
Chapter 1 

Light scattering 

It is no exaggeration to state that everything we see is a result of scattering of light, and 

we see nothing that is devoid of scattering. Natural wonders ranging from the frequently 

seen sight of bright white clouds on the bright blue sky, to the blue moon seen once in a 

blue moon, are all examples of effects of scattering of light. Indeed, the phenomenon of 

scattering, accompanied by absorption, is responsible for the colour in life. 

As a science, the study of light scattering and its applications is too vast to be put 

into a single treatise. It is no surprise, therefore, that various branches in pure and 

applied physics have materialised in modern physics. Each one deals with the effects 

and applications of light scattering in its own, independent premises. A few of these 

branches are astrophysics, ocean physics, atmospheric physics, radar physics, biomedical 

optics etc. Even more astonishing is the fact that a few phenomena observed in solid state 

physics, related to electron propagation in disordered crystals, are seen to have optical 

counterparts. Over the years, the science of light scattering has grown through exchange 

of ideas, observations and theories between these branches. 

This thesis deals with some aspects of light scattering related to biomedical optics, 

and some related to laser optics. 
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1.1 Single scattering 

Although the bulk of this thesis deals with light scattered &om a collection of inhomo- 

geneities, the effects of this collection are calculated from the knowledge of the effects 

of a single inhomogeneity. We familiarise ourselves with the fundamentals of the single 

scattering theory before graduating to the effects of multiple scattering. Detailed treat- 

ments on the phenomenon of scattering of light from a single particle are given in the 

literature[l, 2, 31. 

Consider a wave incident upon a particle of an arbitrary shape. The total energy 

scattered by the particle in all directions can be considered to be the energy of the incident 

wave falling on a virtual area Csca. This area is called the scattering cross-section of the 

particle. Likewise, the total energy absorbed by the particle can be put equal to the 

energy incident on an area Cabs, defining the absorption cross-section. The sum total of 

the two gives the extinction cross-section Cat = Csca + Cabs. For non-absorbing particles, 

CeZt = C,,,. These cross-sections depend upon the orientation of the particle and the 

polarisation state of the incident light. The geometric cross-section G of the particle is the 

projection of cross-sectional area of the particle on a plane perpendicular to the direction 

of the incident light. For a spherical particle of radius a, G = ra2.  

The essential problem in single scattering theory is to find out the scattered field as a 

function of direction, for a given incident field and a scatterer of arbitrary size, shape and 

orientation. (The size of a particle is always described relative to the wavelength of light 
, 

inside the particle, unless otherwise specified. The orientation is specified with respect to 

an imaginary XYZ frame of reference, that is also used to define the direction of incidence 

and scattering.) Arbitrariness in shape is a characteristic that analytical theories cannot 

handle, so all the analytical treatises dealing with single scattering work with symmetric 

particles, viz. spherical, ellipsoidal, cylindrical etc. Since the experiments and simulations 

described in this thesis use only spherical particles, we get acquainted with some of the 

important characteristics of single scattering by a spherical particle. 
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The Mie theory[l], in rigour, computes the scattering properties of spherical particles 

of arbitrary size. The Mie theory expresses the fields inside and outside the spherical 

scatterer in terms of known functions, viz, the Riccati Bessel functions. In particular, the 

theory calculates the angular dependence of the scattered intensity for light in the two 

extreme cases of polarisation, parallel and perpendicular to  the scattering plane, and from 

this the intensity for any polarisation can be calculated. 

Figure 1.1: A polar plot of the intensity distribution of light scattered from a particle of 
g = 0.117. The bold solid line is the intensity distribution for unpolarised light, while the 
dotted and dashed lines are for perpendicular and parallel polarisations respectively. The 
two polarisation states and their relevance in  scatten'ng problems will be discussed in  a 
later section. 

The parameter that describes the size of the particle in comparison with the wavelength 

of the incident light is the size parameter x, given by x = ka, where k is the wavevector 

and a is the diameter of the particle. 

For particles smaller than the wavelength, the scattered intensity is distributed more 

or less uniformly in all directions, in which case the scattering is called isotropic. On the 

other hand, for particles larger than the wavelength, light is scattered preferentially in the 
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Table 1.1: Refractive indices and anisotropy parameters of the particles used in the exper- 
iments described in this thesis. The parameters are calculated for a wavelength of 0.612~, 
and assuming the surrounding medium to be water, n = 1.33. 

forward direction, and the scattering is called anisotropic. This anisotropy can be seen to 

be arising from the interference of wavelets scattered by small sections of the particle. For 

particles smaller than the wavelength, all the wavelets will be in phase in all directions, 

while for larger particles, the wavelets in the forward direction are in phase. 
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The figure 1.1 shows a typical polar plot of the scattered intensity with respect to 

the scattering angle (which is always defined relative to the angle of incidence). This 

scattering pattern has been calculated by the Mie theory. 

If 8 is the average scattering angle for a given particle, then g =< cos 8 >, the average 

cosine of the scattering angle, is known as the anisotropy parameter which quantifies the 

anisotropy in scattering. g depends upon the size of the scatterer, the wavelength of the 

light and the refractive index contrast between the scatterer and the surrounding medium. 

It can be calculated from the Mie theory. Clearly, when g = 0, the scattering is isotropic 

and when g = 1, the scattering is totally forward. Table 1.1 gives the values of g for 

particles of different radii and refractive indices. 

1.2 Multiple scattering 
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The introductory concepts of the theory of multiple scattering in a random medium are 

presented here. These concepts suffice for understanding the more advanced topics de- 

scribed in the later parts of this thesis. For detailed considerations of the theory of multiple 
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scattering, we refer the reader to the literature[4, 5, 6, 71. 

In a medium consisting of a large number of scatterers, the incident field undergoes 

recurrent random scattering before it exits the medium. One cannot calculate exactly 

the form of the field scattered from an arbitrary multiply scattering medium. The total 

scattered intensity, as a function of either the distance of travel within the scattering 

medium or the angle of scattering, hinges crucially upon the interference effects that are 

manifest within the scattering medium. Accordingly, based on certain approximations 

concerning the length-scales of the medium, a few theoretical models have been proposed 

to explain the experimental observations regarding multiply scattering media. We get 

acquainted with these length-scales, and the implications of their magnitudes. 

An important parameter in the theory of multiple scattering is the scattering mean 

free path, I,. It is defined as the average distance between two successive scattering events, 

and is given by 

Here, n is the number of scatterers per unit volume and us is the scattering cross- 

section of the individual scatterer. After travelling, on the average, a distance of I,, the 

wave can be assumed to have undergone scattering, but it hardly means the direction 

is randomised. As mentioned earlier, due to the anisotropy of scattering, the wave may 

propagate in the near forward direction even after several scattering events. To accomodate 

this characteristic of scattering, a transport mean free path is introduced, that is defined as 

the average distance that the light travels before its direction of propagation is randomised. 

The transport mean free path, denoted by I* is given by 

Here g is the anisotropy parameter defined in the earlier section. Clearly, for isotropic 

scattering, where g + 0, the transport mean free path is approximately equal to the 



8 Chapter 1. Light scattering 

scattering mean free path, which is understandable because the wave can be scattered 

into any angle with almost uniform probability over 47r steradian. The transport mean 

free path is the more relevant length scale in light transport through disordered media 

because scattering is, in general, anisotropic. 

Generally, the process of scattering is not completely free of absorption, due to a 

finite absorption cross-section of the scatterer at the wavelength of interest. Neglecting 

absorption completely may lead to discrepancies between experimental observations and 

theoretical calculations. The length scales relevant to absorption are the inelastic mean 

free path li and the absorption mean free path labs.  'The inelastic mean free path is the 

distance over which the intensity of the wave reduces to f times the initial intensity due to 

absorption. Within successive scattering events, the wave can travel along a zig-zag path 

of length li, without much displacement between the beginning and the ending points. 

The average distance between the begin and end points for paths of length li is defined as 

the absorption mean free path. It is given by 

labs = ( I -3)  

In most treatments, the random medium is taken to be in the form of a semi-infinite 

slab - of size L along the direction of irlcidence of light and infinite transverse to it. Such 

a medium is said to have an optical thickness T = b. 

It should be noted that the average distance between two scatterers, which we call r ,  

can be much smaller than l,, since I ,  is the distance between two scattering centres. The 

physical extent of the scatterers can be large to make these two distances different from 

each other. 

1.3 Various regimes of multiple scattering 

Depending upon these length scales, the degree of disorder or the strength of scattering 

of a given medium can be decided[7]. When the wavelength X is much larger than the 
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distance between two scatterers r, the scatterers are not resolved by the wave and the wave 

sees an effective medium, with a certain effective refractive index. When the wavelength is 

small so that the discrete nature of the scattering centres can be resolved by the wave, one 

needs to take into account the effective transport mean free path l* to decide the regime 

of scattering. When l* >> A, light transport is assumed to be diffusive. Interference 

effects can be neglected. When l* - A, the medium is said to be strongly scattering. 

Before the wave can complete one cycle of oscillation, it gets scattered. Here interference 

effects dominate light transport so much so that the effective transport can be brought to a 

complete halt. This can be regarded as a situation where the wave keeps getting scattered 

within the strongly scattering medium and is unable to exit the medium[8]. Thus, the 

light is localised inside the scattering medium, similar to the localisation of electrons inside 

a disordered conductor[9]. 

When I* > > A, one can assume that the light propagates diffusively within the medium 

and the diffusion equation can be used to study the light transport analytically, provided 

the medium satisfies certain conditions regarding its linear dimensions, extent of absorp- 

tion and a few others. The diffusion equation, albeit its downright simplicity, has been 

used to explain a variety of observed phenomena like pulse propagation[lO], coherent back- 

scattering[l 1, 12, 131 and frequency correlations[l4, 15, 161. The equation reads, for the 

intensity I at a position r inside the medium, at time t, 

Here D is the diffusion coefficient, given by $A*, v is the speed of propagation of the 

light in the medium. The second term describes absorption, where li is the absorption 

length and v is the transport velocity of light in the medium, and S(r ,  t)  is the source 

term. This diffuse regime is properly described by the condition X << l* < < L < < Labs, 

where Labs is the absorption length. The first inequality ensures that localization effects 

are absent or are small, the second inequality ensures multiple scattering and the third 

inequality ensures that absorption is negligible. Consider the propagation of light through 
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the slab of thickness L along +Z direction. The incoming beam decays exponentially due 

to multiple scattering, which scatters out the intensity from the beam. This decay is the 

Beer-Lambert decay given by 

where I. is the incident intensity of the beam. 

Figure 1.2: The semi-infinite slab geometry showing the difusion of a photon contained 
in a beam of intensity I,. The intensity transmitted is given by  the equation 1.7 

According to diffusion theory, the incident beam is converted into diffuse light in a skin 

layer whose characteristic thickness is about one transport mean free path. Effectively, 

the diffusion approximation assumes that diffuse intensity enters the slab in a trapping 

plane located at a distance zo - l* outside the scattering medium. The exact value for 

the location of the trapping plane in the case of point scatterers is 0.7104 1,. Once inside 

the scattering medium, the intensity obeys equation 1.4. In the steady state, the time 

derivative vanishes. For the slab geometry shown in the figure 1.2, the equation to be 

solved is I1I(z) = 0, along with the boundary conditions, I(-zo) = lo, and I (L + zo) = 0, 
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where the prime refers to the derivative with respect to z. The solution reads, 

Thus the transmitted intensity (T) is given by putting z = L in this expression, yielding, 

which indicates a behaviour. Thus, in the diffusion approximation for a slab geometry 

when the scattering medium is nonabsorbing, an Ohmic behaviour is observed for the 

transmitted light. For a bulk system, the solution of the diffusion approximation with the 

initial conditions I ( r ,  0) = 6(r) and S = 0 reads 

The diffusion approximation works well in predicting the temporal broadening of pulses 

transmitted through random media[lO]. In fact, the temporal pulse distribution predicted 

by the digusion approximation ca.n be used to extract the values of the diffusion coef- 

ficient, where the Mie theory cannot be applied[l7]. Apart from pulse distribution, the 

diffusion theory has been employed in explaining coherent backscattering effect [1 1 , 12, 131, 

continuous wave transmission and frequency, spatial and temporal correlations[l4, 15, 161. 

The biggest drawback of this approximation is that one needs a proper model for 

the source of light. In practical situations, a laser is used as a source, while the dif- 

fusion approximation starts off with a non-collimated source[l8]. The position of this 

non-collimated source inside the entry face of the sample is also debatable. For a long 

time, the approximation was used with a diffuse source assumed to exist at a distance of 

one I* inside the entry face. Recent literature questions this part of the diffusion approxi- 

mation, and the question as to where exactly does collimated light become diffuse inside 

the random medium has become an activity by itselql8, 19, 20, 211. Another important 

discrepancy with the diffusion approximation is its limited applicability in the case of 

strongly absorbing random media[22]. 
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The diffusion theory, and other analytical theories for wave transport through random 

media, work on the assumption that light has a scalar nature. Analytical theories do not 

incorporate polarisation characteristics of light, and therefore, the phenomenon of depo- 

larisation has not been studied analytically. Since depolarisation of light upon multiple 

scattering is the crux of the matter in this part of the thesis, we resort to numerical simula- 

tions. In our numerical studies, we employ Monte-Carlo simulations that simulate random 

photon paths on a disordered lattice. Monte-Carlo simulations have been used in the past 

to study transport of unpolarised and polarised light through scattering media[23, 241. 

The techniques developed for simulating random walks in neutron scattering have been 

adapted here[25]. Numerical simulations provide a free handle on parameters like the 

scattering mean free path, the optical depth etc, and so different regimes of scattering 

can be investigated without making specific assumptions. This is not possible for ana- 

lytical theories, that are based on fundamental assumptions about the degree of disorder. 

Though numerical simulations are computationally expensive, they are relatively easy to 

code, and provide transparent results. 
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Chapter 2 

Polarisat ion in light scattering 

2.1 Introduction 

Since a considerable part of this thesis deals with the polarisation of scattered light and 

its preservation or destruction inside a random medium, we begin by introducing the most 

basic notions of polarisation of light, its representation and its measurement. Extensive 

texts are available that deal with the fundamentals of polarisation, its measurement, its 

represent.ation using the Stokes vectors, and its relevance in light scattering[l, 2, 3, 4, 51. 

Consider a plane monochromatic wave with angular frequency w, wave vector mag- 

nitude k propagating along the Z axis. The electric field at any instant of time can be 

written as 

E = A cos(kz - wt )  B sin(kx - w t )  (2.1) 

A and B are vectors independent of position. At a particular plane, say at z = 0, the 

tip of of the electric field vector traces a curve given by 

which is the equation of an ellipse. This is the most general state of polarisation of light 

called the elliptical polarisation. When one of the two constants A or B is zero, the 

electric field vibrates along a straight line, and the state of polarisation is called linear 
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Figure 2.1: Ellipse of vibration given b y  equation 2.2 

polarisation. When IAl = IBI, the electric field rotates along a circular path, and the 

light is said to be circularly polarised. The sense of vibration of the electric field vector 

along the ellipse depends upon the direction from which it is seen. In this thesis, we have 

used the convention according to which an elliptically polarised wave is right-handed if 

the electric field vector is rotating in the clockwise sense as viewed by an observer looking 

towards the source. 

Apart from the handedness, the ellipse can be characterised by its ellipticity (the ratio 

of the length of the semiminor axis to the semimajor axis) and its azimuth (the angle 

made by the semimajor axis to an arbitrary direction of reference). (Refer to figure 2.2.) 

The four parameters, viz handedness, ellipticity, azimuth and the intensity are called the 

four ellipsometric parameters of the polarised light. 

These four parameters completely specify the state of polarisation of a wave. However, 

they are difficult to measure directly, and also not helpful in understanding the transfor- 

mations of polarisation. Not all the four parameters are additive, which renders it difficult 

to discuss partially polarised light using this representation. 



2.2. Stokes vectors representation 17 

Figure 2.2: Ellipsometric parameters illustrated. 

2.2 Stokes vectors representation 

An equivalent representation of polarised light is the Stokes vector representation[6], that 

uses a vector consisting of four Stokes parameters. Each of these parameters is easily mea- 

surable experimentally, and they are all additive in the sense that the parameters for the 

sum of two beams of light are given merely by adding the individual Stokes parameters. In 

essence, the Stokes parameters are a powerful representation of polarised light. Accompa- 

nied by the Mueller matrix method, that we shall introduce in the next section, the Stokes 

vector representation provides an elegant means to study the evolution of the polarisation 

state of light upon interaction with various optical elements, and most important, upon 

multiple light scattering in random media. 

We introduce the four Stokes parameters along with their notations through the ex- 

periments by which they can be determined. 

Assume that a detector measures the intensity of an arbitrary monochromatic beam of 

light regardless of its polarisation. Assume also that the various polarisers are ideal; they 
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do not absorb light. To define the polarisation states of the beam, we use a set of orthogonal 

axes E l l  and GI, which we shall refer to as "horizontal" and "vertical" respectively. 

Then, the electric field of the beam is 

E = Eo exp( ikz  - iwt)  

Eo = EIIGI1 + El lg~  

Now we make the following measurements on the beam. 

1. Measure the intensity falling on the detector with no polarisers in the path. The 

measured value is 

( We have omitted the factor &.) 

2. Let a horizontal polariser be introduced in the path of the beam. The intensity 

transmitted will be Ell Ek Let a vertical polariser be introduced in the path, replacing the 

horizontal polariser. The intensity measured now will be ElET. The difference between 

the two measured intensities is 

3. Let a polariser be placed in the path of the beam, with its axis aligned at +45' to 

the horizontal. We introduce a new set of basis vectors d+ and 6- which are obtained by 

rotating our previous frame through +45" and -45" respectively. The new basis is then 

In this basis, the electric field vector Eo can be written as Eo = E+d+ + E-6-, where 

The amplitude of the transmitted wave through the polariser aligned at +45' is 

E+ = ~ ( E I I  + EL),  giving an intensity I+ = (Ell$ + EIIE; + EIE[ + EIE;)/2. 
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Similarly, the intensity transmitted through the polariser aligned at -45' is 

I = (Ell  Ei - Ell E l  - EIEi + EIE;)/2.  The difference between the two intensities is 

4. Here, we need to introduce right and left circular polarisers. The respective basis 

vectors are given by 

In this basis, the electric field vector Eo can be written as Eo = E R ~ R  + E L ~ L ,  where 

The intensity transmitted through the right circular polariser is 

IR = (EIIE{ + iEllE; - iEIEi  + EIE1)/2. The intensity transmitted through the left 

circular polariser is IL = (EllEli - 2EIIE; + iEIE* II + ELET)/2. 

The difference between the two gives 

Through these four experiments, we have directly measured the four Stokes parameters, 

written as 

The Stokes parameters are related to the ellipsometric parameters as follows : 
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Q = c2 cos 27 cos 27 

U  = c2 cos 27 sin27 

V = c2 sin27 

where, 

Here, a and b are the semimajor and the semiminor axes of the ellipse, y is the azimuth 

(0 5 y 5 x), and is the ellipticity. The sign of V signifies the handedness of the ellipse; 

positive stands for right-handed, and negative stands for left handed. The ellipticity and 

azimuth can be directly calculated from the Stokes parameter as 

We note that the parameters Q and U  depend upon the choice of the horizontal and 

the vertical axes, and I  and V do not. If the frame of reference on which these parameters 

are defined is rotated through an angle ?(I, then the transformation from ( I ,  Q, U, V) to 

(Ii, Qi , Ui, K )  in the new frame is given by 

The following table shows the Stokes vectors for various types of polarisations. 
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Linearly polarised light 

Angle with horizontal 0" 90" $45" -45" Y 

Circularly polarised light 

Right Left 

In the case of an ideal, strictly monochromatic wave, the four parameters are not 

independent, and it can be seen that the relation 12 = Q2 + U2 + V2 holds. In more 

practical situations, we define the parameters for a quasi-monochromatic beam. This 

beam has a small finite spectral width, because of which the two orthogonal components 

of the electric field are functions of time, but vary slowly over time intervals of the order of 

the period 2rlw. The correlation between these two components over long time intervals 

decides the polarisation state of light. If Ell and El are completely uncorrelated, the light 

is said to be unpolarised. If they are completely correlated, the light is called polarised. 

If they are partially correlated, the light is partially polarised. 

The Stokes parameters of a quasi-monochromatic beam are given by taking the time 

averaged quantities over an interval long compared with the period. Thus, the parameters 

are written as 
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In this case, we can see that x2 > Q2 + U2 + v2. The equality holds if the light is 

completely polarised. Accordingly, we can define the degree of polarisation of the light as 

Q2+U2 -. I The degree of linear polarisation can be defined as G, and the degree 

of circular polarisation as y. The sign of V signifies the preferential sense of rotation of 

the vibration ellipse of the beam: postive indicates a right handed ellipse. The quantity 

specify the preferential azimuth and V & specifies the preferential ellipticity of the 

vibration ellipses. 

Thus, being equipped with a powerful and mathematically simple means of repre- 

sentating and studying polarisation of light, we now proceed to learn a technique used to 

study the transformation of polarisation of a beam, upon interaction with optical elements 

like reflectors, polarisers, retarders etc, and most important for our context, scatterers. 

2.3 Mueller matrix formalism 

This section deals with a technique of measuring the change in polarisation of light upon 

reflection, refraction or scattering. The method is called Mueller matrix technique[7], 

which we shall now introduce. In the following discussion, we assume that the medium 

with which the light interacts is linear. This enables us to write a linear relation between 

the input and the output Stokes vectors of the beam, before and after the interactions. If 

Ii is the Stokes vector of the light before the interaction, and I,, is after the interaction, 

M here is the 4x4 real-valued transformation matrix, whose elements mij depend upon the 

properties of the interacting element, frequency of light and in the case of light scattering, 

on the scattering angle. In general, all the sixteen elements of the Mueller matrix are 

independent. However, due to certain symmetry conditions that may apply to M, and 

due to certain optical properties of the interacting medium, the number of independent 
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matrix elements may be reduced. In the case of multiple optical elements arranged in 

a cascade, the total effect of the cascade is determined by the product of the individual 

Mueller matrices, in the correct order. 

Examples : The Mueller matrix for an ideal linear polariser whose transmission axis 

makes an angle J with the direction of polarisation of the input beam is given by 

Now, if the input Stokes vector is given by Q' and the output beam is represented I ui I 
Q0 , we can see from above that the intensity transmitted by the ideal polariser, 

by I u o  I 
1 vo J 

It is given by 

1 
It = - (Ii + Qi cos 2J + U, sin 2J) 

2 

Consider an ideal retarder, an element that converts linear state of polarisation into 

elliptical, by introducing a phase difference between the two orthogonal components po- 

larised parallel and perpendicular to the optic axis of the medium. If p is the angle made 

by the direction of polarisation of the light with the optic axis of the retarder, then the 

Mueller matrix for such a retarder is written as 

1 0 0 
0 C2 +S2cosS SC( l  -COSS) -SsinS 
0 S C ( l  - cos S) S2 + C2 cos S C sin S 
0 S sin S -C sin 6 cos 6 1 

where, C = cos2P, B = sin2P, and 6 is the retardance introduced between the two 

orthogonal components, which depends upon the thickness of the retarder. It is a simple 

matter to verify through Mueller matrices, the construction of a circular polariser by using 

a properly ordered combination of a linear polariser and a linear retarder. 
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~ncidknt beam 

Figure 2.3: Geometry adopted for describing light scattering from a particle. T h e  plane 
containing the incident and scattered wave-vectors ( k, and kt) i s  called the scattering 
plane. Parallel and perpendicular polarisations ( dl, and dl) are defined with respect t o  
the scattering plane. 

2.4 Scattering particle Mueller matrix 

The Mueller matrix elements for a scatterer depend upon the size the shape of the scatterer, 

the refractive index contrast between the scatterer and the surrounding medium, the angle 

of scattering and the azimuth of the scattering plane. Figure 2.3 illustrates the geometrical 

aspects of a scattering event, and we retain this geometry for all the discussions pertaining 

to a scattering event throughout this thesis, unless otherwise specified. 

The figure 2.3 shows a particle of an arbitrary shape illuminated by a plane wave, 

propagating along the +Z axis. The origin is chosen to be at any point inside the particle. 

The scattering direction and the incident direction together define the scattering plane. 

The scattering plane is uniquely determined by the azimuthal angle 4, except when the 
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scattering direction is parallel to the incident, i.e., total forward scattering. In that case, 

any plane containing the Z axis can be taken as the scattering plane. 

The incident electric field Ei, lying in the XY plane is resolved into components parallel. 

and perpendicular to the scattering pIane, i.e., Elli and Eli respectively. Similarly, the 

scattered electric field in the far-field region is resolved into components Ells  and El,. 

Since the interaction is assumed linear, the amplitude of the scattered field is a linear 

function of the amplitude of the incident field. This can be conveniently stated in matrix 

form as 

&k(r-z)  
s 2  s3 

scattered - 2 K  [ 8 4  sl ] [ ] incident 

where Sj ( j  = 1,2,3,4) are the elements of the amplitude matrix and .are functions of the 

scattering angle 8 and azimuthal angle 4. 

The relation between the Stokes vectors of the incident and the scattered light can 

be obtained from equation 2.22. The sixteen elements of the Mueller matrix are then 

expressed in terms of Sj's and their complex conjugates. For a scatterer of an arbitrary 

shape, seven of the sixteen elements of the matrix are independent. In the situation of light 

scattering by a collection of particles, the scattering matrix for the collection is merely the 

sum of the matrices of the individual particles. In that case, all the sixteen elements of 

the Mueller matrix are nonzero and independent. 

In the case of spherical scatterers, S3 = S4 = 0. Mie theory computes the terms SI 

and Sz, which are functions of 8, in the form of an infinite sum which can be terminated 

after sufficient number of terms. The Mueller matrix consists of only four independent 

elements. The input and the output Stokes vectors are then related as 

S11(8) S12(9) 0 0 
S12(9) Sll(9) 0 [;I = &I 0 0 0 S33(9) s34(8) ]  0 [ i (2,26) 

output 0 -534(9) S33(9) 

where k is the wave-vector and r is the distance travelled before the scattering event. The 
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Sij's are given by 

One just requires to calculate four independent matrix elements to characterise com- 

pletely the effect of the scattering event on the incident light. Then, from the above 

mechanics applied recursively, one may study the evolution of polarisation state inside a 

random medium by keeping track of the Stokes parameters of the light during successive 

scattering events. The advantages of the Mueller matrix formalism are that, it gives us 

a simple means of determining the polarisation of the scattered light, given any arbitrary 

polarisation of the incident light. The elements of the Mueller matrix for a spherical scat- 

terer can be exactly calculated by the Mie theory. Well-documented codes are available 

and easily accessible for the purpose[2, 81. 
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