
Chapter 5 

A simple theoretical model for the Undulating Twist 
Grain Boundary phase 

5.1 Introduction 

Figure 5.1: A schematic representation of the proposed structure for the UTGBc* 
phase. The shaded area represents the two-dimensionally undulated grain bound- 
ary region. The smectic layer normals (large arrows) rotates from block to block. 
Within each block the Frank-director precesses along the layer normal direction as 
represented by the nails. 



In the previous chapter we discussed the experimental observation of the new 

Undulating Twist Grain Boundary phase which has a smectic-C*-like structure 

within the blocks (UTGBC*). Unlike the TGBA or the TGBc phases this phase 

has a three-dimensionally modulated structure. Apart from the usual TGB pitch, 

the grain boundaries have two-dimensional undulations along directions which are 

orthogonal to the TGB twist axis. Moreover, within the smectic blocks the director 

has a helical configuration. Thus the overall structure is far more complicated than 

those of the other two known TGB liquid crystals. This makes any detailed theo- 

retical analysis quite difficult. We have developed a highly simplified model which 

can account for the occurrence of the various TGB phases. Before going into the 

details of this model, we first give a brief review of the model developed by Renn 

and Lubensky for the TGBA phase, which is the simplest of the TGB phases. 

5.1.1 The Renn-Lubensky model 

The TGBA phase was successfully predicted by Renn and Lubensky [8] and discov- 

ered by Goodby et al. The relevant structure consists of a regular twisted arrange- 

ment of almost perfect smectic-A blocks separated by grain boundaries (Fig. 5.2). 

Each grain boundary is made up of an array of screw dislocations. The Frank- 

director has a twist deformation across each grain boundary. This structure is 

stable over the uniform smectic-A structure when the chiral energy gained due to 

the twist exceeds the energy cost for generating screw dislocations. These energies 

are calculated as follows. 

The Frank elastic free energy due to distortions in the director field of a nematic 

is given by 

where the constants Kll ,  Kz2 and K33 are the elastic constants corresponding to 

the splay, twist and bend distortions in the director field, respectively. In the case 
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Figure 5.2: A schematic diagram of the TGB, structure. The pitch of the struc- 
ture is determined by the distance ld  between the screw dislocations within a grain 
boundary, the distance lb between grain boundaries and the smectic layer spacing 
d. In TGBA, ld and lb  are usually of the order of a few hundred angstroms. 

of cholesterics, however, an additional chiral term is allowed in the free energy 

expression which is written as 

where K 2 ~ q o  = A is referred to as the chiral strength of the medium. Minimising 

the cholesteric free energy, Eq. 5.2, with respect to variations in ii gives a stable 

configuration 

Go(2) = [cos(qoz), sin(q*z), 01 , (5.3) 

which describes the cholesteric structure with the pitch defined as p ~ .  = 2r/q0. 

Both A and KZ2 are assumed to be independent of temperature. 

The covariant form of the Landau-Ginzburg free energy expression extended to 

describe the nematic-Smectic-A (NA) transition by de Gennes is 



where r oc (T - TNA) and q~ = 2 ~ / d  (d is the smectic layer spacing). 

In order to simplify the analysis, it is assumed that the molecules are confined to 

a plane orthogonal to the cholesteric twist axis. Thus, the director can be described 

by an angle P as 

fi(z) = [cos P(z), sin ,8(z),  0] . 

With this assumption we can write, ( h .  V x Ei) = V,@. Further, it is assumed that 

CII = CI = C and Kll = K33 = K .  With these approximations the total free energy 

expression, F = FN* + Fs, reduces to the form 

In the cholesteric phase, $ = 0 and V,P = q, so that the free energy density in this 

phase is - $ K22qi = -A2/Kn. In the uniform smectic-A phase, (V - iqAii)$ = 0 

and [ $ I 2  = -r/g SO that its free energy density is - f r2lg .  Equating the free energy 

densities in the two phases gives the thermodynamic critical chiral strength as 

Thus, A, is the analogue of the critical magnetic field Hc for the superconductor to 

the normal metal transition in a type-I superconductor. Like in superconductors it 

is possible to define two important lengths from the free energy expression (Eq. 5.6), 

namely, the correlation length for the smectic order parameter 

and the twist penetration depth 

The analogue of the Ginzburg parameter is thus the ratio 



As already discussed in the previous chapter, smectics, like superconductors, 

can be classified as type-I or type-I1 depending on the value of ~ 2 .  If the smec- 

tic is of type-I1 one would expect a state where twist deformations penetrate the 

smectic in the form of screw dislocations. Thus, there should be a liquid crystalline 

analogue of the Abrikosov phase exhibited by type-I1 superconductors. In the case 

of a superconductor the interactions between the magnetic flux tubes are isotropic 

and repulsive. Therefore, the minimum energy configuration is a triangular lattice of 

parallel flux tubes. In the case of smectics, however, such a simple configuration with 

parallel screw dislocations will cause the gradient of the layer displacement field to 

diverge with system size (see Sec. 4.1) and hence cannot form a thermodynamically 

stable state. 

Renn and Lubensky realised that this problem can be overcome if the dislo- 

cations are confined to a parallel set of planes. Adjacent planes are rotated with 

respect to each other. Each grain boundary contains a linear array of parallel screw 

dislocations and is referred to as a Twist Grain Boundary (Figs. 5.2 & 5.3). Such an 

array of screw dislocations causes the smectic layer normal to rotate by an angle A@ 

across the grain boundary. This in turn results in a twist deformation in the Frank- 

director, thereby gaining chiral energy as given by Eq. 5.2. This phase is referred 

to as the Twist Grain Boundary (TGB) phase. The average twist in the structure 

is determined by the distance ld between dislocations within the grain boundaries, 

the distance lb between adjacent grain boundaries and the smectic layer spacing d. 

The angle between the smectic layer normals in adjacent blocks is (Fig. 5.3) 

where it is assumed that d << ld in writing the last part. If lb  is the distance between 

the grain boundaries, the average rate of change in P is 



Figure 5.3: Schematic drawing of a twist grain boundary. The screw dislocation 
cores are marked by the shaded regions. The smectic layers increase in height by i d  
on taking a half (T) loop around each dislocation. The average slope of the smectic 
layers with respect to a plane orthogonal to the dislocations is id/ld on oneside of 
the grain boundary and -fd/ld on the other side. 

Using this expression for (qtgb) = ((ii V x ii)) in the Frank free energy Eq. 5.2 

gives the average gain in chiral energy due to the twist distortion as 

The lower critical field is estimated in much the same way as Abrikosov cal- 

culated Hcl for a superconductor. In the smectic phase the elastic free energy 

depending only on the layer displacement field u and variations in the director field 

6ii is 

where 6fi = (cos ,O - 1, sin p, 0) and B = = Cl~-lq;/~. The elastic energy 

cost for introducing screw dislocations is calculated by assuming ld, lb --+ oo. The 

above expression for Fel can then be linearised about P = 0 so that Sfi - /3?. 

Minimisation of Fel with respect to u and ,6 gives 

and* 



Knowing that the integral of Vu around a closed contour enclosing a dislocation is 

nd and using Eqs. 5.15 and 5.16, Renn and Lubensky have shown that the energy 

per unit length of a screw dislocation is 

Neglecting interactions between screw dislocations and using Eq. 5.12 for (qtgb), the 

free energy density close to the lower critical chiral strength Acl is 

1 
F = - (6 - Ad)) . 

ldlb 

The threshold chirality at  which the energy gained by introducing twist becomes 

greater than the energy cost for creating dislocations is 

The last two expressions are valid only for A2/[ >> 1. 

The determination of the upper critical field is much more complicated. In 

Ref.[8], it is obtained as 

Ac2 = f i ~ ~ ~ ~  . (5.20) 

The TGBA state is stable for ~2 > 1/a. 

Renn and Lubensky also investigated the stability of the TGB structure near 

the point where the nematic, smectic-A and smectic-C phases meet (NAC point) 

when the chirality is increased from zero [62]. The basis for the calculation was 

the Chen-Lubensky (CL) model extended to include molecular chirality. The phase 

diagram obtained using this model is shown in Fig. 5.4. The structure of the TGBc 

phase predicted by them is shown in Fig. 5.5a. A TGBc phase was later discovered 

by the Bordeaux group [57, 441. The observed structure was different from that 

predicted by theory in that the smectic layers were tilted with respect to the grain 

boundaries (Fig. 5.5b). 



Figure 5.4: The phase diagram obtained by Renn and Lubensky using an extended 
CL model (after Ref. [62]). 

Figure 5.5: A schematic diagram of (a) the theoretically predicted TGBc structure. 
The grain boundaries are orthogonal to the smectic layering. The molecules are 
tilted with respect to the layer normal. The tilt direction is parallel to the grain 
boundaries (N-c plane is parallel to the grain boundaries). (b) The TGBc structure 
observed by the Bordeaux group. In this the smectic layers themselves are tilted 
with respect to the grain boundaries. In both cases, the twist deformation occurs 
along the grain boundary normal and the director is everywhere orthogonal to the 
twist axis (N-c plane is perpendicular o the grain boundaries). 



The TGB states are much more complicated than the Abrikosov state in su- 

perconductors. This is because in liquid crystals the various physical properties are 

highly anisotropic. Moreover, since the arrays of screw dislocations in adjacent grain 

boundaries are at  an angle with respect to each other, the interaction is not isotropic 

as in the case of the parallel set of flux tubes in the Abrikosov phase. This makes the 

estimation of the two important lengths, ld and lb ,  difficult even in the case of the 

TGBA structure. The full elastic free energy expression is quite complicated even in 

the case of smectic-A. For example, there is no analogue of the (V . fi) distortion in 

the case of superconductors. In the analysis of the TGBA structure, the elastic free 

energy expression was simplified by Renn and Lubensky. The complexity increases 

considerably when the symmetry of the layers is lowered from that of smectic-A 

to that of smectic-C*. There is still no detailed theory explaining the stability of 

the experimentally observed TGBc phase, which has a different structure from that 

predicted by theory. In the observed TGBc structure, the smectic layering is at  an 

angle with respect to the grain boundaries as represented in Fig. 5.5b. Therefore, 

the dislocations, which are now at  an angle with respect to the layers, are no longer 

pure screw dislocations. This, plus the fact that now there is also a tilt order make 

any detailed analysis difficult. 

By making a highly simplified analysis, Dozov has argued that if the smectic 

tilt angle is non-zero, a melted grain boundary is favoured over one with an array 

of screw dislocations [63]. According to this model the smectic order vanishes over 

the entire plane of the grain boundary. The minimum energy configuration has the 

smectic layers tilted with respect to the grain boundaries as seen experimentally. 

The situation is far worse in the case of the UTGBc* phase. Here the grain 

boundaries have a modulated structure. Furthermore, the structure within the 

blocks is very complex and is not fully understood. In the proposed structure for 

this phase, the director configuration with respect to the layering varies from block 



Grain boundary 

Figure 5.6: A schematic representation of (a) a smectic-C* block with parallel in- 
terfaces and (b) a smectic-C* block with undulating interfaces. In the former case 
the director makes various angles with the interface whereas in the latter case the 
director is everywhere parallel to the local tangent to the interface. 

to block. We have attempted a highly simplified analysis in order to gain some 

insight into the thermodynamic stability of the various observed TGB phases. 

5.2 A simple model for the TGB structures 

In this analysis, we treat the grain boundaries as interfaces with an anisotropic in- 

terfacial energy. The free energy of the UTGBc* structure is calculated by assuming 

an ansatz for the director field within the blocks. The experimental observations 

show that in this phase, within the blocks, the director has a helical arrangement 

which is reminiscent of the smectic-C* structure. Also, the grain boundaries have 

a two dimensional height modulation. A possible physical origin of the undulatory 

nature of the grain boundaries is discussed below. 



5.2.1 Why do the grain boundaries undulate? 

Chiral interactions favour a twist deformation in the Frank-director. This tendency 

is expressed by the term linear in (ii V x ii) in the Frank free energy expression 

(Eq. 5.2).  The director distortion is a pure twist if the director is confined to a set of 

parallel planes orthogonal to the twist axis, like in the cholesteric (Sec. 1.1.2). This 

is the case in TGBA and TGBc structures, where planes containing the director are 

always parallel to the grain boundaries and the twist deformation is along the or- 

thogonal direction. However, if the director configuration is like that of smectic-C*, 

then a flat grain boundary is not the best way of maximising the twist deformation 

across it. For simplicity, let us assume that a single smectic-C* block is boundsd 

by grain boundaries on both sides. If the grain boundaries are flat the molecular 

tilt directions in different smectic layers make varying angles with respect to the 

grain boundaries as shown in Fig. 5.6a. This means that the distortion across the 

grain boundaries can no longer have the character of a pure twist. On the other 

hand, if the grain boundaries are allowed to undulate with the same periodicity 

as the smectic-C* structure, the director can be made to become parallel to the 

local tangent to  the grain boundary at  all points. This situation is schematically 

shown in Fig. 5.6b. This increases the value of ( f i e  V x ii) in the grain boundary 

region at the expense of other deformations, thus increasing the gain in chiral en- 

ergy. The actual situation, however, is much more complicated than this simplified 

picture. Experimental observations suggest that the grain boundaries have a two- 

dimensional modulation with mutually orthogonal wave-vectors. Also, all the grain 

boundaries undulate along the same two directions. But the smectic layer normal 

rotates from block to block. Therefore, the director configuration can be expected 

to be different in different blocks. A simple analysis where the grain boundaries are 

assumed to be interfaces with an anisotropic interfacial energy shows that the grain 

boundary energy is lower for an undulating grain boundary compared to that of a 



flat one. 

In our calculations, we model the grain boundary and the smectic blocks as 

described in the following sections. 

5.2.2 Modelling the grain boundaries 

In the TGBA and the TGBc phases the grain boundaries are flat and are orthogonal 

to the TGB twist axis. The Frank-director has a pure twist deformation across each 

grain boundary. The twist deformation decays exponentially on going away from the 

grain boundary [6] .  Thus, the grain boundary region is highly distorted compared 

to the smectic blocks. Therefore, we treat the grain boundaries as interfacial regions 

separating adjacent smectic blocks. If ld  is the separation between screw dislocations 

within a TGBA grain boundary and E the energy per unit length of the dislocation, 

given by Eq. 5.17, the dislocation energy per unit area of the interface can be 

estimated to be (see Sec. 5.1.1) 

y can be treated as an interfacial tension. 

In the case of the UTGBc. phase the interface develops undulations along two 

mutually orthogonal directions. This can be expected to cost additional energy 

mainly due to an increase in the length of each screw dislocation. These effects are 

phenomenologically taken into account by the interfacial tension y. Experiments 

show that all the grain boundaries undulate along the same two directions. If the 

TGB twist axis is taken to be along the Z-axis, the undulation can be described 

by a height function h(x, y). The simplest form of h which gives a two-dimensional 

modulation of period 2.rr/qu is 

This height modulation is plotted in Fig. 5.7. 



Figure 5.7: A plot of the height function Eq. 5.22 describing the two-dimensional 
modulation of the grain boundaries. 



The interfacial energy has a part which is simply proportional to the surface 

area. If y is the 'interfacial tension', this energy per unit projected area on the 

XY-plane is given by 

fint = y d ( ~ . h ) ~  + (V,h)' + 1 . (5.23) 

As mentioned in the previous section, the director prefers to be parallel to the 

interface so that the director distortion across the interface is mainly of twist type. 

Any deviation from this preferred orientation can be expected to cost a positive 

energy. This is analogous to the anisotropic interfacial tension at a SmA-isotropic 

or SmC-isotropic interface (see Sec. 2.1.2) [64, 651. This anisotropic energy cost can 

be expressed as 

faniso = Ay(fi i)2 , (5.24) 

where i is the unit normal to the interface and Ay > 0. For small amplitude 

undulations, the normal to the interface can be expressed as 

With ii r (n., n,, n,), 

There is a twist deformation associated with each interface. Most of this de- 

formation is confined to the interfacial region. Introducing interfaces is favourable 

when the chiral energy gained due to this twist across the interface exceeds the 

positive contribution given by fint + faniso. In the TGBA phase, the average rate of 

twist is given by 

where A p  is the relative angle between the smectic layer normals of any two adjacent 

blocks (Eq. 5.12). This twist across each interface gives an average gain in the chiral 



energy per unit volume (see Eq. 5.2) 

AP 
ftwist = -A(qtgb) = -A- ib . 

As shown in Fig. 4.17 in Sec. 4.2.6, the pitch of the TGB structures as well 

as that of the cholesteric increases as the temperature is reduced. The increase 

becomes quite sharp in the TGBc and the UTGBc* phases. However, for the 

sake of simplicity, we will assume that Ap and lb remain constant in all the TGB 

phases for a given chiral strength A. ie., we neglect changes in the TGB pitch with 

temperature. The twist energy gained across the interface also can be expected to 

vary when the interface becomes modulated. We assume that any reduction in the 

twist energy due to the modulation is included in the positive contributions from 

fint and faniso. 

5.2.3 Modelling the blocks 

In the TGBA phase the blocks have a smectic-A-like order. Below a certain temper- 

ature, the director in the blocks starts to develop a tilt with respect to the local layer 

normal. This transition can be described by a simple phenomenological Landau type 

model developed for describing the smectic- A to smectic-C* transit ion [66]. 

The smectic-A to smectic-C* transition is usually second-order in nature. The 

tilt angle increases continuously from zero as the temperature is lowered below the 

transition point. Since the medium is chiral, the point symmetry of the layers is C2. 

This allows the layers to sustain a permanent polarisation along the C2-axis. It is 

observed that the temperature a t  which the tilt becomes non-zero is not very dif- 

ferent for the chiral and achiral modifications of otherwise similar compounds. This 

means that polarisation does not play a crucial role in determining the transition 

point. Hence the tilt angle 8 is usually considered as the primary order parameter 

and the polarisation P is taken as a secondary order parameter. In the smectic-C* 

phase, the tilt direction varies along the layer normal. An appropriate order param- 
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Figure 5.8: The coordinate system used for describing the SmC* structure. The 
smectic layer normal, N, is taken to  be along the X axis. The vector t is orthogonal 
to c, the projection of ii on to the Y Z  plane. 

eter which describes the magnitude and the direction of tilt is defined as (Fig. 5.8) 

where the is along the smectic layer normal, N. Thus, 6 is a two-dimensional 

axial vector and is perpendicular to  the c-vector as represented in Fig. 5.8. The 

components o f t  are 

tY = sin8 sin 4 21 8 sin 4 
tZ = - sin8 cos4 21 -8 cos 4 (5.30) 

where we have assumed 8 to be small so that sin9 21 8. 4 is the angle which the c- 

vector makes with the Y-axis. As already mentioned, the SmC* phase can sustain 

a permanent polarisation. In the SmC* phase, the polarisation-dependent terms 

will only renormalise some of the elastic constants [66]. Further, in the mixtures we 

have studied, the polarisation of the pure chiral compound (CE8) was extremely 

small (4nC/cm2) and the addition of an achiral compound is expected to reduce this 

further. Hence, we ignore all polarisation dependent terms in the following analysis. 



The free energy density can then be written as an expansion in t and its spatial 

gradients permitted by the C2 symmetry. Assuming that there are no distortions in 

the smectic layering, the invariant combinations can be written as 

where a = a(T-TAc), T being some arbitrary temperature and TAC the temperature 

below which < becomes non-zero. The constant b is positive and is assumed to be 

independent of temperature. The gradient terms in the frze energy density given 

by Eq. 5.31 are basically the same as those used for the S m C  in the third chapter, 

Sec. 3.1.1, except for the chiral terms which are now allowed. However, in Sec. 3.1.1, 

the free energy expression was written in terms of the c-vector which is orthogonal 

to 6 and c was taken to be of unit magnitude. The chiral (pseudoscalar) terms in 

Eq. 5.31 are those with the coefficients Ki and A. The latter term is usually referred 

to as the Lifshitz invariant. This term which is permitted by symmetry of the chiral 

medium produces the helicoidal modulation of the smectic-C* phase. 

Before discussing the modelling of the TGB blocks, we first give a brief discus- 

sion on the SrnC* striucture. 

5.2.3.1 The SmC* free energy 

In order to obtain an expression for the free energy density of the SmC* phase let 

us assume that the smectic layers are uniform and the helical distortion is along the 

X-axis so that 4 = +(x) (see Figs. 1.10 and 5.8). Further, we assume the usual one 

elastic constant approximation, Ks = Kb = Kt = Kt = Kt' E Kc. Using Eq. 5.30 for 

the components of the vector t in the smectic-C* free energy expression, Eq. 5.31, 

and ignoring terms which are of order O4 in the elastic part, the free energy density, 



Eq. 5.31, reduces to the form 

The Euler-Lagrange equation derived from the above expression for a constant 0 is 

which admits the solution 

4 = qx 

Equation 5.32 can then be written as 

From Eq. 5.35 it is easy to derive the following thermodynamic properties of the 

SmC* phase: 

where qc is the magnitude of the equilibrium wave-vector, TAC the temperature at  

which the transition would have occurred in the absence of chirality and 8, the 

equilibrium tilt angle. 

5.2.3.2 Free energy of the T G B  blocks 

We are mainly interested in the various phases that can occur below the TGBA 

phase when the local smectic ordering within the layers changes from SmA-like to 

SmC-like. Below a certain temperature T&, the smectic layers start developing a 

tilt order. When this happens, the TGB blocks can be either SmC-like (unwound 

SmC*) or SmC*-like. 



Figure 5.9: Schematic diagram of the coordinate systems used. The (X, Y, 2) system 
is lab-fixed with the Z-axis along the TGB twist axis. The local (XI, Y', 2') system 
is obtained by a ~otation about the Z-axis by an angle ,O so that the XI-=is is along 
the local smectic layer normal. 

In the TGBA phase, let the TGB twist axis be along the Z-axis. In the lab-fixed 

(X, Y, 2)-system, the smectic layer normals within the blocks lie in the XY-plane. 

The smectic layer normal in an arbitrary block makes an angle P with respect to the 

X-axis. To describe the structure within each block, we choose a local co-ordinate 

system (X', Y', 2') which is rotated by an angle ,O about the Z-axis as shown in 

Fig. 5.9. Thus, the XI-axis is along the smectic layer normal, N, in any given block. 

Let 2, and k denote unit vectors along X', Y', and Z', respectively. 

The components of the Frank-director in a given block are then given by 

n,t = COSO 
nyt = sin 8 cos4 
n,t = sin 8 sin 4 

where 8 is the tilt angle and 4 is the angle the c-vector makes with respect to the 

Y1-axis. 

In the TGBA and the TGBc phases, ( is assumed to be constant within any 

given block. In the UTGBc. phase, however, ( precesses along the layer normal in 

each block. Also, since the interfaces have a two-dimensional modulation, ( can be 



expected to be non-uniform within the smectic layers, unlike in the SmC* phase. 

Assuming 6' to be small, the free energy density of the TGB blocks, given by Eq. 5.31, 

can be written in the form 

84 
- ~ b t e ~  (sin 4- 8 ~ '  + cos 4 q )  ax $ , 

where the one elastic constant approximation has been applied. 

As already explained in Sec. 5.2.2, any deviation of the director from the local 

tangent plane of the interface costs additional energy. If the director has to be 

parallel to the interface, the condition 

should be satisfied, where 1 is the normal to the interface. For small amplitude 

modulations, 

1 (-VZ,h1, -Vg1h1, 1) , (5.42) 

where h', obtained by transforming the height function Eq. 5.22 to the local frame, 

is given by 

h'(xl, y') = A cos [qu(xt cos /3 - y' sin P) ]  + A cos [qU(x1 sin /? + y' cos P) ]  . (5.43) 

We first model a block which has its smectic layer normal along one of the 

lattice-vectors of the square modulation h'(xl, y'). 

Case /3 = 0 : Using Eqs.5.39 and 5.42 in Eq. 5.41, we get the condition for ii to 

be parallel to the interface as 

Aqu sin(qUx1) + Aqu tan 8 cos 4  sin(qUy1) + tan 6 sin 4 = 0 . (5.44) 

The above equation (Eq. 5.44) could not be solved analytically. Numerically forcing 

the director to satisfy the condition given by Eq. 5.44 results in discontinuous jumps 



in the +-profile. This is physically unacceptable as the free energy density goes 

to infinity at  the discontinuities. Therefore, we look for director configurations 

which give a smooth variation of +(xl, y') within a block and a t  the same time 

has a lower value of ((ii . i)2) compared to that obtained by having a perfect SmC* 

structure within the block. To obtain such a configuration we note that by assuming 

Aq, = tan8, which is strictly true only for a 1-D modulation as shown in Fig. 5.6, 

the above equation can be rewritten as 

sin + + tan 8 sin(q, y') cos + + ~in(~ ,x ' )  = 0 . (5.45) 

By inspection of Eq. 5.45, we choose an ansatz for describing the +-distribution in 

a block with P = 0 which is of the form 

4(p  = 0) = -qUx1 - tan-' [tan 8 sin(q,yl)] . (5.46) 

This generates a continuous variation of + along the local smectic layer normal, 

which is parallel to the XI-axis and a periodic distortion within the layers along the 

Y1-axis. 

The director configuration in a block with ,f? = 0 is schematically represented in 

Fig. 5.10. Along the layer normal direction, the director precesses about a cone with 

a period 27r/q,. Thus, there is a gain in the chiral energy due to the non-vanishing 

(ii- V x ii) contribution. Along the 3 direction there is an oscillatory behaviour due 

to the undulation along that direction. 

The height function h'(xl, y') has a periodicity of 2r/q, along the lab-fixed 

X and Y axes. With respect to the block-fixed frame, this height modulation is 

periodic along the local smectic layer normal, which is along the XI-axis, only when 

,B = m7r/4, where m is an integer. Therefore, we consider only blocks with P = 

m7r/4, for which the periodicity in the director distortions matches that  of the height 

modulation along the local layer normal. With such a large angle between adjacent 

blocks, the separation between the screw dislocations within a grain boundary is 



Figure 5.10: A plot of the projection of the director field in a block with = 0 on 
to the XIY'-plane. An exaggerated value of 8 = 7r/4 was chosen so that the director 
distortions are easily noticeable. The director precesses along the layer normal 
which is parallel to the X-axis. Within the layers (along Y-axis) the director has 
an oscillatory behaviour. 



Figure 5.11: The diagram shows how the wave-number of the block structure varies 
with /? = m7r/4. Such a variation gives a better matching of the orientation of the 
director with the interface thereby lowerlng the interfacial energy. 

of the order of the layer spacing (see Eq. 5.11). This means that the dislocation 

cores are almost touching each other. In such situations a molten grain boundary 

description similar to that made by Dozov [63] becomes more appropriate and the 

grain boundaries can indeed be considered as interfaces. Indeed, block-angles as 

large as 35" have been reported for the TGBA [67]. 

The wave-number for director-field in any given block is (see Fig. 5.11) . 

q' (P = m7r/4) = q,/(sin /3 + cos P )  . (5.47) 

In analogy with Eq. 5.46, the director configuration in an arbitrary block is now 

assumed to be 

q5(x1, y') = -q'x' - tan-' [tan 6 sin(q'y1)] . (5.48) 

For convenience we have replotted the height function corresponding to one lattice 

spacing along X and Y in Fig. 5.12. The deviations in the director field described 

by Eq. 5.48 from the preferred orientation, over the region shown in Fig. 5.12, for 

blocks with P = 0 and ,f3 = 7r/4 are plotted in Figs. 5.13 and 5.14. On the average, 

the deviations are least for blocks whose layer normals are along one of the lattice 



Figure 5.12: The height function, Eq. 5.22, plotted for a lattice spacing, 27r/q,, along 
X and Y. 

vectors of the square modulation of the interface. The deviations from the preferred 

orientation costs an energy fanis, given by Eq. 5.24. 

We assume that within the blocks 4 is constant along i;', which is the TGB 

twist-axis direction, since most of the twist distortion is confined to the grain bound- 

ary region. In the TGBA and the TGBc phases, 4 is constant along ? and 3 also. 

But in the UTGBc* phase, 4 varies continuously along ? and oscillates along 3. The 

contribution to the last two terms with coefficients Kz and Kbt in the free energy 

expression for the blocks, Eq. 5.40, integrated over a lattice spacing, is equal to zero. 

Therefore, the free energy density of the blocks can be written in the form 

In the absence of interfaces, the ideal SmC* structure will have 4 = q,xt (see 

Eq. 5.36). Any deviation from this will cost an energy proportional to O2 as given 

by Eq. 5.49. 

In the cholesteric phase, the equilibrium periodicity obtained by minimising the 



Figure 5.13: Plot of ii-1 over the region shown in Fig. 5.12 for a UTGBc. block with 
p = 0 and 0 = n-118. The optimum value of A and q, were obtained by minimising 
the total free energy for the UTGBc* phase as described later in the text. 

Figure 5.14: Plot of d. over the same region as shown in Fig. 5.13 with the same 
values for A and q,, for a UTGBc* block with ,B = 7r/4 and 0 = ~ 1 1 8 .  



Frank free energy expression is go = AIK (Eq. 5.2). In practice, the pitch of the 

cholesteric increases as the temperature is lowered. The pitch in the TGBA phase can 

be expected to  be larger compared to that in the cholesteric phase. Experimentally, 

we see a more or less continuous increase in the pitch on going from the cholesteric to 

the TGBA phase (see, for example, Fig. 4.17). As the temperature is lowered to the 

UTGBc* phase, this increase in the pitch becomes very sharp. In our calculations 

we neglect the temperature dependence of the pitch and we assume the value (qtgb) = 

q0/2 = A/2K in the TGB phases. 

Since Ap = r /4 ,  there are eight blocks in a TGB pitch. This fixes lb as 

lb = r/4(qtgb) = rK /4h .  

The free energy density in the various phases are calculated as described below. 

5.2.4 Calculations 

The various TGB phases and the SmC* phase can be described as 

S ~ C *  & e # o ,  C ~ = ~ , X ' ,  zb = 00 J 
(5.50) 

TGBc s 0 # 0, $ = constant, lb = r/4(qtgb) , qu = 0 
(in a given block) 

U T G B ~ *  + e # 0, $ E  XI, Y'), lb = r/4(qtgb) , QU # 0 
(in a given block) 

where q, corresponds to the periodicity of the two-dimensional modulation of the 

b 

interface as described by Eq. 5.22 and q, to that of the SmC* helix given by Eq. 5.36. 

In the SmC* phase, with q, = -A/Kc (Eq. 5.36), the free energy density given 

by Eq. 5.32 reduces to 

In the TGBA phase, the average energy per unit volume, which is just the sum 



of the average interfacial energy fint7 and the twist energy, ftwist, is 

where A@ is assumed to be 7r/4 as in the UTGBc* phase. There is no contribution 

coming from fblock, since 6 = 0. 

In the TGBc phase 4 is constant in a given block and the only contributions to 

its free energy density from fblock are from the first two terms which are independent 

of 4. This is added to the interfacial part, which is the same as that for the TGBA 

to  get the average energy density of this phase as 

Unlike in the TGBA and the TGBc phases, the block energy in the UTGBc. 

phase depends on the orientation of the smectic layer normal with respect to the 

undulation wave-vectors. Therefore, the total free energy density is averaged over a 

unit cell. The unit cell is defined by the lattice spacing of the interface modulation 

a = 2~/q,, and the TGB pitch ptgb = 2n/(qtgb). Using Eqs. 5.23, 5.24, 5.28 & 5.49 

for fint, faniso, ftwist and fblock respectively, the averaged total free energy density 

per unit volume becomes 

1 2r/q1 2~19' f in t  faniso}] 
(~UTGBC* ) = - N N 4 r  [< / o dx' 1 {.fblOck + ftwist + - lb + - lb , 

where N denotes the number of blocks within a TGB pitch. We choose A p  = 7r/4 

so that there are eight blocks in a TGB pitch. It is enough to sum over the first 

two blocks because blocks which are rotated by 7r/2 with respect to each other 

have the same structure. The averaged energy is then minimised with respect to 

the undulation amplitude A and the wave-vector magnitude q,. The integration 

was performed by the Gaussian Quadrature method [39] and the two-dimensional 

minimisation was done using the Simplex method [39]. 



The constants a and b are fixed such that the temperature variation of theta 

given by Eq. 5.38 agrees reasonably well with the experimental data shown in 

Fig. 4.22. We choose a value for K which is typical of the cholesteric phase. For 

simplicity, we take Kc = K.  A rough estimate of the grain boundary energy for the 

TGBA phase near the lower critical chiral strength can be obtained as follows. From 

Eq. 5.19, 6 = Acid. The energy per unit area of the grain boundary is y 21 e l l d .  
With the values (in CGS units) Acl = 0.04, d = 30 x and ld  = 100 x 

we get y = 1.2 x Note that this is of the same order of magnitude as the 

interfacial tension estimated for for the smectic-isotropic interface (N  dynlcm) 

[64]. The anisotropic tension for the smectic-isotropic interface is expected to be 

about 1.5 times larger [64]. 

Based on the above considerations, the following parameters were chosen for 

the calculations (in cgs units): a = 0.1 and b = 50.0, Kc = K = 0.2 x 

y = 3.0 x and T,& = 63.0°C. 

The average free energy densities in the various phases were calculated as func- 

tions of temperature for different values of A and Ay. The results of these calcula- 

tions are discussed in the next section. 

5.2.5 Results and discussion 

Figure 5.15 shows the phase diagram obtained as a function of Ay, which is the 

anisotropic part of the interfacial tension. The temperature vs chiral strength phase 

diagram is shown in Fig. 5.16. The variations in the lattice spacing and amplitude 

of the square modulation as functions of temperature are shown in Figs. 5.17 and 

5.18, respectively. 

We are interested in understanding the stability of the various phases that 

can form below the TGBA phase. Therefore, we always start with a TGBA phase 

above T:~ and above a critical chiral strength A, = m, which is obtained from 



Eq. 5.52. Below T&, the tilt angle 0 becomes non-zero and increases with reduction 

in temperature according to Eq. 5.38. Now the stable phase can be TGBc, UTGBct 

or SmC* depending on their relative free energies. 

First let us consider the phase diagram constructed as a function of Ay which 

is shown in Fig. 5.15. For large values of Ay, the TGBc is preferred as its structure 

has fan,,, = 0. As the temperature is lowered, there is a transition from the TGBc 

to the SmC* phase when the chiral energy that can be gained by having a helical 

structure along the smectic layer normal within each block exceeds the energy gain 

due to interfaces. Since fan,,, = 0, this transition is independent of Ay. As Ay is 

reduced, the additional interfacial energy cost for undulating the interface becomes 

small compared to the chiral energy that can be gained in the bulk by having a helical 

structure within the blocks. Hence, a UTGBc* structure is favoured over that of 

TGBc. As 0 increases with decrease in temperature, the interfacial cost increases 

due to an increase in the undulation amplitude (see Fig. 5.18) and the mismatch 

of the director a t  the interface. Also, the energy cost due to the distortion within 

the smectic layers and that from the deviations in the pitch of the helical structure 

within the blocks from that of an ideal SmC* structure given by Eq. 5.36 increases 

with 0. These factors cause the UTGBc. phase to go over to a SmC* phase a t  

lower temperatures. In between there is a narrow range of Ay in which there is a 

transition from the UTGBc* to the TGBc as the temperature is lowered. 

The stability regions of the various phases for different chiral strengths shown 

in Fig. 5.16 are explained as follows: 

Low chirality:- When the chiral strength is increased, at  some stage (A = A,), 

the chiral energy gained across an interface becomes slightly larger than the energy 
* 

cost arising due to the interfacial tension. Above TAC, a TGBA structure is favoured. 

Below Cc, the chiral energy that can be gained by letting the director precess 

about the layer normal goes as O2 (Eq. 5.49). Therefore, when the tilt angle is 



Figure 5.15: The phase diagram showing the stability regions of the various TGB 
phases and the SmC* phase as functions of the Ay and the temperature T for a 
given value of A = 0.039. Note that the line separating the UTGBc* and the TGBc 
phases has a finite positive slope. 
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Figure 5.16: The theoretical phase diagram showing the stability regions of the 
various TGB phases and the SmC* phase as a function of the chiral strength, A. 
The value of Ay was fixed at 0.072. The vertical dashed line corresponds to the 
lower critical field A, = fi got from Eq. 5.52. Below A, the TGB phases are 
unstable. We are interested only in the phases that occur below the TGBA phase 
when the temperature is lowered from T& = 63.0°C (horizontal line). 



Figure 5.17: Temperature dependence of the lattice spacing ( 2 ~ / q , ( , ~ , ) )  of the 
square grid, obtained by minimising Eq. 5.54 with respect to  A  and q,, as a function 
of temperature for A = 0.0396. 

Temperature (in OC ) 

Figure 5.18: Temperature dependence of the amplitude Amin of the height modula- 
tion as a function of temperature for A = 0.0396. 



small the chiral energy gained in the bulk by having a helical structure is not very 

significant compared to the energy ftwist gained across a flat interface with fanis, = 0. 

This makes the TGBc structure more favourable compared to that of SmC*. The 

UTGBc* phase is not preferred because the gain in bulk energy due to a helical 

structure within the blocks is not large enough to overcome the price to be paid 

at the interface due to an increase in the surface area, fint, and that due to the 

mismatch at  the interface, fanis,. As the temperature is lowered the chiral energy 

gain in the bulk increases as 02. Below a certain temperature the bulk energy gain 

in a SmC* phase exceeds the gain due to the interfaces. The UTGBc* is still not 

favoured because fint, faniso and the positive part of fblock, for this structure, also 

increase with tilt angle and are large compared to the chiral energy that can be 

gained when the chiral strength is small. Hence there is a direct transition from the 

TGBc to the SmC* phase. 

Large chiral strength:- If the chiral strength is large the net energy gain due to 

an interface becomes large. Hence interfaces are strongly favoured. Also, the energy 

gain in the bulk by having UTGBc* blocks becomes considerable even for small tilt 

angles. But the gain in the bulk free energy due to a helical structure within the 

blocks alone is less than that from a SmC* structure. This is due to the distortions 

within the smectic layers and the deviations in the helical structure in the blocks 

from that of an ideal SmC* which cost positive energies. Still this structure is 

favoured because at  high chiral strengths the energy gained in the blocks plus that 

gained across the interface, ftwist, is large enough to overcompensate for the cost 

due to the additional distortions (compared to an ideal SmC* structure) within the 

blocks and that due to fint + fanis,. As the temperature is lowered, the positive 

contribution to the interfacial energy, fint + fanis,, increases both due to an increase 

in surface area and that in the mismatch at  the interface with the increase in the 

tilt angle. Also, the difference between the bulk energies of UTGBC* blocks and 



the SmC* becomes larger. Due to these two reasons, there is a transition from the 

UTGBcl to the SmC* phase below a certain temperature. 

5.3 Conclusion 

In conclusion, we have carried out a simple minded analysis of the stabilities of the 

various T G B  phases. In this, the grain boundaries are treated as uniform interfaces. 

The blocks and the grain boundaries in the UTGBc* phase were modelled using an 

ansatz based on the experimental studies described in the previous chapter. Al- 

though many details of the structure of the blocks and the grain boundaries are not 

included, this highly simplified model is able to account for the occurrence of the 

various T G B  phases. The detailed phase diagram will depend on the temperature 

variation of the various parameters. The values of y and Ay as well as the elastic 

constants can be expected to increase as the temperature is reduced. This could be 

one of the reasons for the experimentally observed increase in the T G B  pitch with 

reduction in temperature. In the above analysis, the temperature dependences of 

these parameters were ignored. However, we believe that this simple model cap- 

tures some of the physical mechanisms responsible for the formation of these highly 

complex structures. 


