.e.. a
plane wave front incident on the sample becomes a
periodically corrugated wave front inside the medium re-
sulting in optical diffraction. So far, optical studies in
this geometry have been largely confined to the deter-
mination of the pitch of the structure [12]. We have un-
dertaken a study of the propagation of light in S+ in the
phase grating mode in al its details.

In this Letter, we report for the first time some unusual
features of diffraction associated with the phase grating
mode in Sc--. We observed that in a range of sample
thicknesses, the diffracted light in all the orders was pref-
erentially polarized parallel to the twist axis. Further, in
thicker samples, although the above features were seen at
lower temperatures, at higher temperatures the diffracted
light in al the orders was nearly polarized perpendicular
to the twist axis. These observed features contradict the
predictions of the Raman-Nath theory of phase gratings
[13} as extended to S« [14] where the wave front corru-
gations inside the medium are ignored. It is shown here
that a rigorous theory of anisotropic dielectric gratings as
developed by Rokushima and Yamakita (RY) [15] can
account for our observed features.

The experiments were carried out on the commercially
obtained sample BDH SCE-6. This has the following se-
guence of transitions:

Crystal — S¢» < Smectic-A < Cholesteric < |sotropic
C 63°C 84°C 120°C

—15°

To get monodomain samples suitable for phase grating
geometry, the following procedure was employed: Sam-
ple cells were prepared using glass plates which were pre-
vioudly treated with polyimide and rubbed in the parallel
direction. Cells of thicknesses 23, 50, 125, and 250 um
were obtained using Mylar spacers. Later, the cells were
filled with the sample in the isotropic phase and then
cooled very slowly through the cholesteric to smectic-A
(S.4) phase in the presence of a magnetic field of strength
2.4 T applied paralel to the rubbed direction of the glass
plates. In the S, phase, the field was removed. Observa-
tions under a Leitz polarizing microscope revealed the
formation of a very good homogeneous monodomain S 4
phase which on further dow cooling transformed to the
Sc+ phase. In S« we got a pattern having uniform

0031-9007/94/72(18)/2863(4)$06.00

parallel striations (fringes). The striations were perpen-
dicular to the rubbed direction of the glass plates and
were parallel to the smectic layers. They arise due to a
uniformly twisted stack of layers (of tilted molecules)
with the twist axis aong the rubbed direction. The fringe
width corresponds to the pitch of the helical structure
[12]. In SCE-6, the pitch varies from about 4 to 6 um in
the temperature range of 25°C to 60°C. For samples of
thicknesses much lower than 23 gm, due to the surface
effects, the helical structure got considerably distorted
and hence was not used. In the experimental setup, the
cell was kept on the central table of a goniometer which
had a 2 mW He-Ne laser (A =0.6328 pm) on the fixed
arm. The light was alowed to fall normally on the sam-

2863

© 1994 The American Physical Society



VOLUME 72, NUMBER 18 PHYSICAL REVIEW LETTERS 2 MAY 1994
540 = H-H
- o
— (a) o H-V e
(a) .f_g V-H o
= V=V u
=
2270
(o]
St o
=
~
(b) 5 °
= °
. o e a O
0.—ﬁ+ﬂ Y n n N
-4 -3 -2 -1 O 1 2 3 4
200
(c) § (b)
;2‘ (o]
C
= o o
2100 o
g
(@) = ¢
S [s]
o [u]
= : [] d
| ]
L 1 0_'3 _2 2 3

-4 -3 -2 -1 0 1 2 3 4
DIFFRACTION ORDER

FIG. I. The photographs of the diffraction pattern of a 50
p¢m sample a room temperature (= 25°C) in (a) HH, (b) HV.
(¢) VH, and (d) vV geometries. One may note that in (c) the
second order is more intense than the first order. Such effects
are characteristic of phase gratings. In S.», they are sensitive
to temperature.

ple cell. The diffracted light was collected on a photo-
diode mounted on the moving arm and measured with a
Keithley 181 nanovoltmeter. Simultaneously the signal
was fed into a Graphtec servocorder.

In our experiments, for incident linearly polarized
light, we got sharp diffraction spots. Typically there were
6 to 7 orders on either side of the direct beam. Figure |
shows one such diffraction pattern in the geometries HH.
HV, VH, and VV. (H denotes linear polarization parallel
to the twist axis and V denotes linear polarization perpen-
dicular to the twist axis. The first symbol indicates the
state of polarization of the incident light and the second
symbol indicates the polarization state in which the
diffracted beam was analyzed.)

Figure 2 shows the measured diffracted intensity in the
various orders (except the zeroth order) for 50 and 250
um sample thicknesses. Surprisingly, the intensity in the
HH geometry (open circles) is very much higher than the
intensity in the HV geometry (closed circles) for all or-
ders. Also the intensity in the VH geometry (open
squares) is higher than that in the VV geometry (closed
squares). That is, in al these orders, the diffracted light
is nearly linearly polarized parallel to the twist axis. In-
terestingly, this behavior is observed in samples of thick-

-1 0 1
Diffraction Order

FIG. 2. Theintensity | (arbitrary units) in the diffraction or-
ders shown for various geometries for two samples: (a) thick-
ness=50 pm and temperature=50.6°C: (b) thickness=250
um and temperature =45.5°C. Here one may notice that in
every order /(HH) > I(HV) and I(VH) > I(VV). The intensi-
ty of the direct beam is too high to be shown here. The asym-
metry in the intensity pattern for some orders is due to dight
imperfections in the orientation of the sample.

ness 23 and 50 um at all temperatures. For 125 um the
same behavior is also seen at all temperatures except in
the neighborhood of the S-«-5,; transition. However, in
the sample with a thickness of 250 um, a more interesting
behavior is found. At temperatures <46 °C the intensity
and polarization features are the same as that described
above, But at higher temperatures, the behavior gets
completely reversed. This is shown in Fig. 3. Here the
intensity of the diffracted light in the VV geometry be-
comes more intense than the intensity in the VH
geometry. Also the intensity in the HV geometry is more
than that in the HH geometry: i.e.. in this case, in all
these orders, the component of the diffracted light per-
pendicular to the twist axis is more than the component
parallel to the twist axis. However, in all these
geometries. in al the samples, the zeroth order is in a po-
larization state close to that of the incident vibration. We
have shown data on two samples [Figs. 2(a) and 3l of
different thicknesses (50 and 250 uym) but at the same
temperature (50.6°C) to highlight their contrasting be-
havior.

The above results cannot be accounted for by the
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theory [14] of the optical diffraction in S« which as-
sumes that in the corrugated wavefront, inside the medi-
um, the amplitude of the corrugation is much smaller
than the wavelength of the corrugation; i.e., the internal
diffractions are ignored. This assumption is valid only in
the limit of low birefringence and small thickness. How-
ever, in the present case, the material has a high bire-
fringence and the sample thicknesses are large. Hence
we have used a more rigorous theory of anisotropic
dielectric gratings due to RY [15] which incorporates the
internal diffractions within the medium.

Following RY [15] and Galatola, Oldano, and Sunil
Kumar [16], the Maxwell equations are written in the
form
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FIG. 3. Theintensity | (arbitrary units) in the diffraction or-
ders shown for various geometries for a 250 pm sample at
50.6°C. One may notice that in every order I(HH) <I(HV)

v(z) =explikozD)¥(0) , ) ad 1V < 1OV,
where
¥ =(ExH,E H.)' E., E,, H,, and H, are infinite column matrices contain-
and ing the various Fourier components of the transverse
fields and » is the wavelength of light. The propagation
ko=2n/x\. matrix D for our problem simplifies to an infinite square
J matrix:
0 I 0 0
Exx ~ ExzEz; stz Y 20 Exy — ExzE2z Igzy —&x: &z IQ
D= - - -
- ngz Igzx 0 - ngz Igzy 1= Qszz IQ
Eyx — syzgz-z. I8zx 0 Eyy 8yz£z; l“:zy - syzez; IQ

Here, &, etc. are themselves infinite square matrices.
The ijth element of the matrix &, etc. is the (i — j)th
Fourier component of the &,., etc. element of the dielec-
tric tensor . Q is an infinite diagonal matrix with ele-
ments qo+ ng, where g is the incident wave vector in the
bounding isotropic medium and q is the grating wave vec-
tor with n going from — oo to c=; | is the infinite unit ma-
trix.

To compare the theory with the experimental results it
is convenient to work in terms of the modes in the bound-
ing isotropic media. If @ is a vector whose components
are the strengths of the different modes in the bounding
isotropic media, then Eq. (1) becomes

o(z) =So(0) , )

where S is the scattering matrix whose components are
functions of the material parameters. The vector ®(0)
contains the reflected ¢, and incident &; components,
while ®(z) contains the transmitted component &, [16].
A suitable rearrangement in the elements of the ¢ vector
leads to

O, =RD;, O, =Td;, 3)

where % and T are the backward and forward scattering
matrices, respectively.

It was sufficient to have the Fourier components up to
n=>5 in the dielectric tensor and also to assume local
uniaxiality. Computations with higher Fourier com-
ponents and biaxiality did not alter our main results.
Figure 4 shows the computed results. Here the intensity
of the first order is depicted as a function of sample thick-
ness in the different geometries. The intensity in the HH
geometry, in the thickness range 50 to 200 gm, is more
than that in the HV geometry [Fig. 4(a)], whereas the in-
tensity in the VH geometry is throughout more than that
in the VV geometry [Fig. 4(b)]. This is in accordance
with the observed results shown in Fig. 2. Further, Fig.
4(a) shows that around 250 ym the intensity behavior in
the HH and HV geometry can get reversed. This ex-
plains the contrasting behavior in the HH and HV
geometries of the 250 um sample at 45.5" C [Fig. 2(b)]
and at 50.6°C (Fig. 3). However, the observed results in
VV and VH geometries of the 250 ym sample at 50.6 °C
are not in accordance with the computed results shown in
Fig. 4(b). Also, our observed results for 23 um, at al
temperatures, show the HH component to be greater than
the HV component and this is not in accordance with the
result shown in Fig. 4(a). It may be pointed out that the
computations shown in Fig. 4 are for one set of material
parameters. These parameters are sensitive functions of
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FIG. 4. The normalized intensity | as a function of sample
thickness d (um) for different geometries in the first order. In
these computations, the following material parameters of SCE-
6 have been used: birefringence =0.18, pitch=5 ym, and tilt
angle=18°.

the temperature. It was found that the theory can yield
qualitatively all the above observed results by a proper
choice of material parameters. Also, the computations
show that the RY theory can account for the observed
polarization features of the zeroth order as well as those
of the higher diffraction orders.

The other interesting feature in Fig. 4 is the appear-
ance of modulations. These modulations in the diffracted
intensity can be interpreted as being due to the different
orders of scattering. This can be shown by using a per-
turbation theory [16] where the z-dependent (the propa-

gation direction) part of the dielectric tensor 1s treated as
a perturbation over an effective anisotropic homogeneous
medium

In conclusion, we have experimentally studied, lor the
first time, the polarization and Intensity fedtures d the
diffraction in the phase grating mode in S¢»  The ob-
served results are very surprising and interesting and
these can be accounted for on the basis of the RY theory.
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FIG. 1. The photographs of the diffraction pattern of a 50
um sample at reom temperature { == 25°C) in {a} HH. (b} HV,
(¢) VH, and (d) V'V geometries. One may note that in (c) the
second order is more intense than the first order. Such effects
are characteristic of phase gratings. In S¢s, they are sensitive
to temperature.
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Abstract

Optica diffraction from Fibonaca sructures has been sudied. We find that in a latice with absorbing dements it is
asymmgric. In the diffraction from a phase grating, intense orders cannot dways be indexed with a successve pair o
Fbonaca numbers Bragg reflection spectradt multilayersdepend an sample thickness and absorption and are different for

isomorphic multilayers.

1. Introduction

Since the discovery of quasi-periodic materias by
Shechtman et a. [1] the subject has attracted a lot of
attention. The pioneering works of Levine and Stein-
hardt {2], and Socolar and Steinhardt [ 3] on quasi-
periodic tilings have led to many new insights into
the structure of such systems. In the beginning, it
was only by electron and X-ray diffractionsthat these
structures were studied. But in recent times quasi-
periodic gratings and multilayers [4,5] have indeed
been made in the laboratory [6,7]. This has led to
the study of their optical properties. Self-similarity in
thereflection-band [4], localization of light [4,7] and
power law transmittancewith a critical exponent [ 6]
are some of the interesting features associated with
such systems.

In this paper we have worked out the optical prop-
erties of some new types of quasi-periodicstructures
which appear not to have been considered so far. We
have confined ourselves to three types of structures
viz, amplitude gratings, phase gratings and multilay-
ers. In each case we find some new and interestingef-
fects. In the case of amplitude gratings we have consid-

ered optical analogues of quasi-periodiccrystals with
a Fibonacci sequence in the atomic form factor and
interatomic distances. Possibilitiesof such structures
which are accessiblein the X-ray region have not been
looked into so far. In the case of quasi-periodically
stacked multilayerswe have addressed ourselvesto a
quasi-periodic helical stack of birefringentlayerssuch
as cholestericliquid crystals. Thisis of relevance to
the understanding of the Blue phase III which exists
in some cholestericliquid crystals before the structure
meltsinto an isotropicliquid [8,9].

2. Structure of quasi-periodiclattices

We consider a quasi-periodic structure constructed
according to aproceduredueto Levineand Steinhardt
[2]. The Nth latticepoint of the quasi-periodiclattice

isgiven by
Xv=(N+a+h[hN+ BDI, (1)

where a and B are arbitrary real numbers, £ is an irra-
tional number and p; is an integer. Here [ ] means that

we takeonly the greatest integral vaue of theterm in-
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side the bracket. For h = 0 the structure becomes peri-
odic witha spacing |. For 1/h = (+/5+ 1) /2 the dif-
ference Xy+1 — Xy Will beoneof the two incommen-
surate lengths 7, and 12 such that I, = (h + . The
two lengths /; and I, occur according to the Fibonacci
sequence (FS). For any other value of h we get an
entirely different sequence. Changesin the valueof a
results in the shift of the lattice. Different values of
B generate different FSs and these sequences are lo-
caly isomorphic (2], i.e., arbitrarily large regions of
the two sequences can be made identical.

The standard FS can aso be generated using an
iterativemethod [4]. The jth sequenceis given by

Mj=(M;_,M;_,), (2)

with Mo = (81) and M; = (S;) where §; ad S,
are the two distinct elements of the FS. For exam-
ple My = (8:,81), M3 = (8,5,8%) and M; =
(82,81, 8,52, 81). Itis worthmentioning herethat in
thisprocedureit is not possibleto generate isomorphic
FSs.

3. Diffraction pattern
3.1. Amplitude gratings

Optica diffractions in quasi-periodic amplitude
gratings have been studied both experimentally and
theoretically by Tanibayashi [10]. He found that the
diffraction pattern has not only a rich structure but
is also self-smilar. We consider here two different
types of quasi-periodic amplitude gratings not so far
considered by others.

The first type of grating is a sequence made up
of two dlits of widths §; and §; (which are in-
commensurate) occuring according to the usual FS,
but on a periodic lattice with an edge to edge sep-
aration of D, ie. the sequence of the elements
is $1,D0,%,D,$,D,5,D,S$,,.... This structure is
rather anal ogousto aone-dimensional periodiccrystal
with FS in atomic form factors.

In the second type of grating, the dlit width S
as wdl as the edge to edge separation D between
neighbouring dlits occur in aFS, i.e., the sequenceis
S$1,01,82, D3, 8y, Dy, 81,D1, S, .... Also the two dlit
widths $; and S,, as well as the dlit separations D,
and D, are considered to be incommensurate. Thisis

(a) ()
100 ~——~——h 100 T
r ] }
104} 3 101
£ |
£ |
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: 1 ‘ l
RETIRN [Im ld]llH'
05 l 0 I 5 0y 0 5
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Fig. 1. Thediffraction pattern for quasi-periodicamplitudegratings
(a) for the sequence 81, D, $2, D, 81, D, $1, D, $a, ... (b) for the
squence $1, D1, 82, D2, 1. Dy, $1. D1, Ss, ...

anaogous to a one-dimensional quasi-periodic crys-
tal in which atomic form factors and the interatomic
distancesoccur accordingto a FS.

Thediffractionpatternshave been computedin each
case for the sequence M4, which has 610 elements.
Thefinitesizeof thegratingdid not resultin aspurious
diffraction pattern, i.e the diffraction pattern remains
nearly unchanged, only for any of the 350 or more
continuous elements of this sequence. However, for
sequences up to My or for any higher sequence with
100 or less number of continuousel ementsthe pattern
is asymmetric. Also each diffraction order is broad.
In view of this we calculate the diffraction pattern
for first 400 continuouselementsof M4 Sequence. In
Fig. lawe have given the computed pattern obtained
in the first type of grating. Here the intensity of dif-
ferent ordersis plotted as a function of the scattering
wavevector Q, whichisrelated to theangleof diffrac-
tion @ and A, the wavelength of light by the relation
Q = (27r/A) sin(8) . For the quasi-periodic medium
the diffraction pattern {2,3] has peaks at

2

C=1a+m

(p + hq), (3)
where p and ¢ are integersand [ is the period of the
structure when h = 0. The second type of grating
resultsin a diffraction pattern shown in Fig. Ib.

We have aso investigated both these cases when
either 8, or S, isabsorbing, i.e., it is masked with a
material with complex refractive index. With S, ab-
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Fig. 2. The diffraction for same gratings with the dit S2 actingas
an absorbing eement. The amplitudeof trangmittance of the dit
$y is taken to be (1 Ti)/v2.

sorbing, the diffraction pattern has been computed.
Wefind not only someextraorders, but also an asym-
metric diffraction pattern. Thisis shown in Figs. 2a
and 2b. We can understand asymmetry in the pattern
by appealing to the symmetry of the lattice. For ex-
ample a periodic lattice with a pair of dlits a each
lattice point is in general non-centro symmetric and
with one of the dlits absorbing the diffraction pattern
is dwaysasymmetric. Thisis due to the fact that the
absorbing element contributesan extraphase. Thisre-
sults in an asymmetry in the diffraction pattern. This
is the optical analogue of an equivalent result in X-
ray diffraction from absorbing non-centrosymrnetric
crystals [11]. It is now well established [ 2] that Fi-
bonacci sequenceisa non-centro symmetricin nature.
Henceif it has absorbing elements, it will result in an
asymmetric diffraction pattern.

3.2. Phase gratings

Raman and Nath (RN) [12] investigated optical
diffraction due to ultrasonic waves in an isotropic
medium. When refractive index variations are small
we can ignore internal refractions and an incident
plane wavefront emerges as a periodically corrugated
wavefront. The diffraction pattern can be easily cal-
culated under the two assumptions: (i) waveength
of light is much less than the correlation length of
the phasefluctuationson the wavefront, (ii) the mag-
nitude of phase fluctuations is much less than cor-

1 [ -
]

INTENSITY

-2.5 ~1.5 -0.5 0.5 1.5 2.5
Q(10°m™)
Fig. 3. Diffraction pattern of a step phase grating with step height
Hy and H> arranged in a Fibonacci sequence.

relation length of the phase fluctations. Mosseri and
Bailly [13] considered theoritically RN diffraction
from a quasi -periodicstructure obtained by superpos-
ing two ultrasonic waves of incommensurate wave-
lengths. This has many peculiar features not found
in the classical periodic phase gratings. Recently RN
diffractionfrom afivefold quasi-periodicstructureob-
tained by superposingfive ultrasonicwavesin aliquid
has also been studied experimentally [14]. It must be
remarked that the phase grating effects can also arise
in other situations. Two such examples are considered
here.

3.2.1. Step gratings

Periodic phase gratings involving optical steps are
well known [15]. Here we consider periodic gratings
but with the optical steps of heights H; and H, ar-
ranged according to the FS: Hy, Hz, Hy, HI, 2, H),
Hj... For an incident plane wavefront both the steps
H, and H, have the same width but different optical
paths. We assume H; to have a longer optical path
length compared to H,. We usethe RN theory to work
out the diffraction pattern. In our computationswe as-
sume the sampleto be uniformly 20 w.m thick, but the
refractiveindicesfor thesteps H; and H; are 1.58 and
15, respectively, and each step has width of 5 um.
Hereagain thediffraction patternisfound not to be de-
pendent on grating width when the grating has 400 or
more elements. Thisisdepictedin Fig. 3. The diffrac-
tion pattern is symmetric. All the diffraction orders
have same diffraction features. It must be remarked
that in the case of norma periodic step gratings with
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the same number of elements one gets sharp peaks.
But in the present structure each diffractionorder has
asmall spread. This spread is dueto thefact that each
diffraction order has a fine structure (see inset Fig.
3). Thisfine structureis samein al theordersand is
independent of lattice size and persistseven when we
take many more diffracting elements.

3.2.2. Anisotropic gratings

Phase grating effects also appear in locally aniso-
tropic structures. As an exampleof such amediumwe
consider acholestericliquid crystal whichisoptically
equivalent to an uniform helical stack of birefringent
layers [16,171. In generd a plane wavefront of po-
larised light falling normal to the twist axis emerges
as a phase corrugated wavefront resulting in optical
diffraction. For the component of the electric vector
paralle to twist axis such a phase corrugation will
not exist, i.e., diffraction will be absent. We have
worked out the diffraction pattern in a quasi-periodic
cholesteric medium. We consider the structure to be
twisted in a particular direction according to the FS,
i.e.,, two incommensurate but uniformly twisted re-
gionsof thicknesses!; and I; occurringin aFS. Within
each such unit we havea uniformhelical stack of bire-
fringent layers, with a total twist of 27r. Also [} =
(17T h)l,. Here the dielectric tensor is locally uniax-
ial and gradually rotates along the twist axis but with
two incommensurate periods. We assume the incident
plane wavefront to fall normal to the twist axisand to
be linearly polarised with its azimuth perpendicul arto
thetwist axis. Therefractiveindex for thispolarisation
varies along the twist axis. At any point the refractive
index n, for this polarisationis given by

1 26 in(8
‘_2_=cos2()+sm§), )
ne ny n;

where 8 is the azimuth of the mgjor axis of the local
index ellipsoid whose principle refractive indices are
ny, nz. Then the emergent wavefront is also linearly
polarised with its azimuth perpendicular to the twist
axisand it has phase fluctuationsresultingin a corru-
gated wavefront. This leads to optical diffraction. We
have shown in Fig. 4 the computed diffraction pattern.
It may be mentioned[ 17] that inaperiodiccholesteric
in the same geometry the diffraction peaks will occur
for thewavevectorsQ = 2#r(N/1), N being an integer.

0.10

INTENSITY

Fig. 4. Diffraction pattern for a quasi-periodiccholesteric medium
in the phase grating mode for n,=1.535, ny=1.565, sample thick-
ness=20 um, A=0.633 um and / = 0.2618 um. We have given
the pairs of integers (p,q) only for the intense peaks.

However, the diffraction pattern of a quasi-periodic
medium has peaks at Q given by Eq. (3).

It is well known that in a quasi-periodicamplitude
gratingtheintensediffractionpeaks occur when p and
g arein theratio of successive Fibonacci nuymbers[2].
But interestinglyin a quasi periodic phase grating we
do not find this result. The intensity in any given or-
der isafunctionof the birefringenceof the medium,
sampl e thickness and wavelength.

We can in principleintroducelinear dichroisminto
the system by doping it with solute molecules [ 18].
Then, generaly, the local solute distribution depends
on the local twist of the medium and to a good ap-
proximation it will be inversely proportional to the
twist in the medium. This will lead to a non-uniform
absorption in the quasi-periodic cholesteric. In such
a non-uniformly absorbing system we get diffraction
even for an incident light linearly polarised parallel to
thetwist axis [ 19]. Thisbeingdue to the variationsin
the magnitudeof theamplitudeof the emergent wave-
front. It isimportant to notethat diffractionin thisge-
ometry will be totaly absent in a uniformly absorbing
periodicor quasi-periodicchol esteric medium.

It should be emphasised that the RN theory does
not take into account the internal diffractionsinside
the medium. Hence the theory is valid only for thin
samplesor for low birefringent media. For thick sam-
ples or for high birefrigent media the magnitude of
the phase fluctuations will be very large and one has
to use the more rigorous methods which incorporate
theinternal diffractions[20,21].



22 Y. Sah, G.S. Ranganath |Optics Communications 114 (1995) 18-24

3.3. Anisotropic multilayers

Optical Bragg reflections from the quasi-periodic
multilayers [4-61 have been studied in systems with
optically isotropic layers. We consider here a system
with anisotropiclayers. The quasi-periodiccholesteric
liquid crystal discussed in the previous section is a
good examplefor such asystem. Theincidentlight en-
ters the medium along the twist axis. The electromag-
netic wave propagationin thismediumcan beanalysed
using the 4 X 4 Berreman matrix method (22]. Ac-
cording to thisapproach a column vector ¢ isdefined
in termsof the el ectric and magneticfield components

_H,

In termsof ¢ the Maxwell's equationscan be written
in the following matrix form
a iw

% = A, (5

where the matrix 4(z) dependson the dielectric ten-
sor. For aperiodicmediumof period /, theaboveegqua-
tion can be solved numericaly to get the propagation
matrix F which connects the filds at z = 0 and the
fied at z = {. Then the propagation matrix for m peri-
odsis (F)™. For the quasi-periodicstructure we first
compute the propagation matrices F* and F* for the
two elements of incommensurate thicknesses I; and
I>. Within each of these unitsthe index ellipsoid uni-
formly rotates through 2+. The net propagation ma-
trix F, for the jth Fibonacci sequenceis obtained by
multiplying sequentially F and F"' according to the
FS. If ¢, ¢ and ¢; are the transmitted, reflected and
the incident fields then we have the relation

= Fi(hi + ). (6)

Expressing the reflected and the transmitted fields in
terms of the incident field one can calculate the re-
flectance and the transmittanceof the quasi-periodic
medium. The net electric field inside the medium is
calculated following the procedureof Berreman [22].
We assume a right-handed quasi-peri odicmedium,
with the local principal dielectric constantsto be €
= 2.14 and e, = 2.35. We find that a the normal in-
cidence, the eigenwaves are to a good approximation,
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Fig. 5. Reflection spectrumfor a quasi-periodiccholesteric medium
(a) 10€eements (b) 25 elements.
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right and left circular waves, i.e., they are same as
thoseof anormd cholesteric. Theleft circular waveal -
ways propagates without any attenuation but the right
circular wave suffersattenuation,i.e., it getsBragg re-
flected. The positionsof the Bragg peaks are given by

A=al(1+ K/ (pt gh), (M

where z is the mean refractive index of the medium
and [ is the period of the medium when h = 0. How-
ever, in a periodic structure only one Bragg peak oc-
curs. Thiswill besitutatedat A=gl.

Figs. 5a and 5b show the reflection spectra for a
guasi-periodiccholestericwith 10 and 25 elementsre-
spectively. Interestingly as we increase the number of
elements, moreand morereflection-bandsappear. This
can a'so be seen from the dispersion curves shown in
Figs. 6a and 6b for the same structures. One of the
interesting properties associated with this medium is
the self-similarity [4,5]. This self-similarityis a con-
sequence of a six-cycle mapping for the propagation
matrix, i.e., F; = Fjys. We have compared the reflec-
tion spectraobtained for Fy [55 elements] for the re-
gion A = 0.47 um to 0.56 um (Fig. 7a) with that
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Fig. 6. Dispersion curve for a quas-periodic cholesteric medium
(a) 10 dements, (b) 25 dements. Hee k, is the wavevector
insde the medium.

of Fi» [233 elements] (Fig.7b) for the region A =
0.5 pm t0 0.525 pwm . We can clearly see that in this
case there is a self-similarity between the two reflec-
tion spectra. It must be noticed that the transmission
spectrais complimentry to reflection spectra.

We have also worked out the nature of the standing
waves in the Bragg-bands. As in norma cholesterics
herea sothe net Efield of thestandingwaveisalinear
vibration, with E || H. The azimuth of the E field ro-
tates by 7r /2 aswe movefromoneedgeof areflection-
band to its other edge. In any given reflection-band
the azimuth of E uniformly rotates as we move aong
the twist axis, with a constant pitch. This pitch is dif-
ferent in different reflection-bands. Also the intensity
of the E field attenuates by different amountsin dif-
ferent reflection-bands, but in every band the decay is
non exponential. Thisis in contrast to the exponential
decay found in normal cholesterics [19].

Theeffect of dichroismcan beeasily workedout. In
Fig. 8 we have given the reflection spectrafor 25 lin-
early dichroic birefringent elements. Comparing this
with the reflection curve shown in Fig. 5b, for an iden-
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Fig. 7. Comparison of the reflection spectrum of (a) 55 elements
with (b) 233 dements in the quas-periodic cholesteric medium.
One may note the sdf-amilarity between the two.

0.3 7 —

| N

| \

! b

i o

| . \
& h !
So.z2 I ,
< | I Lo
& f o .
4 ' | ! \
= I Cot | |
— /\ f | i i
=) ‘ \ | {
= ‘ | [ !
0.1 1 | . ! !

| (\\ f ‘ i | | |

Cd [ J o J

[ !

| A N

/o ! =N !

‘/ ~ \\/ (V4 \\ /

0.0 . e e+ e
0.40 0.50 0.60 0.70
A(um)

Fig. 8. Reflection spectrum for an absorbing 25 elements thick
guasi-periodic cholesteric meduim. Here Im(e;) = 0.0063 and
Im(ez) = 0.063. This may be compared with Fig. 5b which rep-
resentsthe reflection spectrum for an identical multilayer without
absorbtion.

tica non-absorbing sequence, we find that many of
the reflections of the non-absorbing multilayer stack
are absent in the absorbing case. Alsoin thiscase the
transmission spectra is not complementry to the re-
flection spectra.



24 Y. Sah, G.S. Ranganath / Optics Communications 114 (1995) 18-24

0.65 - - - SR

2
i
&

REFLECTANCE

<
N
w
3
3

1.9 23 2T 3.1
I

Fig 9 Intensity of Bragg reflechon a A = 0 505 um as a function
of B for 233 elements

3.4. Effect of B on diffraction

We have dready stated that a changein g8 leads to
an isomorphic FS. In both the amplitude and phase
gratings the diffraction pattern obtained for different
isomorphic FSs have peaks a same positionshbut the
phases of the correspondingorders are different. This
phaseisafunctionof 8. However in thecase of amul-
tilayered medium in the Bragg reflection mode which
incorporates multiplereflections, we get a very inter-
esting result. The intensity of some of the Bragg re-
flections get altered as P changes. This is shown in
Fig. 9 for a particular Bragg-reflection.

4, Conclusions

We have studied optical diffraction in amplitude
gratings, phase gratings and multilayers with a Fi-
bonacci sequenceof elements. Thediffraction patterns
from quasi-periodic gratingsare rich and can also be
asymmetricif oneof thetwoelementsof the Fibonacci
sequenceis absorbing. Though diffraction peaksfrom
quasi-periodicphase gratingscan be indexed with two
integers, they need not be successive pair of Fibonacci
numbersfor intense orders. At normal incidence, sev-
eral Bragg-bandsexist in the quasi-periodicFibonacci
multilayer structure, the number of these bands in-
creases withincreasingthicknessof thestructure. Also
absorption considerably alters the reflection spectra.
The electric field inside the medium, for the Bragg
reflected mode, has a non-exponential decay. Though
isomorphicamplitudeand phase grating giveidentical

diffraction patterns isomorphic multilayers have dif-
ferent reflection spectra.
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