
Chapter 2 

Phase transitions in 
Ant iferroelectric Liquid Crystals: 
A Theoretical Model 

2.1 Overview 

Organic compoiinds with rod like rrlolecules forming liquid crystalline phases often carry 
permanent electric dipole moments with components parallel and/or perpendicular to 
the long axes of the molecules. Hence, one could expect ferroelectric properties in such 
liquid crystalline phases. Several theoretical considerations for the realization of a true 
ferroelectric liquid or the polar nematic phase have been reported. However, upto now 
there is no clear experimental evidence for such a polar nematic phase. On the other hand, 
using symmetry arguments, Meyer et  al. [I] demonstrated that the Cz point symmetry of 
the layers in the chiral smectic C (SmC*) phase allows them to be polarized in the plane 
of the layers. As this transversely polarized SmC* phase can have potential applications 
in display devices many compounds exhibiting SmC* phase have been synthesized and the 
properties of this phase have been extensively studied [31]. 

As we have mentioned in Chapter 1, Chandani et al. [2] discovered transverse antzfer- 
~oelectrzci ty  in the compou~id 4 - (I  - nlethylheptyloxycarbonyl) phenyl 4' - octylcarbony- 
loxybiphenyl - 4 - carboxylate (MHPOBC). Further detailed studies show that in addition 
to the antiferroelectric (SmCi) phase, these novel compounds exhibit a rich variety of 
other phases as they are cooled from the isotropic phase: 

SrrlA - SmC: - SmCE - SmC; - SmC; - SmIi - Cryst., 

where the symbol SmC; denotes the usual ferroelectric SmC* phase. The subscript ,B 
has been given to distinguish it from the other phases in these compounds. Though the 
structures of SmCE and SmCi phases are well understood as discussed in chapter 1, the 
structures of SmCz and SmC; phases are not clearly elucidated. Several experimental 
studies using a variety of techniques have established the following facts: 

All the tilted phases have a helical structure and it is established by optical mea- 
surements that the sense of the helix is opposite in SmCi and SmC: phases [8]. 
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All the transitions between different tilted phases are weakly first order in nature as 
determined by differential scanning calorimetry (DSC) with heats of transition x 1 
joule/rnole [9]. 

The S I ~ C ;  phase is ferrielectric in nature as the effective polarization in this phase 
is lower than that in the SmC; phase. Several pure compounds exhibit two ferri 
phases [33] whereas in some bikary mixtures there are threi sub-phases FIH, SmC; 
and FIL [6]. 

The ferrielectric phase has a rather turbid appearance with in-plane birefringence 
rendering optical measurements in this phase difficult [33, 101. 

Optical and x-ray rneasurenients reveal tliat the SlnCT, phase has a small tilt angle 
and a very short pitch [6, 71. Also this phase has ferrielectric characteristics at lower 
temperatures but antiferroelectric characteristics close to the SmA-SmC: transition 
temperature [12, 131. 

The stability of the SmCT, and ferrielectric phases is sensitive to the optical purity of 
the saniple. The ternperatlire ranges of stability of these phases decrease and finally 
go to zero when the compound is mixed with its opposite handed enantiorner [6]. 
The range of SmCT, phase shrinks as the nonchiral cliain length is increased [9]. 

Studies on several homologous series have shown a prominent odd-even effect in the 
phase transition temperatures between the SmC; to SmC; as well as SmC; to SmC2 
phases [9]. 

A strong transverse dipolar group attached close to the chiral center favours the for- 
mation of the SmCL phase. However, even racemic rnixtures with zero polarization 
[6] and achiral compolinds [11] also exhibit the anticlinic phase in which sl~ccessive 
layers have opposite tilts. 

The apparent tilt angle (the angle between the effective optical axis of the field 
distorted structure and the layer normal) measurements on homogeneously aligned 
samples revealed that in the SmCE phase, there is a step like variation of the apparent 
tilt angle as a function of an in-plane external static electric field [14]. This led to 
the speculation that there is a field induced devil's staircase in this phase. 

The variation of the apparent tilt angle with the applied dc electric field in the 
ferrielectric phase exhibits a plateau at one third of the tilt angle at intermediate 
fields [14]. 

'The conoscopic figures obtained from thick honleotropically aligned sarnples also 
show distinct characteristic changes as a furlction of an in-plane external static elec- 
tric field in the ferrielectric [15] and SmC: [14] phases. In both of these phases the 
conosc:opic figure of the uniaxial medium at zero field acquires biaxial characteristics 
with the optic axial plane parallel to the electric field at intermediate fields which 
then switches to the orthogonal direction beyond a critical field [15, 141. 

Several phenomenological theories have been developed to account for some of the above 
experimental observations in these compounds. I11 these phenomenological Landau type 
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theories one expands the free energy density in powers of suitable order parameters to 
describe the transitions between the phases. 

The first theory of this type for antiferroelectric liquid crystals was developed by 
Orihara et al. [16]. They assumed bilayer order in the ferro, ferri and antiferro phases 
to define the order parameters which vary continuously along the layer normal. To a 
first approximation, neglecting the fluctuations or inhomogeneous terms of the free energy 
density expansion, they obtained transitions between the ferro, ferri and antiferroelectric 
phases. Later Lorman et al. [17] extended this model to include the inhomogeneous terms 
in the free energy density expansion. However, these continuum theories do not account 
for the SmCT, phase. Further, experimental observations [6, 101 in the ferrielectric phase 
appear to indicate that this phase has multi-layer order and the assumed bilayer order 
may not be adequate in this phase. 

To improve upon this, a discrete model taking into account the configuration of each 
layer was first proposed by Sun et al. [34]. Later treating the configuration of each layer as 
an Ising variable, Yamashita et al. [18, 191 developed a model in analogy with Axial Next 
Nearest Neighbour Ising (ANNNI) model taking into account upto thirdpearest neighbour 
interactions. Again both these discrete models do not account for the SmCT, phase. In 
the Ising picture, the helicoidal structures which are present in all the tilted phases have 
been neglected. 

In order to account for the SmCT, phase and the experimental observations mentioned 
above, we developed a discrete phenomenological model [35] for this system by including 
NN as well as competing NNN interactions between the layers whose origins are also 
discussed in Sec 2.4.1. In our theory, the configuration of each layer is described by a 2-d 
axial vector as in [34] and hence the resulting model is of xy-type. Our   nod el takes into 
consideration the helicoidal structures of the phases and accounts for the SmCL for as well 
as the three ferrielectric phases often seen in these systems. 

In Sec. 2.2, we will describe the coritinuurri theories developed for this system in earlier 
studies which form a theoretical background to our model. In Sec. 2.3 we will consider 
other models viz. the Ising type models often invoked for this system. In this section we 
will also point out tlie shortcomings of these models. Then in Sec. 2.4, we will discuss 
the discrete model developed by us. Finally the main conclusions of this chapter will be 
surrirrlarized in Sec. 2.5. 

2.2 Continuum theory of AFLC 

In the uniaxial SmA phase as the long axes of the cylindrical rod like molecules orient 
on average along the layer normal, they can rotate freely about their long axes. But in 
tlie tilted srnectic phases, the tilt order induces a hindrance to this free rotation. If the 
net dipole rnornent of such a niolecule has a component perpendicular to the long axis of 
the molecule then one can expect the layers to become transversely polarized. However, 
in the SmC phase made of achiral molecules, the symmetry Czh of the layers contain a 
mirror plane perpendicular to the C2 axis and the above rotational bias can only produce 
quadrupolar order within the layers. But, if the molecules are chiral, this mirror plane 
perpendicular to the C2 axis is removed and the layers in the resulting SmC* phase become 
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transversely polarized. As this transverse polarization is a consequence of the tilt order 
of the layers, the latter is taken as the primary order parameter whereas the former is a 
secondary order parameter [31] in the theories described below. 

, 2.2.1 Order parameters 

A complete prescription of the "order" in one of the tilted srnectic phases involves Inany 
elements: (a) The orientational order of the rod like molecules implicitly assumed to be 
perfect and represented only by the director A. (b) The one dimensional translational 
order which can be described by the density wave ?I, = exp[i(Z. r'+ a)] ,  where \ $ 1  
is the amplitude, a: is an arbitrary initial phase and is tlie wave vector. Again is 
implicitly assumed to be a constant and in effect only the magnitude of which is coupled 
to the tilted orientation of the lnolecules within the layers is taken into account. (c) The 
tilt order of the director Ai in the i-th layer which can be described by an axial vector G 
defined as 

6 = (Ai . k) (Ai x i:). (2.1) 

Note tliat the definitiori is consistent with the apolar nature of tlie director A. 
-4 

Assurning that the wave vector Ic is parallel to thc z-axis, the order parameter to 
within an arbitrary constant is then 

-+ sin 20i ti = (niVnir, -71,ix7~iz) 3 - 
2 (sin d,i, - cos &) ,  (2.2) 

-4 

where ni,, ni, and ni, are the Cartesian components of rii. Note tliat Ji is perpendicular 
to the c-vector of the i-th layer as shown in Fig. 2.1. In the ferroelectric phase & and the 

-4 

corresponding Pi are the only order parameters which are assumed to be continuolis func- 
tions of x. Detailed theoretical models using these order parameters have been developed 
to account for the various physical properties of this phase [31]. 

In tlie antiferroelectric phase the angle between the c-directors of successive layers is 
-4 -4 

close to .rr and it is convenient to define two primary order parameters ta and Sf as 

wliere & represents the orientations of the rllolecules in the odd-numbered layers and $ 
those for tlie nearest neighbow even-numbered layers along the positive z-axis. Tlle sub- 
scripts "a" and "f" represent aritiferroelectric and ferroelectric order respectively. Similarly 
the secondary order parameters .Pa and gf are defined as 

wliere fi and $2 are the polarizatioris in the neighbouring layers as defined above. Tliese 
order pararneters arc asslimed to vary sufficiently slowly along the layer normal to treat 
then1 as continuous functions of x. 
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Fig. 2.1: The definition of order parameter for a smectic layer. 

Though all these variables transform like vectors under all rotations of tlle symmetry 
group D,, the antiferroelectric and ferroelectric variables transform in different ways 

4 

under translation. Po changes sign under a translation parallel to tlie layer rlorrnal by a 
layer spacing while fi  does not change. Hence, if the smectic liquid crystal is regarded as 

4 

a one dimensional crystal, then pj and Pa are the zone center and zone boundary modes 
respectively. 

Neglecting the in-plane fluctuation of the order pararneters the free energy density 
can now be expanded in terms of these order parameters arid their derivatives along tlle 
z-axis. In Sec. 2.2.2 we will consider the homogeneous case neglecting the terms involving 
the derivatives of the order parameters following the discussion by Orihara et al. [16]. The 
irlhomogeneous case including the derivative terms will be discussed in Sec. 2.2.3 as was 
first considered by Lorman et  al. 1171. 

2.2.2 Homogeneous case 

The llorrlogerleous part of the free energy density consistent with the symmetry (viz. D,) 
of the high temperature SmA phase can be expanded as 

where = I & ( ~ ~  I and 3 is the external field. Terms upto 4-th order in the primary order 
-+ 

parameters and upto 2nd order in secondary order parameters Fa(j )  are retained in 
tlie expansion. As is usual in a Landau theory one can assume that the coefficients a', and 
( 7 )  are temperature dependent with d, = A(T - T,) and a; = a: + 6. The terms with 
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coefficients A ,  and X f  are called ele~troclin~ic terms which are analogous to the piezoelectric 
terms in solid state physics. These two terms are pseudo scalar and are allowed only in a 
chiral medium. The terms with X ,  and x f  are of entropic origin arising from the rotational 
degrees of freedom of the tilted rnolecules about their long axes [31]. The last term is the 

, coupling of electric field with the polarizations of the layers. 
Minimization of Eq. 2.7 with respect to Fa and Ff and eliminating the two, the free 

energy density using polar coordinates can be written as 

-t -+ 

where o r f ( , )  = a)(,) - X f ( a l A ; ( a ) .  The angle between <, and F f  and that between ,!? and 

Cf are Q and I respectively. The equilibrium and stability conditions for b and I are 

Frorn Eqs. 2.9-2.12 stable equilibrium solutions are Q = 0 or 7r if 7 2  < 0 and Q = n/2 if 
.+ 

72 > 0, and tf is always parallel to i.e., @ = 0. 

Now Eq. 2.8 can be expressed in terms of the amplitudes Fa, and I f  as 

where y = yl+w cos2 cI, and cP can take values (0 or T )  or 7r/2 depending on the sign of 72. 
Minirnization of Eq. 2.13 with respect to Fa and t f  in absence of the external electric field 
stabilize the five low syrnmetry phases. These are defined by the following equilibrium 
values of the order parameters 

a P,+ya, I11 and IV. (2 = w, F j  = *, Q = O  or T ;  

The srnectic ordering corresponding to the preceding equilibrium values of the order pa- 
rameter are represented in Fig. 2.2. Orie car1 see that three types of dipolar orders are 
possible. Fig. 2.2a represents the ferroelectric mono-layer ordering with the polarizations 
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Fig. 2.2: The bilayer structures of different phases predicted by homogeneous model. 

(3) remaining parallel in successive layers. Fig. 2.2b corresponds + to a11 antiferroelectric 
bilayer ordering, with an antiparallel orientation for adjacent P vectors. Fig. 2.2~-2.2e 
represent the three types of ferrielectric ordering, which can be distinguished by their tilt 
arid azimuthal angles. Thus Fig. 2 . 2 ~  & 2.2d represent ferrielectric striictures in which 
two adjacent layers possess different tilt angles and tlie difference in azimuthal angle is 0 
and 7r respectively. In the structure shown in Fig. 2.2e the niolecules in successive layers 
have the same tilt angles but different arbitrary azimuthal angles. As one can guess the 
structures shown in Fig. 2 . 2 ~  and 2.2d for the ferrielectric phase involve changes in the 
layer spacing from layer to layer and are energetically not favoured. In fact x-ray studies 
have not found any evidence for these structures in the ferrielectric phase. Orihara et al. 
[16] have constructed the phase diagram representing the various types of phase sequences 
predicted by their model in the $ - P j  plane without going into the detailed structure of 
the ferrielectric phase. 

2.2.3 Inhomogeneous case 

In Sec. 2.2.2 only a homogeneous form of the free energy density was considered. Taking 
into accourit the influence of the chiral symmetry of the molecules to produce a helicoidal 
structure along the z-axis the total free energy density F is a sum of two parts 

where the Fl,,,, is given by Eq. 2.7 and Fir,/, is the inliomogeneous part of the free energy 
density. Assuming that there is no variation of the orientational order parameters within 
t,lie smectic layers, extending the method used for ferroelectric liquid crystals [31], -Tinh 
can be writken as [16] 
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where the first two terms with coefficient 6, and Sf are the lowest order Lifshitz invariants 
allowed by the chiral symmetry of the medium. The terms with coefficients p, arid j ~ f  are 
the jlexoelectric terms and the last two are the usual elastic energies associated with the 
distortions of the director. 

Lorman et al. [17] assumed that the tilt order of the smectic is homogeneous (i .e. ,  8 
is independent of z ) .  This is a reasonable approximation in tilted smectic liquid crystals 
far from the SmA-SmC transition point and in the absence of an external field. The 
distortions in the tilt angle (the so called soft mode) which involves changes in layer 
spacing is energetically less favoured compared to distortions in the azimuthal angle (the 
Goldstone mode) .  Then from Eq. 2.2-2.4, the order parameters $, and & become 

f f  = to(- cos $cos 4 cos $sin$), (2.17) 

where the variables to, $ and $ are given by 

sin 20 $2 + $1 $2 - $1 
to= T, $ =  2 7 $ =  . (2.18) 

Now using the expressions for and if from Eq. 2.16 and Eq. 2.17 and including to in 
the phenomenological coefficients, the free energy per unit area in the absence of electric 
field takes the form 

d4 
( K +  + K-  cos 2$) + - - ( K +  - K-  cos 2$) . = /[Ad2 2 l ( d $ ) 2  d z  

where K+ = ( n f  + ~ , ) / 2 ,  K-  = (K!  - ~ , ) / 2 ,  d+ = - ( S f  + 60,)/2 - ( X j ~ f ~ f  + A , ~ a / " a ) / 2 ,  
6- = - ( S f  - & ) / 2  - ( A f  x f p f  - X , x n ~ a ) / 2 ,  a1 = a f  / 2  - ~ a / 2  + ,Of / 4  - and bl = 
P f  / 4  + Pfl,/4 - y1/8. Note that there is a linear term in d$/dz  in Eq. 2.19 which stabilizes 
a spontaneous helicoidal structure. This term vanishes in a non-chiral medium as 6+ and 
6- are zero in such a medium. 

From the E~xler-Lagrange equations corresponding to the variation of $ and 1C, in the 
free energy functional Eq. 2.19, we get 

d 4  
(6' + K-  COS 2$) - - (6' + 6- COS 2$) = C, 

dx  
(2.20) 

d2 $ d$ 2 

( n i  - n- cos 2$) - = K -  sin 2$ (;iF) - n- sin 2$ (g ) 
dx2 

d$ + 26- sin 2$- - a1 sin 2$ - bl sin 2$ cos 2$, (2.21) 
d z  

where C is the first integral value that depends on the external parameters. It is easy 
to see that a stable solution of Eq. 2.20 and Eq. 2.21 corresponds to a uniform helicoidal 
structure with 

$ = k z ,  $ = const. ,  (2.22) 
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where k is the wave vector of the helix. k arid $ do not depend on x but vary with the 
external variables. In other words, one obtains an in-phase azimuthal angle 4 that depends 
linearly on z, whereas the azimuthal anti-phase angle $ is independent of the z variable. 

Substituting the stable solutions Eq. 2.22 in the Landau-Ginzburg potential Eq. 2.19, 
one gets by integrating with respect to the x variable, 

a1 b l  + - cos 2$ + - c0s2 2$J , 
2 4 I 

which is a simple algebraic expression. The different phases correspond to different values 
of the anti-phase azimuthal angle $. 

According to this model, in the ferrielectric SmC; phase, the difference in azimuthal 
angles between a pair of near neighbour layers i.e., $ is fixed at a value between 0 and 
T, such pairs in turn having a helical arrangement. The two limiting angles correspond to 
ferro- and antiferro- phases respectively. The phase diagrams correspdriding to different, 
values of the phenomenological coefficients have been calculated in Ref. [17]. Note that 
both the ferro- and antiferroelectric phases predicted by this model are different from the 
experimentally exhibited structures as $J within a unit cell is exactly 0 and T in the two 
predicted phases respectively. Further, the field induced structural changes can not be 
studied using this approximation. It has been pointed out by Gorecka e t  al. [15] that this 
type of model can not explain the conoscopic observations in the ferrielectric phase in the 
presence of a field (see chapter 4 for details). 

2.3 Other relevant models 

From the switching current measurements in the SmC: phase, Takanishi et al. [13] found 
that this phase has antiferroelectric characteristics close to the SmA - SmCT, transition 
temperature but acquires ferrielectric characteristics with decreasing temperature. Hi- 
raoka e t  al. [14] performed apparent tilt angle measurements in the SmCT, phase as a 
function of the applied dc field. They found step like variation of the apparent tilt angle 
with increasing dc field. Frorri these observations, they speculated the existence of a tem- 
perature induced as well as field induced devil's staircases in the SmCL phase. Further, in 
the ferrielectric range, the apparent tilt angle measurements show a plateau at one third 
of the tilt angle at intermediate fields. This plateau indicates a field induced 1:2 struc- 
tiire ( / \ \  . . .) in this phase. Conoscopic observations by Gorecka et al. [15] also indicate 
this field induced structure in the ferrielectric range. Later from conoscopic observations, 
Isozaki e t  al. [36, 371 have speculated that a temperature induced devil's staircase can be 
invoked in the ferrielectric range of AFLC also. Such a devil's staircase has been predicted 
using some Ising models. Bak et al. [38] have shown that the ground state of a system of 
Ising spins arranged in a 1-d lattice can exhibit a complete devil's staircase as a function of 
the field provided the interaction between the spins is long range and convex. The devil's 
staircase obtained by Bak e t  al. [38] for an antiferromagnetic inverse square interaction 
vix. J ( i )  = C2 is shown in Fig. 2.3. q along the y-axis represents the fraction of up spins 
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Fig. 2.3: Field induced devil's staircase exhibited by 1-d Ising inodel with long range 
convex interactions (J(i)  = C2) .  After Ref. [38]. 

in a period. It can be noted that there is a wide plateau corresponding to antiferroelectric 
structures i.e., q = 0.5 in this staircase. 

Another model which exhibits temperature induced devil's staircase is the Axial Next 
Nearest Neighbour Ising or ANNNI model [20, 391. In the 3D version of the model, Ising 
spins lying in a certain plane are coupled ferromagnetically to its z0 nearest neighbours 
(Jo > 0) while spins lying in different planes interact through nearest (J1) and next nearest 
(Jz) neighbour competing interactions. The mean field phase diagram of the 3-d ANNNI 
model for J1 > 0 is shown in Fig. 2.4. The structures < klk2 ... k ,  > represent the 
k-bands present in a period. A k-band is defined as the number of layers with parallel 
spins separated on both sides by oppositely oriented spins. Thus <2> represents TT$J. . - . 
structure, <12> represents T-f-4 structure etc. The stable structures corresponding to 
negative J1 can be obtained from that of positive J1 by reversing every alternate spin. 
The structure <3> corresponding to positive J1 becomes <12> for negative J1. With this 
transformation, the phase diagram corresponding to negative J1 is the same as that for 
positive J1 (see Selke [39] for a review). Thus the stability range of <3> phase for positive 
J1 corresponds to the stability range of the <12> phase for negative J1. From the phase 
diagram, apart from ferro and antiferro phases we see three 'broad' phases namely <3> 
and <2> for J1 > 0, <2> and <12> for J1 < 0. Among these the stability range of <2> 
phase is rather wide as J1 is varied. 

The extension of the ANNNI model including a third neighbour interaction which was 
specifically used for describing liquid crystalline phases also exhibits similar structures. 
The mean field phase diagram of this model with J1 < 0 is shown in Fig. 2.5. This model 
appears to widen the <12> range compared to that in Fig. 2.4. 

Coming back to the AFLC system, to qualitatively account for the devil's staircase 
in the SniC*, phase, Takanishi et al. [13] invoked the Ising model developed by Bak et al. 
[38] treating the configuration of each layer as an Ising variable. Later to account for the 
temperature devil's staircase in the ferrielectric range, Yamashita et al. [18] (mistakenly) 
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Fig. 2.4: Mean-field phase diagram of the 3-d ANNNI model showing some of the main 
commensurate phases. After Ref. [20] 

Fig. 2.5: Mean-field phase diagram of the ANNNI model with third neighbour interaction 
for J, = - J1 > 0 and J3/  J, = 0.1, showing some of the main commensurate phases. After 
Ref. [20]. 
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stated that the ANNNI model is not sufficient in this case as it does not stabilize the 
<12> (equivalent of 1:2 structure) which is seen in the presence of field. Therefore they 
extended the ANNNI model with third neighbour interaction, as stated above. 

In the magnetic systems crystal fields confine the spins to specific orientations. In 
liquid crystals the polarization vectors are associated with liquid layers and indeed can 
align along any azimuthal direction to minimize the energy. As such, we believe that 
the Ising models are highly inappropriate for AFLC. This is further corroborated by the 
following facts: 

1. ~ r o m  the conoscopic observations it is unequivocally established that all the tilted 
phases in the absence of field have helicoidal structures of f i  along the layer normal. 
The assumption of the Ising character of the orientational order parameter is contrary 
to this helicoidal structure. 

2. It is well known from the theory of ferroelectric phase (which is also a sub-phase 
exhibited by AFLC) that the order parameter is a 2-d vector in the plane of the 
layers, thus indicating xy- rather than Ising- character of the order parameters. 

3. Both dielectric and electrooptic measurements detect modes with the relaxation fre- 
quencies typical of the Goldstone mode (involving the phase fluctuation of the ori- 
entation order parameter). This indicates an xy-type behaviour of the orientational 
order parameter in these phases. 

4. Further even if we assume the ANNNI description as valid, it can be seen from 
the phase diagram of these models (Fig. 2.4 and 2.5) that as J1 varies from large 
positive values in the ferroelectric phase through zero to large negative values in 
the antiferroelectric phase, the <22> structure has a large range of stability. How- 
ever, experimentally this 4-layer antiferroelectric phase is not found in most of the 
pure compounds and even if it is found in some binary mixtures, it has very short 
temperature range of stability [6]. 

5. The ellipsornetric studies by Bahr e t  al. [6] have not found any evidence for the 
1:2 structure which is predicted by these Ising models to be the structure of the 
ferrielectric SmC; phase in the absence of a field. 

More seriously none of the above models i.e., both xy- and Ising- models account for 
the entire sequence of phases, particularly the SmCT, phase. We therefore developed an 
xy-type model taking into account the correct symmetry of the SmC* layers. The pitch 
in some phases is found to be extremely short. Further, a field induced structure in the 
ferrielectric phase indicates a 3-layer periodicity. In contrast to the models described in 
Sec. 2.2, we do not assume a continuous variation of the order parameter along the layer 
normal and instead, we develop a discrete model. In the following, we will describe the 
model which accounts for the entire sequence of phases exhibited by AFLC. 

2.4 Discrete model of AFLC 

The experimental observations [7] of very short pitch in SmC; phase indicate that the 
assumption of sufficiently slowly varying order parameters along the layer normal may 
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not be appropriate. Therefore a model with the free energy density depending on the 
configuration of each layer is more relevant. Cepic et al. [40] first pointed out that second 
neighbour competing antiferroelectric coupling can lead to small pitch values as seen in 
the SmCk phase in such a model. 

This type of discrete model was first studied by Sun etal. 1341. However, they 
neglected the helicoidal structure which is present in all the tilted phases and assumed 
that in the SmC; phase, successive layers have opposite tilts of diflerent magnitudes. But 
x-ray investigations in this phase have not found any evidence for this structure. 

For molecules within a layer the anisotropic intermolecular dispersion interactions 
between the cores and end groups of the molecules as well as the packing considerations 
favour them to be parallel to one another. This gives rise to a strong ferroelectric coupling 
within the layers. On the other hand, for molecules in different layers, the interactions 
are mainly through end groups of the molecules or some long range interactions and are 
expected to be relatively weak. Therefore in the discrete model, we will assume that the 
tilt order within the smectic layers arise due to intra-layer interactions and such tilted 
layers are coupled weakly through nearest neighbour (NN) and next pearest neighbour 
(NNN) interactions. 

In the following, we will consider different possible origins of such inter-layer inter- 
actions on the basis of which we will construct the free energy density expression of our 
model. 

2.4.1 Origin of inter-layer interactions 

As the layers are polarized, the most obvious candidate to give rise to an antiferroelectric 
NN interaction may seem to be dipolar coupling between the layers. However, Bruinsma 
et al. [21] pointed out that the dipolar coupling between i-th and j-th layers Vdp(i - j ) ,  can 
be computed by treating each layer as a two dimensional liquid of dipoles. The interaction 
between two such layers separated by a distance d is 

where A is the area of the layer and Sip is the dipole moment per unit area of the i-th 
layer (along the y-axis). The cancelation is strict only in the thermodynamic limit of 
infinite A and is a consequence of Maxwell's law that an infinite slab of material, which 
is uniformly polarized perpendicular to the surface normal, has no electrical field outside 
the surface. 

Therefore the antiferroelectric configuration is often thought to arise from dipolar in- 
teractions between a pair of molecules in adjacent layers [6]. However a simple calculation 
shows that this energy is much lower than the thermal energy and such pairs are unlikely 
to be important for the stability of the SmCi phase. 

The anisotropic dispersion interaction between tilted molecules in adjacent layers is 
minimized when the molecules in the two layers are in one plane. This gives rise to the 
two-fold anisotropic J2 term in Eq. 2.30 below. Further, the dispersion interaction between 
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Fig. 2.6: The geometry for the calculation of dispersion interaction between the molecules. 

. 
the end chains of a pair of molecules in adjacent layers in ferroelectric and antiferroelectric 
configurations can be written as 

where a ,  is the polarizability per unit length of the end chain of length LC. La is the length 
of the aromatic core. As shown in Fig. 2.6, 0 and x denote the tilt angle and horizontal 
separation of the molecules in the neighbouring layers respectively. We have assumed a 
small gap g between the smectic layers. The superscript "f(a)" denotes the interaction 
for ferroelectric (antiferroelectric) configurations with the upper sign corresponding to the 
ferroelectric configuration. The interaction energies calculated from Eq. 2.25 are shown in 
Fig. 2.7. The antiferroelectric configuration has a lower energy rriiriimum compared to the 
ferroelectric configuration. However, it is clear from Fig. 2.7 that the energy difference 
between the two minima for one pair of molecules is also much less than k B T .  But, as 
the molecules are already ordered in each layer and they can move in unison, the relevant 
quantity is the energy difference between the two configurations per unit area which is of 
course quite substantial and far exceeds k B T .  

Further, this mechanism works for racemic mixtures as well as for achiral systems 
without any further assumptions. Also, as the angle made by the last C-C bond of the 
alkyl chain with the layer plane varies substantially between the odd and even members of 
a homologous series, the strong odd-even effect mentioned earlier can be understood from 
this mechanism (see Fig. 2.11). 

However, the ferroelectric configuration allows a relatively free translational motion of 
the molecules between adjacent layers, and is favoured entropically at higher temperatures. 
Therefore the nearest neighbour inter layer interaction is expected to be temperature de- 
pendent and should change sign to favour ferroelectric configuration at higher tempera- 
tures and antiferroelectric configuration at lower temperatures. The simplest assumption 
is to take J1 = j (TAF - T ) ,  where J1 is defined in Eq. 2.30. 
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Fig. 2.7: The dispersion interaction Vdis between two molecules in adjacent layers as a 
function of the lateral separation x between them. The calculation has been done assuming 
6 = 0 . 5  rad, a,= 1.6, La = 10A, L c = 8 a  a n d g = 2 a .  
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Bruinsma e t  al. [21] also analyzed different types of interactions between the polarized 
smectic layers to account for the second and higher neighbour interactions. They have 
shown that the van der Waals and the elastic forces are weak compared to the forces 
which arise due to the correlated thermal fluctuation of polarization of the layers. By 
perturbative calculations, they found that the fluctuation force between the i-th and j-th 
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layer is 
Si Sj (2.26) vflUc(i - j )  = r m  

I 

where I? is given by 
Po2 r = -  ~ B T  

4'd ,/- (1 + $$I2 

I I I I I I I I I  I 

where Po is the polarization per unit area of the layers and K I I ,  KL are the appropriate 
anisotropic curvature elastic constants parallel and perpendicular to the layers. Since 
polarization Po oc 6 and KII, KL vary as O2 with the tilt angle 6, it is clear from Eq. 2.27 
that r is independent  of 6. This fact leads to the next nearest neighbour (NNN) J3 term 
in Eq. 2.30. 

Chiral intermolecular interactions can be quite complex. A well known and simple 
expression for the twist interaction between two rod like molecules i and j is [30] 
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where hi denotes the unit vector along the long axis of the i-th molecule and G j  is the 
intermolecular distance between the i-th and j-th molecules. After replacing hi by its 
average hi within the layer, this interaction in the tilted smectic phases takes the form 

Pol 

ftwist = 91 sin 2Oi sin 2Oj - &) + y2 sin2 Oi sin2 Oj sin 2(+j - +i). (2.29) 

This form is consistent with the apolar nature of f i  and gives rise to the Yl and Y2 terms in 
Eq. 2.30 below. In analogy with the non-chiral NNN interaction, we introduced an NNN . 
chiral Y3 term in Eq. 2.30. This can be expected to be more important than a higher 
order (oc 06) first neighbour chiral interaction. As these cliiral interactions can have many 
contributions we cannot guess the relative signs of the Y coefficients. For any given set, a 
reversal of the signs of all the coefficients would correspond to the opposite enantiomer. 

2.4.2 The discrete model 

In view of above observations we introduce a second neighbour antiferroeleetric interaction 
which is independent of the tilt angle 8. Experimental observations clearly indicate that 
polarized layers are necessary for the occurrence of ferrielectric arid SmC: phases and 
hence by implication, for the second neighbour antiferroelectric interaction. Using the 
order parameter defined in Eq. 2.2, we write the following phenomenological free energy 
per unit area for an N-layer system: 

where A' and B are the usual Landau coefficients describing the second order SniA to 
SrnC transition, with A' = a ( T  - TAC), TAC being the SrnA-SmC transition temperature, 
and arise from intra-layer interactions. J1 = j(TAF - T) ,  where TAF is the temperature 
at which J1 changes sign to favour ferroelectric interaction at higher temperatures. 

Note that only upto quadratic terms in the secondary order parameter @ have been 
taken into account as the higher order terms are expected to be small. Also the terms with 
(gi+1 R:) are not taken into account as these are identically zero in the limit of infinite 
area as discussed in Sec. 2.4.1. 

The Y coefficients correspond to chiral interactions between the layers. The term 
with coefficient X is called electroclinic term in analogy with the piezoelectric term in solid 
state physics as it couples the polarization with the the tilt angle. This term as well as 
the Y-terms are allowed only in the chiral medium. 

Minimization of Eq. 2.30 with respect to as in the continuous case yields 



SECTION 2.4 

Elimination of .Pi from Eq. 2.30 using Eq. 2.31 gives 

where A = A' - x X 2  and C = AX. To study the phase transition in the absence of electric 
field, we assume that the energy associated with the soft mode is much higher than that 
for Goldstone mode and hence the tilt angle of the layers is homogeneous i. e., independent 
of i. X-ray studies on antiferroelectric liquid crystals appear to justify this assumption. 
With this assumption and using Eq. 2.2, the free energy Eq. 2.32 can be rewritten as 

+ y2F: ~ 0 ~ ( 4 i + l  - 4i) sin(4i+l - 4i) + ~ 3 < , 2  ~in($i+2 - 4i)j 7 (2.33) 

where to = sin2012 and 0 is the tilt angle. To obtain the equilibrium configuration the 
free energy in Eq. 2.33 has to be numerically minimized as discussed below. 

2.4.3 Calculations 

The free energy given by Eq. 2.33 is minimized numerically using a multidimensional 
conjugate gradient method [41]. Starting from an initial guess this method in successive 
iterations minimizes the function along "non-interfering" or so called conjugate directions 
with the special property that minimization along one direction is not "spoiled" by sub- 
sequent minimization along another direction. 

To make conjugate directions mathematically more explicit, first note that if we min- 
imize a function along some direction u, then the gradient of the function must be either 
zero or perpendicular to u at the line minimum. Next consider some point P as the origin 

h, of the coordinate system with coordinates x. Then any function can be approximated by 
its Taylor series 

where 

The matrix A whose components are the second partial derivatives of the function is called 
the Hessian matrix of the function at P. In the approximation of Eq. 2.34, the gradient 
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of f is easily calculated as 
Vf = A . x - b  

Therefore the change in V f as we move along some direction is evidently 

Suppose that we have moved along some direction u to a minimum and now propose to 
move along some new direction v. The condition that the motion along v not "spoil" 
our minimization along u is just that the gradient stays perpendicular to u, i .e . ,  that the 
change in gradient be perpendicular to u. By Eq. 2.37 this is just 

When Eq. 2.38 holds for two vectors u and v,  they are said to be conjugate. When 
the relation holds pairwise for all members of a set of vectors; they are said to be a 
conjugate set. If one does successive line minimization of a function along a conjugate set 
of directions, then there is no need to redo the minimization along any of those directions. 
Therefore, the algorithm reduces to finding the conjugate set and carry out successive line 
minimizations along those directions using an iterative procedure. We have used the Polak 
and Rebiere version of the algorithm (see [41] for detail) in our calculations. 

Coming back to our problern, we assume that A and B coefficients in Eq. 2.33 are much 
larger than the J and Y coefficients, so that the magnitude J, varies with temperature 
as ~2 M a(TAC - T ) / B  below the SmA-SmC transition temperature. A typical set of 
parameters used in the calculations are as follows (in cgs units): a = 0.088, B = 13.8, 
j = 2.18 x J2 = 3.0 x J3 = 1.2 x Yl = 8.0 x Y2 = 4.2 x 
Y3 = -1.47 x TAC = 379K and T A ~  = 367K (the last two values correspond to 
those of C8-tolane [33]). 

In addition to the ferroelectric and antiferroelectric phases, this rnodel gives rise to 
other stable uniform helical phases and a nonun,iformly modulated phase. The profile of 
the Z-vector in different layers for these structures are shown in Fig. 2.8. The transition 
points between different phases are obtained by comparing the appropriate free energies. 

2.4.4 Results and discussion 

In the absence of chirality, and if J2 = 0 it is easy to see from Eq. 2.33 that ferroelectric 
(J1 < 0) and antiferroelectric (J1 > 0) phases are stable when (JllJ? > 4J3. Otherwise 
there is a second order transition to an intermediate uniform helical structure with 64 = 
J1<2/4J3. Since there is no chirality the right handed and left handed structures are 
degenerate in this case. 

The chiral terms in our model lift this degeneracy and drive these second order tran- 
sitions from SmCi to FIH (-7r/2 < 64 < 0) and SmC; to FIL (-n < 64 < -7r/2), to 
first order. When J2 > 0 and is sufficiently large, another ferrielectric phase FII develops. 
It is characterized by a nonuniform modulation with 6cj1 between one pair of neighbours 
being different from 642 of an adjacent pair (see Fig. 2.8 and 2.9). In addition, when T 
approaches TAG, I J ~ ~ C :  again becomes smaller than 4J3 and another ferriphase (SrnCTy) 
is stabilized. Further, as first pointed out by Cepic etal. [40] close to TAC, 64 in the 
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Fig. 2.8: Schematic representation of the structures of the various phases predicted by our 
model. The arrows indicate the c-vectors, the projections of the director on the smectic 
layers. In the representations of the helical structures in the (a) SmC: (b) SmC; (c) FIH 
(d) FIz (e) FIL and (f) SmCl phases, the differences in tilt angle in the different phases 
has been ignored. 
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Fig. 2.9: Theoretical temperature variation of 64, the difference in azimuthal angles be- 
tween successive layers for the parameters given in the text. 64 characterize the helical 
structure which is uniform in all the tilted phases except in the FIz phase giving rise to 
the splitting of 64 in this phase. 
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Fig. 2.10: (a) Temperature- J2 pliase diagram arid (b) Temperature- J3 phase diagram. 
Note the tricritical points in the phase boundary involving FII phase, arid the critical 
points in the SmC; - FIH arid FIL -SmCi pliase boundaries. J3 can be expected to 
decrease with chain length in a homologous series. 

SmCL phase approaches 7r/2 which explains the antiferroelectric character in the high 
temperature ranges of SmC; phase seen experimentally [13]. 

Ignoring the tilt angle 19 of the layers, the order parameter of the FII phase is related to 
the difference (6& - 642). In the other uniformly modulated phases, the order parameter 
is related to 64(= 641 = 642) which changes in sign and magnitude across the different 
phase transitions. The global symmetry of all the uniform phases with a helical twist 
is the same and the phase transitions between them can only be 1st ordq .. in nature. 
These transitions involve jumps in 64, which do not cost too much energy. The entropy 
S = -BF/BT, and the heat of transition T A S  between two phases is ( ~ j c i A ( c o s  64)) 
which is typically - 1 joule/mole in broad agreement with the experimentally measured 
values [33]. 

The detailed phase diagrams when Jz and J3 are varied, keeping all the other pa- 
rameters fixed, are shown in Fig. 2.10. In the J2-temperature phase dia,gram the phase 
bouridary involving the FII phase has a parabolic shape which is characteristic of reentrant 
plienornenon. Also in part of the phase boundary (shown by dashed line) the transition 
between the nonuniform and uniform structures is second order in character. There are 
two tricritical points on this boundary beyond which the transition becomes first order 
in nature. Both SmC;-FIH and SmCi-FIL transition lines end in critical points as J2 is 
increased as a consequence of the same global symmetry of the phases involved in these 
transitions. Depending on the value of Jz we can have either one or three ferriphases 
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Fig. 2.11: Phase diagram as a function of the nonchiral end chain length in a homologous 
(nFF) series. J3 can be expected to decrease with chain length in a honiologous series. 
Note the odd-even effect on the transition temperatures involving the ferrielectric, SmCi 
and SmC; phases but not the transition temperature between the SniA and SmCL phases. 
After Ref. [9]. 

(Fig. 2.10). 
As J3 arises from the fluctuations in the polarization of the layers, we can expect that 

it decreases for higher homologs in which the nonchiral end chain length is increased. As 
can be seen in Fig. 2.10, the ranges of both the SmC: phase and the ferriphases are reduced 
as J3 is decreased. This trend has been seen in marly homologous series [9] as shown in 
Fig. 2.11. If an enantiomer of opposite chirality is added to an originally pure compound, 
the polarization of the layers is lowered. In this case both the J3 and Y coefficients are 
reduced leading to a disappearance of the SmC: and ferriphases as seen experimentally 
[6]. Both SmCi-FIH and SmCi-FIL transitions exhibit critical points as J3 is lowered. 
In Fig. 2.10, the finite width of the FII phase even when J3 = 0 arises from the second 
neighbour chiral interaction Y3. 

2.5 Conclusions 

The discrete chiral ANNNXY model developed by us for the antiferroelectric liquid crystals 
incorporating the correct symmetry of the tilted smectic layers accounts for the first time 
the entire sequence of phase transitions often seen in experiments. The very weak first 
order transitions between many of these phases arise from abrupt changes in 64 values, 
which are brought about by chiral interactions. In racemic mixtures the NNN J3-term 
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arising from the fluctuations of the polarizations as well as the chiral Y-terms will be zero 
and the ferrielectric phases will be absent as observed experimentally. Further, we will 
see in Chapter 3 and Chapter 4 that the various optical properties of the system in the 
presence and absence of a static field predicted by the model are in good agreement with 
the experimental observations. 

The SmCT, phase has a very short pitch, and further, at higher temperatures, the 
64 value approaches n/2, which will lead to antiferroelectric properties as seen in some 
experiments [13]. The 64 values vary rapidly with temperature in the ferri as well as 
SmCG phases. Indeed there are strong visible fluctuations in these phases [lo], which are 
also seen in ellipsometric measurements on relatively thick films [23] caused by the strong 
dependence of the pitch on temperature. 



Chapter 3 

Electric field induced structures in 
ant iferroelectric liquid crystals 

3.1 Introduction 

As we have discussed in Chapter 1, in the ferroelectric SmC* liquid crystals consisting 
of chiral molecules, each layer is transversely polarized with the polarization @ along the 
direction of local Cz symmetry axis (A x i). Moreover, chirality induces a spontaneous 
helical structure of A with its axis along the layer normal. Due to this helical structure, 
the in-plane polarization P also has a helical arrangement with its axis along the layer 
normal and hence macroscopically < @ >= 0. Therefore the term helielectric is more 
appropriate for the description of this structure. However, the uniform helical structure 
can be distorted by surface forces and/or by an external field and many theoretical and 
experimental studies address such problems. 

Further, as we have discussed earlier, all the tilted phases exhibited by AFLC also 
have helicoidal structures in the bulk. Therefore, an interesting question is: what is the 
effect of a field which is applied perpendicular to the helical axis on these structures? 
Further, as mentioned earlier, the structures of the SmCz and the ferrielectric phases 
have not been clearly established. A large number of experimental studies using static or 
dynamic electric field have been conducted on these systems. As mentioned in the previous 
chapter, these experimental observations are often qualitatively compared with the devil's 
staircase predicted by Ising models. However, there has been no detailed calculation based 
on any theoretical model on the effect of an external field on the structures exhibited by 
the antiferroelectric liquid crystals. 

Motivated by this, we studied the effect of an in-plane static electric field on the 
structures predicted by our model. Our model has several parameters to account for the 
various sub-phases exhibited by antiferroelectric liquid crystals in the absence of electric 
field as described in Chapter 2. In the presence of an electric field, the free energy ex- 
pression of our model may have many local minima depending on the parameters of the 
model and hence finding the global minimum is quite difficult. It is known that, even sim- 
ple 1-dimensional models such as Frankel Kontorova or FK model and Chiral xy-model 
exhibit rich zero temperature (ground state) phase diagrams in the presence of field (for a 
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review see [39]). As already mentioned, for Ising spins arranged in a 1-d lattice, Bak et al. 
[38] have shown that if the interaction is long range and convex, the zero temperature 
structures follow a hierarchy as a function of field which is described as a devil's staircase. 
Chiral xy-models with convex [42] as well as nonconvex [43, 221 nearest neighbour (NN) 
interactions lead to other types of hierarchical structures as a function of field. They form 
a succession of commensurate structures for which the average angular separation between 
adjacent spins is a rational fraction of 27r. 

In this chapter we will discuss in detail the influence of an external static electric field 
on the structures of the different phases exhibited by AFLC. In Sec. 3.2, we discuss the 
coupling of the transverse electric field with the orientational order in these phases. The 
field induced changes in the structure of ferroelectric SmC* liquid crystals which can be 
described by a continuous two component order parameter have been discussed by many 
authors [44]. As a theoretical background to our model, we will consider this case in 
Sec. 3.3. The chiral xy-model and ANNNI model are known to. exhibit rich varieties of 
commensurate and incommensurate phases. In particular the structures predicted by the 
chiral xy-model and some of the basic definitions will be quite relevant to the discussion 
of our resnlts. We briefly describe them in Sec. 3.4. In Sec. 3.5, we reconsider our discrete 
model described in Chapter 2 to include the effect of a static electric field applied in 
the plane of the smectic layers. The difficulties associated with the determination of the 
structures which gives the global minimum of the free energy and the numerical technique 
employed are described in Sec. 3.6. The field induced structures obtained at different 
temperatures are described in Sec. 3.7. In Sec. 3.8 and 3.9, we compute the experimentally 
measurable quantities viz. the so called apparent tilt angles Oapp in different phases and 
compare them with the available experimental results. Finally, we mention some of the 
main conclusions of this chapter in Sec. 3.10. 

3.2 Electric field order parameter coupling 

A static electric field g imposed on a liquid crystalline sample has many physical effects, 
some of which are quite complex [27]. For simplicity we restrict our attention to the 
case of a perfectly insulating medium free of charge carriers. Even in this ideal situation, 
the coupling of an external electric field to the orientational order in chiral tilted srnectic 
phases involves at least three different processes: 

1. As the layers in the chiral tilted smectic phases are transversely polarized, there 
is a linear coupling of the form -@ . 2 of the electric field I? with the transverse 
polarization of the layers. 

2. The anisotropy of the dielectric constant has a quadratic coupling with the field. 
To be more explicit, neglecting the small biaxiality of the tilted layers, the static 
dielectric constant measured along (ell) or perpendicular ( e l )  to the nematic director 
f i  are different. Therefore, for a general direction of the electric field 2 ,  the relation 
between the electric displacement 6 and 2 has the form 
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The difference ca = €1, - €1 may be positive or negative depending on the chemical 
structure of the constituent molecules. The contribution to the thermodynamic 
potential due to this anisotropy in dielectric constant is 

The first term is independent of orientation. The second term favours parallel align- 
I 

ment (A collinear with I?!) if ca > 0, and perpendicular alignment if ca < 0. 

3. Certain distortions in the director A can induce a spontaneous electric polarization 
in the medium. This effect first predicted by Meyer [45] is called f2exoelectricity in 
analogy with piezoelectricity in solid state physics. The coupling of the electric field 
with the flexoelectric polarization may also induce distortions in the bulk. 

In our theoretical calculations, we have neglected the dielectric coupling as a first ap- 
proximation. This simplification is often employed in the theory of ferroelectric liquid 
crystals for usual fields used in experiments, as for low fields this quadratic coupling is 
relatively weak compared to the linear (-@ - 2) term. However, some theoretical calcu- 
lations have also been made 011 the SmC* phase including this dielectric coupling. In our 
discrete model of AFLC, we also ignore the flexoelectric coupling. In ferroelectric liquid 
crystals, this coupling is known to be usually weaker compared to the other two couplings 
mentioned above. 

3.3 SmC* under a transverse electric field 

In the bulk SmC* phase (as described in Chapter 1) each layer is uniformly polarized in the 
plane of the layer and the transverse polarization has uniform helical arrangement along 
the layer normal (Fig. 3.la). Now if an electric field I? is applied perpendicular to the axis 
of the helix, then, at arbitrarily small fields, the only possibility is that those parts of the 
helix where @ is locally parallel to J!? expand. Because of the periodicity of @, this means 
that the unfavourable regions where P is antiparallel to 3 shrink. In this scenario, the 
effect of the field is to produce a soliton lattice structure (SLS) which consists of domains 
in which 3 is mostly parallel to J!?. These domains are separated by a periodic array of 
walls with a spacing given by the pitch as sketched in Fig. 3.lb. Within a wall $ rotates 
through 2n to match the orientations of the domains on either side of it and is referred to 
as a 2n-wall. As the field is increased, the width of the domains increases at the expense 
of the width of the walls. If the interaction between the solitons are taken into account 
theoretically the soliton lattice spacing increases with field. However, as pointed out by 
Cladis [44] in the layered SmC* phase this is unlikely to happen. Beyond a critical field, 
there is a transition to the fully unwound SmC* structure as shown in Fig. 3 .1~ .  

To describe this structure mathematically, we assume that the pitch of the helix is 
much longer than the layer spacing. Then the order parameter in Eq. 2.2 in the continuum 
limit becomes 

4 sin 20 t(2) = (nZny, -n,n,) = - 2 (sin 4, - cos $), (3-3) 

where we have assumed that the smectic layers are flat (parallel to the xy-plane) with the 
layer normal along the z-axis and that the modulation of {is only along that axis. 
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Fig. 3.1: Schematic representations of the helix unwinding in the presence of electric field 
applied perpendicular to the helix axis. 

Using the above order parameter and the in-plane polarization I; as the secondary 
order parameter, the free energy per unit area in the presence of a static electric field 2 
applied in the plane of the layers can be written as 

where the sixth term is the Lifshitz invariant, A,  pf are electroclinic and flexoelectric 
coefficients respectively. The last term is the linear coupling of transverse polarization 
@ of the layers with the electric field 2 as mentioned earlier. We have neglected the 
contribution due to the dielectric anisotropy. 

Elimirlating 3 after minimizing with respect to it, the free energy density F (Eq. 3.4) 
can be reexpressed in terms of the tilt angle 0 and azimuthal angle 4 as 

- XAEB sin +] dz (3.5) 

where the electric field is assumed to be applied along the x direction, q, = -(S + 
xApf)/(K - xP)) and the approximation sin0 = 0 is utilized. Further, dividing F by 
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B  and making the transformations 

the free energy F in Eq. 3.5 can be rewritten as 

in which A = a/B = a ( T  - T o )  is temperature dependent; a and To are constants. 
Let us first consider the case of p being constant (= p,) determined by the relation 
A = 0 for temperatures below To neglecting the "weak" modulation terms. The 

&dependent part of the free energy then becomes . 

and the Euler-Lagrange equation corresponding to the variation of 6, is 

2 d2# 
Po@ - ~ p ,  cos # = 0. 

Eq. 3.9 is the well studied static sine-Gordon equation. 
The 1-soliton solution of Eq. 3.9 with the boundary conditions 4 = 0 as u + -00, 

and 6, = 2n as u -+ oo can be written as 

The profile of this 1-soliton solution is shown in Fig. 3.2. A periodic solution of Eq. 3.9 is 
obtained by quadrature as [44] 

where sn(x ,  k )  is Jacobi's s n  function and k (< 1) the modulus coming from the integration 
constant. This solution with k < 1 is called the soliton lattice and it reduces to Eq. 3.10 
in the limit k + 1. 

For the general case, taking into consideration the variation of p ,  the stationary 
condition for the free energy functional F (Eq. 3.7) leads to the Euler-Lagrange equations 

- E p  cos 6, = 0. 
du2 
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Fig. 3.2: The 1-soliton solution with p, = 0.8. 

A first integral of Eq. 3.12 and 3.13 can be written as 

where C is an integration constant. However, up to now no analytic solutions of Eq. 3.12 
and 3.13 have been found. The p and 4 profiles as functions of u obtained numerically 
by Yamashita etal. [44] are shown in Fig. 3.3. As a uniform solution to Eq. 3.12 and 
Eq. 3.13 corresponding to the unwound ferroelectric phase, we obtain 4 = (2m + 1/2)n 
with integer m and p = p, determined from 

3.4 Commensurate and incommensurate structures 

A wide variety of complicated spatially modulated structures have been observed in nu- 
merous condensed matter systems. Such structures arise not only in non equilibrium 
situations, for instance as a response to a change in an external parameter or by sus- 
taining boundary conditions that prevent thermalization of the system, but also occur in 
thermal equilibrium state of an ensemble of particles. The modulation may be in the posi- 
tions of the particles or in some local property such as the magnetization, charge density, 
electric polarization or chemical composition. It is often periodic, and the periodicity may 
be commensurate or incomm,ensurate with that of the reference lattice. 
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Fig. 3.3: Soliton lattice solutions for p and $ numerically obtained by Yamashita. After 
Ref. [44]. 
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On the theoretical side, one possible origin for such commensurate or incommensu- 
rate structures is the competition between, at least, two interactions that favour different 
commensurate structures. Several phenomenological descriptions of spatially modulated 
patterns have been used to discuss general features and also to interpret specific exper- 
iments. In particular, the models such as F'rankel-Kontorova or FK model, Axial Next 
Nearest Neighbour Ising or ANNNI model and Chiral xy-model are known to exhibit 
complex phase diagrams comprising of simple commensurate, long period commensurate 
and incommensurate phases. 

In our model, the configuration of each tilted smectic layer is described by a 2-d 
axial vector and these layers are coupled through both chiral and nonchiral interactions. 
Therefore, an analogy with the chiral xy model can be invoked. In fact a theoretical study 
[22] of chiral xy model with nearest neighbour (NN) interactions has shown that tliough 
the model is quite trivial in absence of a field, it exhibits a rich ground state phase diagram 
for nonzero fields. In general the stable phases can be commensurate or incommensurate 
and can follow a devil's staircase with increasing field as described below. 

. 
3.4.1 Basic definitions 

Let us consider the physical properties Ai(i = 1,2, .  . .) of a rnaterial that displays peri- 
odic spatial modulations characterized by wave vectors 6. The modulations of the two 
quantities A1 and A2 are said to be commensurate (C) with each other when 

are rational numbers for all Cartesian coordinates. If at least one of the three ratios is an 
irrational number then A1 and A2 are said to form spatial structures that are incornmen- 
surate (IC) with each other. 

For instance, A1 may describe the position of the atoms in a lattice, the periodicity 
being characterized by the reciprocal lattice vector and A2 the magnetic or electric mo- 
ments or spins carried by the atoms. Trivial examples of commensurate structures are 
the ferromagnetic (r, = 0) and antiferromagnetic (r, = 1/2), states. In a layered helical 
structure the commensurability ratios are given by 

where 4 is the angle between the orientations of the magnetic moments in the adjacent 
xy layers. If r, is irrational, i.e in the incommensurate case, the repeat distance for a 
given orientation is infinite. Obviously, the repeat distance is two lattice constants in the 
antiferromagnetic structure, and one in the ferromagnetic case. 

In general, the commensurability measured by r,, for a specific material will depend 
on external parameters, such as temperature or electric and magnetic fields. Various 
scenarios are possible. For instance, r, may vary smoothly with the external parameter 
p, as depicted in Fig. 3.4a. This behaviour implies that rational values of r, occur only 
with measure zero in each finite range of variation in p, while the irrational values take 
the entire measure of that range. The material is then said to display an incommensurate 
phase through the range of variation. In other circumstances ra(p) may lock in at a finite 
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Fig. 3.4: Schematic representations of four possible scenarios of variation of the commen- 
surability r, with the parameter p: (a) smooth analytic variation in the incommensurate 
phase, (b) harmless staircase, (c) complete devil's staircase and (d) incomplete devil's 
staircase. 
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number of rational values (Fig. 3.4b). Such a sequence of commensurate phases, separated 
by first order transitions, has been called a harmless staircase [46]. By contrast, in a devil's 
staircase r,(p) has infinitely many plateaus, with quasi continuous transitions on going 
from one structure to another. The devil's staircase is said to be complete if the sum of the 
plateau widths is identical with the range of variation in p; usually (but not necessarily), 
the steps occur at each rational value of r,. A complete devil's staircase is sketched in 
Fig. 3 .4~.  If the sum is smaller than the interval, i.e., if r, changes smoothly (with a 
nonzero derivative) over some parts of the interval, then the devil's staircase is called an 
incomplete one (Fig. 3.4d). 

3.4.2 1-d Chiral xy model 

Consider a model consisting of a system of 2-d classical spins arranged in a 1-d lattice. 
The spins interact through nearest neighbour chiral interactions and are subjected to an 
external field. The Hamiltonian of the system is given by 

where 
W(x) = 1 - COS(X - A) 

and 
V(x) = E (1 - cos px).  

Here 0, is the angle between the spin vector at the nth site and the applied field, A is 
the chirality parameter and E is the magnitude of the field. The problem is to study the 
ground state configurations of the spins at absolute zero of temperature. 

Quite a few models similar to the one above have been studied in the past in connection 
with systems exhibiting modulated structures. Perhaps the most extensively studied model 
of this kind is the Frankel Kontorova (FK) model. In FK model the inter spin potential 
W is strictly convex with the form W(x) = i ( x  - A)2 and p = 1 in Eq. 3.20. Aubry etal. 
[42] found many rigorous results for a class of systems described by Eq. 3.18 with W being 
strictly convex. 

The 1-d chiral xy model with nonconvex W given by Eq. 3.19 but with p = 2 in 
Eq. 3.20 has been studied by Banerjea et al. [43]. They found a field induced devil's 
staircase in this model. Yokoi et al. [22] also studied the 1-d chiral xy model with p = 1 
in Eq. 3.20 in great detail. They used an improved numerical technique viz. the so called 
e.flective potential method developed by Chou et al. [47] to construct the field versus A 
phase diagram as shown in Fig. 3.5. Different commensurate phases are designated by the 
following notation: For a ground state configuration { O n ) ,  the average spin rotation in a 
period is defined as 

q s 2xq =< 0, - > . (3.21) 

with the convention that 0 5 0, - < 2x. For a commensurate phase tj is taken to be 
a fraction P/Q with Q the period of the commensurate configuration and P the number 
of co~nplete turns of 2x over a period. Hence the phase, which has a period 2 structure 
and an angular advance of 2n in each period should be distinguished from the 2 phase, 
which has a period 4 structure and an angular advance of 4x in each period. 
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* 
Fig. 3.5: The numerically obtained phase diagram of the 1-d chiral xy-model in the pres- 
ence of a field. After Ref. [22]. 

With this background, we will now analyze the influence of an externally applied 
static electric field on the structures of the different phases exhibited by AFLC. We will 
show that the field induces new commensurate and incommensurate structures in different 
phases and the apparent tilt angle corresponding to these field distorted structures agree 
well with the experimental observations. 

3.5 AFLC under transverse electric field 

In Chapter 2 we have considered only the zero field limit of our model to account for 
the different phases exhibited by AFLC. In order to study the influence of an external 
static electric field l? applied in the plane of the smectic layers, the free energy density in 
Eq. 2.32 now has to be minimized including the field term. Let us rewrite Eq. 2.32 for 
this purpose as 

where A and B are the usual Landau coefficients describing the second order SmA to SmC 
transition, with A = a(T - TAC). The coefficient Jl = j(TAF - T) changes sign at T A ~ ,  
favouring antiferroelectric NN order below TAP. The terms with Y-coefficients are the 
chiral interactions. Note that the NNN J3 interaction is associated with the unit vector 

for reasons already discussed in Chapter 2. The last term in Eq. 3.22 arises from the 
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linear coupling of electric field I? with the polarization l?i of the layers and the relation 
-4 

Pi = X ( ~ $  - I?) from Eq. 2.31. Again as in the case of the SmC* phase, we have neglected 
the coupling of I? with the dielectric anisotropy. We have also neglected the flexoelectric 
coupling of the field as mentioned earlier. 

It should be mentioned here that our model differs from the 1-d chiral xy model 
described above in at least two aspects. Unlike the 1-d chiral xy model in which the spins 
are assumed to be of unit magnitude, in our model, the tilt angle 8 of the director f i  
within the layer may change under the application of the field. Hence the magnitudes as 
well as the orientations of the order parameters are variable in this case. In addition, the 
magnitude of 14 itself depends on the temperature as discussed in chapter 2. Secondly, 
our model involves in addition to the nearest neighbour interactions, t,he next nearest 
neighbour interactions. These two additional features of our model make the numerical 
calculations very difficult as described below. 

3.6 Computational methods and difficulties 

In spite of the apparent simplicity of even the simpler 1-d chiral xy-model discussed in 
Sec. 3.4.2, finding the ground state configurations of this type of a model is a formidable 
task. One approach to find the stable configuration, starts with the equilibrium equations 
obtained by equating the first partial derivatives of the free energy to zero and identifying 
the problem with some dynamical map. In some cases this dynamical map is area pre- 
serving or the so called standard map. There are many powerful theorems of standard 
maps already known in the literature which can then be directly applied to the problem. 
However, the major drawbacks of this approach are: (i) the equilibrium equations hold 
good for stable, meta stable as well as unstable solutions. Therefore further analysis is 
required for finding the solution corresponding to the global minimum. (ii) The dynamic 
map obtained from the equilibrium equations are single valued only when the inter spin 
interaction is strictly convex. 

To overcome these difficulties Chou et al. [47] developed a method called the effec- 
tive potential method. This method finds the global minimum solution and works for 
both convex as well as non convex interactions (see Sec. 5.3.1). However, the method 
is developed taking into account only the nearest neighbour interactions. We have not 
found in the literature a generalization of the method taking into account the next nearest 
or higher neighbour interactions. We found that a straightforward generalization includ- 
ing the next nearest neighbour interactions is computationally formidable. Further, the 
method assumes a constant magnitude of the spins which is not valid in our problem. 

In view of these difficulties, we took a simpler approach to the problem. In our 
numerical algorithm, we first prepare the approximate initial guess solution corresponding 
to a given commensurability using a program. We then feed this approximate guess to a 
minimization routine to find the actual solution corresponding to that commensurability 
which minimizes the free energy given by Eq. 3.22. We have used the multidimensional 
conjugate gradient method in our minimization routine as described in Chapter 2. Our 
minimization routine also produces soliton lattice structures when the zero field structure 
was allowed to evolve under the field. Finally the ground state energies of all the low-order 
commensurate structures as well as soliton lattice solutions are compared to get the global 
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Table 3.1: A typical set of values (in cgs units) of the parameters used in the calculation 

Parameters 
(I! 

TAC 
B 
j 

TAF 
J2 

~3 

yl 

fi 
y 3  

minimum. Though our method is not exhaustive, it already gives rise to Structures whose 
optical properties agree quite well with experimental observations. A typical parameter 
set used in the calculation is shown in table 3.1. The number of layers N used in the 
calculations varies from 400 to 900. 

Values 
0.088 

1O6.O0C 
13.8 

2.178 x loA4 
94.0°C 

8.0 x 
1.2 x 10-~  
8.0 x lo-' 
4.18 x 

-1.446 x 

3.7 Field induced structures in AFLC 

3.7.1 Structures in antiferroelectric phase 

The SmCl phase has a uniform helical structure in the absence of a field. The azimuthal 
angle q51 in the lth layer varies with I as 4l = l ( r  - a) where (I! (x 2") is a small angle. 
At low fields applied along the y-axis, this uniform helical structure gets distorted in such 
a way that the NN pairs whose net polarizations sf have favourable orientations with 
respect to the field grow at the expense of those with unfavourable orientations and a 
soliton lattice structure (SLS) is stabilized. Thus the SLS consists of domains with jf 
mostly parallel to I? and these domains are separated by periodic array of walls where the 
$f rotates by 27r as shown in Fig. 3.6. The corresponding variation of the tilt angle 8, 
is shown in Fig. 3.7. As the field is increased, the widths of the domains increase at the 
expense of the widths of the walls and the difference in azimuthal angle between successive 
layers also decreases. Beyond a threshold field Ecl, this goes over to the commensurate 
structure of commensurability 112. In this 112 phase, the layers are uniformly tilted 
and the orientation of successive layers is 4 and -4 respectively with respect to the x- 
axis as shown in (Fig. 3.8a). As the field is increased further, 4 decreases and beyond 
a second threshold field Ec2, there is a transition to the fully unwound ferro phase of 
commensurability 0. 

To estimate Ecz, notice that the solution corresponding to the 1/2 commensurate 
structure is of the form 

4 = ( - 1 )  i = 1 .  .. N, (3.23) 

where 4i denotes the angle made by 6 with respect to 3. Neglecting the variation of the 



0 200 400 600 
Layer number 

CHAPTER 3 

Fig. 3.6: The 4 profile as a function of layer number in the antiferroelectric soliton solution 
which has two branches corresponding to the odd and even numbered layers. Field is 
assumed to be applied along the y-axis. 

tilt angle 13 with field, the free energy per layer (in the limit of infinite N) can be obtained 
by substituting 4i from Eq. 3.23 as 

Just above Ecz, the unwound ferroelectric phase corresponding to 4 = 0 is stable whereas 
below Ec2 the 112 phase with nonzero value of 4 is stable. Since close to the critical 
field Ec2, 4 is small, we can expand the free energy given by Eq. 3.24 in powers of 4 to 
determine the critical field as well as the order of the transition. Expanding f in Eq. 3.24 
in a Taylor series about 4 = 0 and retaining only upto 6th order terms, the excess free 
energy with respect to the unwound ferroelectric phase (after dividing by the constant 
factor to) can be written as 

A B C 
f = -(b2 + -44 + -Cp, 

2 4 6 
(3.25) 

where 

It is now easy to see from Eq. 3.25 that the unwound ferroelectric phase is stable when 
A > 0 whereas the 112 structure is stable when A < 0. Therefore, Ec2 can be obtained by 
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Fig. 3.7: The 0 profile as a function of layer number in the antiferroelectric soliton solution. 
Note that = sin2012 N 0 and the maxi~num change in 8 is N 0.002 radians. The fields 
corresponding to the symbols are same as in Fig. 3.6. 

Fig. 3.8: The orientation of E in a few layers for field induced contmensurate structures 
(a) 112 structure of SmC> phase for Eeff = 5.0 (b) the 213 structure of FIL phase for 
E e f f  = 2.0 and (c) the 214 structure in SmCL phase for Eel = 1.6. Gef = 1 0 ~ ~ 2  
is perpendicular to the plane of the figure (y-axis). The magnitude of c' reduces sharply 
in SmCL phase compared to that in the other phases. Note that the polarization P is 
perpendicular to E in the layers. 
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equating a to zero and we get 

Further the coefficient B is positive when 5 ~ 2 ~ 2  < J1 and if B is negative, the coefficient 
of the 6th order term 6 is positive. Therefore the transition is second order in nature 
when 5 ~ ~ < , 2  < J1 and becomes first order when 5 ~ ~ 5 2  > J1. The point 5 J ~ J ;  = J1 where 
B = 0 corresponds to a tricritical point (TCP). 

3.7.2 Structures in ferrielectric phases 

In the ferrielectric FIL and FII phases the soliton lattice structures (SLS) are favoured at 
low fields. As the field is increased, the SLS structure goes over to the 213 commensurate 
structure (Fig. 3.8b) at a threshold field. The 213 commensurate structure remains stable 
over a fairly wide range of fields. As the field is increased further, the soliton structure 
reenters and remains stable until the fully unwound ferroelectric state is reached at a 
higher threshold. This threshold is considerably smaller than Ec2 which is required to 
completely unwind the SmCi phase as described in the previous section. 

The SLS structure is favoured at low fields, as it requires only a small rearrangement 
in the & of the layers from the field free helical structure. At intermediate fields, the 
competition between the field energy and the NNN interaction produces the compromise 
213 structure. Interestingly the soliton structure is recovered at higher fields, as the field 
energy now overcomes the NNN J3 interaction. Clearly the 213 structure is field induced 
while the comparable 2:l structure of the Ising model is present even in the absence of the 
electric field [6] (see Fig. 2.4 and 2.5). However, the evidence for the latter structure was 
not found in the ellipsometric studies on freestanding films [23]. When J1 is negative, the 
soliton structure is energetically more favourable than the 213 structure at all fields till 
the unwound ferro phase is obtained at a high enough field. The same response is seen in 
the SmC; and has been discussed by many authors earlier [44]. 

3.7.3 Structures in SmCT, phase 

As the SmC: phase occurs just below the SmA phase and the temperature range of 
stability of this phase is usually small for most of the compounds synthesized upto now, 
the tilt angle in this phase is quite small and also the influence of the field on the tilt angle 
(electroclinic effect) can not be neglected. Therefore, the experimental observations which 
depend on the tilt angle is quite subtle in this phase. In our calculations, we find that the 
soliton lattice structure is stable at low fields. As the field is increased beyond a threshold, 
a 4-layer periodic 214 commensurate structure is stabilized as shown in Fig. 3 . 8 ~ .  This 
goes over to the unwound ferro structure at a higher threshold. 

We will now calculate the apparent tilt angle Oapp corresponding to these field induced 
structures as a function of field to compare them with the experimental observations. 
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Fig. 3.9: The book shelf geometry of the sample. The flat smectic layers are perpendicular 
to the I T 0  coated glass plates and an electric field can be applied along the y-axis. 

3.8 Calculation of apparent tilt angle 

Consider the book shelf geometry of the sample in which flat smectic lajrers are perpen- 
dicular to the glass plates with the applied electric field 3 in the plane of the layers and 
perpendicular to the bounding glass plates (along y-axis) as shown in Fig. 3.9. If we ne- 
glect the influence of the surface on the orientation of the director A, then at zero field 
due to the underlying helical structure, all the tilted phases are dptically uniaxial with the 
optic axis along the layer normal (z-axis). As the field is increased this helical structure is 
deformed and the effective optical axis neglecting the small biaxiality of the medium for 
the present discussion, makes an angle Oapp with respect to the layer normal. This angle 
between the effective optic axis and the layer normal can be measured as a function of the 
field and is called apparent tilt angle Oapp. At high fields when the helix gets completely 
unwound it corresponds to the actual tilt angle made by the director A with the layer 
normal. As we have neglected the small biaxiality of the tilted smectic layers, Oapp is pro- 
portional to the average projection of the (vectors on to the in-plane electric field 3 i.e., 

-+ 
Oapp cc & zKI & where E is along the y-axis. Hence we can calculate Bapp corresponding 
to different structures as a function of the field to compare with the available experimental 
observations as discussed below. 

3.9 Results and comparison with experiments 

The experimental variations of Oapp with the applied dc electric field obtained by Hiraoka 
et al. [14] in the ferrielectric and SmCT, phases for the compound MHPOBC are shown in 
Fig. 3.10 and Fig. 3.11. The corresponding theoretical variations of Oapp with electric field 
in different phases are shown in Fig. 3.12 and Fig. 3.13. It can be noted that the plateau at 
= 0 / 3  observed experimentally in the ferrielectric phase is well reproduced. This plateau 
corresponds to the the field induced 213 structure in the FIL and FII phases in our model. 
It is also noteworthy that both in the field induced soliton structures of the ferriphases 
and the 4-layer 214 structure in the SmCT, phase, Oapp is not a smooth function of the 
applied field. Experimentally also this non smooth behaviour is well known[6]. There are 
small jumps in Bapp as the field is increased and the location of these jumps depends on 
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Fig. 3.10: Apparent tilt angle as a function of an applied electric field in SmC; ((a) 
113.0°C7 (b) 114.7"C and (c) 115.2"C), SmC1; ((d) 115.8"C and (e) 116.5"C), and SmC; 
((f) 116.7OC). Note the plateau at one third of the tilt angle in the ferrielectric phase. 
After Ref. [14]. 
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Fig. 3.11: Apparent tilt angle as a function of an applied electric field in SmC; ((a) 
116.8"C), SmCT, ((b) 118.2"C, (c) 118.5"C), (d) 118.8"C (e) 119.2OC and (f) 119.5"C) and 
SmA ((g) 120.0°C), (h) 121.0°C and (i) 123°C). Note the step like variation in the SmCz 
phase. After Ref. [14]. 
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Fig. 3.12: Variation of Bapp with electric field at three temperatures corresponding to the 
ferri phases. Note the plateau at 813 at the lower temperatures and the non-smooth 
variation in the high field soliton state at 92.2"C. Using IF( = lo3 cgs units, the physical 
field l? compares well with experimental data. 

Fig. 3.13: Variation of Bapp with electric field in the SmCi, and SmCL phases. In the SmCz 
phase the variation is non-smooth for fields generating the 214 structure. Bapp increases 
slowly with ,?? in the unwound state due to electroclinic effect. 
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the sample size used. As the phases on both sides of these jumps have soliton lattice, they 
have the same symmetry and the transitions between them can only be weakly first order 
in nature. Therefore these jumps may signify the possibility of field induced staircase 
often claimed from experimental observations in SmCz and ferrielectric phases. However 

, a detailed calculation to resolve this issue is beyond the scope of our present numerical 
technique. Further a detailed comparison of the calculated Oap, with the experimental 
data is not warranted for the following reasons: (a) It is well known that the walls have a 
very strong influence on the phase transitions exhibited by antiferroelectric compounds[48]. 
The wall interactions give rise to a non-uniform structure within each layer and in turn can 
produce a different type of staircase of commensurate and incommensurate helices[49]. (b) 
The dc electric fields used in the experiments can introduce other effects such as electric 
double layers which complicate the interpretation of experimental results. 

3.10 Conclusions 

In conclusion, we have made the first calculations on the effect of an electpic field on the 
structures of different phases exhibited by antiferroelectric liquid crystals. We have also 
calculated the apparent tilt angles corresponding to these field induced structures. They 
agree closely with the experimental observations. It may be noted that the calculated 
structures aSe quite different from the devil's staircase of Ising spin variables which have 
been used in qualitative comparisons with field induced structures[6]. As we pointed out, 
even a simple chiral xy-model with only NN interactions produces a rich phase diagram as 
a function of field. In our model which incorporates an antiferroelectric NNN interaction, 
we have found a few low order commensurate structures. Our calculation is not exhaustive 
particularly in relation to higher order commensurate structures. It would be interesting 
to extend our calculations to look for such possibilities. 
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