Chapter 3

Evolution of Multipolar Magnetic
Fieds in Isolated Neutron Stars

3.1 Introduction

Strong multipole components of the magnetic field have long been thought to play an
important role in the radio emission from pulsars. Multipole fields have been invoked
for the generation of electron positron pairsin the pulsar magnetosphere. For example,
Ruderman & Sutherland (1975) model requires that the radius of curvature of the field
lines near the stellar surface should be of the order of stellar radius to sustain pair
production in long period pulsars. Thisis much smaller than the expected radius of
curvature of the dipole field. Barnard & Arons (1982) showed that such small radius
of curvature is only possible if the field structure has at least one dominant higher
multipole. e.g. a quadrupole. Further, soft X-ray observations of pulsars show non-
uniform surface temperatures which can be attributed to the presence of a quadrupolar
field (Page & Sarmiento, 1996).

Magnetic multipole structure at and near the polar cap is also thought to be re-
sponsible for the unique pulse profile of a pulsar. Vivekanand & Radhakrishnan (1980)
pointed out that if the dipole magnetic field curvature of the field lines vary smoothly
across the polar cap then the pulse profiles should not have complicated structures as

observed. However multipole components present to a small degree can significantly”



modify the curvature of the field lines near the polar cap. This in turn can modulate
the emission giving rise to random pattern as observed. Krolik (1991) noted that the
complicated pulse structure observed in millisecond pulsars can be explained by in-
voking multipolar magnetic fields which has several reversals across the neutron stars
surface which can be treated as hot spots of emission. This explanation is consistent
with the large duty cycle observed in niillisecond pulsars. The recent estimates that
there should be several tens of sparks populating the polar cap is aso best explainable
if multipole fields dictate the spark geometry near the surface (Deshpaade & Rankin
1998, Rankin & Deshpande 1998, Seiradakis 1998). Significant evolution in the struc-
ture of the magneticfield during thelifetime of a pulsar mav therefore leave observable
signatures. If tlie multipoles grow progressively weaker in comparison to the dipole

then one can expect pulse profiles to simplify with age and vice versa.

The evolution of the magnetic fields in neutron stars in general is still a relatively
open question. During the last decade, two major alternative scenarios for the field evo-
lution has emerged. One of these assumes that the field of the neutron star permeates
the whole star at birth, and its evolution is dictated by the interaction between su-
perfluid vortices (carrying angular momentum) and superconducting fluxoids (carrying
magnetic flux) in the stellar interior. Asthe star spins down, the outgoing vortices may
drag and expel the field from the interior leaving it to decay in the crust (Srinivasan
1990). In a related model, plate tectonic motions driven bv pulsar spindown drags the

magnetic poles together, reducing the magnetic moment (Ruderman 1991a,b,c).

The other scenario assumes that most of thefield isgenerated in the outer crust (for
example by thermo-magnetic instability) after the birth of tlie neutron star (Blandfortl,
Applegate & Hernquist 1983). The later evolution of this field is governed entirely by
the ohmic decay of currents in tlie crustal lavers. The evolution of the dipole field
carried by such currents has been investigated in some detail in the recent literature
(Geppert & Urpin 1994, Urpin & Geppert 1995, 1996, Konar & Bhattacharya 1997,

1999). These studies include field evolution in isolated neutron stars as well as those



accreting from their binary companions. The results show interesting agreements with

observations lending some credence to the crustal picture.

In this chapter, we explore the ohmic evolution of higher order multipolesin isolated
neutron stars assuming the currents to be originally confined in the crustal region. Our
goal isto find whether there would be any observable effect on the pulse shape of radio
emission from isolated pulsars as a result of this evolution. In section 3.2 we discuss
the details of the computation, in section 3.3 we present our results and in section 3.4

discuss the implications.

3.2 The Diffuson Equation

The evolution of the magnetic field B, due to ohmic diffusion, is governed by the
equation (Jackson 1975) :

— = x(%xVXB), (3.1)

where o(r,1) is the electrical conductivity of the medium which can depend on both

space and time. For a constant conductivity, the diffusion equation can be written as,

0B  _,
e HV B (3.2)

in which case the time-scale (7) for the diffusion process would be,
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where L is the length-scale associated with the underlying current distribution. For
magnetic fields confined to neutron star crusts, L corresponds to the thickness of the
crust which is of the order of a kilometer and the conductivity a ~ 108sec™!. Thus, it
follows that the typical time-scale over which the fundamental mode of a dipole field
would decay is of the order of 7 ~ 10° years. For multipoles of order I however, the
decay time-scale is faster as the associated length-scale is smaller typically by a factor

L/2'. Barnard & Arons (1982) investigated the decay of the dipole and quadrupole



moments in neutron stars assuming a Cowling morlc decay (as suggested by Gunn
& Ostriker, 1969). This assumption leads to exponential tlecay of fields where the
diffusion time-scale of the quadrupole is faster than that of a dipole by a factor of
3.33. Simple-minded estimates do suggest appreciable decay in tlie various multipole
orders of the magnetic field. As evident from equation 3.3, the decay time of any
particular order is proportional to a. The density in the crust spans eight orders
of magnitude and the conductivity changes sharply as a function of depth from the
neutron stars surface. Studies concerning decay of dipolar fields including space and
time variations of electrical conductivity suggest that the decay is not exponential. The
reason being that in the diffusion process tlie underlying current diffuses to regions of
higher conductivity, thus slowing down the decay considerably at later times. To solve
equation 3.1 for varying a numerical methods have to be employetl. In section 3.2.1
we discuss in detail the space and time variations of tlie conductivity that we use to
solve equation 3.1, investigating the decay of multipolar fields.

We study tlie ohmic dissipation of electric currents in the outer crust of neutron
stars which consists of free degenerate electrons and fully ionized ions. We assume
tliat the magnetic field is weak enough such that it does not significantly perturb the
structure or evolution of the star. Further we assume that the magnetic field in the
crust is generated by some unspecified mechanisni during or shortly after tlie neutron
star's formation. Following Wendell, Van Horn & Sargent (1987) we introduce a vector

potential A = (0,0, A4) assuming the ficltl to be purely poloidal, such that:
S(r,8,t) = —rsind A,(r,8,1),

where S(r,0,t) is the Stokes' stream function. S can be separated in 7 and 8 in the
form :

S(r,0,1) = 2 Rir. ) sinf P} (cos),

1>
where P! (cos(6)) is the associated Legendre polynomial of degree one and R; is the
multipole radial function. From equation (3.1) we obtain :

R, (1 +1)
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where z = r/R, isthefractional radiusin terms of the stellar radius R.. The solution

o this equation with the boundary conditions :

@—l-i-—l*Rl = 0, asz —1
or =«

R = 0, atz=1x, (3.5)

for a particular value of I givesthe time-evolution of the multipole of order 1. Here, the
first condition matches the correct multipolefield in vacuum at the stellar surface and
the second condition makes the field vanish at the core-crust boundary (wherer = r,
the radius of the core) to keep the field confined to the crust. We assume that the
field does not penetrate the core in the course of evolution, as the core is likely to be
superconducting.

In terms of the multipole function R, the magnetic field, B =V X A, is given by

1 R l(l + 1) ~ 1 10R;
B(z,0,t) = R_E[_T,ZZI " Py(cos(0))Ry(x,t) + HIZZIPI (COS(H)).’I_,'a_’.II (3.6)
and the underlying current distribution, ; is:
- C
j=-—V>xB (3.7)
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3.2.1 Crustal Physics

The rate of ohmic dissipation in the crust is determined by the electrical conductivity
ain the crust. The crust of the neutron star consists of relativistic, Fermi-degenerate
free electron gas plus a non-relativistic, non-degenerate liquid or crystal of ions. In the
crust of the neutron star both density and temperature vary with radius. In regions
close to the surface where the temperature T > T,, ( T, is the melting temperature)
the ions are in the liquid or gaseous phase. In deeper layers where T,, > T, the ions
are crystallized. The condition for the melting or crystallization of a crustal material
depends on the ratio (I') of the Coulomb energy to the thermal energv of the crystal,
which is the Lindeman criterion for a one component plasma. On the basis of this
criterion Slattery et al (1982), have shown that ' = 171 at, the melting point. For a

crystal of ionic species Z and lattice spacing a, which is at a temperature T, the ratio



[ = (Z%*/a)/kpT, where kp is the Boltzmann constant. The lattice spacing a can be

written as,
4r1-/3 -1/3
a= [—g] [%] m;‘/S (3.8)
where m, isthe proton massand A isthe mass number of theion. Thus the temperature
T and I are related by,

()

r
where pg is the density in units of 10° g cc™®. The transport properties in the liquid
p y p q

T = 0.227 x 10822 K (3.9)

state is determined by electron-ion collisions. We use the conductivity of the liquid
layer as suggested by Yakovlev & Urpin (1980):

1:3

Oliquid = 8.53 x 102!
tiquid ? Z")’coulomb(1 + 5172)

(3.10)

Where Yeoulomb 1S the Coulomb logarithm and = is given bv (Z/ps)/3. A simple inter-
polation formulafor yeouomnr Was proposed by Ydcoviev & Urpin (1980):
x?

Yeoulomb = ln [(42)1/%(1 + 2/F)1/2] — m

(3.11)

Detailed calculations by Itoh et al. (1983) have confirmed that for Z > 2, the Coulomb
logarithm is well approximated by equation 3.11, with an error < 10 % which is suf-
ficient for our purpose. It is to be rioted that oyquiq iS practically independent of
temperature. For given Z, A, T and pg, we find I using equation 3.9. For I" < 171, we
use the conductivity as given by equation 3.10.

In thesolid crust the conductivity arisesdue to electron-phonon scattering. Except-
ing at very low temperatures, the Umklapp process dominates mainly due to presence
of the longitudinal acoustic mode in the phonon spectrum. We use the phonon scat-
tering conductivity (op,) for the pure crystalline phase from the results obtained by
[toh et nl. (1984) where

't (u? 4 0.0174)"/2
wTy(1 + 1.01822)1,

opn = 1.24 x 10% (3.12)

Here T is the temperature in units of 10%, u == 2% (logp—3), ps is the density in units of
10%°%em ™ and I, isafunction of density, Z and the atomic number A. The crystallized

crust is liltelv to have structural defects like impurities, dislocations, cracks and SO on.



For lower temperatures, the electron scattering on defects may be more effective than
on phonons. We use the conductivity for such scattering (oimp) given hy Yakovlev &
Urpin (1980) as

Oimp = 8.53 x 10%'22/Q . (3.13)

where the effect of impurities on the conductivity isusually parametrised by a quantity
Q, defined as Q = L 3=, 7;(Z — Z;)?, where n is the total ion density, 7; is the density
of impurity species ¢ with charge Z;, and Z is the ionic charge in the pure lattice
(Yakovlev & Urpin 1980). In the literature Q is assumed to lie in the range 0.0 -
0.1. But statistical analyses indicate that the magnetic field of isolated pulsars do not
undergo significant decay during the radio pulsar life time (Bhattacharya et al 1992,
Hartman et al 1997, Mukherjee & Kembhavi 1997). It has been shown (Konar 1997)
that to be consistent with this impurity values in excess of 0.01 are not allowed in the

crustal model. The effective conductivity of the solid crust is thus given by

1 1 1
_——_+___
o

Oph Oimp

Knowledge about the the various parameters like Z, a, p¢ etc. requires accurate
knowledge of the neutron star's structure as well as composition. We obtain the mass
and density profile of the neutron star by integrating the relativistic hydrostatic pres-
sure balance equation (Tolman-Oppenheimer & Volkoff 1939):

dP(’I) _ G (]\4(7‘) + ﬂgiﬁ) (p(T) + ﬂdﬂ) 3.14
dr 7*2(1—M> : .

r2c2
where P(r), M(r) and p(r) are the pressure, mass and density at, a distance r from the

stellar center, G is the gravitational constant and c is the speed of light and the mass

equation:

p(r) (3.15)

Using the equation of state of Wiringa, Fiks & Fabrocini (1988) for p > 2.8 X
10Mgce™ and Negele & Vautherin (1973) and Baym Pethick & Sutherland (1971) at

lower densities (see section 1.8). The composite equation of state for the entire density
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Figure 3.1: Pressure vs. Density. The above figure is adopted from Konar 1997.
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Figure 3.2: Density vs. Radius for a 1.4 Mneutron star. The above figure is adopted
from Konar 1997.



range IS shown in figure[ 3.1]. To do the structure calculations we have used the nu-
merical methods and the programs developed by Konar (1997, also see Konar & Bhat-
tacharya, 1999). We solve equations| 3.14] and [3.15] starting from a particular central
density and pressure at zero radius arid zero mass, and integrating outwards using a
fourth order Runge-Kutta scheme. The resultant density profile of a 1.4 Mgneutron
star is shown in figure [3.2].

The next important factor in determining the conductivity of the neutron star
is the temperature of the crust. In absence of impurities the scattering of crustal
electrons come entirely from the phononsin thelattice (Y akovlev & Urpin 1980) and the
number density of phonons increases steeply with temperature. The thermal evolution
o the crust therefore plays an important role in the evolution of the magnetic field.
The thermal evolution of a neutron star has been computed by many authors, and
it is clearly seen that the inner crust (p > 10%gcm™?) quickly attains an isothermal
configuration after birth. At outer regions of the crust, the temperature follows an

approximate relation,

1/4

1) = (L) T, o< (3.16)
Po

where T; is the temperature of the isothermal inner crust and p; is the density above

which the crust is practically isothermal. As the star cools, larger fraction of the crust

starts becoming isothermal, with p, being approximately given by,

T’ 1.8
= 2.5 = 3.17
oy =25 x 10 (109> (3.17)

The relations 3.16 and 3.17 above have been obtained by fitting to the radial temper-
ature profiles published by Gudmundsson, Pethick & Epstein (1983). as displayed in
figure 3.3. For the time evolution of T; we use the results of Urpin & van Riper (1993)
for the case of standard cooling (the crustal temperature 7;, in their notation corre-
sponds to T; above), shown in figure 3.4. The variation o the electrical conductivity
in the crust with density for the case where T; = 10%5 K and for various values of

impurity strength is shown in figure[ 351
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Figure 3.3: The above plot shows the fitted relations 3.16 arid 3.17 to the radial
temperature profiles (pointswith crosses and dots) published by Gudmundsson, Pethick
& Epstein (1983). The points with crosses correspond to surface temperature of 10%°K
arid with dots to 10%°K while the surface gravity is 10'*cm s=2 for hoth the cases.
The temperature of the isothermal crust T; is denoted by the horizontal lines and the
temperatures of the outer crust T'(p) is denoted by the sloped lines. The intersection

of these lines gives the p, for a given surface temperature.
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Figure 3.4: Evolution of the temperature of the inner crust (7;) for the rase of standard

cooling model of neutron star.
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Figure 3.5: Variation of the electrical conductivity with density in the crust of a cool
neutron star. The solid, dashed and dashed-dotted curves correspond to Q = 0.0, 0.01
and 0.1 respectively. The surface temperature for al the curves is 10*°K. The above

figure is adopted from Konar 1997.



3.2.2 Numerical Scheme

The aim of our computation is to solve equation [3.4] to obtain R,(r,f) for all times.
We solve tlie equation [3.4] in terms of the fractional radius x. Let us introduce a

function D(z,t) where,

2
c
Thus equation (3.4) takes the form
oR, O’R;  I(1+1)

To solve the above equation we use the Crank-Nicholson method of differencing. The

differenced form of the equation is,

Rﬁth:Dmm mﬂ—me+mg—ﬂw+@4_m+nﬂ; (3.20)
it j 2(6z)? 7

where 4t and bx represent the time interval and size of tlie space-grid and R = R;.
The superscript n stands for tlie n** time-step and the subscript j stands for the ;%
space-grid of integration. The function D(z,t) depends on o(xz,t) which varies with
both density (and hence with the fractional radius x) arid time in the manner discussed
in the section[ 3.2.1]. To incorporate this feature we use the time-averaged value of
the function between two neighbouring intervals (assuggested by theindex n+1/2) at
each time step. Since D is a slowly-varving function over tlie time intervals chosen for
the integration no significant error is introduced due to this assumption. Rearranging
equation (3.20) with the (n+ 1)"" index on the left hand side arid n'" index on the

right hand side one ohtains,

AR + BIRMY 4+ ORI = E;RY_ + FI'R} + G R}, (3.21)
where,
A;=-1
2
lﬁ:B%m%%L+2

2

Cj:-—l



1 2(62)? (6z)?
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The next step is to apply the boundary conditions as given by equation (3.5). In
the differenced form the boundary conditions manifest as £; = 0 for the core-crust

ﬁ(w;) at the surface where the space-grid index j runs from 1to

boundary and R; =
J. Writing equation (3.21) componentwise the first and the last equations drops out
by virtue of the boundary conditions. Making another set of substitution as ux = Rg+1

for 1<k < J- 2, equation (3.21) can be written componentwise as,

Biu + Clupt! = Flul + Giub
’ +1 1 +1 i +1 IR — _
At + B+ ot = Blap_ + F G, fork=2,K -1 (3.22)

!
n+1 M n n KD TK
AUy + (BE + Ci)ut! = Ejufe_ + (FF" + (1 s ))u’[}
T

where the primed quantities are related to the unprimed quantities given by equation
(3.22) as X = X;;, and X can be A,B,C, E, F and G respectively. Equation [3.23]
isin the tridiagonal form and we solve it by using the subroutine ‘ tridag ’ as available
from the numerical recipes (Press et al. 1993).

We assume the initial radial form of the radial function R; to be given by:

zl-—zo 2
R(z,0) . (3.23)

v K
as used by Bhattacharya & Datta (1996, see also Konar & Bhattacharya 1997). This
is an error function which varies from unity to nearly zero within a width z,, around
T = 1z, (seefigure [3.6]). This profile contains the depth z, and the width z,, of the

current configuration as input parameters and we vary them to check the sensitivity of

the result to these parameters.

3.3 Results

In figures [3.7] and [3.8] we plot the evolution of the various multipole components of

the magnetic field, assuming the same initial strength for all, with time due to pure
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Figure 3.6: The initial radial profile R, (equation 3.23) centered around » = 0.98 which
corresponds to p = 10! g/cc and width z,, = 0.006.
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Figure 3.7: The evolution of the surface magnetic field for various multipoles due to
pure diffusion. The numbers next to the curves correspond to respective orders of
multipole. All the curves correspond to () = 0.0 and a depth of current concentration

at ©, = 0.98i.e., a density of p = 10! g/cc.



diffusion in an isolated neutron star of 1.4 Mg. It is evident from the figures that
except for very high multipole orders (I3 25) the reduction in the field strength is very
similar to that of the dipole component.

Krolik (1991) and Arons (1993) conjectured that except for multipoles of order
I> R./Ar the decay rates would be similar due to the finite thickness Ar of the crust
over which the current is confined. The evolution plotted in figure [3.7] assumes that
Ar =1.2km for which R,/Ar ~ 8. However it is seen from figures [3.7] and [3.8] that
significant decay occurs only for > 25, much greater than R,/Ar. Thisis most likely

caused by steep increase in conductivity towards the interior.

To test the sensitivity of our results on the impurity concentration of the crust and
the density at which the initial current is concentrated we have evolved models with
various values of these parameters. The results are displayed in figures [3.9] and [3.10]
where we plot the ratio of the dipole to higher multipoles at an age of 107 years. It is
seen that the results are insensitive to these parameters, particularly for low orders of

multipoles of interest.

3.4 Discussion

The presence of strong multipolefields near the stellar surface would modify the radius
of curvature of the local field lines substantially, and may be responsible for creating
an “illumination pattern” of the radio emission beam which is unique to every pulsar.
While the magnetic field structure in radio emission region, which is located far away
from the surface, may be much closer to dipole owing to the substructure in integrated
pulse profiles (cf. section 1.3.2). If the strength of the multipole fields evolve signifi-
cantly with respect to thedipole, one would expect to see a corresponding change in the
structure of the pulse profiles. In a typical pulsar the polar cap, defined by the base of
the open field lines, occupies ~ 0.01% of the surface area of the star. To contribute to

pulse substructure, the relevant multipoles should have a few reversals across the polar
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Figure 3.8: The ratio of the dipole surface field to the multipole field is plotted as a
function of age. The numbers next to the curves correspond to respective orders of
multipole. All the curves correspond to (Q = 0.0 and a depth of current concentration
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as afunction of Q. The numbers next to the curves correspond to respective orders of
multipole. All curves correspond to a depth of x = 0.98 corresponding to a density of
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Pulsar number log(t)
Bname | of components | years
03294-54 5 6.74
0355+54 5 5.75
0740-28 7 5.2
0823426 3 6.69
0919406 2 5.7
0950+08 4 7.24
1133+16 3 6.7
1642-03 3 6.54
1706-16 5 6.21
1845-01 3 6.3
1929+10 6 6.49
2020+28 3 6.46
2021451 4 6.40
2045-16 3 6.45
2310+42 4 7.68
2319+60 3 6.71

Table 3.1: The above table illustrates the number of components as computed by

Kramer et al (1994) as a function of the pulsar spin-down age. See text for detail.

cap. This suggests that the niultipole order of relevance isfive or more (amultipole of
order / has 2' reversals across the surface). On the other hand if the multipole order
is very large (I > l.x), the fine structure produced by them will be too small to be
resolved in observations. The best time resolution achieved so far, of order a microsec-
ond, limits |,,,, to <20. The major contribution to the observed substructure of pulse
profiles would therefore come from multipole orders ~5 t0 /... However, we find that,
the evolution of multipoles of such orders is very similar to that of the dipole (figures
3.7, 3.8). in the age range 10” to 10® years, where the vast majority of pnlsars are seen.
Therefore no significant evolution is expected in the pulse shape clue to evolution of
the multipole structure of the field.

An observational investigation of.the pulse structure has been carried out recently
by Kramer et al (1994). They decompose tlie integrated pulse profiles of several pul-
sars into components using multi-gaussian fits (Kramer 1994), and list the number of
components, which is a measure of the complexity of pulse profiles. Their result is

reproduced in table [3.1], where we list the name of the pulsar, spindown age and tlie
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Figure 3.10: The ratio of the dipole surface field to that of the multipoles at
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The points marked in the plots here correspond to confinement densities p =
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the curves indicate multipole orders. All curves correspond to Q = 0.



number of components. Clearly there is no obvious correlation between the number
of components in the pulse profile and the spin down age, suggesting that the profile
cornplexity does not evolve with age. This is, however, only a preliminary indication,
and a more systematic and detailed study, taking into account the impact parameter
B (see chapter 2) of the line of sight with respect to the magnetic axis, with reference
to the opening angle p, will be necessary to confirm this result.

At present therefore, it can be said that there is no evidence of the evolution of the
complexity in pulse shapes. Thisis consistent with the lack of significant evolution in
multipole structure expected from our calculations.

As mentioned in section 3.1, in the Ruderman & Sutherland (1975) model of pulsar
emission, one needs low-order multipoles to sustain pair production in long period
pulsars. According to this model, pulsar activity due to lack of sufficient gap voltage

(section 1.7) would cease if the period of the pulsar exceeds a critical value,
Poiy = 178674 sec (3.24)

where x (in units of 10%m) is the radius of curvature of the open field line near tlie
polar cap. To explain the existence of long period pulsars (up to ~8.5 sec), k has
to be much smaller than that can be achieved from a dipolar field geometry. This
indicates the necessity of strong multipole field at the stellar surface. Barnard &
Arons (1982) suggest that at least a quadrupole component of the field in addition
to a dipole is required to explain the presence of long period pulsars. It would be a
matter of concern, therefore, if the multipole components of tlic magnetic field decay
too quickly. But as shown by our results, the low order multipoles relevant in this
context do not decay significantly faster than the dipole, therefore preserving the small
value of x throngh the life of aradio pulsar. Our result correspond to the case where
the magnetic field is initially located in the outer crust of the star, wliere the fastest
evolution can be expected. If tliefield isanchored deeper in tliestar to begin with, then
the evolution will be even slower than what is presented here. 1t seems clear therefore,
that simplification of the magnetic field structure would not be a factor contributing

to the cessation of pulsar activity.



In conclusion, our results indicate that for a crustal model of the neutron star
magnetic field there would be no significant change in the multipolar structure with
age. This fact seems to be corroborated by observations: studies identifying multiple
componentsin pulse profiles (Kramer et al, 1994) show that the number of components
does not vary with the age of the pulsar. Thus the evolution of the multipolar structure
of the magneticfield isunlikely to leave any observable signature on pulsar emission. In
contrast, substantial evolution of pulse profiles was suggested by Ruderman (1991a,b,c)
following the plate-cectonics model. According to this model while the neutron star is
spinning down (or up) the neutron star's crust is subjected to strong stresses. Cracks,
and crustal plate move, due to strong stresses imposed by multiply-pinned crustal
superfluid vortices (Anderson & Itoh 1975, Ruderman 1976, Alpar et al. 1984a,b).
Spin-down is expected to result in migration of plates towards the equator, which can
bring magnetic poles together, resulting in a major change in magnetic geometry. This
should also be reflected in the shape of radio pulses, the evidence of which has not

been found.



