
Chapter 5 

Optical diffraction in chiral smectic C liquid 
crystals : Theoretical study 

5.1 Introduction 

In chapter 4 we saw that our experimental results could not be explained by RN the- 

ory. In RN theory, the approximations that the amplitude of the phase modulation 

of the corrugated wavefront is much less compared to its wavelength allows us to 

treat the phase modulation and the diffraction processes separately. In this proce- 

dure we assume that, light beam travels along a straight line inside the medium and 

picks up the local phase during its passage. But in our experiments, due to the large 

thicknesses of the cells and the high birefringence of the sample used, the internal 

diffractions inside the grating are quite significant. Under this situation the phase 

modulation and the diffraction processes have to be treated simultaneously inside 

the grating. To incorporate these effects we use a rigorous coupled wave analysis 

for anisotropic dielectric grating followirig Rokushima and Yamakita (RY) [I] .  I n  

this approach we consider that there is more than one plane wavefront propagating 

inside the grating. The theory also takes care of the multiple reflections arising at 

the interfaces of liquid crystal and the bounding isotropic media. In this chapter 

we develop the RY theory for our problem and discuss the experimental results of 

chapter 4 in the context of this theory. 



5.2 Rokushima and Yamakita Theory 

It is a rigorous theory for anisotropic dielectric gratings of arbitrary shape. The 

beauty of the RY theory is that it can be applied to both Bragg and the phase 

grating modes. It has been discussed in detail in references [I] alid [2]. Here we 

consider the RY theory applied to the phase grating mode. We consider Sc* phase 

with the twist axis along the Y direction and assume the medium to be infinite in 

extent in the XY plane and having a thickness d along the Z direction. Followi~ig 

the coupled wave analysis [I] we write the Maxwell's equations in the form 

where, 

ex, e,, h, and h, are infinite sub-matrices of the infinite column matrix @ ( z )  at  any 

point z and contain the various Fourier components of the transverse electric and 

magnetic field. Also k, = 2n/X, X being the wavelength of the incident light. The 

propagation matrix D which is a function of z is then given by the infinite square 

matrix 

Here, E,, etc., are infinite square matrices containing the Fourier components 

of the elements of the dielectric tensor such that  EX^)^^ = ~ ~ , ( e - ~ ) ,  Q are infinite 



diagonal matrices with elements qo + nq with n going from -co to co, q, is tlie 

incident wavevector in the bounding isotropic media, q is the grating wavevector 

and I is an infinite unit matrix. From the modal analysis described by Galatola et. 

al. [2j, the solution of equation (5.1) leads to 

To compare the computations with experimental results it is convenient to write 

Q ( z )  in terms of the modes in the bounding isotropic media. We assume the bound- 

ing region to have the refractive index equal to the mean refractive index of the Sc* 

medium . Then @(z)  in these regions can be written as 

where, T is the matrix having the elements Tg which are the lth component of 

the f h  eigenvector of the bounding isotropic media and $ ( z )  is the column vector 

containing the strength of the different modes in the isotropic media arranged in the 

same order. In our case they are the forward and backward propagating T E  and 

TM modes arranged in the following order 

Then from equation (5.2) we get 

The matrix S is called the scattering matrix and contains the optical properties 
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of the grating whicll are obtainable from an experiment. The vector d(O) is tlle s u l ~ l  

of the refiected and incident components while 4 ( d )  is the transmitted component. 

Thus we write 

The equation (5.4) can be split into 

where R and 7 are the reflection and transmission matrices respectively. 

We use Berreman7s model [3] to evaluate the dielectric tensor for Sc* phase. 

According to this model, the dielectric tensor is given as follows 

1 - - (c2 - c3) sin a sin 28, 
CX,Y - 2 

1 
cy,, = -(c2 - €3) cos a sin 20, 

2 

Here 61, e2 and c3 are the principal values of the dielectric tensor, 8 is the tilt angle 

of the Sc* phase and a = 2nPly. In the calculations, in principle, one has to 



consider infinite number of Fourier components of the dielectric tensor. Howevcr it 

was found that it is sufficient to retain the Fourier components only up to the fifth 

order. The Sc* medium is locally biaxial but in our calculations we assume it to 

be locally uniaxial. In fact we find that biaxiality does not effect the main results. 

Using equation (5.5), we have computed the intensities of the diffraction orders for 

varying sample thickness and tilt angle using the material parameters of SCEG. 

5.3 Results and discussion 

Tlie iritensities of the first order diffraction in HH and IIV georrietries as a fu~~ctiori 

of sample thickness are shown in figure 5.la and those for VH and VV geometries in 

figure 5.1 b. The diffracted light intensity exhibits oscillations with sample thickness. 

The oscillations have periods of different length scales. We can see that in general 

the intensity for the HH geometry is higher than in the HV geometry for thickness 

in the range 50 - 200 pm in conformity with the experiments. Similarly .the intensity 

in the VH geometry is more than that of VV geometry. Figures 5.2a and 5.2b show 

the intensity of the second order in HH, HV, VH and VV geometries as a function 

of sample thickness. It may be noticed that even here, in general, the diffracted 

intensity is more for the HI1 geometry than in the HV geometry. Also the intensity 

, ,  
i l l  VI1 gco~iio(,ry is i l l  gcl~cral 111ore blia~i that i l l  thc VV geotric1,ry. 11111s ~ I I  I , I I c  I . ; I . I I ~ ( :  

50 - 200 pm the computed results are in qualitative agreement with the observed 

results. 

However, the theoretical calculations are not in agreement with the results ob- 

served for the 23 pm sample in the first order diffraction at all temperatures. In the 



Figure 5.1: The computed normalized intensity I for the first order diffraction as a 
function of sal-nple thicliness (a)  for the IIN and IIV geometries, (b) for the VII ar~tl  
the VV geometries. 'l'lic parameters used in tllc calculation are; I-' = r)}i111, All = 
0.18 and 0 = 1 8 O .  



Figure 5.2: The computed normalised intensity I for the second order diffraction as 
R f1ii1~1,ioii of sa1111~1c tliic1;1iess for (a) HI1 and tlV geometries and (b) for VlI a11(1 
VV gconictrics. The parameters used in the calculation are the same as tllosc givc~i 

in figure 5.1 . 



experiments we find that the intensities in the HH and VH geometries are always 

higher than that in the HV and VV geometries respectively as shown in figure 4.5a. 

The discrepancy in the 23 pm sample may be due to the deformation in the struc- 

ture by the strong anchoring at the bounding surfaces. One has to incorporate the 

surface effects [4] appropriately to explain the observed effects in the 23 pm sample. 

The computations show a reversal in the intensity between the HH and HV 

geometries around 250 pm as can be seen in figure 5.la. This accounts for the 

observations at the high temperature (T = 50.6 "C) for 250 pm sample. However, the 

computations carried out using the same parameters can not explain the observations 

at  low temperature (T = 45.5 "C). This can be understood by appealing to the 

temperature dependence of the pitch (figure 4.1), tilt angle, and birefringence. All 

these parameters drastically change the intensity and polarization features of the 

diffracted light. In figure 5.3 we have given the computed intensity, as a function of 

the tilt angle 8, in the first order diffraction for the HH and the HV geonletries in 

the case of a 250 pm thick sample. It is interesting to note that one can get a cross 

over in the intensity between the HH and HV geometries by just varying the tilt 

angle of the Sc* phase. One can interpret the observed reversal of the polarization 

features in the 250 pm sample at low temperatures as being due to change in the 

material parameters with temperature. For the VV and VN geometries, though, 

we find the reversal of polarization feature in the experiments, the variatioli of tilt 

angle with temperature alone cannot explain this reversal. All these results arc at 

complete variance with those of the approximate theory [5] which is valid only for 

very thin samples. For the material parameters for SCE6 the RN theory is valid 

only for very thin sample thickness ( x  2pn1). 



Figure 5.3: Tlle computed normalized intensity I of the first order diffraction as a 
function of the tilt angle (6) of the Sc* phase for the HH and the HV geometries for 
d=250pm, P = 5pm and An = 0.18 



5.4 Remark on the oscillatory behaviour of the diffracted 
intensity 

At~otlicr ititcresting feature in the computcd results is the appea-rance of oscillat,iol~s 

of different periods in the diffracted intensity as a function of sample thickness. 

For example in figure 5.la for the HV geometry, the first order diffraction has fine 

fringes of width 4 pm which have another oscillation of period of about 25 pm 

superposed on it. For the IIH geometry the period of the oscillation is 250 pm with 

a smaller oscillation of period 25 pm superposed on it. Such oscillations of different 

periods are also present in the second order. Using a perturbation technique we show 

that these oscillations are the consequence of a coupling between different orders of 

scattering. In this section we discuss this perturbation technique. The technique is 

an alternate method to compute the diffracted intensity from the scattering matrix 

S. In this procedure we look at the propagation equation for the S matrix. To get 

this propagation equation, we start with equations (5.3) and (5.1) to get 

where +(z) = Sq5(O) and G(z) is a new propagation matrix. Since T matrix is 

independent of z, G(z) is equal to T-'DT. From equation (5.6) we can write the 

propa.gation equation for the scattering matrix S as 

The matrix G(z) can be written as a sum of its z-independent diagonal matrix 

Go corresponding to an effective homogeneous anisotropic medium and a small per- 



turbative off-diagonal matrix g that contains the z dependence. It may be noticed 

that the above equation is analogous to the time dependent Schrodinger equation 

[6]. In this treatment -i/h is replaced by ik, and the time evolution is allalogous 

to the thickness variation of the grating in the z direction. This analogy allows us 

to use the well known time dependent perturbation theory of quantum mechanics 

[6] to study this problem. 

The first, second and third order scattering contributions to the amplitude of 

the diffracted light, (As,)eJ, (As,,)eJ and from the lth and the f h  scattered 

waves are given by 

A S  e = (iko)2 c J d  1' dzl (exp(ik,E,(d - z ) )  gJk 
k O 0 

The summations are over all the scattered waves. The element gt, of the g matrix 

represents the coupling between the lth and the f h  order diffracted waves. Ee and 

E, are the eigenvalues of the corresponding waves in the effective homogeneous 

anisotropic medium. 

We interpret these oscillations in the diffracted intensity as a function of sam- 

ple thickricss as follows. As stated earlier the propagation niatrix G ( z )  call bc 

treated as the sum of two matrices viz, i) Go that contains the diagonal terms 



and ii) g that contains the off-diagonal terms. 'l'he matrix g car1 bc trcatcd 

as a perturbation over the matrix Go . Equations (5.8), (5.9) and (5.10) give 

tlie first, sccond a ~ i d  third order scattering contributions to the amplitude of thc 

diffracted wave for different polarizations. Figure 5.4a shows the first (I 1 2 )  
and third (I (As[)HH + ( A s I I ) ~ ~  + ( A S I I I ) ~ ~  1 2 )  order perturbation contribu- 

tions to the diffracted intensity in the first order diffraction for the HH geometry. 

Here one may note that the first order scattering contribution corresponds to the 

oscillations of 250 pm period and the third order perturbation has, in addition, the 

oscillatio~i of 25 pm period seen in figure 5.la for the HH geometry. Figure 5.41, 

shows the intensity contributions of different orders of perturbations to the first or- 

der diffraction for the HV geometry. We can see that the first order perturbation 

(I 12) only gives the fine oscillations of 4pm. The third order perturbation 

( I  + (ASII)HV + (ASIII)HV 12) gives this oscillation modulated with a larger 

period of 25 pm. The contributions due to second order scattering is not very dif- 

ferent from that of the first order. We would like to mention that the perturbatio~i 

calculations are valid only for thin samples. However it gives a qualitative under- 

standing of the oscillations in the diffracted intensity obtained from the rigorous 

theory. 

In conclusion we see that the intensity and polarization features of the diffractio~i 

pattern in the phase grating mode of Sc* is very sensitive to the sample thickness, 

birefringence, tilt angle and pitch of the medium. Many of the observed polariaatio~l 

features have been accounted for theoretically. The computed diffracted intensity 

as a function of sample thickness shows oscillations of different periodicities. 'l'hese 

have been attributed to the interference effects from the different orders of scattering. 



Figure 5.4: The  normalized intensity I of the first order diffraction as a function of 
sample thickness computed using a perturbation theory (a) for the HH geometry, 
(b) for the I-IV geometry. The full line represents the contribution from the first 
order scattering and the dashed line represents third order scattering contributiori 
to the diffracted intensity. In (b), a long dashed line is drawn over the peaks of the 
dashed curve as a guide to the eye to show the 25pm modulations. 
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Chapter 6 

Optical diffract ion in a quasi-periodic liquid 
crystalline medium 

6.1 Introduction 

In the previous chapters, we considered optics of periodic structures. Even systems 

which are quasi-periodic can exhibit very interesting optical properties. In this 

chapter we consider the optics of one such medium. 

Since the discovery of quasi-periodic materials by Shechtman et  .al. [1] , the subject 

has attracted a lot of attention. The pioneering works of Lcvi~ic and Stcir~liardl, 

[2], and Socolar and Steinhardt [3] on quasi-periodic tilings have led to many new 

insights into the structure of such systems. In recent times quasi-periodic gratings 

and multilayers [4,5] have indeed been made in the laboratory [6,7]. This has led 

to the study of their optical properties. Self similarity in the reflection band [4], 

localization of light [4,7] and power law transmittance with a critical exponent [6] 

are some of tlie interesting features associated with such systems. 

In this chapter we address ourselves to a quasi-periodic helical stack of bire- 

fringent layers such as cholesteric liquid crystals in both Bragg and phase grating 

modes. As stated earlier that it has been proposed that the Blue phase I11 can have 

quasi-periodic ordering [8,9]. A study of such a structure will give more insight for 



6.2 Structure of quasi-periodic lattices 

We consider a quasi-periodic structure constructed according to a procedure due 

to Levilie and Steinhardt [2]. The N~~ lattice point of the quasi-periodic laltice is 

given by 

X N = ( N + ~ + h [ h N  +aJ)1  

where T and a are arbitrary real numbers, h is an irrational number and N is an 

integer. Here [ ] means that we take only the greatest integral value of the term 

illside the bracket. For h = 0 the structure becomes periodic with a spacing 1. For 

l / h  = (J5 + 1)/2 the difference XN+i - XN will be one of the two incommensurate 

lengths l1 and l2 such that 12 = (h + 1) ll. The two lengths ll and 12 occur according 

to the Fibonacci sequence (FS). For any other value of h we get an entirely different 

sequence. Changes in the value of T results in the shift of the lattice. Different 

values of a generate different FSs and these sequences are locally isomorphic [2], 

i.e., arbitrarily large regions of the two sequences can be made identical. 

The standard FS can also be generated using an iterative method [4]. The jt" 

sequence is given by 

Mj = (Mj-l, Mj-2) (6.2) 

with Mo = (Sl)  and MI = (S2) where S1 and S2 are the two distinct elements of 

the FS. For example M2 = (S2, S1), M3 = (S2, S1, S2) and M4 = (S2, Sl , ,S2, S2, 5'1). 

It is worth mentioning here that in this procedure it is not possible to generate 

isomorphic FSs. 



6.3 Diffraction in a quasi-periodic cholesteric 

6.3.1 Bragg inode 

Optical Bragg reflections from quasi-periodic multilayers [4,5,6] have been studied in 

systems with optically isotropic layers. We consider here a system with anisotropic 

layers. The quasi-periodic cholesteric liquid crystal could be a good example for 

such a system. We consider this structure to made of two incommensurate but 

uniformly twisted regions of thicknesses l1 and 12 occurring in a FS. Within each 

such unit we have a uniform helical stack of birefringent layers as in cholesteric, with 

a total twist of 2 w .  Also lI = (1 + h)12. Here the dielectric tensor is locally uniaxial. 

The incident light enters the medium along the twist axis (normal incidence). The 

electromagnetic wave propagation in this medium can be analyzed using the 4 x 4 

Berreman's matrix method described in chapter 2. According to this approach a 

column vector $ is defined in terms of the electric and magnetic field components 

In terms of II, the Maxwell's equations can be written in the following matrix form 

where the matrix A(z) depends on the dielectric tensor. For the quasi-periodic 

structure we first compute the propagation matrices F and F for the two elements 

of incommensurate thicknesses lI and 12. The net propagation matrix Fj for the j th  

Fibonacci sequence is obtained by multiplying sequentially F and F according to 



If $ t ,  $, and $i are the transmitted, reflected and the incident fields then we 

have the relation 

$i = F'j (+i t $ r )  ( 6 . 4 )  

Expressing the reflected and the transmitted fields in terms of the incident field one 

can calculate the reflectance and the transmittance of the quasi-periodic medium. 

We assume a right handed quasi-periodic medium, with the local principal di- 

electric constants to be €1 = 2.14 and €2 = 2.35. We find that at  normal incidence, 

the eigenwaves are to a good approximation, right and left circular waves, i.e., they 

are same as those for a normal cholesteric. The left circular wave always propagates 

without any attenuation but the right circular wave suffers attenuation, i.e., it gets 

Bragg reflected. The positions of the Bragg peaks are given by 

where ii is the mean refractive index of the medium, 1 is the period of the medium 

when h = 0, r and s are integers. It is interesting to note that the position of the 

Bragg peak is dependent on two integers namely r and s. However, in the periodic 

structure of cholesteric only one Bragg peak occurs. This will be situated at  X,=nl. 

Figures 6.la and 6.lb show the reflection spectra for a quasi-periodic cholesteric 

with 10 and 25 elements respectively. As we increase the number of elements, the 

incident wave sees as  it were more and more quasi-periodicity and as a result new 

reflection bands appear. This can also be seen from the dispersion curves shown 

in figures 6.2a and 6.2b for the same structures. One of the interesting properties 



Figure 6.1: Reflection spectrum for a quasi-periodic cholesteric medium (a) 10 ele- 
111elits (11) 25 elements. 



Figure 6.2: Dispersion curve for a quasi-periodic cholesteric medium (a) 10 elements, 
(b)  25 elements. Here k, is the wavevector inside the medium. 



associated with this medium is the self-similarity of the reflection spectra [4,5,7]. 

This self-similarity is a consequence of a six-cycle mapping for the propagation 

matrix, i.e., Fj = Fj+s. We have compared the reflection spectra obtained for 55 

elements for the region X = 0.47pm to 0.56pm (fig. 6.3a) with that of 233 ele~rlents 

(fig 6.3b) for the region X = 0.5pm to 0.525pm. We can clearly see that in this case 

there is a self-similarity between the two reflection spectra. 

We have also worked out the nature of the standing waves in the Bragg bands. 

As in normal cholesterics here also the net E field of the standing wave is a linear 

vibration, with E 11 H [ll]. The azimuth of the E field rotates by 7r/2 as we lriove 

from one edge of any reflection band to its other edge. In a given reflectio~l band 

the azimuth of the E field uniformly rotates as we move along the twist axis, with 

a constant period. This period is different in different reflection bands. Also the 

intensity of the E field for the non-propagating mode gets attenuated by different 

amounts in different reflection bands, but in every band the decay is non exponential. 

This is in contrast to the exponential decay found in normal cholesterics [12,13]. 

The effect of dichroism can be easily worked out. In figure 6.4 we have given the 

reflection spectra for 25 linearly dichroic birefringent elements. Comparing this with 

the reflection curve shown in figure 6.lb, for an identical non-absorbing sequence, 

it can be noticed that many of the reflections of the non-absorbing multilayer stack 

are absent in the absorbing case. This is due to the fact that the incident wave gets 

more attenuated inside the medium because of absorption before it can experience 

the quasi-periodic nature of the lattice. 



Figure 6.3: The reflection spectrum of (a) 55 and (b) 233 elements in the quasi- 
periodic choleslesic medium. By comparing (a) and (b) one may nole llie sclf- 
similarity belween the two spectra. 



Figure 6.4: Reflection spectrum for an absorbing 25 elements thick quasi-periodic 
cholesteric medium. Here Im(el) = 0.0063 and Im(ez) = 0.063. This may be com- 
pared with figure (6.lb) which represents the reflection spectrum for an identical 
multilayer without absorbtion. 



6.3.2 Phase grating mode 

We now consider phase grating effects that can appear in such a quasi-periodic 

structure. Mosseri and Bailly [14] considered theoretically RN diffraction from a 

quasi-periodic structure obtained by superposing two ultrasonic waves of incom- 

mensurate wavelengths. This has many peculiar features not found in the classical 

periodic phase gratings. Recently RN diffraction from a fivefold quasi-periodic struc- 

ture obtained by superposing five ultrasonic waves in a liquid has also been studied 

experimentally [15]. 

Here we study the phase grating effect in a locally anisotropic quasi-periodic 

structure. We assume the incident plane wavefront to be linearly polarized with its 

azimuth perpendicular to the twist axis and it is falling normal to the twist axis of 

the medium. The refractive index for this polarization varies along the twist axis. 

At any point the refractive index n, for this polarization is given by 

where 6 is the azimuth of the major axis of the local index ellipsoid whose principal 

refractive indices are nl ,  n2. Then the emergent wavefront is quasi-periodically 

corrugated. This leads to optical diffraction. We have shown in figure 6.5 the 

computed diffraction pattern using RN theory. It was mentioned earlier that in a 

periodic cholesteric in the same geometry the diffraction peaks will occur for the 

wavevectors q = 2 n (N 1 1 )  where 1 i s  the pitch of the periodic structure. However, 

the diffraction pattern of a quasi-periodic medium [2,3] has peaks at  q 



Figure 6.5: Diffraction pattern for a quasi-periodic cholesteric medium in the phase 
grating mode for nl = 1.535, n2 = 1.565, sample thickness = 20pm, X=0.633pm 
and 1 = 0.2618pm. We have given the pairs of integers ( r , s )  only for the intense 
peaks. 



It is well known that in a quasi-periodic amplitude grating the intense difrractio~i 

peaks occur when r and s are in the ratio of successive Fibonacci numbers [2]. 

But interestingly in a quasi-periodic phase grating we do not find this result. The 

intensity in any given order is a function of the birefringence of the medium, sample 

thickness and wavelength. 

It was mentioned in chapter 2 that linear dichroism can be introduced into 

the system by doping it with solute molecules. Then, generally, the local solute 

concentration depends on the local twist of the medium and to a good approximation 

it is inversely proportional to the twist in the medium. This leads to a non-uniform 

absorption in the quasi-periodic cholesteric. In such a non-uniformly absorbing 

syste~ll we get diffraction even for an incident light linearly polarized parallel to 

the twist axis. This is due to the variations in the magnitude of the amplitude of 

the emergent wavefront. It is important to note that diffraction in this geometry 

will be totally absent in a uniformly absorbing periodic or quasi-periodic cholesteric 

medium. 

6.3.3 Effect of t h e  variable a on diffraction 

We have already shown in equation (6.1) that a change in a leads to an isomorphic 

FS. In both the amplitude and phase gratings (see Appendix B) the diffraction 

pattcr11 obtained for diirerent FSs that are isomorphic have peaks at salllc posit io~~s 

but the phases of the corresponding orders are different. This phase is a function of 

a. However in the case of a multilayered medium in the Bragg reflection mode which 

incorporates multiple reflections, we get a very interesting result. The intensity of 



some of the Bragg reflections get altered as a changes. This is sliow~i in figure 6.6 

for a particular Bragg reflection. 

In conclusion we have theoretically investigated the optical diffraction in a quasi- 

periodic cholesteric medium. In the Bragg mode we find that the quasi-periodicity 

of tlie ~liediulll gives rise to many reflectioll bands even at 11ornia.l i l~cidc~~cc.  'l'lic 

number of band increases with the quasi-periodicity. The presence of absorptiori 

suppresses many of the reflection bands. In the phase grating mode the intense 

diffraction peaks can be indexed by a pair of integers. But the integers need not 

be in the ratio of successive Fibonacci numbers. The isomorphic FS gives same 

diffraction patterns in the phase grating mode but in the Bragg mode, they have 

different reflection spectra. 



Figure 6.6: Intensity of Bragg reflection at X = 0.505 pm as a function of IJ for 233 
elements. 
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