Chapter 2

Shape of Pulsar Beams

2.1 Introduction

Most widely accepted emission models assume that pulsar radiation is emitted over
a (hollow) cone centered around the magnetic dipole axis. The observed emission is
generally highly linearly polarized with a systematic rotation of the position angle
across the pulse profile. This behaviour, following Radhakrishnan & Cooke (1969), is
interpreted in terms of the radiation being along the cone of the dipolar open field-lines
emerging from the polar cap, and the plane of the linear polarizationis that containing
the field line associated with the emission received at a given instant. During each
rotation of tlie star, the emission beam crosses tlie observers line-of-sight resulting in
a pulse of emission. The observed pulse profile thus corresponds to a thin cut across
the beam at a fixed rotational latitude. The information on the beam shape as a
function of latitude, although generally not measurable directly, may he forthcoming
from observations at widely separated frequencies, as emission at different frequencies
is believed to originate at different heights from tlie star leading to changes in beam
size. For this, the dependence of the radiation frequency on the height, the so called
radius-to-frequency mapping, should be known a priori. Alternativelv, it is possible
to use tlie data on an ensemble of pulsars sampling a range of impact parameters.
However, it isimportant that all the pulsars in the sample form a homogeneous set in

terins of' the profile types etc. Several attempts to model the pulsar beam have used the



latter approach. Based on their study, Narayan and Vivekanand (1983) concluded that
the beam is elongated in the latitude. Lyne & Manchester (1988), on the other hand,
have argued that the beam is essentially circular (see also Gil & Han 1096, Arendt &
Eilek 1999). Based on the dipole geometry of the cone of open field-lines, Biggs (1990)
found that the beam shape is a function of the angle (a)between the rotation and the
magnetic axes. The reasons that all these analyses predict different results could be
manifold. For example, Narayan & Vivekanand used a data set consisting of only 16
pulsars and assessed the beam axial ratio on the basis of the total change in the position
angle of the linear polarization across the pulse profile. Apart from poor statistics,
their analysis suffered from the large uncertainties in the polarization measurements
available then. Lyne & Mancliester (1988) used a much larger data set in comparison
and exarriined tlie distribution of normalized impact parameter 3, = /J0/p90, Where
390 & pgo are the impact angle and the beam radius computed for a = 90° calculated
using equation 2.5 and 2.6. Based on their observation that the distribution of /3,
is 'essentially uniform’, they concluded that the beams are circular in shape. The
apparent deficit at large 3, is attributed to a luminosity bias. The normalized impact
parameter Bq9, however, overestimates the true impact parameter § for o« # 90° (refer
eq. 2.5). Further Lyne & Mancliester (1988) disregarded the sign of # and consequently
3, is overestimated, which is particularly true for large 3 and small o values. Hence,
it isworth noting that the deficit in the distribution at large /3, is seen despite the fact
that 3, overestimatesthe true 3/p.

Biggs (1990) used the same data set as well as tlie /3, distribution as used by Lyne
and Manchester (1988), but drew attention to a ‘peak’ in the distribution at low /.
The shapes of the polar cap defined by the region of open field lines, as derived by Biggs,
show that the beam iscircular for an aligned rotator, but undergoes compression along
tlie latitudinal direction with increasing inclination «.

In this chapter, we address this question within the basic framework advanced
by Rankin (1993a) which, at the least,, is qualitatively different from that of Lyne
& Manchester (1958). The classification scheme (Rankin, 1983a), based on tlie phe-

nomenology of pulse profiles, polarization arid other fluctuation properties etc., provides
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Figure 2.1: Schematic representation showing the geometry of the pulsar emission

region.

a sound basis for explicit distinction between the core and the conal components, with
each of them following a predictable geometry (see also Oster & Sieber 1976; Gil &
Krawczyk 1996 for conal beams). Lyne & Manchester (1988), on the other hand, pre-
fer to interpret the observed variety in pulse shape and other properties as a result of
patchy illumination, rather than any particular pattern within the radiation cone. The
observed differences in the properties of pulse components are then to be understood
as gradual changes as a function of the distance from the center of the basic emission
cone. Their analysis thus naturally disregards the possible existence of conal features.

Assuming the possibly confined ‘conal-component’ geometry and by accounting for
all the relevant geometrical effects, we re-examine the shape of pulsar beams and their
frequency dependence. Recently published multifrequency polarization data, at six
frequencies in the range between 234-1642 MHz (Gould & Lyne, 1998). has made this

investigation possible.



2.2 Data set

For the present investigation requiring reliable estimates of « & 3, we use the data
set comprised of only those pulsars whose pulse profiles are identified as 'triple’ (T)or
‘multiple’ (M),as classified by Rankin (1993a, 1993b). The reason for the choiceisthat
the T arid M pulsars show a core component in addition to the conal components, so
tliat a reliable estimation of the angle («) between the rotation axis and the magnetic
axis is possible, using Rankin’s (1990) method. Rankin observed that tlie FWHM of
the core components of pulsars with interpulses has remarkable correlation with the

period of the pulsar given by,
Weore = 2.45° P70 (2.1)

wliere, Weore 1S the FWHM of the core-component at 1GHz. It was pointed out by
Rankin (1990), that the relation (2.1) can he explained naturally bv invoking the
notion of dipolar field lines. The opening angle of tlie dipolar field lines p (refer fig 2.1)

which is the angle between the last open field line and the magnetic axis is given by,

3. "2 _ 3 12 Tp
~3 D=y e (22

wliere, r istlie emission height, measured from the center of the star and tlie parameter
A takes the value R?/r2 with r, being the polar-cap radius and R being the stellar
radius (Gil 1981; Kuzmin & Dagkesamanskaya 1983). From the open field lines it can
be shown tliat, A = ¢P/2x, wliere c is the velocity of light arid P is the period of tlie
pulsar. Defining the core-width W ... as 2p it follows that for a neutron star of radius

10 km, Weor in degrees is,
Weore = 2p ~ 2.490(T/R)1/2P_1/2 (23)

where W, = 2.49° at the stellar surface, i.e. r = R, for a pulsar with P=1sec.
Comparing equation (2.1) and (2.3) it is seen that for the relations to be equal the
emission liciglit r should be equal to the stellar radius R. This suggests tliat tlie core

emission originates very near the polar cap. The pulsars with interpulses has « close
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Figure 2.2: Schematic representation of the evolution of the pulsar heam with fre-

quency.

to 90°. However for most of the pulsars a # 90°, and it can be shown that 2p isrelated

to « by,
Weore = 2p ~ 2.45°P~V2/sin(a) (2.4)

It should be noted that the above relation holds true for small 3 (refer eq: 2.6). For
the conal doubles and conal singles, devoid of any core component, the estimates of a,
are less reliable. The core singles are naturally excluded from this analysis of the conal
emission geometry. For each pulsar in our selected sample, we define the conal width as
the separation between the peaks of the outermost conal components. It isimportant
to note that the nominally 'central’ core component, which is argued to originate closer
to the stellar surface, may riot necessarily be along the cone axis. Such a possibility
is clearly reflected in many pulse profiles where the core component is displaced from
the ‘center’ definable from the conal components. Hence, the location of the core
coniponent is disregarded in our estimation of the conal separation. Columns 1 and
2 of table 2.1 list the name and profile type of these pulsars. Columns 3 to 8 list the
calculated widths of the pulsars at frequencies 234, 408, 610, 925, 1400, and 1642 MHz
respectively. Column 9 gives the pulsar period in seconds. Columns 10 and 11 list the

a and /3 values of the pulsars taken from Rankin (1993b).



Figure 2.3: Schematic representation of an elliptic pulsar beam of axial ratio R mith
the longitudinal and the latitudinal axis as b and Rb respectively. dr is the width of
the emission beam cone. See eq. (2.13) for discussion on the connection between the

'gap-angle' 6§, and ér/r.

Rankin (1990) has estimated the inclination angle « using the relation given bv
equation (2.4) (at a reference frequency 1 GHz). The impact angle 3 has been esti-
mated based on the rotating vector model of Radhakrishnan & Cooke (1969), using

the relation:

sin(f) = sin()/(d¥/dd)max, (2.5)

where (dW/d¢)max iS tlie maximum rate of change of the polarization angle 9 with
respect to the longitude ¢. Note that «v and /3 are tlie geometrical parameters of the
star and docs not change with frequency of observation.

In the following analysis, we treat the different frequency measurements on a given
pulsar as ‘independent’ inputs much the same way as the dataon different pulsars, since
the pulsar beam size is expected to evolve with frequency. In figure (2.2) the schematic

diagram for the evolution of the pulsar beam mith frequency isshown. Thus, at different,



frequencies one obtains independent cuts (at different 3/p) across the beam, though 3
remains constant for a given pulsar. The information obtained issimilar to that where
agiven pulsar iscut at various 3. Thisincreases the number of independent constraints
by a usefully large factor. In fact, we would like to contrast this approach with the
one where, for each pulsar, one obtains a best fit frequency dependence of the observed
widths and then uses the data to obtain the width at a chosen reference frequency.
The latter approach fails to take into account the dependence of the observed widths

on 3/p that isinherent for any non-rectangular shape of the beam.



Table 2.1: The table lists the pulsar name and the widths measured at 6 different

frequencies from the observations of Gould & Lyne (1998). In several cases the widths

could not be estimated due either to poor quality profiles or to absence of data. Tlie

«, (3 values are taken from Rankin (1990, 1993b). LM indicates that the g value (for
PSR 0656+14 and 1914+-09) is taken from Lyne & Manchester (1988).

Pulsar Profile Width in deg Period «@ fé]
Bname Class  Wasa Wiz Weio Woas Wigeo Wiesz  (sec)  (deg)  (deg)
0329+54 T 254 233 218 218 212 20.7 0.714518 30 2.1
0450-18 T 16.6 145 135 129 124 119 0548937 24 4
0450+55 T 273 207 207 246 220 22.0 0.340729 @ 32 3.3
0656+14 T 279 217 178 255 20.1 17.8 0384885 30 8.2 (LM)
0919+-06 T 181 165 146 115 10 8.4  0.430619 48 4.8
1508+55 T - 120 857 116 109 10.5 0.739681 45 -2.7
1541+09 T 126.5 107.8 1054 96.0 914 84.3 0.748448 5 0.0
1738-08 T - 146 137 136 126 12.1 2.043082 26 1.7
1818-04 T - 10.7 82 920 8.8 85 0598072 65 35
1821405 T 36.2 321 294 294 266 26.6  0.752906 32 1.7
1911413 T - 123 107 120 116 11.0 0.521472 52 1.9
1914+09 T - 109 126 89 8.5 8.1 0270254 52 7.3 (LM)
1917400 T - 8.3 8.1 8.0 7.2 6.7 1272255 81 1.3
1918+19 T - 49.1 427 413 413 38.7 0.821034 12 -4.6
1919+14 T - 223 207 187 197 17.1  0.618179 26 -6.4
1919421 T - 7.17 6.7 8.2 7.6 74 1337301 45 -3.7
1920421 T - 151 10.1 144 140 13.2  1.077919 44 1.1
1944417 T - 252 233 330 330 31.0 0.440618 19 6.1
2045-16 T - 129 123 116 11.0 10.7 1961566 36 -1.1
2111+46 T 69.8 633 594 556 53.0 49.1 1.014684 9 1.4
2224465 T 399 350 311 311 311 31.1 0.682537 16 34
2319460 T 21.8 187 171 150 135 135  2.256487 18 2.2
1804-08 M/T - 285 129 162 155 142 0163727 63 5.1
1910420 M/T - 128 115 112 10.8 - 2.232963 29 1.5
1952429 M/T - 227 216 222 210 19.2  0.426676 30 -7.2




Table 2.1 cont..

20204-28 M/T 129 109 10.1 10.1 9.74 93 0.343401 72 3.6
0138459 M 258 20 232 206 18.7 17.4 1222948 20 2.2
0402+61 M 142 146 107 103 10 9.6 0.594573 83 2.2
0523411 M - 124 108 120 116 108 0.354437 78 5.9
0621-04 M 185 21.2 18.4 18.0 175 - 1.039076 32 0.0
1039-19 M 154 - 115 107 10 9.6 1386368 31 1.7
1237425 M 10.0 103 100 93 90 10.0 1.382449 53 0.0
1737+13 M - 174 170 16.1 152 13.8 0.803049 41 19
1831-04 M 953 976 953 96.2 930 930 0.290106 10 2.0
1857-26 M - 325 294 263 255 248 0.612209 25 2.2
1905+39 M - 151 137 131 126 11.7 1.235757 33 21
2003-08 M 55.6 40.0 38.7 33.6 323 31.0 0.580871 13 3.3

2.3 A direct test for the shape of beams

Fig 2.1 is a schematic diagram illustrating the geometry of pulsar emission cone. The
emission cone, with half-opening angle p,, sweeps across the ohservers line-of-sight
with an impact parameter (distance of closest approach to the magnetic axis) 3. The
spherical triangle PQS (refer to Fig. 2.1) relates the angles a, # and the profile half-
width § to the beam radius p,, by the following relation (Gil, Gronkowski & Rudnicki
1984),

sin?(p, /2) = sin(¢,/2) sin(a) sin(a + ) + sin(3/2) (2.6)

The subscript v in p, and ¢, denotes that these quantities depend on frequency ». This
equation assumes that the cone is circular, in which case p, becomes independent of
B. In reality, the beam may not be circular, but rather elliptical with, say, R the axial
ratio and b the longitudinal semi-axis of the ellipse as shown in Fig. 2.3. It,is easy to
see that the length of the radius vector r» depends on the angle # (with the longitudinal
axis) when R isnot equal to 1. The variation of r as a function of 6 for three different
R values (namely 1, 1.5 and 0.5) are shown asexamplesin Fig. 2.4. The p,, determined
assuming that the cone shape is circular (as in Rankin 1993b) is indeed a measure of
the radius vector r, once the period and frequency dependences are corrected for. Such
data on (r,0) spanning a wide enough range in 6 can therefore be examined to seek

a consistent value of the axial-ratio R. However, if R isa function of «, as suggested
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Figure 2.4: The above curves illustrate the normalized variation of r with 8 (refer to
figure 2.3) with three different values of R.

by Biggs (1990), then the (r,f) samples would show a spread bounded by the curves
corresponding to tlie maximum and minimum values of R.

Such an examination of tlie present data suggests a spread below the line for R =1,
indicating that the beam deviates from circularity and that the spread could be due to
the o dependence of R. However, thisdeviation from circularity is not very significant.
We discuss this in detail later in section 2.5.

We have also examined the p, values obtained by Rankin (1993b) through such a
test. However, no significant deviation from circular beams was evident. We became
aware of a similar study by C.-l. Bjérnsson (1998), also with a similar conclusion. We
note that the only difference between our estimates of p, and those of Rankin isin
the definition of the conal widths. Rankin defines the width as the distance between
the outer half-power points (rather than tlie peaks) of the two conal outriders, and
the widths were then ‘interpolated’ to a reference frequency of 1 GHz. Such estimates
are prone to errors due to mode changes, differing component shapes etc., and to
the effects of dispersion & scattering (some of which she attempted to accommodate).
We measure the widths as the peak-to-peak separations of the outer conal components,

which are less sensitive to tlie sources of error mentioned above. We liave also confirmed



(in the PSRs B0301+19, B0525+21, B0751+32, B1133+16, B1737+13, B2122+13 arid
B2210+29 using the data frorn Blaskicwicz et al. 1991) that the ‘peaks’ of the conal
components are symmetrically placed with respect to the “zero-longitude” (associated
with the maximum rate of change of the position angle), which is not always true for

the outer half-power points.

2.4 The mode of the pulsar beam

We model the pulsar beam shape as elliptical in general and express it analytically as,
sin®(¢,/2) sin(c) sin(a + B) + sin?(8/2)

sin(p, /2) sin®(Rp,/2)

While a, # and ¢, can be estimated, directly or indirectly, from observations, R and p,

(2.7)

are the two parameters which in turn define the beam shape and size— and the available
data set of T and M-profilesisexpected to sample most of tlie |3/p,| range (0-1) with
reasonable uniformity. The implicit assumption in this statistical approach is that a
common description for R & p, isvalid for all pulsars. The common description should,
however, account for relevant dependences on quantities, such as frequency, period, a,

etc. properly.

2.4.1 Frequency dependence of p,

The radio emission at different frequencies is expected to originate at different alti-
tildes above the stellar surface, with tlie higher frequency radiation associated with
regions of lower altitude. This phenomenon, known as radius-to-frequency mapping,
finds overwhelming support from observations. Tliorsett (1991) has suggested an em-
pirical relation for the observed pulse width as a function of frequency, which seems to
provide adequate description of the observed heliaviour. We adopt a similar relation

for tlie frequency evolution of the beam radius p, as follows
pv = p(1+ Kv™C), (28)

where p isthe value of p, at infinite frequency, ¢ the spectral index, and K a constant.

Note that both ¢ & I are expected to have positive values, so that the minimum value



of p, is p, which should correspond to the opening angle of the last open field lines at

tlie stellar surface.

2.4.2 Period dependence on p,

Rankin (1993a) has demonstrated (see also Gil, Kijak & Seiradakis 1993; Kramer et
al. 1994) that the beam radius p varies as P~%° (where P is the period of the pulsar in
sec), aresult which isin excellent agreement with that expected from a dipole geometry
(Gil 1981). Eq 2.8 thus takes the form

py = po(1 + K1) P70, (2.9)

where p, is the minimum beam radius for P = 1 sec.

2.4.3 Functional dependence of X on «

Biggs (1990) has suggested that R should be a function of «, such that tlie beam shape
is circular for @ = 0 and is increasingly compressed in the latitudinal direction as «
increases to 90°. We therefore rnotld the fiinctional dependence of R on v as R = R,7,
where R, is the axial ratio of the beam at «v =0, and 7 is a function of «. According

to Biggs (1990), R, = 1 and 7 is given by
T(a) = 1 - K; x 107 — K3 x 107°a?, (2.10)

where I, I{, are constants and « isin degrees. Biggs finds that I, and I, are 3.3

and 4.4, respectively. We, however, treat I{; , as free parameters in our model.

2.4.4 The number of hollow cones

Based on the studv of conal components, Rankin (1993a) has argued for two nested
hollow cones of emission—- namely, tlie outer and the inner cone. Assuming the beams
to bhe circular in shape, opening half angles of the two cones at 1 GHz were found to
be 4.3" and 5.7°, respectively.

During our preliminary examination of the present sample, we noticed a need to

allovw far three canes of emission  To incornorate thisfeature in our model, we introduce



Table 2.2: The best,-fit model parameters for the shape of conal beams. The error bars

correspond to a 1o uncertainty. K is a constant where the unit of v isin MHz.

Model parameters

R, po (deg) K ¢ rl 2 K, (deg™!) K, (deg™?)

0.91+)% 48+03 66+10 101 08£0.03 13+£0.03 72+£0.2 44403

tworatios, rl < landr2 > 1,todefine thesizescaling of theinner-most and the outer-
most cone, respectively, with reference to a 'middle’ cone, for which the detailed shape
is defined.

Using the model here defined, we need to solvefor R., ¢, K, po, K1, Ko, 71 and r2in
this three-conal-ring model. The parameter set thus represents an ‘average' description

of the beam.

2.5 Results and Discussion

An optimized grid search was performed for suitable ranges of the parameter values
and in fine enough steps. The search range for R, was chosen tolie between 0.1t010in
steps of 0.02. Therangeincludesthe earlier claimed values for R, which varied between
— 2.5 (Narayan & Vivekanand, 1983) and —0.6 (Biggs, 1990). K was varied between 0
to 150 in step of 1. The range chosen for I includes the best fit values estimated by
Thorsett (1991) in fitting the multifrequency pulse widths for several pulsars as given
by the empirical relation, egixation (2.8). For ¢, the search range alowed for both +ve
and -ve values lying between -3 to 3 in steps of 0.01. By definiti$h, r; <1 and o > 1.
The search range for r{ was varied between 0.3to 1 and r, from 1 to 3.3, bhoth in steps
of 0.01. Note that, theratio of the inner-cone and the outer-cone as obtained by Rankin
(1993a) is —0.7 which is within the search range in our analysis. We have tried several
combinations of I, in steps of 0.05 starting from K, ; = 0 to K; 2 = 10. The range
searched for, includes the values quoted by Biggs (1990) as discussed in section 2.4.3.



ONE QUADRANT OF THE BEAM

Figure 2.5: Distribution of the (x,v) locations of tlic conal components on a common
scale. The three solid lines indicate the three emission cones in the quadrant shown.
The circles with crosses refers to pulsars with « values less than 45" and the filled

circles with « greater than 45°.

The best fit was obtained by minimizing the standard deviation o, defined by

L, D 180°
X

O, =
N(lof ™

(2.11)

where D, isthe deviation of the ' data point from tlie nearest conal ring in the model
and Ny, denotes the number of degrees of freedom. The factor 180/ gives g, in units
of degrees under the small-angle approximation. Table 2.2 lists the parameter values
which correspond to the best, fit for the entire sample set for o, = 0.18°. The la error
bars quoted in table (2.2) are the statistical error bars of the sample data points. The
error in estimating o, is estimated as (Uo/m% which is ~ 0.013°, for g, = 0.18"

while N,;,r = 190. Thus, to obtain tlic error bars for a given parameter we have fixed
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the best fit values for the other parameters and varied the parameter of interest, such

that the value of o, increases to oo T (0./y/Naos), 0N either side of the best fit values.

With these best fit values, the eq. 2.9 can now be rewritten as
py = 4.8°(1 + 66 vygy,) PP, (2.12)

where p, isin degrees. This average description for the 'middle’ cone appliesalso to the
other two cones when p, isscaled by the ratior1 = 0.8 or r2 = 1.3 (for the inner and
the outermost, respectively). Fig 2.5 shows the data (plotted to a common scale) for
one quadrant of the beam and the three solid curves corresponding to the best fit cones.
The points in the figure, though corresponding to different pulsars and frequencies, are
translated to a common reference scale appropriate for P =1 sec, « =0 and v = oo.
We have assumed the period dependence of p, as P~°*, whereas Lvne and Manch-
ester (1988) found a dependence of P~3. The standard deviation a obtained for the
former case is 0.18 and the latter 0.21. Thus given the statistical la error bar in esti-
mating o, as 0.013 we find that the difference in the standard deviation is at the level
of 2.5-35 and we cannot rule out the P~3 law with confidence. We have also checked

for the denendence of R on ov bv usine 3 sub-sets. each of range 30° in . The best



fit values for R in the different o segments are 1404, 0.8+03 & 0.5%)7 for « ranges
0° - 30°, 30° - 60" & 60°—90°, respectively. This dependence of R, on «, even If it were
significant, is quite consistent with our values of 1, K2 (Table 2.2) as wdl as with
the results of Biggs (1990). However, given the uncertainties in the R estimates for the
three ranges, it is riot possible presently to rille out a dependence of R on a. Indeed,
this part of the goodness-of-fit is negligible, o, (tliestandard deviation) is 0.18" when
K1 and K2 # 0 and 0.2" when K1,K2 = 0. Earlier Narayan & Vivekanand (1983)
had argued that R is afunction of the pulsar period. To assess this claim, our sample
was divided into three period ranges, between 0-0.8 sec, 0.8-1.6 sec and 1.G-2.5sec, and
the R values for each range was computed. We find that the R values in these ranges
are 0.91%)-2, 0.99%0-2 and 0.87+3-5 respectively. Given tlie error-bars it is possible to
rule out any period dependence of the beam.

The number and thickness of conal rings: As already noted and can be seen
in Figure 2.5, we do see evidence for a possible cone outside the two cones discussed
by Rankin (1993a). Also, the presence of a ‘further inner’ cone has been suggested by
Rankin & Rathnasree (1997) in tlie case of PSR. 1929+10. The pulsars suggestive of
this outer cone (refer Figure 2.5) are PSRs 0656+14, 1821405, 1944+17 and 1952+29
(at frequencies 234 MHz and higher). We have examined the possibility that these
cases really belong to the middle-cone, but are well outside of it due to an error in the
assumed values of a. The a values needs to be changed by 83%, 37%, 52% and 66%
respectively for the above cases. Hence we rule oiit tlie possibility as the implied error
in «v turns out to he too high to be likely whereas the error in estimating « from the
core-width measurements is typically 15%. It is important to point out that a noisy
sample like the present one would appear increasingly consistent, judging by the hest-
fit criterion, with models that include more cones. The question, tliercfore is whether
we can constrain the number of cones by some independent method. In this context,
we wish to discuss the noticeable deficit of points at high 3/p,. Since the deficit reflects
the absence of conal singles and conal doubles in our data set,, the size of the related
‘gap’ at large 6 values, can be used t0 estimate the possible thickness of the conal rings.

The absence of points at 8> 60° (Figure 2.5) suggests that the conal rings are rather



thin, since a radial thickness ér comparable to the ring radius would implv a wider gap

in 0. To quantify this, we write the following relation,

_, (1-sing,)
or = 2r m, (213)

where 8 isthe # at the start of the gap (asillustrated in Fig. 2.3). With 8 ~ 60°,
or/r would be about 20%. The presence of more than one distinguishable peak in the
distribution of beam radii (shown in the bottom panel of Fig. 2.5) clearly indicates that
the conal separation islarger than the cone width. Thiscombined with our cone-width
estimate suggests the number of cones is 3 (for the present range of radii), providing
an independent support for our model. This picture is consistent with the estimates
by Gil & Krawczyk (1997) and Gil & Cheng (1999).

Component separation vs. frequency: It isinteresting to note that for certain
pulsars the cone associated with the emission seems to change with frequency. For
example, the conal emission in PSR 1920+21 appears to have ‘switched’ at 610 MHz
to the innermost cone while being associated with the middle cone at other frequencies.
Rankin (1983b), in a comprehensive study of the dependence of component separation
with frequency, invokes deep 'absorption’ features to explain the apparent anomalous
reduction in the component separation in certain frequency ranges. We suggest that
such anomalous reduction in the separations could be due to switching of the emission
to an inner cone at some frequencies. Observations at finely spaced frequencies in the
relevant ranges would be helpful to study this effect in detail. The other pulsars which
show similar trends are PSRs 1804-08, 2003-08, 1944+17 and 1831-04. It should be
noted that such switching is possibly reflected, also, in mode changes.

The deficit at low 3/p,: The absence of points near 3 = 0 is clearly noticeable
in Fig. 2.5. Such a 'gap' isalso apparent in the distribution of 3/p, plotted in Fig. 2.6.
The gap was already noted by Lvne & Manchester (1988). They argued that it arises
because the rapid position-angle swings (expected at small 3’s) are difficult to resolve
due to intrinsic or instrumental smearing, leading to underestimation of the sweep-
rates. With the improved quality of data now available, the intrinsic smearing is likely
to he the dominant cause for this circumstance. There are a number of clear instances

amone the aeneral nopulation of pulsars where the polarization angle traverse near



the central core component is distorted. PSR. 1237425 provides an extreme examples
of such distortion, and Ramachandran & Deshpande (1997) report promising initial
efforts to model its polarization-angle track asdistorted by a low-y core-beam. Another
possibility for the low-3/p, gap is that it could simply be a selection effect caused by
less intense emission in the cone center than at intermediate traverses. If so, the low
frequency turn-overs (refer Fig. 1.4) in the energy spectra of pulsars may at least be
partly due to this, since at lower radio frequencies the 3/p, is relatively smaller.

The sour cesof uncertaintiesin the present analysis: The standard deviation
a, corresponding to the best-fit model amounts to about 15% of the conal radius. This
fractional deviation (comparableto the thickness of the cone) is too large to allow any
more detailed description of the beam shape (such as dependence on «. for example).
We find it useful to assess and quantify the sources of error, partly to help possible
refinement for future investigations. The three data inputs to our analysis are «, 3 arid
¢.,, While the basic observables are the maximum polarization-angle sweep rate and
core width, in addition to tlie measured conal separation. It is easy to see that the
errors in the core-widths will affect directly both « and 3 estimates. Over the range
of' @ spanned by tlie present data set the errors in « are likely to dominate, since the
x & y (in figure 2.5) are almost linearlv proportional to sin(«). Hence, the fractional
deviation may be nearly equal to (or define the upper liniit of) the fractional error in
sin(cv) and therefore in tlie core-width estimates.

Rankin (1990, 1993b) notes that in several cases the apparent core-widths might
suffer from 'absorption' and tlie widths might be underestimated if tlie effect is not
properly accounted for. Also, in some cases, the widths were extrapolated to a reference

frequency of 1 GHz using a v =025

dependence. There have been several suggestions re-
garding the ‘appropriate’ frequency dependence which would give significantly different
answers when used for width extrapolation. For example, if our best-fit dependence
for conal width is used for tlie core-width extrapolation, the values would differ frorn
Rankin’s estimates (through extrapolation) by as much as 15%, enough to explain the
present deviation in some cases. Another possible source of error is the uncertainty in

the sign of 8 (important only for the sin(o + ) term in equation 2.7 and hence for



small a).As Rankin points out, it is difficult to determine the sign unambiguously in
most cases and hence the information is only available for a handful of pulsars.
Evidence in favour of 'conal' emission: The significant implication of the gap
at 6> 60° (referred to earlier) deservesfurther discussion. If the'conal' components were
results of a merely patchy (random) illumination across the beam area, (as argued by
Lyne & Manchester, 1988), then such a gap should not exist. If a single thick hollow
cone were to be responsible for the conal components, a gap (corresponding to the
conal-single types) would still be apparent but then it should be above a cut-off y
value (refer Fig 2.5) and not in a angular sector like that observed. On the other hand,
if indeed the conal emission exists in the form of nested cones (asdistinct from the core
emission), then the shape of the gap isa natural consequence of our not including conal-
single profiles in this analysis. This gap, therefore, should be treated as an important

evidence for a pulsar beam form comprised, in general, of nested cones of emission.

2.6 Summary

Using the multifrequency pulse profiles o a large number of conal-triple and multiple
pulsars we modeled the pulsar beam shape in an improved way. Our analysis benefits
from the different frequency measurements being treated as independent samples, thus
increasing the number of independent constrains. The main results are summarized
below.

1) Our profile sampleisconsistent with a beam shape that isafunction of a, circular
at « = 0 and increasingly compressed in the latitudinal direction as « increases, as
suggested by Biggs (1990). However, the datais equally consistent with the possibility
that the beam iscircular for all values of a.

2) We identify three nested cones of emission based on a normalized distribution
of outer components. The observed gap (> 60°) in the distribution independently
suggests three cones in the form of annular rings whose widths are typically about
20% of the cone radii. We consider this circumstance as an important evidence for the

nested-cone structure.



Any further significant progress in such modeling would necessarilv need refined

estimates of the observables, particularly the core-widths.



