
Chapter 3 

Evolution of Multipolar Magnetic 

Fields in Isolated Neutron Stars 

3.1 Introduction 

Strong multipole components of the magnetic field have long been thought to play an 

important role in the radio emission from pulsars. Multipole fields have been invoked 

for the generation of electron positron pairs in the pulsar magnetosphere. For example, 

Ruderman & Sutherland (1975) model requires that the radius of curvature of the field 

lines near the stellar surface should be of the order of stellar radius to sustain pair 

production in long period pulsars. This is much smaller than the expected radius of 

curvature of the dipole field. Barnard & Arons (1982) showed that such small radius 

of curvature is only possible if the field structure has at  least one dominant higher 

multipole. e.g. a quadrupole. Further, soft X-ray observations of pnlsars show non- 

uniform surface temperatures which can be attributed to the presence of a quadrupolar 

field (Page & Sarmiento, 1996). 

Magnetic multipole structure at  and near the polar cap is also thought to be re- 

sponsible for the unique pulse profile of a pulsar. Vivekanand & Radhakrishnan (1980) 

pointed out that if the dipole magnetic field curvature of the field lines vary smoothly 

across the polar cap then the pulse profiles should not have complicated structures as 

observed. However milltipole components present to a small degree can significantly
a 



~rioclify t,lie c:iirvat,~ire of the field lines near the polar cap. This in turn can ~nodiilat,e 

the eniissior: giving rise to  random pattern as observed. Krolik (1991) noted that  the 

complicated pulse structure observed in millisecond pulsars can be explained by in- 

voking multipolar magnetic fields whidi has several reversals across the neutron stars 

surface which can be treated as hot spots of emission. This explanation is consistent 
I 

wit,h the large duty cycle observed in niillisecond pulsars. The recent estimates that  

there should be several tens of sparks populating the polar cap is also best explainable 

if multipole fields dictate the spark geometry near the surface (Deshpaade & Rankin 

1998, R.a~ikin & Deshpande 1998, Seiradakis 1998). Significant evolution in the struc- 

ture of the magnetic field during the lifetime of a pu1sa.r mav therefore l ~ a v e  observable 

signatures. If tlie multipoles grow progressively weaker in comparison to the dipole 

then one can expect pulse profiles to  simplify with age and vice versa. 

The evolution of the magnetic fields in neutron stars in general is still a relatively 

open qiiest,iori. During the last decade, two major alternative scenarios for the field evo- 

lution llas emerged. One of these assumes that the field of the neutron star permeates 

the whole star a t  birth, and its evolutiori is dictated by tJhe i~it,eract,ion between su- 

perfluid vortices (carrying angular momentum) arid siipercondl~cting fli~xoids (carrying 

magnet,ic flux) in t,he stellar int,erior. As the star spins down, the outgoing vortices may 

drag a,rid expel the field from the interior leaving it to decay in the crust (Srinivasan 

1990). In a related   nod el, plate tectonic   notions driven bv pulsar spiritlowrl drags the 

rnag~iet~ic poles toget,her, reducing the magnetic moment (R.iiderman 1991a,b,c). 

The other scenario assumes that  most of the field is generated i11 the outer crust (for 

clxixn~pl(> 1,v thermo-~nagnetic instabilitv) after the birth of tlie ~ieutron star (Blandfortl, 

Appl~gat,e & Hernquist 1983). The later evoliltiori of this field is governed entirely by 

the ohmic decay of currents in tlie criistal lavers. The evolution of the dipole field 

carried hy such c~lrrents has been investigated in some detail in the recent literature 

(Gcppert & Urpin 1994, Urpiri & Geppert 1995, 1996, Konar & Bhatt,acliarya 1997, 

1999). Tliese stiiclics include field cvoli~t~ion in iso1;ited ~ i c ~ i ~ t r o n  stars ixs \\re11 as those 



accreting from their binary companions. The results show interesting agreements with 

observations lending some credence to the crustal picture. 

In this chapter, we explore the ohmic evolution of higher order multipoles in isolated 

neutron stars assuming the currents to be originally confined in the crustal region. Our 

goal is to  find whether there would be any observable effect on the pulse shape of radio 

emission from isolated pulsars as a result of this evolution. In section 3.2 we discuss 

the details of the computation, in section 3.3 we present our results and in section 3.4 

discuss the implications. 

The Diffusion Equation 

The evolution of the magnetic field B, due to ohmic diffusion, is governed by the 

equation (Jackson 1975) : 

dB - c2 1 
= --V x (- x V x B), 

dt 47l g 

where a(7. ,  t )  is the electrical conductivity of the medium which can depend on both 

space ant1 time. For a constant conductivity, the diffusion equation can be written as, 

in whicli case the time-scale (T) for the diffusion process would be, 

where L is the length-scale associated with the underlying current distribution. For 

magnetic fields confined to neutron star crusts, L corresponds to the thickness of the 

crilst which is of the order of a kilometer and the conductivity a - 102?.sec-l. Thus, it 

follows that the typical time-scale over which the fundamental mode of a dipole field 

would decay is of the order of T - 10' years. For multipoles of order 1 however, the 

decay time-scale is faster as the associated length-scale is smaller typically by a factor 

L/2'. B;~rnard & Arons (1982) investigated the decay of the dipole and quadrupole 



iriolnc:l~t,s in neutro~i st,ars a.ssurning ;I Cowling morlc dcc;~,y (as silggcst.er1 by Cr~lnn 

& Ostril<c!r, 1969). This ass~imption 1t:ads to exponential tlecay of ficlris where t,he 

diEusion time-scale of the quadnipole is faster than that of a clipole 1)y a factor of 

3.33. Simple-minded estimates do suggest appreciable decay in tlie various multipole 

orders of the magnetic field. As evident from equation 3.3, the decay time of any 

particular order is proportional to  a. The density in the crust spans eight orders 

of magnitude and the conductivity changes sharply as a function of depth from the 

neutron stars surface. Studies concerning decay of dipolar fields incl~itling space and 

time variations of electrical conductivity suggest that  the decay is not exponential. The 

reason hei~ig that  in the diffusion process tlie underlying current diffus~s to  regions of 

higher conductivity, thus slowing down the decay consideral,ly a t  later times. To solve 

eyiiation 3.1 for varying a numerical methods have to be employetl. 111 section 3.2.1 

we discuss in detail the space and time variations of tlie conductivity t,ll;it, we use to  

solve erll~ation 3.1, investigating the decay of multipolar fields. 

Mie study tlie ohmic dissipatiori of electric currents in the outer crust of rieutron 

sta.rs which consists of free degenerate electrons and fully ionized ions. We assume 

tliat the magnetic field is weak enough such tliat it does not ~ignificant~ly perturb the 

stri~cturcl or evolution of the star. Furt,lier we assume that the magnetic field in the 

crust is generated by some unspecified mechanisni tluring or shortly a,fter tlie neutron 

star's formation. Following Wendell, Van Horn & Sargent (1987) we introduce a vector 

pot,ential A = ( O , O ,  A+) assilrning the ficltl to be purely poloidal, such that: 

S(r, 8, t )  = -7. sin0 Ad,(r, 8, t ) ,  

nrlic~rc S(T,  H, t )  is tht? Stokes' stream fi~n(:t,ion. S (:an l ~ e  separated in I .  i1.1ltl 8 in t,lic? 

S(r l  H, t )  = Rl ( I . ,  t )  srrrH P~' (rosH), 
I >  1 

wllere PI1 (cos(0)) is the associated Legcndre polynomial of degree o11c and Rl is the 

iiiiilti~)ol(~ radial fil~lct~ion. From equation (3.1) we o1)tain : 



where n: = r /R,  is the fractional radius in terms of the stellar radius I?,. The solution 

of this equation with the boundary conditions : 

for a particular value of 1 gives the time-evolution of the multipole of order 1. Here, the 

first condition matches the correct multipole field in vacuum a t  the stellar surface and 

the second condition makes the field vanish a t  the core-crust boundary (where r = r,, 

the radius of the core) to keep the field confined to the crust. We assume that the 

field does not penetrate the core in the course of evolution, as the co;e is likely to  be 

superconducting. 

In terms of the multipole function RI the magnetic field, B = V x A, is given by 

and the underlying current distribution, .; is: 

3.2.1 Crustal Physics 

The rate of ohmic dissipation in the crust is determined by t,he electric;\l conductivity 

a in the crust. The crust of the neutron star consists of relativistic, Fermi-degenerate 

free electron gas plus a non-relativistic, non-degenerate liquid or crystal of ions. In the 

crust of the neutron star both density and temperature vary with radius. In regions 

close to the surface where the temperature T > T,, ( T, is the melting temperature) 

the ions are in the liqllid or gaseous phase. 111 deeper layers where T,,, > T, the ions 

are crystallized. The condition for the melting or crystallization of a rriistal material 

depends on the ratio (I?) of the Coulonib energy to the thermal energv of the crystal, 

which is the Lindemari criterion for a one component plasma. On the basis of this 

criterion Slattery et a1 (1982), have shown that I' = 171 at, the melting point. For a 

crystal of ionic species Z and lattice spacing a, which is a t  a temperature T, the ratio 



r = (Z2r."(~,)/kBT, where kB is thc. Boltzrnann constant. The latt,ice sl>i~cing a can be 

written as, 

where m, is the proton mass and A is the mass number of the ion. Thus t.he temperature 

T and r are related by, 

where p6 is the density in units of 10" cc-? The transport propert,ic?s in the liquid 

state is determined by electron-ion collisio~ls. We use the conductivity of the liquid 

layer as suggested by Yakovlev & Urpin (1980): 

where ycoulomb is the Coulomb logarithm and n: is given bv ( ~ / ~ , ) l / ~ .  -4 simple inter- 

polation formula for ~ ~ ~ ~ l ~ ~ b  was proposed by Yalcovlev & Urpin (1980): 

Dct,ailetl calculat,ions Ily It,oh et al. (1983) h i ~ e  confirmed that for Z 2 2, the Coulonib 

logarit,hnl is well approximated by eqiiation 3.11, with an error 5 10 %I which is suf- 

ficier~t for our purpose. It  is to  be rioted that aliq,lid is practically independent of 

ternperatilre. For given 2, A, T and p,, w6 find r using eqilation 3.9. For r < 171, we 

use the conductivity a,s given by ecluation 3.10. 

In the solid crust the conductivity arises due to electron-phonon ~cat~tering.  Except- 

ing a t  very low temperatures, the Umltlal~p process clominates mainly tliie to presence 

of tlic l~ngit~udinal  acoustic rnotle in the 1)honon spectrum. We use the phonon scat- 

tering c.onduct~ivitfy (rrph) for the pure. cry~t~alline phase from the resiilt,~ obtained by 

Itoh ct nl. (1984) where 

Hcrc T8 is the temperature iri units of lo8, rr - $(1oYp-3), p6 is the density in units of 

10figc7n-" and I, is a function of densitmy, Z and the atomic number A. The crystallized 

cr i~s t  is liltelv to  have strilctural defects like impurities, dislocat,ions, cra,cks and so on. 



For lower temperat,ures, the electron scattering on defects may be more effective than 

on phonons. We use the conductivity for such scattering (oimp) given by Yakovlev & 

Urpin (1980) as 

where the effect of impurities on the conductivity is usually parametrised by a quantity 

Q,  defined as Q = xi ni (Z  - Zi)2, where n is the total ion density, ni is the density 

of impurity species i with charge Zi, and Z is the ionic charge in the pure lattice 

(Yakovlev & Urpin 1980). In the literature Q is assumed to lie in the range 0.0 - 

0.1. But statistical analyses indicate that  the magnetic field of isolated pulsars do not 

undergo significant decay during the radio pulsar life time (Bhattacharya et a1 1992, 

Hartman et a1 1997, Mukherjee & Kembhavi 1997). It  has been shown (Konar 1997) 

that  t o  be consistent with this impurity values in excess of 0.01 are not allowed in the 

crustal model. The effective conductivity of the solid crust is thus given by 

I<nowledge about the the various parameters like 2, a,  p6 etc. requires accurate 

knowledge of the neutron star's structure as well as composition. We ol~ta in  the mass 

and density profile of the neutron stgar by integrating the relativistic hydrostatic pres- 

sure balance equation (Tolman-Oppenlieimer & Volkoff 1939): 

where P ( r ) ,  M ( r )  and p(r) are the pressiire, mass ant1 density at, a clistance r from the 

st,ellar c-enter, G is the gravitational co~ist~ant, and c is the speed of light and the mass 

equation: 
d M  ( r )  
-- - 4.;rrr2p(r) 

d r  

Using the equation of state of Wiringa, Fiks & Fabrocini (1988) for p > 2.8 x 

1014gcc-3 and Negele & Vautherin (1973) and Baym Pethick & Sutherland (1971) a t  

lower densities (see section 1.8). The composite equation of state for the entire density 



Figure 3.1: Pressure vs. Density. The above figure is adopted from Iconar 1997. 

Figure 3.2: Density vs. Radius for a 1.4 kI,;,neiitron star. The above figure is adopted 

from I<o~iar 1997. 



range is shown in figure[ 3.11. To do the structure calculations we have used the nu- 

merical methods and the programs developed by Ko~iar (1997, also see Konar & Bhat- 

tacharya, 1999). We solve equations[ 3.141 and [3.15] starting from a particular central 

density and pressure a t  zero radius arid zero mass, and integrating outwards using a 

fourth order Runge-Kutta scheme. The resultant density profile of a 1.4 Maneutron 

star is shown in figure [3.2]. 

The next important factor in determining the conductivity of the neutron star 

is the temperature of the crust. In absence of impurities the scattering of crustal 

electrons come entirely from the phonons in the lattice (Yakovlev & Urpin 1980) and the 

number density of phonons increases st.eeply with temperatiire. The thermal evollition 

of the crust therefore plays an important role in the evolution of the magnetic field. 

Tlie thermal evolution of a neutron star has been computed by many authors, and 

it is clearly seen that the inner crust (p > 101Ogcrn-" quickly attains aal isothermal 

configuration after birth. At outer regions of the crust, the temperature follows an 

where T, is the temperature of the isothermal inner crust and pb is the density above 

which the crust is practically isothermal. As the star cools, larger fraction of the crust 

. starts becoming isothermal, with pb being approximately given by, 

Tlie relations 3.16 and 3.17 above have been obtained by fitting to the radial temper- 

ature profiles pill)lislied hy Gudmundsson, Pethick & Epstein (1983). as tlisplayed in 

figure 3.3. For the time evolution of T, we IISP the resillts of Urpin & van Riper (1993) 

for the case of standard cooling (the crustal temperature T,, in their notation corre- 

sponds to T, above), shown in figure 3.4. The variation of the electrical conductivity 

in the crust with density for the case where T, = lo4 1( and for various values of 

impurity strength is shown in figure[ 3.51. 



Figure 3.3: The above plot shows the fit,ted relations 3.16 arid 3.17 to the radial 

temper;~tiire profiles (points with crosses arid dots) ~>iibiislied hy Gudmiindsson, Pethick 

& Epstein (1983). The points with crosses correspontl to slirfacc t,empcr;~ture of 10:' "K 

arid with tlot,s to  10Gs5K while the surface gravitv is 10'4c~ri s - ~  for 110th the cases. 

The temperature of the isot,hermal crust T, is d~r~otcc l  1 9 7  the Iiorizonti~l lines and the 

tcinp~ratllrcs of the outer crust T(p )  is clerlotetl bv t,he s1ol)ed lines. Tllc intcrscc.tion 

of thesc lines gives the pb for a given silrface t~rnpcrat~ure. 



Figure 3.4: Evolution of the temperature of the inner crust (Ti) for the rase of standard 

cooling model of neutron star. 

Figure 3 .5 :  Variation of the electrical conductivity with density in the crust of a cool 

neutron star. The solid, dashed and dashed-dotted curves correspond to Q = 0.0, 0.01 

and 0.1 respectively. The surface temperature for all the curves is lo4.%. The above 

figlire is adopted from Konar 1997. 



3.2.2 Numerical Scheme 

The aim of our cornpi~tation is to  solve eql~ation [3.4] to  obtain Rr(r ,  f )  for a,ll times. 

We solvc tlie equa,tion 13.41 in terms of the fract,ional radius x. Let 11s introduce a 

function D ( x ,  t) where, - 

Thus eqiiation (3.4) takes the form 

To solve the above equation we use the Crank-Nicholson method of differencing. The 

differenced form of the equation is, 

- 2 ~ 7 + l  + RGI - 2R? 3 + 

lit 2(6x)2 

where (St and bx represent the time interval and size of tlie space-grid and R - R,. 

The si~pcrscript 17, stands for tlie n,tl', time-step arid t,he subscript j st.ands for the jth 

space-grid of integration. The fiinctiorl D ( z ,  t )  depends on a ( x ,  t) which varies with 

I ~ o t ~ h  tlc?nsit,y (and herice with the fractional radius 2:)  arid time in the manner disclissed 

in the section[ 3.2.11. To incorporate t,liis feature we use the tirne-averaged value of 

the fi~nct,ion between two neighboilring interva,ls (as suggest,ed by the index n, + 112) a t  

ea(:ll t h o  step. Si~ice D is a slowly-va.rying function over tlie time intervals chosen for 

t,he i~it,c.gration no significant error is int,rotlilc(>d tlue t,o t,liis assl1rn1)tion. R.earrangi11g 

ecl~~itt,ion (3.20) with the (n  + 1)"'" index on the left hand side arid 11"' inclex on the 

riglit hil~itl side one ol)tai~is, 



The next step is to apply the boundary conditions as given by equation (3.5). In 

the differenced form the boundary conditions manifest as R1 = 0 for the core-crust 

RJ-i boundary and R j  = a t  the surface where the space-grid index j runs from 1 to  

J. Writing equation (3.21) componentwise the first and the last equa,tions drops out 

by virtue of the boundary conditions. Making another set of substitution as uk = Rk+1 

for 1 5 k: 5 J - 2, equation (3.21) can be written componentwise as, 

1 un+l + ~ ; ~ ; + 1  + cIUn+l - r,n n 
Ak k-1 k+l  - E~u; -~  + Fk uk + G ~ U ; + ~ ,  for k = 2, K - 1 (3.22) 

A/ un+l C=>< 
K K-I + (B;i" + C;()w."K'l = E ; < u k l  + (F;i" + 

+ 16) )uk  

where the primed quantities are related to the unprimed quantities given by equation 

(3.22) as Xi = Xj+1 and X can be A, B, C, El F and G respectively. Equation [3.23] 

is in the tridiagonal form and we solve it by using the subroutine ' tridag ' as available 

from the numerical recipes (Press et al. 1993). 

We assume the initial radial form of the radial function Rl to be given by: 

as used by Bhattacharya & Datta (1996, see also Konar & Bhattacharya 1997). This 

is a11 error function which varies from unity to nearly zero within a width x, around 

x = z, (see figure [3.6]). This profile contains the depth x, and the width x, of the 

current configuration as input parameters and we vary them to check the sensitivity of 

the result to these parameters. 

3.3 Results 

In figures [3.7] and [3.8] we plot the evolution of the various multipole components of 

the magnetic field, assuming the same initial strength for all, with time due to  pure 



Figme 3.6: The initial radial profile RI (equation 3.23) ceiit,eretl around . I .  = 0.98 nrliicli 

corresponds to  p = 1011 glee and widtli :c, = 0.006. 

Figii1(1 .3.7: The ~volut ion of the s1lrf;tc.c magnetic field for various m~lltipoles due t,o 

pilro tliffi~sion. The numl~ers next to the cirrves correspond to respective orders of 

mlllt,ipolc. All the curves correspond to Q = 0.0 i ~ n d  a di.pt,h of current concentration 

itt . r : ,  = 0.98 i.e., a tlcrisity of p = lo1' glee. 



rliffiision in an isolated neutron star of 1.4 Ma. It  is evident from the figures that  

except for very high multipole orders (12 25) the reduction in the field strength is very 

similar t o  that  of the dipole component. 

Krolik (1991) and Arons (1993) conjectured that except for multipoles of order 

12 R,/Ar the decay rates would be similar due to the finite thickness Ar of the crust 

over which the current is confined. The evolution plotted in figure [3.7] assumes that  

Ar = 1.2 km for which R,/Ar - 8. However it  is seen from figures [3.7] and [3.8] that  

significant decay occurs only for 12 25, much greater than R,/Ar. This is most likely 

caused by steep increase in conductivity towards the interior. 

To test the sensitivity of our results on the impurity concentration of the crust and 

the density a t  which the initial current is concentrated we have evolved models with 

various values of these parameters. The results are displayed in figures [3.9] and [3.10] 

where we plot the ratio of the dipole to  higher multipoles a t  an age of l o7  years. It  is 

seen that  the results are insensitive to these parameters, particularly for low orders of 

rnlilt,ipoles of interest. 

Discussion 

The presence of strong multipole fields near the stellar surface would modify the radius 

of curvature of the local field lines subst,antially, and may be responsilde for creating 

an "illiimination pattern" of the radio emission beam which is unique to  every pulsar. 

While the magnetic field structure in radio emission region, which is located far away 

from the surface, may be much closer t,o tlipole owing tzo the substruct,~ire in integrated 

plilse profiles (cf. section 1.3.2). If the strength of the multipole fields evolve signifi- 

cantly with respect to the dipole, one ~voiild expect to  see a correspondirig change in the 

structlire of the pulse profiles. In a typical pulsar the polar cap, defined by the base of 

the open field lines, occupies N 0.01% of the surface area of the star. To contribute to  

~)iilse siil)st,ruct,iire, the relevant milltipoles s h ~ u l d  have a few reversals across the polar 



Figure 3.8: The ratio of the dipole surface field to the nil~lt,ipole field is plotted as a 

furiction of age. The numbers next to  the curves correspond to respective orders of 

multipole. All the curves corresporld to Q = 0.0 arld a dept(l1 of current concentration 

;it :I: = 0.98 i.e., a tlerisity of p = 1011 ~ I L / C C .  



Figure 3.9: The ratio of the dipole surface field to that of the mult ipol~s a t  lo7 years 

as a function of Q. The numbers next to  the curves correspond to  respective orders of 

rnultipole. All curves correspond to a depth of x = 0.98 corresponding tJo a density of 

p = lo1' gmlcc, a t  which the initial current is concentrated. 



T;~l)le 3.1: The above table illustrates the ~inrriber of components as computed by 

ICrilmer ~t a1 (1994) as a function of the pulsar spin-down age. See text for detail. 

Pulsar 

Bname 

0329+54 
0355+54 
0740-28 
0823+26 
0919+06 
0950+08 
1133+16 
1642-03 
1706-16 
1845-01 
1929+10 
2020+28 
2021+51 
2045-16 
2310+42 
2319+60 

cap. This silggests that  the niultipole order of relevance is five or more (a niultjpole of 

order b has 2' reversals across the surface). On the other hand if the lriultipole order 

is very lnrge (I  > b , , , ) ,  the fine structure grodi~ced 1)y them will be t800 small to be 

resolvetl in observations. The best time resolution achieved so far, of order a microsec- 

ond, lil~iits I , , , ,  to  5 20. The major c~nt~ribution t,o the observed sul>st,ri~cti~re of pulse 

profiles nroilld therefore come from rnult,ipolr orders -5 to Howev~r, we find that, 

t,llc< evoliltion of milltipoles of such orders is vcry similar t,o t,liilt of thcl clipole (figures 

3.7, 3.8). in t,he age range 10'' t,o 108 ytlars, wlicre the vast majority of ~)111sars are seen. 

T1ic:refor.e no significant evoli.~t,ion is espec:tcd in the pulse shape clue to evoliltion of 

t,llc\ rrililtfipole str~lt:ture of the field. 

An ol)servat,ional invest,igation of,*tlic pulse st,rllc.t,ure has bee11 carricd out receritly 

by Krnlric~r et a1 (1994). They decompose tlie irltegratetl plllse profiles of several pul- 

sars i~ l to  cornponerits ilsirig rnulti-gaussiari fits (Icrarner 1994), atid list t,he number of 

c:orriporiclrits, which is a measure of t,lic. coinplt~xitv of pillse profiles. Their result is 

rt.l)roclilc-etl in tallle [3.2], where we list t,lie name of the pillsar, spindo~vli iIge and tlie 

number 

of components 

5 
5 
7 
3 
2 
4 
3 
3 
5 
3 
6 
3 
4 
3 
4 
3 

log(t) 
years 

6.74 
5.75 
5.2 

6.69 
5.7 

7.24 
6.7 

6.54 
6.21 
6.3 
6.49 
6.46 
6.40 
6.45 
7.68 
6.71 



Figure 3.10: The ratio of the dipole surface field to  that  of the multipoles a t  

lo7 years as a funct,ion of depth of initial confinement of the magnetic flux. 

The points marked in the plots here correspond to confinement densities p = 

10133  1013 1012."012 1011.5 1011, 1010.5, 1010, 109.5, 109 cc-3 > , , , , . The nnmbers next to  

the curves indicate mliltipole orders. All curves corresporld to Q = 0. 



~iurnbt~r of components. Clearly tliere is IIO obvioils corrcliztio~i between the ~iiimber 

of c.ornponents in the pulse profile and the spin down age, suggesting that  the profile 

cornplexi ty does not evolve with age. This is, however, only a preliminary indication, 

and a more systematic and detailed study, taking into account the impact parameter 

/3 (see chapter 2) of the line of sight with respect to  the magnetic axis, with reference 

to  the opening angle p, will be necessary to  confirm this result. 

At present therefore, i t  can be said that there is no evidence of the evolution of the 

complexity in pulse shapes. This is consistent with the lack of significant evolution in 

multipole structure expected from our calculations. 

As ~rientioned in section 3.1, in the Ruderman & Sutherland (1975) model of pulsar 

emission, one needs low-order multipoles to  sustain pair production in long period 

pulsars. According t o  this model, pulsar activity due to  lack of sufficient gap voltage 

(section 1.7) would cease if the period of the pulsar exceeds a critical value, 

sec 

wliere K (in units of 1 0 k m )  is the radins of curva.t,ure of the open field line near tlie 

polar cap. To explain the existence of long period pulsars (tip to -5.5 sec), K has 

to be much smaller than that  can be achieved from a dipolar field geometry. This 

indicates the necessity of strong miilt,ipole field a t  the stellar surface. Barnard & 

Arons (1982) suggest that  a t  least a quadrupole component of the field in addition 

to  a dipole is required to explain the presence of long period pulsars. It would be a 

~ n a t t e r  of concern, therefore, if the mlilt,ipole components of tlic magnetic field decay 

too qliickly. Blit as shown by our results, the low order multipoles relevant in this 

context do not decay significantly fa.ster than the dipole, t.herefore preserving the small 

va.111~ of tc throiigh the life of a radio plilsar. Our result correspond to  the case where 

t,lit? magnr?tic ficld is initially locat,etl in the outer crust of the star, wliere the fastest 

cvoliit,ion can be expected. If tlie field is anchored deeper in tlie star to Iwgin with, the11 

t,he evoliition will be even slower than what is presented here. It  seems clear therefore, 

t,liat siinl)lification of the magnetic field structure wolild not I)e a factor contrihutirig 

to the cessation of plllsar activity. 



111 co~iclusion, our results indicate that for a crustal model of the neutron star 

magnetic field there would be no significant change in the multipolar structure with 

age. This fact seems to be corroborated by observations: studies identifying multiple 

components in pulse profiles (Kramer et al, 1994) show that the number of components 

does not vary with the age of the pulsar. Thus the evolution of the multipolar structure 

of the magnetic field is unlikely to leave any observable signature on pulsar emission. In 

contrast, substantial evolution of pulse profiles was suggested by Ruderman (1991a,b,c) 

following the plate-bectonics model. According to this model while the neutron star is 

spinning down (or up) the neutron star's crust is subjected to strong stresses. Cracks, 

and crustal plate move, due to strong stresses imposed by multiply-pinned crustal 

superfluid vortices (Anderson & Itoh 1975, Ruderman 1976, Alpar et al. 1984a,b). 

Spin-down is expected to result in migration of plates towards the eqiiator, which can 

bring magnetic poles together, resulting in a major change in magnetic geometry. This 

should also be reflected in the shape of radio pulses, the evidence of which has not 

been found. 


