Chapter 5

Optical diffraction in chiral smectic C liquid
crystals: Theoretical study

5.1 Introduction

In chapter 4 we saw that our experimental results could not beexplained by RN the-
ory. In RN theory, the approximations that the amplitude o the phase modulation
o the corrugated wavefront is much less compared to its wavelength allows us to
treat the phase modulation and the diffraction processes separately. In this proce-
dure we assume that, light beam travels along a straight line inside the medium and
picks up the local phase during its passage. But in our experiments, due to the large
thicknesses d the cells and the high birefringence o the sample used, the internal
diffractions inside the grating are quite significant. Under this situation the phase
modulation and the diffraction processes have to be treated simultaneously inside
the grating. To incorporate these effects we use a rigorous coupled wave analysis
for anisotropic dielectric grating following Rokushima and Yamakita (RY) [1]. In
this approach we consider that there is more than one plane wavefront propagating
inside the grating. The theory also takes care of the multiple reflections arising at
the interfaces o liquid crystal and the bounding isotropic media. In this chapter
we develop the RY theory for our problem and discuss the experimental results of

chapter 4 in the context d this theory.



5.2 Rokushimaand Yamakita Theory

It is a rigorous theory for anisotropic dielectric gratings of arbitrary shape. The
beauty o the RY theory is that it can be applied to both Bragg and the phase
grating modes. It has been discussed in detail in references [1] and [2]. Here we
consider the RY theory applied to the phase grating mode. We consider Sc* phase
with the twist axis along the Y direction and assume the medium to be infinite in
extent in the XY plane and having a thickness d along the Z direction. Following

the coupled wave analysis [1} we write the Maxwell's equations in the form
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e;, €, h, and h, areinfinite sub-matrices d the infinite column matrix ¥(z) at any
point z and contain the various Fourier components d the transverse electric and
magnetic field. Also k, = 27 /A, A being the wavelength d the incident light. The

propagation matrix D which is a function o z is then given by the infinite square
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Here, ., etc., are infinite square matrices containing the Fourier components

of the elements o the dielectric tensor such that (ez:),, = €zs(e-5, Q are infinite
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diagonal matrices with elements ¢, * nq with n going from —co to co, ¢, is the
incident wavevector in the bounding isotropic media, g is the grating wavevector
and | isan infinite unit matrix. From the modal analysis described by Galatola et.

al. [2], thesolution o equation (5.1) leads to

W(d) = exp(ikedD)¥(0) = UW(0). (5.2)

To compare the computations with experimental resultsit is convenient to write
U(z) in termsd the modesin the bounding isotropic media. We assume the bound-
ing region to have the refractive index equal to the mean refractive index o the Sc*

medium . Then ¥(z) in these regions can be written as
¥(z) = Té(2) (5.3)

where, T is the matrix having the elements T,, which are the ¢* component of
the j** eigenvector d the bounding isotropic media and #(z) is the column vector
containing the strength o the different modes in the isotropic mediaarranged in the
same order. In our case they are the forward and backward propagating TE and

TM modes arranged in the following order

b5 TE
_ | ¢r ™M
#(z) = b TE
P ™
Then from equation (5.2) we get
¢(d) = TT'UTH(0) = S5¢(0) (5.4)

The matrix Sis called the scattering matrix and contains the optical properties
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o thegrating which are obtainable froin an experiment. The vector ¢(0) is the sum
of the refiected and incident components while ¢(d) is the transmitted component.

Thus we write

& TE
60) = o+ 6 = | G
r TE
¢r ™
¢t TE
¢(d) = ¢t — ¢15‘M
0
The equation (5.4) can be split into
¢ = R , ¢ = T (5.5)

where R and 7 are the reflection and transmission matrices respectively.

We use Berreman’s model [3] to evaluate the dielectric tensor for Sc* phase.

According to this model, the dielectric tensor is given as follows

€z = €008’ a+sin’ a(e;sin® @ + €3 cos? §),

€,y = €5in’d+ ezcos’,

€, = € sin’a+ cos? a(e;sin®f + €5 cos? ),
1 . 090

€y = §(e2 — e3)sinasin2d,

€yz — '2‘(62 — €3) cosasin 20,
1 . .

€z, = ‘2-(61 — (e25in? 0 + €3 cos? 0)) sin 2a,

Here ¢y, €, and e; are the principal values d the dielectric tensor, 8 is the tilt angle

o the Sc* phase and a = 2rP/y. In the calculations, in principle, one has to



consider infinite number of Fourier components of the dielectric tensor. However it
was found that it is sufficient to retain the Fourier components only up to the fifth
order. The Sc* medium is locally biaxial but in our calculations we assume it to
be locally uniaxial. In fact wefind that biaxiality does not effect the main results.
Using equation (5.5), we have computed the intensities of the diffraction orders for

varying sample thickness and tilt angle using the material parameters of SCE6.
5.3 Resultsand discussion

The intensities of thefirst order diffraction in HH and HV geometries as a function
o sample thickness are shown in figure 5.1a and those for VH and VV geometriesin
figure 5.1b. Thediffracted light intensity exhibitsoscillations with sampl e thickness.
The oscillations have periods of different length scales. We can see that in general
the intensity for the HH geometry is higher than in the HV geometry for thickness
in the range 50 - 200 gm in conformity with the experiments. Similarly the intensity
in the VH geometry is more than that of VV geometry. Figures 5.2a and 5.2b show
the intensity o the second order in HH, HV, VH and VV geometries as a function
o sample thickness. It may be noticed that even here, in general, the diffracted
intensity is more for the HH geometry than in the HV geometry. Also the intensity
in VII geometry isin general more than that in the VV geometry. Thus in the range
50 - 200 pum the computed results are in qualitative agreement with the observed

results.

However, the theoretical calculations are not in agreement with the results ob-

served for the 23 um samplein thefirst order diffraction at all temperatures. In the
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Figure 5.1: The computed normalized intensity | for the first order diffraction as a
function of sample thickness (a) for the HH and 11V geometries, (b) for the VII and
the VV geometries. The parameters used in the calculation are; P = Spm, An =

0.18 and 9=18°.
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Figure 5.2: The computed normalised intensity | for the second order diffraction as
R function of sample thickness for (a) HII and HV geometries and (b) for VII and
VV geometries. The parameters used in the calculation are the same as those given
+in figure 5.1 .



experiments we find that the intensities in the HH and VH geometries are always
higher than that in the HV and VV geometries respectively as shown in figure 4.5a.
The discrepancy in the 23 ym sample may be due to the deformation in the struc-
ture by the strong anchoring at the bounding surfaces. One has to incorporate the

surfaceeffects [4] appropriately to explain the observed effects in the 23 pum sample.

The computations show a reversal in the intensity between the HH and HV
geometries around 250 pm as can be seen in figure 5.1a. This accounts for the
observationsat the high temperature (T =50.6 °C) for 250 um sample. However, the
computations carried out using the same parameters can not explain the observations
at low temperature (T = 455 °C). This can be understood by appealing to the
temperature dependence o the pitch (figure 4.1), tilt angle, and birefringence. All
these parameters drastically change the intensity and polarization features o the
diffracted light. In figure 5.3 we have given the computed intensity, as afunction o
the tilt angle 8, in the first order diffraction for the HH and the HV geometries in
the case of a 250 um thick sample. It is interesting to note that one can get a cross
over in the intensity between the HH and HV geometries by just varying the tilt
angle o the Sc* phase. One can interpret the observed reversal of the polarization
features in the 250 ym sample at low temperatures as being due to change in the
material parameters with temperature. For the VV and VH geometries, though,
we find the reversal of polarization feature in the experiments, the variation of tilt
angle with temperature alone cannot explain this reversal. All these results arc at
complete variance with those d the approximate theory [5] which is valid only for
very thin samples. For the material parameters for SCE6 the RN theory is valid

only for very thin sample thickness (=~ 2um).
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Figure 5.3: The computed normalized intensity | o the first order diffraction as a
function o thetilt angle () o the Sc* phase for the HH and the HV geometries for
d=250pm, P = 5pm and An = 0.18



5.4 Remark on the oscillatory behaviour of the diffracted
intensity

Another interesting feature in the computed results is the appearance of oscillations
o different periods in the diffracted intensity as a function of sample thickness.
For example in figure 5.1a for the HV geometry, the first order diffraction has fine
fringes o width 4 um which have another oscillation of period of about 25 pm
superposed on it. For the IIH geometry the period of the oscillation is 250 gm with
asmaller oscillation o period 25 um superposed on it. Such oscillations of different
periods are also present in the second order. Using a perturbation technique we show
that these oscillations are the consequence of a coupling between different orders of
scattering. In this section we discuss this perturbation technique. The technique is
an alternate method to compute the diffracted intensity from the scattering matrix
S. In this procedure we look at the propagation equation for the S matrix. To get

this propagation equation, we start with equations (5.3) and (5.1) to get

%ﬁzﬁ =i k,G(2)$(2) (5.6)

where ¢(z) = S¢(0) and G(z) is a new propagation matrix. Since T matrix is
independent of z, G(z) isequal to T-'DT. From equation (5.6) we can write the
propagation equation for the scattering matrix S as

ds
- =1 kG(2)$ (5.7)

The matrix G(z) can be written as a sum o its z-independent diagonal matrix

G, corresponding to an effective homogeneous anisotropic medium and a small per-



turbative off-diagonal matrix g that contains the z dependence. It may be noticed
that the above equation is analogous to the time dependent Schrodinger equation
[6]). In this treatment —¢/k is replaced by ik, and the time evolution is analogous
to the thickness variation o the grating in the z direction. This analogy alows us
to use the well known time dependent perturbation theory o quantum mechanics

[6] to study this problem.

The first, second and third order scattering contributions to the amplitude of
the diffracted light, (As, )¢, (As,,)e, and (As,,, )e,, from the £** and the j** scattered

waves are given by

d
(As;)e; = iko/o dz exp(ik.E,(d — 2)) g¢y exp(iko,Eez) (5.8)

. d z , .
(Asue = (k'Y [ de ["d2' (coplik,By(d - 2)) g
exp(ik, Er(z — 2')) gre exp(ik,Ee2’) (5.9)

. 3 d % ! 7 " -
(Asi)o = (k)P Y /0 dz /0 dz /0 d2" (exp(ik.E,(d — 2)) gy
k m

exp(ik, Ex(z — 2')) grm exp(iko(2' — 2")) gme exp(ik, Eez")(5.10)

The summations areover al the scattered waves. The element g,, of the g matrix
represents the coupling between the £¢* and the j** order diffracted waves. F, and
E, are the eigenvalues d the corresponding waves in the effective homogeneous

anisotropic medium.

We interpret these oscillations in the diffracted intensity as a function of sam-
ple thickness as follows. As stated earlier the propagation matrix G(z) can be

treated as the sum of two matrices viz, i) G, that contains the diagonal terms



and i) g that contains the off-diagonal terms. The matrix g can be treated
as a perturbation over the matrix G, . Equations (5.8), (5.9) and (5.10) give
the first, second and third order scattering contributions to the amplitude of the
diffracted wave for different polarizations. Figure 5.4a shows thefirst (| (As;)un |?)
and third (| (As,)an + (As,)wn T (As,,,)un |?) order perturbation contribu-
tions to the diffractedintensity in the first order diffraction for the HH geometry.
Here one may note that the first order scattering contribution corresponds to the
oscillations of 250 um period and the third order perturbation has, in addition, the
oscillation of 25 um period seen in figure 5.1a for the HH geometry. Figure 5.4b
shows the intensity contributions o different orders of perturbations to thefirst or-
der diffraction for the HV geometry. We can see that the first order perturbation
(| (As;)rv |?) only gives the fine oscillations of 4um. The third order perturbation
(| (As)uv * (As,,)av T (As,,,)uv |?) dives this oscillation modulated with a larger
period of 25 um. The contributions due to second order scattering is not very dif-
ferent from that of the first order. We would like to mention that the perturbation
calculations are valid only for thin samples. However it gives a qualitative under-
standing o the oscillations in the diffracted intensity obtained from the rigorous

theory.

In conclusion wesee that the intensity and polarization featuresof the diffraction
pattern in the phase grating mode of Sc* is very sensitive to the sample thickness,
birefringence, tilt angleand pitch o the medium. Many of the observed polarization
features have been accounted for theoretically. The computed diffracted intensity
as afunction o sample thickness shows oscillations of different periodicities. These

have been attributed to the interference effectsfrom the different orders of scattering.
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Figure 5.4: The normalized intensity | of the first order diffraction as a function of
sample thickness computed using a perturbation theory (a) for the HH geometry,
(b) for the I-IV geometry. The full line represents the contribution from the first
order scattering and the dashed line represents third order scattering contribution
to the diffracted intensity. In (b), a long dashed line is drawn over the peaks of the
dashed curve as a guide to the eye to show the 25¢m modulations.
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Chapter 6

Optical diffraction in a quasi-periodic liquid
crystalline medium

6.1 Introduction

In the previous chapters, we considered optics of periodic structures. Even systems
which are quasi-periodic can exhibit very interesting optical properties. In this

chapter we consider the optics of one such medium.

Sincethediscovery o quasi-periodic materials by Shechtman et.al.[1], the subject
has attracted a lot of attention. The pioneering works of Levine and Steinhardt
[2], and Socolar and Steinhardt [3] on quasi-periodic tilings have led to many new
insights into the structure o such systems. In recent times quasi-periodic gratings
and multilayers {4,5] have indeed been made in the laboratory [6,7]. This has led
to the study of their optical properties. Sdf similarity in the reflection band [4],
localization o light [4,7] and power law transmittance with a critical exponent [6]

aresome o the interesting features associated with such systems.

In this chapter we address ourselves to a quasi-periodic helical stack of bire-
fringent layers such as cholesteric liquid crystals in both Bragg and phase grating
modes. Asstated earlier that it has been proposed that the Blue phase III can have

quasi-periodic ordering [8,9]. A study o such astructure will give more insight for



the better understanding of the structure of BP 111

6.2 Structure of quasi-periodic lattices

We consider a quasi-periodic structure constructed according to a procedure due
to Levine and Steinhardt [2). The Nt |attice point o the quasi-periodic lattice is
given by

Xn=(N+7+hh N +0])1 (6.1)

where 7 and a are arbitrary real numbers, h is an irrational number and N is an
integer. Here [ ] means that we take only the greatest integral value of the term
inside the bracket. For h = 0 the structure becomes periodic with a spacing 1 For
1/h = (v/511)/2 the difference Xn4+1 — Xn Will beone of the two incommensurate
lengths !; and I, such that I, = (h+ 1) l;. Thetwo lengths ; and I, occur according
to the Fibonacci sequence (FS). For any other value o h weget an entirely different
sequence. Changes in the value of 7 results in the shift of the lattice. Different
values of a generate different FSs and these sequences are locally isomorphic {2],

i.e., arbitrarily large regionsd the two sequences can be made identical.

The standard FS can also be generated using an iterative method [4). The j*"
sequence is given by

M; = (Mj_y, M;_3) (6.2)

with My = (S7) and M, = (S;) where S; and S; are the two distinct elements o

the FS. For example M, = (53, 51), M3 = (52, S1,S2) and My = (S;, 51,52, 52, 51).

It is worth mentioning here that in this procedure it is not possible to generate

isomorphic FSs.



6.3 Diffraction in a quasi-periodic cholesteric

6.3.1 Bragg mode

Optical Bragg reflectionsfrom quasi-periodic multilayers [4,5,6] have been studied in
systems with optically isotropic layers. We consider here a system with anisotropic
layers. The quasi-periodic cholesteric liquid crystal could be a good example for
such a system. We consider this structure to made d two incommensurate but
uniformly twisted regions o thicknesses !; and I, occurring in a FS. Within each
such unit we have a uniform helical stack o birefringent layersasin cholesteric, with
atotal twist o 2x. Alsol, = (1+ h)l;. Here the dielectric tensor is locally uniaxial.
The incident light enters the medium along the twist axis (normal incidence). The
electromagnetic wave propagation in this medium can be analyzed using the 4 X 4
Berreman’'s matrix method described in chapter 2. According to this approach a

column vector ¥ is defined in termsd the electric and magnetic field components

E;
H
v=| .
Ey
—H,
In terms d ¢ the Maxwell's equations can be written in the following matrix form

o iw
= 2AG)y (6.3)

where the matrix A(z) depends on the dielectric tensor. For the quasi-periodic
structure we first compute the propagation matrices F and F for the two elements
o incommensurate thicknesses!; and ;. The net propagation matrix F; for the j"

Fibonacci sequence is obtained by multiplying sequentially F and F according to
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the I'S. For example for j =5, F; = FEFRE,

If ¢ ¥ and ¥; are the transmitted, reflected and the incident fields then we

have the relation
pe=F;(¥it ¢¥r) (6.4)
Expressing the reflected and the transmitted fieldsin terms of theincident field one

can calculate the reflectance and the transmittance of the quasi-periodic medium.

We assume a right handed quasi-periodic medium, with the loca principal di-
electric constants to be ¢; = 2.14 and ¢; = 2.35. Wefind that at normal incidence,
the eigenwaves are to a good approximation, right and left circular waves, i.e., they
are same as those for a normal cholesteric. The left circular wave always propagates
without any attenuation but the right circular wave suffers attenuation, i.e., it gets
Bragg reflected. The positions of the Bragg peaks are given by

nl (14 h?)

Ao = (r+sh)

(6.5)

where 72 is the mean refractive index of the medium, 1is the period o the medium
when h =0, r and s are integers. It is interesting to note that the position of the
Bragg peak is dependent on two integers namely r and s. However, in the periodic

structure of cholesteric only one Bragg peak occurs. This will be situated at A,=nl.

Figures 6.1a and 6.1b show the reflection spectra for a quasi-periodic cholesteric
with 10 and 25 elements respectively. As we increase the number of elements, the
incident wave sees as it were more and more quasi-periodicity and as a result new
reflection bands appear. This can also be seen from the dispersion curves shown

in figures 6.2a and 6.2b for the same structures. One of the interesting properties
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Figure 6.1: Reflection spectrum for a quasi-periodic cholesteric medium (a) 10 ele-
ments (b) 25 elements.
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associated with this medium is the self-similarity o the reflection spectra [4,5,7].
This self-similarity is a consequence of a six-cycle mapping for the propagation
matrix, i.e., Fj = Fj;¢. We have compared the reflection spectra obtained for 55
elementsfor the region A = 0.47um to 0.56pm (fig. 6.3a) with that of 233 elements
(fig 6.3b) for the region A = 0.5um to 0.525um. We can clearly see that in this case

there is a self-similarity between the two reflection spectra.

We have also worked out the nature o the standing wavesin the Bragg bands.
As in normal cholesterics here also the net E field of the standing wave is a linear
vibration, with E || H [11]. The azimuth o the E field rotates by 7/2 as we move
from one edge of any reflection band to its other edge. In a given reflection band
the azimuth of the E field uniformly rotates as we move along the twist axis, with
a constant period. This period is different in different reflection bands. Also the
intensity of the E field for the non-propagating mode gets attenuated by different
amounts in different reflection bands, but in every band the decay is non exponential.

Thisisin contrast to the exponential decay found in normal cholesterics [12,13].

The effect o dichroism can be easily worked out. In figure 6.4 we have given the
reflection spectrafor 25 linearly dichroic birefringent elements. Comparing this with
the reflection curve shown in figure 6.1b, for an identical non-absorbing sequence,
it can be noticed that many o the reflectionsd the non-absorbing multilayer stack
are absent in the absorbing case. This is due to the fact that the incident wave gets
more attenuated inside the medium because d absorption before it can experience

the quasi-periodic nature o the lattice.
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Figure 6.3: The reflection spectrum o (a) 55 and (b) 233 elements in the quasi-
periodic cholesteric medium. By comparing (a) and (b) one may note the self-
similarity between the two spectra.
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6.3.2 Phase grating mode

We now consider phase grating effects that can appear in such a quasi-periodic
structure. Mosseri and Bailly [14] considered theoretically RN diffraction from a
guasi-periodic structure obtained by superposing two ultrasonic waves o incom-
mensurate wavelengths. This has many peculiar features not found in the classical
periodic phasegratings. Recently RN diffraction from afivefold quasi-periodic struc-
ture obtained by superposing five ultrasonic wavesin a liquid has also been studied

experimentally [15].

Here we study the phase grating effect in a locally anisotropic quasi-periodic
structure. We assume the incident plane wavefront to be linearly polarized with its
azimuth perpendicular to the twist axis and it is falling normal to the twist axis of
the medium. The refractive index for this polarization varies along the twist axis.

At any point the refractive index n, for this polarization is given by

where 6 is the azimuth o the major axis o the local index ellipsoid whose principal
refractive indices are ny, n;. Then the emergent wavefront is quasi-periodically
corrugated. This leads to optical diffraction. We have shown in figure 6.5 the
computed diffraction pattern using RN theory. It was mentioned earlier that in a
periodic cholesteric in the same geometry the diffraction peaks will occur for the
wavevectors g = 2« (N /I) where [ is the pitch o the periodic structure. However,
the diffraction pattern of a quasi-periodic medium [2,3] has peaks at g

2

TE "t o0
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1t iswdl known that in a quasi-periodic amplitude grating the intense diflraction
peaks occur when r and s are in the ratio o successive Fibonacci numbers [2].
But interestingly in a quasi-periodic phase grating we do not find this result. The
intensity in any given order isafunction o the birefringenced the medium, sample

thickness and wavelength.

It was mentioned in chapter 2 that linear dichroism can be introduced into
the system by doping it with solute molecules. Then, generally, the local solute
concentration dependson thelocal twist o the medium and to a good approximation
it isinversely proportional to the twist in the medium. This leads to a non-uniform
absorption in the quasi-periodic cholesteric. In such a non-uniformly absorbing
system we get diffraction even for an incident light linearly polarized parallel to
the twist axis. This is due to the variations in the magnitude of the amplitude o
the emergent wavefront. It is important to note that diffraction in this geometry
will be totally absent in a uniformly absorbing periodic or quasi-periodic cholesteric

medium.

6.3.3 Effect of the variable a on diffraction

We have already shown in equation (6.1) that a change in aleads to an isomorphic
FS. In both the amplitude and phase gratings (see Appendix B) the diffraction
pattern obtained for different FSs that are isomorphic have peaks at same positions
but the phases o the corresponding orders are different. This phase is a function of
a. However in the cased amultilayered medium in the Bragg reflection mode which

incorporates multiple reflections, we get a very interesting result. The intensity of
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some o the Bragg reflections get altered as a changes. This is shown in figure 6.6

for a particular Bragg reflection.

In conclusion we have theoretically investigated the optical diffraction in a quasi-
periodic cholesteric medium. In the Bragg mode wefind that the quasi-periodicity
of the medium gives rise to many reflection bands even at normal incidence. The
number o band increases with the quasi-periodicity. The presence o absorption
suppresses many o the reflection bands. In the phase grating mode the intense
diffraction peaks can be indexed by a pair o integers. But the integers need not
be in the ratio of successive Fibonacci numbers. The isomorphic FS gives same
diffraction patterns in the phase grating mode but in the Bragg mode, they have

different reflection spectra.
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