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We have computed the optical diffraction pattern for linearly polarized light 
incident normal to the twist axis (phase grating mode) of a magnetically doped 
cholesteric (ferrocholesteric). The intrinsic Faraday rotation of the magnetic 
grains results in extra orders of diffraction. Also ,we find diffraction for any 
azimuth of the incident vibration. Further, using the Jones N matrices we have 
worked out the optical properties for light propagation along the twist axis on 
the very low wavelength side of the reflection band. We find that the medium 
behaves very differently from a normal cholesteric. 

1. Introduction 
Cholesteric phascs in which magnetic grains are suspended have become import- 

ant in recent times. Cholesteric phases of rod-shaped molecules in which needle- 
shaped magnetic grains are aligned along the local director have been realized in the 
laboratory. There are systems with grains having magnetization parallel to the local 
director [I] as well as magnetization perpendicular to the local director [2]. The 
former will give rise to a magnetically doped cholesteric (ferrocholesteric) phase with 
magnetization gradually twisting with the local director much like a helimagnetic 
system and in the latter case we get the same phase with the magnetization of the 
grains parallel to the twist axis. Since these grains can even be optically transparent 
(for example garnets), their inherent Faraday rotation becomes very important. 

The rotatory power due to magnetic grains depends on the direction of 
propagation of light with respect to the magnetization m and is given by 

p=Plml cos 8=p ,  cos 8 

where P is a constant and 8 is the angle between m and the direction of propagation. 
This dependence of the Faraday rotation on 0 leads to optical properties which are 
very different from those of the normal cholesterics. We have tried to bring out 
salient differences between the magnetically doped cholesterics (MDCs) and normal 
cholesterics. 

In 5 2 we have considered linearly polarized light propagating perpendicular to 
the twist axis (phase grating mode) of MDCs. The optical periodicity for such a 
medium is P, the pitch, instead of P / 2  as in cholesterics. This modification of the 
periodicity gives rise to extra orders (odd orders) of diffraction in addition to those 
orders (even orders) obtained in cholesterics. In this sense the diffraction pattern is 
very similar to that of a SF phase [3, 41. 

In $ 3  we have worked out the properties of the medium for light propagation 
along the twist axis, far away, on the lower wavelength side of the reflection band. 
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We find that depending upon the sign of optical rotation, the medium can act as a 
Mauguin retarder or a de Vries rotator. 

2. Light propagation perpendicular to the twist axis 
2.1. Theory 

We consider the magnetization m of the grains to be parallel to the local director. 
We further assume that the medium is locally uniaxial about the local director. The 
linearly polarized light incident on the medium will see a variation of refractive index 
along Z, the twist axis, so that the incident plane wavefront emerges as a periodically 
corrugated wavefront with fluctuations in azimuth and ellipticity of the state of 
polarization. As linearly polarized light travels along any layer it splits into two 
orthogonal elliptic vibratio~s. The refractive indices of the medium for these two 
L ' I ~ I ~ L I C  vibrations are given by [5 ]  

where 

Here cr = (2n /P)z ,  and n2 , n ,  are the refractive indices along and perpendicular to the 
local director in the absence of Faraday rotation. 

The parameter y is related to the rotatory power p of the medium by the relation 

Here I, is the wavelength of light and ii is the mean refractive index of the medium. 
These elliptic vibrations have ellipticity given by 

1 
and o, = x/2 -aR. 

The elliptic vibration can be mathematically resolved at each point of the emergent 
wavefront into two linear vibrations polarized along and normal to the twist axis. 
This results in two periodically corrugated, orthogonally linearly polarized wave- 
fronts given by 

and 

where A,(z )  and A1(z) are the amplitude fluctuations and ll/ll(z) and +,(z) are the 
phase fluctuations of these wavefronts, respectively. We assume that the wavelength 
of the corrugation is large compared to its amplitude. The diffraction patterns due to 
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these two wavefronts are given by their individual Fourier transforms. The complete 
diffraction pattern is obtained by coherently adding the diffraction pattern due to 
the two wavefronts. 

2.2. Results and discussion 
Using the above theory we have computed the diffraction pattern for experimen- 

tally realisable parameters. 
The Faraday rotation due to the magnetic grains results in diffraction for any 

azimuth 4 (with respect to the twist axis) of the incident, linearly polarized light, 
unlike cholesterics where it occurs only for 0 < 4 1 n / 2 .  Also the MDC has a 
periodicity of 2n due to the magnetization m which will result in extra orders of 
diffraction. We find that for 4 = O  or n/2 the odd orders are linearly polarized in the 
state orthogonal to that of the incident light whereas the even orders are linearly 
polarized in the same state as that of the incident light. We also find that for any 
other general azimuth 4 in the range O< 4 <n/2 the odd and even orders are in 
general elliptically polarized. 

The computed diffraction patterns with intensity as a function of scattering 
vector are shown in figures I (a), (b), 2(a) and (b). Each set gives patterns 
corresponding to a given value of the Faraday rotatory power p and for 6 =0, n/4 
and n/2. We find the interesting result that the intensity of any odd order is 
independent of the azimuth of the incident light and only varies with p. The Faraday 

Figure 1. Computed diffraction pattern in a MDC showing intensity as a function of 
scattering vector q for ;1=0.633 pm; An=0.07; n, = 1.535; n, = 1.605; P =  5 pm: 
sample thickness ( t )  = 20 pm. For (a) p, = 1.92 x 10' rad cm - ', and for 
(b) p 0 = 3 . 8 4 x  1OLradcm-'. 
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(b)  
Figure 2. Computed diffraction pattern for the same values of i, An, n , ,  n,, P and t givcn 

figure 1. For ( a )  p, = 1.92 x lo2 rad cm - I ,  and for (b)  p, =0,  i.e. a normal cholestcric. 

rotation not only results in extra orders but also alters the intensities of the even 
orders as can be seen from the figures. All these features are seen even at extremely 
low values of p (see figure 2(a)). It should be noted that in the diffraction patterns 
calculated for higher values of p ,  the intensities of the higher orders grow at the 
expense of lower orders (see figure 1 (a)). For comparison we give in figure 2 (h)  the 
diffraction patterns for zero Faraday rotation (i.e. a normal cholesteric). As is to be 
expected, in this case the odd orders do not exist at all for any value of (b and for 
q5=O the entire pattern degenerates to the zeroth order. We would like to remark 
that in many respects the intensity and polarization features of the odd orders of 
diffraction pattern are very similar to those found for the S z  phase [3]. 

3. Light propagation parallel to the twist axis 
3.1. Theory 

In this case we assume that the magnetic grains are parallel to the local director 
but with m along the twist axis. The medium at any point acts as a linearly 
birefringent plate having Faraday rotation. 

In the Jones matrix formulation, the N matrix for such a plate is given by [6] 

P 
- 1. 

- ik - ig, 

where 29, is the phase retardation per unit thickness, k is the wave vector in the 
medium and p is the Faraday rotatory power. We assume the medium to be twisting 
along the Z axis. Then the N matrix of a layer at z is given by 
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cosq,z -sinq,z 
S(qoz)= 

sin qoz cos q,: I 
so that the Jones M matrix for the entire sample can be written as 

M=S(qoz) exp [{No-qoS(~/2)}~1. 

If  the electric vector of the incident light is 

then the emergent electric vector is given by 

El = [;;I = .[;:I = ME. 

3.2. Results and discussion 
3.2.1. Case I 

Ip-qOl + lgol with p and q, of opposite signs (i.e. when the direction of 
propagation of light is opposite to that of m). Then 

M = exp (ikz)S(pz) . 

The medium, to a very good approximation, acts as a pure rotator, i.e. there will be 
a rotation in the plane of polarization of the incident light entering the medium. 

3.2.2. Case 2 
I(p-qO)l < lgO1 with p and q of the same sign (when the propagation of light is in 

the same direction as that of m). Then 

cos qoz - sin qoz] rxp (igoz) 0 
M = exp (ikz) 

sin q,z cos q,z 0 exp ( - ig, :) 

This leads to Maugin's solution, i.e. the incident vibration splits into two linear 
orthogonal vibrations polarized along and perpendicular to the local director. As 
these vibrations travel they follow the director as in a twisted nematic. 

Therefore depending on the propagation of light along or opposite to the 
direction of m the medium can act as a Mauguin retarder or as a de Vries rotator, 
respectively. For example, this happens for a MDC of pitch=30pm,. 
Po " 2.0 x 1 O3 rad cm - ' and birefringence An = 0.025. Such a medium between two 
appropriately aligned polaroids can act as an optical diode, i.e. transmitting light in 
one direction and blocking it completely in the opposite direction. 

Interestingly, the condition J(p -qo)l S- Jg, J need not imply that Jq, 1 >> Jg, 1 .  Here 
this condition can also be satisfied for small values of q,, i.e. for large values of 
pitch. Thus the existance of Faraday rotation can lead to a de Vries limit even for a 
medium of large pitch. This is contrary to the case of normal cholesterics where the 
de Vries limit is reached only for very small pitch values. 
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Further the condition I (p  - go ) /  6 (go (  does not mean that Ig, 1 < lgol. In fact 
lqO1 > [ g o [  is also possible. In this situation, in the absence of Faraday rotation, the 
solution will not go over to  Mauguin's limit, but to  the de  Vries limit [7]. 

The authors would like to  thank Sunil Kumar for discussions. Our  thanks are 
also due to the referee for suggestions. 
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We consider theoretically light propagation at oblique incidence in absorbing cholesteric liquid crystals in 
the Bragg mode. Using 2 x 2 matrix procedure, we analyze the eigenmodes in terms of the forward- and 
backward-propagating eigenwaves inside the isotropic medium bounding the cholesteric liquid crystal. The na- 
ture of the eigenmodes in the medium changes continuously from the circular to the linear state with increase 
in the angle of incidence. Using the appropriate eigenmodes, we studied anomalous transmission in first and 
second Bragg orders in these systems and its relevance to the reported experimental results. We find some in- 
teresting polarization features that arise as a result of the absorption in the cholesteric medium. 

INTRODUCTION 
The cholesteric liquid crystalline phase (cholesterics) has a 
locally birefringent structure that twists uniformly about 
a particular direction. The optical properties of cholester- 
ics have been studied extensively both theoretically and 
e~pe r imen t a l l~ . l -~  The helical structure of the phase 
gives rise to many interesting optical properties, namely, 
selective Bragg reflections, non-Bragg total reflection, 
and anomalous transmission in absorbing cholesterics. 

Anomalous transmission at normal incidence has been 
studied theoretically and confirmed e~perimentally.~-~ A 
related effect at  oblique incidence was studied by Endo 
et al.' These authors found that anomalous transmission 
occurs only at  small angles of incidence, i.e., below 19". 

Here we undertake theoretical studies on light propaga- 
tion at oblique incidence in absorbing cholesterics that are 
aligned in planar geometry (the twist axis perpendicular 
to the sample plane). Our computations show that the na- 
ture of the eigenmodes inside the isotropic medium bound- 
ing the cholesteric changes gradually from circular to 
linear as we increase the angle of incidence. Since the 
polarization of the eigenmodes changes with the angle of 
incidence, one must choose an incident wave with proper 
polarization to observe anomalous transmission. This is 
the main reason that Endo et al.' did not observe the ef- 
fect experimentally at  large angles of incidence. 

It is well known that higher-order reflection bands 
occur when light is  incident obliquely to the planar 
chole~ter ic . l~-~~ We have also worked out the effect of ab- 
sorption on the second-order reflection band. 

THEORY 

the pitch of the medium and and are the principal 
values of the dielectric tensor. 

In Berreman's 4 x 4 matrix formulation13 Maxwell's 
equations can be written as 

where 

A(z) is a 4 x 4 matrix that is periodic in z. Ex, Ey and 
Hz, Hy are the x and they  components of the electric and 
magnetic fields, respectively, with z being the propagation 
direction. 

Equation (1) can be solved numerically for one pitch to 
produce the propagation matrix F(z, P) for the cholesteric 
medium. F(z, P) relates the field a t  the point (z + P) to 
the field a t  z given by 

The eigenvectors tj (where j = 1, 2, 3, and 4) of F(z, P) 
correspond to the eigenfields of the four eigenmodes (two 
forward and two backward modes). The eigenfield of the 
particular eigenmode at  any point zl situated at an infini- 
tesimal distance h from z can be obtained by 

tj(z1) = exp i-A(z)h t,(z). [ :  I 
According to Oseen's model of cholesterics, the dielectric 
tensor for the cholesteric is given by In computing the total intensity of the E field inside the 

medium for the obliquely incident light, we have also con- 

E + S cos 2/32 6 sin 2/3z sidered the z cornpone& of the E field. The transmit- ..=[ tance and reflectance for incident waves of different 
S sin 2pz E - 6 cos 2pz 0 polarization are computed with use of the propagation 

0 0 8 2  O]  matrix for an integral number of pitches. 
In  an experimental situation the cholesteric is sand- 

E = + c2)/2, S = (el - e2)/2, and /3 = 27r/P, where P is wiched between two glass plates (isotropic medium). It is 
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convenient to analyze the transmitted and reflected 
waves in terms of the forward- and backward-propagating 
modes inside the bounding isotropic medium. We use 
Oldano's transformation matrix T (Ref. 14) for the trans- 
verse magnetic (TM) and transverse electric (TE) polar- 
izations (with respect to the plane of incidence) to analyze 
the reflected and transmitted waves. We employ a 2 X 2 
matrix procedure15 to analyze the eigenmodes in  the 
cholesteric medium (bounded by the glass plates). 

One can write a t  the first glass-cholesteric interface, 

where 

and at  the second interface, 
1'21 

where 

Here il, i2 are the incident, rl, r 2  are the reflected, and tl, 
t2 are the transmitted amplitudes of the TM and the TE 
waves, respectively, inside the isotropic medium, the num- 
ber of pitches in the cholesteric medium being n. 

Using Eq. (2) and the property of the propagation ma- 
trix F(z, nP)  = [F(z, p)]", for n pitches one can write that 

Using Eqs. (4)-(6), we get 

where C = T -lF -' (z, nP)T. 
With use of Eq. (7) i t  follows that 

The eigenvectors of Dl and D2 represent the forward- and 
the backward-propagating eigenmodes, respectively, in 
the isotropic medium. These eigenmodes in the isotropic 
medium bounding the cholesteric give us the waves that 
are responsible for forming the standing and the propagat- 
ing waves inside the cholesteric medium. For example, a t  
normal incidence the eigenvectors of Dl and D2 are orthog- 
onal circular waves. The resultant vibrations of these 
waves gives rise to the linearly polarized standing waves 
with E I( H (Ref. 15) and a propagating circular wave. At 
high angles of incidence these eigenwaves are linearly po- 
larized. It is interesting to note that these eigenwaves 
are similar to the eigenwaves inside the cholesteric me- 
dium calculated by Miraldi et a1.,16 which are circular a t  
normal incidence and predominantly linear a t  large angles 
of incidence. From Eq. (8) one can also compute the re- 
flectance and the transmittance for TM and TE waves. 

RESULTS AND DISCUSSION 
Throughout, we have assumed a right-handed cholesteric 
medium. I n  our calculations we have chosen = 
2.3228 + i x 0.0063 and = 2.5673 + i X 0.063 for the 
absorbing cholesteric medium. The reflectance and 
transmittance were computed for 25 pitches for different 
values of P/A, where A is the wavelength of light. 

First-Order Bragg Reflection 
When the right circularly (RC) polarized wave is incident 
normally upon a planar-aligned cholesteric, it experiences 
enhanced transmission8 in the short-wavelength side of 
the Bragg band compared with the left circularly (LC) po- 
larized wave. The LC wave does not sense the helical 
structure and hence experiences the average absorption of 
the medium. Endo et al.' used RC and LC waves and 
found that the anomalous transmission occurs only at  
small angles. Since at these small angles the eigenmodes 
deviate very little from the circular state, anomalous 
transmission can be observed. For angles of incidence 
8 > 30" the circular waves are no longer the eigenmodes. 
Hence using these waves at large angles is not appropriate 
while one is performing anomalous-transmission exper- 
iments. One has to choose the proper polarization of the 
incident wave, which is the same as that of the eigenmode 
of Dl, to observe anomalous transmission. At intermedi- 
ate angles (30-55') the eigenvectors of Dl and D2 matrices 
depend on A even within the reflection band and are in 
general elliptic. Experimental observation of the effect 
at  these angles can be difficult, as the nature of the polar- 
ization of the eigenmodes varies with both angle and 
wavelength. 

For large angles of incidence the eigenvectors of Dl and 
Dz matrices are predominantly linear, and the nature of 
the eigenmode does not change within the reflection 
band. At these large angles for nonabsorbing cholesteric, 
the Bragg band splits into three subbands. One can use 
the TE and TM waves that are the eigenvectors of Dl and 
D2 to study anomalous transmission in the absorbing 
cholesteric medium. The propagation of the TE and TM 
waves in the absorbing cholesterics is such that in the 
short-wavelength region the TM wave that is reflected 
more also shows an  enhanced transmission. This is 
shown in Figs. 1 and 2. 

We have calculated the dependence of reflectance and 
transmittance on the angle between the plane of incidence 
and the director (major principal axis of the dielectric 
tensor) of the cholesteric layer at  the boundary. We find 
that the dependence of the transmittance on this angle is 
almost negligible, whereas the dependence of the reflec- 
tance is pronounced, particularly for TE-TE polarization 
as shown in Fig. 3. 

In  nonabsorbing cholesterics in the non-Bragg reflec- 
tion region, the reflectance is always unity and is inde- 
pendent of the polarization of the incident light. Our 
results show that in the absorbing case the reflectivity in 
this region is highly dependent on the state of polarization 
of the incident light. One can understand this depen- 
dence of the reflectance on polarization by looking at  the 
intensity of the electric field of the nonpropagating eigen- 
modes computed from Berreman's 4 x 4 matrices.13 In 
the absence of absorption the fields of the two nonpropa- 
gating eigenmodes suffer attenuation to the same extent 
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P/A 
Fig. 1. Reflectance of TM-TM (solid curve), TE-TM (short- 
dashed curve), TE-TE (long-dashed curve) waves for an ab- 
sorbing cholesteric at 8 = 60". 

Fig. 2. Transmittance of TM-TM (solid curve), TE-TM (short- 
dashed curve), and TE-TE (long-dashed curve) waves for an ab- 
sorbing cholesteric at 8 = 60". 

Fig. 3. Peak reflectance (Rp) for TM-TM (solid curve), TM-TE 
(short-dashed curve), and TE-TE (long-dashed curve) as a func- 
tion of a (in degrees), the angle between the plane of incidence 
and the director of the cholesteric layer at  the boundary. 

(see Fig. 4). But in the presence of absorption, the two 
eigenmodes experience the absorption of the medium 
differently and one eigenmode gets attenuated more than 
the other. Hence the reflectance becomes polarization 
dependent. 

Second-Order Bragg Reflection 
In the nonabsorbing cholesteric, as in the first-order re- 
flection, the second order reflection also has three sub- 
bands. We find that in the absorbing cholesteric the TM 
wave experiences less attentuation throughout the band 
and is transmitted more than the TE wave. In fact, the 
transmittance is almost zero for the TE wave (see Fig. 5). 
For comparison, the reflectance for TE and TM waves is 
shown in Fig. 6. We find that in this order the anomalous 
transmission for the TM wave that occurs at the short- 
wavelength region is not so pronounced as it is in the first 
Bragg order. 

NUMBER OF PITCHES 

Fig. 4. Intensity of the E field of the two nonpropagating modes 
in the non-Bragg region for nonabsorbing (long-dashed curve) 
cholesteric as a function of number of pitches (in this case the 
two modes are attenuated by the same amount) and the intensity 
of the E field for the same two modes (solid and short-dashed 
curves) in the same region for the absorbing cholesteric medium 
a t  8 = 60". 

Fig. 5. Transmittance of TM (solid curve) wave for an absorbing 
cholesteric at  8 = 60' in the second-order Bragg reflection. The 
dashed vertical lines indicate the region of anomalous transmis- 
sion. Here the transmittance for the TE wave is almost zero. 
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Fig. 6. Reflectance of TM-TM (solid curve), TE-TM (short- 
dashed curve), TE-TE (long-dashed curve) waves for an absorbing 
cholesteric at 8 = 60" in the second-order Bragg reflection. 

Fig. 7. Transmittance of TM wave (solid curve) at 8 = 60". The 
dashed line represents the transmittance of the same wave 
through a medium that has an absorption coefficient given by 
[ I ~ ( G  ) + 1 m ( K  )]/2 for the same 8. 

Optical Analogue of the Borrmann Effect 
We now consider the optical analogue of an interesting ef- 
fect in x-ray diffraction of crystals. X rays incident upon 
a nonabsorbing crystal set at the Bragg angle undergo re- 
flection, and hence the transmitted wave suffers attenu- 
ation. When an absorbing crystal is at the Bragg setting 
one expects further attenuation in the transmitted wave. 
Borrmann found an enhanced transmission that was 
more than the transmission that is due to average absorp- 
tion alone of the crystal not at the Bragg setting. This 
phenomenon of anomalous transmission is called the 
Borrmann effect. l7 

In the optical region, for absorbing cholesterics the RC 
and LC waves incident normally upon a planar cholesteric 
are the eigenwaves. Here the LC wave does not experi- 
ence the structure, and it experiences average absorption. 
Hence the anomalous transmission of the RC wave can be 
compared with the LC wave, and it is a clear analogue of 
the Borrmann effect in x rays. At high angles of inci- 
dence both eigenwaves, TE and TM, experience the struc- 

ture, and therefore the transmitted intensity of these 
waves cannot be compared analogously with the Borrman 
effect. Therefore we take a value of the absorption coef- 
ficient equal to [ 1 m ( G )  + 1 m ( 6 ) ] / 2  that is experi- 
enced by the LC wave at normal incidence. Using this 
value, we calculate the transmittance at oblique incidence 
for the TM waves through an isotropic medium. This is 
analogous to the transmittance of the x rays through an 
absorbing crystal not at the Bragg setting. We compare 
this transmittance with the transmittance of the TM 
wave through the cholesteric medium and bring out the 
analogy with the Borrmann effect. We find that the TM 
wave is anomalously transmitted over the entire Bragg 
band, exhibiting the Borrmann effect (see Fig. 7). This 
effect is also found in the second-order Bragg reflection. 

Anomalous transmission at oblique incidence is sensi- 
tive to the polarization of the incident light. Also, at 
large angles when a TM wave is incident upon a planar 
cholesteric, anomalous transmission occurs in the short- 
wavelength region of the Bragg band. Only careful ex- 
perimental studies on absorbing cholesterics at oblique 
incidence will give more insight into the phenomenon of 
anomalous transmission. 
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Optical Diffraction in Chiral Srnectic-C Liquid Crystals 
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We report a study on the optical diffraction for light propagation perpendicular to the twist axis in the 
chiral smectic-C liquid crystal. I n  this phase grating mode, we find very unusual intensity and polariza- 
tion features in the diffraction pattern. These observed features can be explained by invoking the theory 
of anisotropic gratings which takes into account the internal diffractions. 

PACS numbers: 42.70.Df. 4 2 . 2 5 . F ~  

The chiral smectic-C (Sc*) liquid crystal phase has a 
helical stack of layers of uniformly tilted molecules. The 
tilt of the molecules is coupled to the layer thickness pro- 
ducing local biaxiality i n  the medium. The chirality in  
the.medium removes the mirror symmetry in the system 
leading to the possibility of sustaining an electric polar- 
i~at ion P (along the local twofold axis), spiraling uni- 
formly about the twist axis of the helical structure. 
Meyer et al. 111 discovered the existence of ferroelectrici- 
ty in  Sc* Technologically, Set became very important 
after Clark and Lagerwall 121 demonstrated the submi- 
crosecond dynamics and other related properties like 
symmetric bistability, threshold behavior, and large 
electro-optic response that are exploited in the fast 
switching display devices. Further, studies on pyroelectri- 
city 131, shear induced polarization [41, electroclinic 
effect 151, second harmonic generation 161, and other phe- 
nomena 171 have established the rich physical properties 
exhibited by Sc. In addition, Sc* has many interesting 
optical properties. These arise due to the fact that i n  the 
successive layers, the local index ellipsoid (triaxial ellip- 
soid) spirals uniformly about the twist axis at a constant 
angle. The study of propagation of light in the Bragg 
reflection mode has shown some distinct optical polariza- 
tion properties peculiar to this phase 18-1 11. The study 
of propagation of light perpendicular to the twist axis is 

Crystal - ++ Smectic-A -- Cholesteric -- Isotropic 
- 15"CSc*63"C 84°C 120°C 

equally interesting, but has drawn very little attention. I n  
this geometry, the medium acts as a phase grating; i.e., a 
plane wave front incident on the sample becomes a 
periodically corrugated wave front inside the medium re- 
sulting in optical diffraction. So far, optical studies in 
this geometry have been largely confined to the deter- 
mination of the pitch of the structure [121. We have un- 
dertaken a study of the propagation of light in Sc* in the 
phase grating mode in all its details. 

I n  this Letter, we report for the first time some unusual 
features of diffraction associated with the phase grating 
mode in S,*. We observed that in a range of sample 
thicknesses, the diffracted light in all the orders was pref- 
erentially polarized parallel to the twist axis. Further, in  
thicker samples, although the above features were seen at 
lower temperatures, at higher temperatures the diffracted 
light i n  all the orders was nearly polarized perpendicular 
to the twist axis. These observed features contradict the 
predictions of the Raman-Nath theory of phase gratings 
1131 as extended to Sc. 1141 where the wave front corru- 
gations inside the medium are ignored. It is shown here 
that a rigorous theory of anisotropic dielectric gratings as 
developed by Rokushima and Yamakita (RY) 1151 can 
account for our observed features. 

The experiments were carried out on the commercially 
obtained sample BDH SCE-6. This has the following se- 
quence of transitions: 

To get monodomain samples suitable for phase grating 
geometry, the following procedure was employed: Sam- 
ple cells were prepared using glass plates which were pre- 
viously treated with polyimide and rubbed in the parallel 
direction. Cells of thicknesses 23, 50, 125, and 250 pm 
were obtained using Mylar spacers. Later, the cells were 
filled with the sample in the isotropic phase and then 
cooled very slowly through the cholesteric to smectic-A 
( S A )  phase i n  the presence of a magnetic field of strength 
2.4 T applied parallel to the rubbed direction of the glass 
plates. I n  the SA phase, the field was removed. Observa- 
tions under a Leitz polarizing microscope revealed the 
formation of a very good homogeneous monodomain SA 
phase which on further slow cooling transformed to the 
SCt phase. In Sc. we got a pattern having uniform 

I parallel striations (fringes). The striations were perpen- 
dicular to the rubbed direction of the glass plates and 
were parallel to the smectic layers. They arise due to a 
uniformly twisted stack of layers (of tilted molecules) 
with the twist axis along the rubbed direction. The fringe 
width corresponds to the pitch of the helical structure 
1121. In SCE-6, the pitch varies from about 4 to 6 pm i n  
the temperature range of 25 "C to 60°C. For samples of 
thicknesses much lower than 23  pm, due to the surface 
effects, the helical structure got considerably distorted 
and hence was not used. In the experimental setup, the 
cell was kept on the central table of a goniometer which 
had a 2 mW He-Ne laser (h=0.6328 ,urn) on the fixed 
arm. The light was allowed to fall normally on the sam- 
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FIG. I .  The photographs of the diffraction pattern of a 50 
pm sample at room temperature (=  25 "C) i n  (a) HH, (b) HV. 
(c) VH, and (d) VV geometries. One may note that in (c) the 
second order is more intense than the first order. Such effects 
are characteristic of phase gratings. In S,*. they are sensitive 
to temperature. 

ple cell. The  diffracted light was collected on a photo- 
diode mounted on the moving a r m  and measured with a 
Keithley 18 1 nanovoltmeter. Simultaneously the signal 
was fed into a Graphtec servocorder. 

In our experiments, for incident linearly po la r i~ed  
light, we got sharp diffraction spots. Typically there were 
6 to 7 orders on either side of the direct beam. Figure 1 
shows one such diffraction pattern in the geometries H H .  
H V ,  V H ,  and V V .  ( H  denotes linear polarization parallel 
to  the twist axis and V  denotes linear polarization perpen- 
dicular to  the twist axis. T h e  first symbol indicates the 
state of polarization of the incident light and the second 
symbol indicates the polarization state in which the 
diffracted beam was analyzed.) 

Figure 2 shows the measured diffracted intensity in the 
various orders (except the zeroth order) for 50 and 250 
p m  sample thicknesses. Surprisingly, the intensity in the 
HH geometry (open circles) is very much higher than the 
intensity in the H V  geometry (closed circles) for all or- 
ders. Also the intensity in the V H  geometry (open 
squares) is higher than that in the V V  geometry (closed 
squares). Tha t  is, in all these orders, the diffracted light 
is nearly linearly polarized parallel to the twist axis. In- 
terestingly, this behavior is observed in samples of thick- 

5 4 0  
V-H 

C v-v . 
3 

043 -2 -1 0 1 2 3 
D i f f r a c t i o n  O r d e r  

C"" 

- 
m 
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C 
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FIG. 2.  The intensity I (arbitrary units) in  the diffraction o r -  
ders shown for various geometries for two samples: (a) thick- 
ness -50 pm and temperature = 50.6 "C: (b) thickness = 250 
pm and temperature-45.5"C. Here one may notice that in  
every order I(HH) > I(HV) and I(VH) > I(VV). The intensi- 
ty of the direct beam is too high to be shown here. The asym- 
metry in the intensity pattern for some orders is due to slight 
imperfections in  the orientation of the sample. 

(b )  
0 

0 0 

ness 23 and 50 ,um a t  all temperatures. For 125 ,urn the 
same behavior is also seen a t  all temperatures except in 
the neighborhood of the Sc. -SA  transition. However. in 
the sample with a thickness of 250 p m ,  a more interesting 
behavior is found. At  temperatures 5 4 6 ° C  the intensit) 
and polarization features are  the same as that described 
above, But at higher temperatures, the behavior gets 
completely reversed. This is shown in Fig. 3. I-iere the 
intensity of the diffracted light in the V V  geometry be- 
comes more intense than the intensity in the V I I  
geometry. Also the intensity in the H V  geometry is rrlore 
than that in the H H  geometry: i.e.. in this case, in all 
these orders, the component of the diffracted light per- 
pendicular to the twist axis is more than the component 
parallel to the twist axis. However, in all these 
geometries. in all the samples, the zeroth order is in a po- 
la r i~a t ion  state close to that of the incident vibration. We 
have shown data  on two samples [Figs. 2 (a )  and 31 of 
different thicknesses (50 and 250 p m )  but a t  the same 
temperature (50.6"C) to highlight their contrasting bc- 
havior. 

The  above results cannot be accounted for by the 
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theory [I41 of the optical diffraction in Sc* which as- 
sumes that in the corrugated wavefront, inside the medi- 
um, the amplitude of the corrugation is much smaller 
than the wavelength of the corrugation; i.e., the internal 
diffractions are ignored. This assumption is valid only in 
the limit of low birefringence and small thickness. How- 
ever, in the present case, the material has a high bire- 
fringence and the sample thicknesses are large. Hence 
we have used a more rigorous theory of anisotropic 
dielectric gratings due to RY 1151 which incorporates the 
internal diffractions within the medium. 

Following RY [I51 and Galatola, Oldano, and Sunil 
Kumar [161, the Maxwell equations are written in the 
form 

where 

* = ( E , H , E J H , ) '  

and 

ko=2n/h .  

V-H 7 

v-v m /  

" 8 

- 4  -3 -'% - 1  0 1 i 3 4 
Diffraction O r d e r  

I 

FIG. 3. The intensity I (arbitrary units) in the diffraction or- 
ders shown for various geometries for a 250 pm sample at 
50.6"C. One may notice that i n  every order I (HH) <I(HV) 
and I(VH) < I(VV). 

E x ,  E,, H, ,  and H ,  are infinite column matrices contain- 
ing the various Fourier components of the transverse 
fields and h is the wavelength of light. The propagation 

I 
matrix D for our problem simplifies to an infinite square 

Here, E,,, etc. are themselves infinite square matrices. 
The ijth element of the matrix E,,, etc. is the (i - j ) th 
Fourier component of the E,,, etc. element of the dielec- 
tric tensor E. Q is an infinite diagonal matrix with ele- 
ments qo+nq, where qo is the incident wave vector i n  the 
bounding isotropic medium and q is the grating wave vec- 
tor with n going from - co to m; I is the infinite unit ma- 
trix. 

To compare the theory with the experimental results it 
is convenient to work in terms of the modes in the bound- 
ing isotropic media. If @ is a vector whose components 
are the strengths of the different modes in the bounding 
isotropic media, then Eq. (I ) becomes 

where S is the scattering matrix whose components are 
functions of the material parameters. The vector @(0) 
contains the reflected @, and incident @; components, 
while @(z) contains the transmitted component @, 1161. 
A suitable rearrangement in the elements of the @ vector 
leads to 

where R and I are the backward and forward scattering 
matrices, respectively. 

It was sufficient to have the Fourier components up to 
n =5 in the dielectric tensor and also to assume local 
uniaxiality. Computations with higher Fourier com- 
ponents and biaxiality did not alter our main results. 
Figure 4 shows the computed results. Here the intensity 
of the first order is depicted as a function of sample thick- 
ness i n  the different geometries. The intensity in the H H  
geometry, in the thickness range 50 to 200 pm, is more 
than that i n  the H V  geometry [Fig. 4(a)l, whereas the in-  
tensity in the V H  geometry is throughout more than that 
in  the VV geometry [Fig. 4(b)l. This is in accordance 
with the observed results shown in Fig. 2. Further, Fig. 
4(a) shows that around 250 pm the intensity behavior in 
the H H  and H V  geometry can get reversed. This ex- 
plains the contrasting behavior in the H H  and H V  
geometries of the 250 pm sample at 45.5 " C  [Fig. 2(b)1 
and at 50.6 OC (Fig. 3). However, the observed results in 
VV and V H  geometries of the 250 pm sample at 50.6 OC 
are not i n  accordance with the computed results shown in 
Fig. 4(b). Also, our observed results for 23 pm, at all 
temperatures, show the H H  component to be greater than 
the H V  component and this is not in accordance with the 
result shown in Fig. 4(a).  It may be pointed out that the 
computations shown in Fig. 4 are for one set of material 
parameters. These parameters are sensitive functions of 
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( a )  J p e r t ~ r b ~ i t ~ o n  over an effect~be dnisotropic homogeneou5 
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1 " In conclusion, we have experimentally studled, lor the 
f~rs t  time, the p o l a r ~ ~ a t ~ o n  and Intensity fed-tures of t h r  

0 Z d  d ~ f r a c t ~ o n  In the phase grating mode i n  3,. The  ob-  
\er\ed results d-re very surpr i s~ng  and interesting dnd 
these can be accounted for on the basis of the R Y  thcor!. 

0 . 0  

FIG. 4. The normalized intensity I as a function o f  sample 
thickness d (pm) for different geometries in the first order. I n  
these computations, the following material parameters of SCE- 
6 have been used: birefringence =0.18, pitch =5 pm, and tilt 
angle = 18". 

the temperature. It  was found that the theory can yield 
qualitatively all the above observed results by a proper 
choice of material parameters. Also, the computations 
show that  the R Y  theory can account for the observed 
polarization features of the  zeroth order as  well as those 
of the higher diffraction orders. 

The  other interesting feature i n  Fig. 4 is the appear- 
ance of modulations. These modulations in the diffracted 
intensity can be interpreted a s  being due to the different 
orders of scattering. This  can be shown by using a per- 
turbation theory 1161 where the z-dependent (the propa- 
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FIG. I. The photographs of the difiraction pattern of a 50 
p m  sample at room temperature (= 25°C) in  (a) HH. (b) HV. 
(c) VH, and (d) VVgeometries. One may note that in  (c) the 
second order is more intense than the first order. Such effects 
are characteristic o f  phase gratings. I n  Sc.. they are sensitive 
to temperature. 
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Abstract 

Optical diffraction from Fibonacci structures has been studied. We find that in a lattice with absorbing elements it is 
asymmetric. In the diffraction from a phase grating, intense orders cannot always be indexed with a successive pair of 
Fibonacci numbers. Bragg reflection spectra of multilayers depend on sample thickness and absorption and are different for 
isomorphic multilayers. 

1. Introduction 

Since the discovery of quasi-periodic materials by 
Shechtman et al. [ 1 ] the subject has attracted a lot of 
attention. The pioneering works of Levine and Stein- 
hardt [2],  and Socolar and Steinhardt [3] on quasi- 
periodic tilings have led to many new insights into 
the structure of such systems. In the beginning, it 
was only by electron and X-ray diffractions that these 
structures were studied. But in recent times quasi- 
periodic gratings and multilayers [4,5] have indeed 
been made in the laboratory [6,7]. This has led to 
the study of their optical properties. Self-similarity in 
the reflection-band [4] ,  localization of light [4,7] and 
power law transmittance with a critical exponent [6] 
are some of the interesting features associated with 
such systems. 

In this paper we have worked out the optical prop- 
erties of some new types of quasi-periodic structures 
which appear not to have been considered so far. We 
have confined ourselves to three types of structures 

ered optical analogues of quasi-periodic crystals with 
a Fibonacci sequence in the atomic form factor and 
interatomic distances. Possibilities of such structures 
which are accessible in the X-ray region have not been 
looked into so far. In the case of quasi-periodically 
stacked multilayers we have addressed ourselves to a 
quasi-periodic helical stack of birefringent layers such 
as cholesteric liquid crystals. This is of relevance to 
the understanding of the Blue phase III which exists 
in some cholesteric liquid crystals before the structure 
melts into an isotropic liquid [8,9]. 

2. Structum of quasi-periodic lattices 

We consider a quasi-periodic structure constructed 
according to a procedure due to Levine and Steinhardt 
[2]. The Nth lattice point of the quasi-periodic lattice 
is given by 

viz, amplitude gratings, phase gratings and multilay- 
ers. In each case we find some new and interesting ef- where a and are real numbers* is an 
fects. In the case of amplitude gratings we have consid- tiOnal number and is an integer. Here [ 1 means that 

we take only the greatest integral value of the term in- 

0030-401 8/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved 
SSDI 0030-401 8(94)00600-8  



Y. Sah, G.S. Ranganarh /Optics Communications 114 (1995) 18-24 19 

side the bracket. For h = 0 the structure becomes peri- 
odic with a spacing l .  For l l h  = (6 + l )  12 the dif- 
ference XN+l - XN will be one of the two incommen- 
surate lengths 1 1  and 12 such that 12 = ( h  + l ) l l .  The 
two lengths l1  and l2 occur according to the Fibonacci 
sequence (FS). For any other value of h we get an 
entirely different sequence. Changes in the value of a 
results in the shift of the lattice. Different values of 
p generate different FSs and these sequences are lo- 
cally isomorphic [2], i.e., arbitrarily large regions of 
the two sequences can be made identical. 

The standard FS can also be generated using an 
iterative method [4]. The jth sequence is given by 

with Mo = ( S l )  and M 1  = (S2) where SI and S2 
are the two distinct elements of the FS. For exam- 
ple M2 = ( S ~ . S I ) ,  M3 = ( S ~ , S I , S ~ )  and M4 = 
( S 2 ,  S1 , S2, S2, S1 ) . It is worth mentioning here that in 
this procedure it is not possible to generate isomorphic 
FSs. 

3. Diffraction pattern 

3.1. Amplitude gratings 

Optical diffractions in quasi-periodic amplitude 
gratings have been studied both experimentally and 
theoretically by Tanibayashi [ 101. He found that the 
diffraction pattern has not only a rich structure but 
is also self-similar. We consider here two different 
types of quasi-periodic amplitude gratings not so far 
considered by others. 

The first type of grating is a sequence made up 
of two slits of widths S1 and S2 (which are in- 
commensurate) occuring according to the usual FS, 
but on a periodic lattice with an edge to edge sep- 
aration of D ,  i.e., the sequence of the elements 
is S l , D , S 2 ,  D , S 1 ,  D , S 1 ,  D , S 2 ,  .... This structure is 
rather analogous to a one-dimensional periodic crystal 
with FS in atomic form factors. 

In the second type of grating, the slit width S 
as well as the edge to edge separation D between 
neighbouring slits occur in a FS, i.e., the sequence is 
Sl ,Dl  ,S2. D 2 ,  S1 , D l ,  S1 , D l .  S2, .... Also the two slit 
widths Sl and S2, as well as the slit separations D l  
and D 2  are considered to be incommensurate. This is 

Fig. 1 .  The diffraction pattern for quasi-periodic amplitude gratings 
(a) for the sequence S I , D , S ~ , D . S ~ , D , S ~ , D , S ~ ,  ... (b)  for the 
sequence SI , D l .  S2, D2, SI . Dl .  SI . D l .  S2, ... . 

analogous to a one-dimensional quasi-periodic crys- 
tal in which atomic form factors and the interatomic 
distances occur according to a FS. 

The diffraction patterns have been computed in each 
case for the sequence MI4, which has 610 elements. 
The finite size of the grating did not result in a spurious 
diffraction pattern, i.e the diffraction pattern remains 
nearly unchanged, only for any of the 350 or more 
continuous elements of this sequence. However, for 
sequences up to M l o  or for any higher sequence with 
100 or less number of continuous elements the pattern 
is asymmetric. Also each diffraction order is broad. 
In view of this we calculate the diffraction pattern 
for first 400 continuous elements of M14 sequence. In 
Fig. l a  we have given the computed pattern obtained 
in the first type of grating. Here the intensity of dif- 
ferent orders is plotted as a function of the scattering 
wavevector Q, which is related to the angle of diffrac- 
tion B and A, the wavelength of light by the relation 
Q = ( 2 w / A )  sin(@ . For the quasi-periodic medium 
the diffraction pattern [2,3] has peaks at 

where p and q are integers and 1 is the period of the 
structure when h = 0. The second type of grating 
results in a diffraction pattern shown in Fig. lb. 

We have also investigated both these cases when 
either S1 or S2 is absorbing, i.e., it is masked with a 
material with complex refractive index. With S2 ab- 
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Fig. 2. The diffraction for same gratings with the slit S2 acting as 
an absorbing element. The amplitude of transmittance of the slit 
S2 is taken to be ( 1  + i)/d. 

sorbing, the diffraction pattern has been computed. 
We find not only some extra orders, but also an asym- 
metric diffraction pattern. This is shown in Figs. 2a 
and 2b. We can understand asymmetry in the pattern 
by appealing to the symmetry of the lattice. For ex- 
ample a periodic lattice with a pair of slits at each 
lattice point is in general non-centro symmetric and 
with one of the slits absorbing the diffraction pattern 
is always asymmetric. This is due to the fact that the 
absorbing element contributes an extra phase. This re- 
sults in an asymmetry in the diffraction pattern. This 
is the optical analogue of an equivalent result in X- 
ray diffraction from absorbing non-centrosymrnetric 
crystals [ 111. It is now well established [2] that Fi- 
bonacci sequence is a non-centro symmetric in nature. 
Hence if it has absorbing elements, it will result in an 
asymmetric diffraction pattern. 

3.2. Phase gratings 

Raman and Nath (RN) [12] investigated optical 
diffraction due to ultrasonic waves in an isotropic 
medium. When refractive index variations are small 
we can ignore internal refractions and an incident 
plane wavefront emerges as a periodically corrugated 
wavefront. The diffraction pattern can be easily cal- 
culated under the two assumptions: (i)  wavelength 
of light is much less than the correlation length of 
the phase fluctuations on the wavefront, (ii) the mag- 
nitude of phase fluctuations is much less than cor- 

Fig. 3. Diffraction pattern of a step phase grating with step height 
HI and H2 arranged in a Fibonacci sequence. 

relation length of the phase fluctations. Mosseri and 
Bailly [ 131 considered theoritically RN diffraction 
from a quasi-periodic structure obtained by superpos- 
ing two ultrasonic waves of incommensurate wave- 
lengths. This has many peculiar features not found 
in the classical periodic phase gratings. Recently RN 
diffraction from a fivefold quasi-periodic structure ob- 
tained by superposing five ultrasonic waves in a liquid 
has also been studied experimentally [ 141. It must be 
remarked that the phase grating effects can also arise 
in other situations. Two such examples are considered 
here. 

3.2.1. Step gratings 
Periodic phase gratings involving optical steps are 

well known [ 151. Here we consider periodic gratings 
but with the optical steps of heights HI and H2 ar- 
ranged according to the FS: HI, Hz, HI, HI, H2, HI, 
Hz... For an incident plane wavefront both the steps 
H I  and H2 have the same width but different optical 
paths. We assume H1 to have a longer optical path 
length compared to Hz. We use the RN theory to work 
out the diffraction pattern. In our computations we as- 
sume the sample to be uniformly 20 ,urn thick, but the 
refractive indices for the steps HI and H2 are 1.58 and 
1.5, respectively, and each step has width of 5 ,urn. 
Here again the diffraction pattern is found not to be de- 
pendent on grating width when the grating has 400 or 
more elements. This is depicted in Fig. 3. The diffrac- 
tion pattern is symmetric. All the diffraction orders 
have same diffraction features. It must be remarked 
that in the case of normal periodic step gratings with 
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the same number of elements one gets sharp peaks. 
But in the present structure each diffraction order has 
a small spread. This spread is due to the fact that each 
diffraction order has a fine structure (see inset Fig. 
3) .  This fine structure is same in all the orders and is 
independent of lattice size and persists even when we 
take many more diffracting elements. 

3.2.2. Anisotropic gratings 
Phase grating effects also appear in locally aniso- 

tropic structures. As an example of such a medium we 
consider a cholesteric liquid crystal which is optically 
equivalent to an uniform helical stack of birefringent 
layers [ 16,171. In general a plane wavefront of po- 
larised light falling normal to the twist axis emerges 
as a phase corrugated wavefront resulting in optical 
diffraction. For the component of the electric vector 
parallel to twist axis such a phase corrugation will 
not exist, i.e., diffraction will be absent. We have 
worked out the diffraction pattern in a quasi-periodic 
cholesteric medium. We consider the structure to be 
twisted in a particular direction according to the FS, 
i.e., two incommensurate but uniformly twisted re- 
gions of thicknesses 11  and 12 occurring in a FS. Within 
each such unit we have a uniform helical stack of bire- 
fringent layers, with a total twist of 27r. Also 1 ,  = 
( 1 + h)12. Here the dielectric tensor is locally uniax- 
ial and gradually rotates along the twist axis but with 
two incommensurate periods. We assume the incident 
plane wavefront to fall normal to the twist axis and to 
be linearly polarised with its azimuth perpendicular to 
the twist axis. The refractive index for this polarisation 
varies along the twist axis. At any point the refractive 
index n, for this polarisation is given by 

where 8 is the azimuth of the major axis of the local 
index ellipsoid whose principle refractive indices are 
nl ,  n2. Then the emergent wavefront is also linearly 
polarised with its azimuth perpendicular to the twist 
axis and it has phase fluctuations resulting in a corm- 
gated wavefront. This leads to optical diffraction. We 
have shown in Fig. 4 the computed diffraction pattern. 
It may be mentioned [ 171 that in a periodic cholesteric 
in the same geometry the diffraction peaks will occur 
for the wavevectors Q = 2n-(N/1) ,  N being an integer. 

Fig. 4. Diffraction pattern for a quasi-periodic cholesteric medium 
in the phase grating mode for nl=1.535, n2=1.565, sample thick- 
ness = 20 pm, A = 0.633 pm and I = 0.2618 pm. We have given 
the pairs of integers ( p ,  q )  only for the intense peaks. 

However, the diffraction pattern of a quasi-periodic 
medium has peaks at Q given by Eq. (3). 

It is well known that in a quasi-periodic amplitude 
grating the intense diffraction peaks occur when p and 
q are in the ratio of successive Fibonacci numbers[2]. 
But interestingly in a quasi periodic phase grating we 
do not find this result. The intensity in any given or- 
der is a function of the birefringence of the medium, 
sample thickness and wavelength. 

We can in principle introduce linear dichroism into 
the system by doping it with solute molecules [ 181. 
Then, generally, the local solute distribution depends 
on the local twist of the medium and to a good ap- 
proximation it will be inversely proportional to the 
twist in the medium. This will lead to a non-uniform 
absorption in the quasi-periodic cholesteric. In such 
a non-uniformly absorbing system we get diffraction 
even for an incident light linearly polarised parallel to 
the twist axis [ 191. This being due to the variations in 
the magnitude of the amplitude of the emergent wave- 
front. It is important to note that diffraction in this ge- 
ometry will be totally absent in a uniformly absorbing 
periodic or quasi-periodic cholesteric medium. 

It should be emphasised that the RN theory does 
not take into account the internal diffractions inside 
the medium. Hence the theory is valid only for thin 
samples or for low birefringent media. For thick sam- 
ples or for high birefrigent media the magnitude of 
the phase fluctuations will be very large and one has 
to use the more rigorous methods which incorporate 
the internal diffractions [20,2 1 ] . 
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3.3. Anisotropic multilayers 

Optical Bragg reflections from the quasi-periodic 
multilayers [4-61 have been studied in systems with 
optically isotropic layers. We consider here a system 
with anisotropic layers. The quasi-periodic cholesteric 
liquid crystal discussed in the previous section is a 
good example for such a system. The incident light en- 
ters the medium along the twist axis. The electromag- 
netic wave propagation in this medium can be analysed 
using the 4 x 4 Berreman matrix method [22]. Ac- 
cording to this approach a column vector + is defined 
in terms of the electric and magnetic field components 

In terms of $ the Maxwell's equations can be written 
in the following matrix form 

where the matrix A ( z )  depends on the dielectric ten- 
sor. For a periodic medium of period 1, the above equa- 
tion can be solved numerically to get the propagation 
matrix F  which connects the fields at z = 0 and the 
field at z  = I .  Then the propagation matrix for m peri- 
ods is ( F ) m .  For the quasi-periodic structure we first 
compute the propagation matrices F' and F" for the 
two elements of incommensurate thicknesses l I  and 
12. Within each of these units the index ellipsoid uni- 
formly rotates through 2 ~ .  The net propagation ma- 
trix F, for the jth Fibonacci sequence is obtained by 
multiplying sequentially F' and F" according to the 
FS. If $r and are the transmitted, reflected and 
the incident fields then we have the relation 

Expressing the reflected and the transmitted fields in 
terms of the incident field one can calculate the re- 
flectance and the transmittance of the quasi-periodic 
medium. The net electric field inside the medium is 
calculated following the procedure of Berreman [22]. 

We assume a right-handed quasi-periodic medium, 
with the local principal dielectric constants to be €1  

= 2.14 and €2 = 2.35. We find that at the nonnal in- 
cidence, the eigenwaves are to a good approximation, 

Fig. 5. Reflection spectrum for a quasi-periodic cholesteric medium 
(a) 10 elements (b )  25 elements. 

right and left circular waves, i.e., they are same as 
those of a normal choIesteric. The left circular wave al- 
ways propagates without any attenuation but the right 
circular wave suffers attenuation, i.e., it gets Bragg re- 
flected. The positions of the Bragg peaks are given by 

A  = P l (  1 + h 2 ) / ( p  + q h ) ,  (7) 

where j i  is the mean refractive index of the medium 
and 1 is the period of the medium when h  = 0. How- 
ever, in a periodic structure only one Bragg peak oc- 
curs. This will be situtated at A=@. 

Figs. 5a and 5b show the reflection spectra for a 
quasi-periodic cholesteric with 10 and 25 elements re- 
spectively. Interestingly as we increase the number of 
elements, more and more reflection-bands appear. This 
can also be seen from the dispersion curves shown in 
Figs. 6a and 6b for the same structures. One of the 
interesting properties associated with this medium is 
the self-similarity [4,5]. This self-similarity is a con- 
sequence of a six-cycle mapping for the propagation 
matrix, i.e., F, = Fj+6. We have compared the reflec- 
tion spectra obtained for F9 [55 elements] for the re- 
gion A = 0.47 pm to 0.56 pm (Fig. 7a) with that 
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Fig. 6.  Dispersion curve for a quasi-periodic cholesteric medium 
(a) 10 elements, (b) 25 elements. Here k, is the wavevector 
inside the medium. 

of FI2 [233 elements] (Fig.7b) for the region A = 
0.5 p m  to 0.525 ,um . We can clearly see that in this 
case there is a self-similarity between the two reflec- 
tion spectra. It must be noticed that the transmission 
spectra is complimentry to reflection spectra. 

We have also worked out the nature of the standing 
waves in the Bragg-bands. As in normal cholesterics 
here also the net E field of the standing wave is a linear 
vibration, with E 11  H. The azimuth of the E field ro- 
tates by 7r/2 as we move from one edge of a reflection- 
band to its other edge. In any given reflection-band 
the azimuth of E uniformly rotates as we move along 
the twist axis, with a constant pitch. This pitch is dif- 
ferent in different reflection-bands. Also the intensity 
of the E field attenuates by different amounts in dif- 
ferent reflection-bands, but in every band the decay is 
non exponential. This is in contrast to the exponential 
decay found in normal cholesterics [ 191. 

The effect of dichroism can be easily worked out. In 
Fig. 8 we have given the reflection spectra for 25 lin- 
early dichroic birefringent elements. Comparing this 
with the reflection curve shown in Fig. 5b, for an iden- 

Fig. 7. Comparison of the reflection spectrum of (a) 55 elements 
with (b) 233 elements in the quasi-periodic cholesteric medium. 
One may note the self-similarity between the two. 

Fig. 8. Reflection spectrum for an absorbing 25 elements thick 
quasi-periodic cholesteric meduim. Here Im(e1) = 0.0063 and 
Im(e2) = 0.063. This may be compared with Fig. 5b which rep- 
resents the reflection spectrum for an identical multilayer without 
absorbtion. 

tical non-absorbing sequence, we find that many of 
the reflections of the non-absorbing multilayer stack 
are absent in the absorbing case. Also in this case the 
transmission spectra is not complementry to the re- 
flection spectra. 
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Fig 9 lntens~ty of Bragg reflechon at A = 0 505 fim as a funchon 
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3.4. Effect of p on diffraction 

We have already stated that a change in P leads to 
an isomorphic FS. In both the amplitude and phase 
gratings the diffraction pattern obtained for different 
isomorphic FSs have peaks at same positions but the 
phases of the corresponding orders are different. This 
phase is a function of p. However in the case of a mul- 
tilayered medium in the Bragg reflection mode which 
incorporates multiple reflections, we get a very inter- 
esting result. The intensity of some of the Bragg re- 
flections get aItered as p changes. This is shown in 
Fig. 9 for a particular Bragg-reflection. 

4. Conclusions 

We have studied optical diffraction in amplitude 
gratings, phase gratings and multilayers with a Fi- 
bonacci sequence of elements. The diffraction patterns 
from quasi-periodic gratings are rich and can also be 
asymmetric if one of the two elements of the Fibonacci 
sequence is absorbing. Though diffraction peaks from 
quasi-periodic phase gratings can be indexed with two 
integers, they need not be successive pair of Fibonacci 
numbers for intense orders. At normal incidence, sev- 
eral Bragg-bands exist in the quasi-periodic Fibonacci 
multilayer structure, the number of these bands in- 
creases with increasing thickness of the structure. Also 
absorption considerably alters the reflection spectra. 
The electric field inside the medium, for the Bragg 
reflected mode, has a non-exponential decay. Though 
isomorphic amplitude and phase grating give identical 

diffraction patterns isomorphic multilayers have dif- 
ferent reflection spectra. 
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