On the Progenitors of Pulsars

R. Ramachandran

Thesis submitted to the Osmania University for the degree of Doctor of Philosophy

1996

Raman Research Institute

Declaration

I hereby declare that the work presented in this thesis is entirely original, and has been carried out by me at the Raman Research Institute, Bangalore. I further declare that this has not formed the basis for any thesis, dissertation or monograph submitted by me or any body to any University or Institution.

R. Ramachandran, Raman Research Institute, Bangalore - 560 080, INDIA.

R. Ramachandran

Certificate

I certify that this thesis has been composed by Mr. R. Ramachandran based on the original work done by him under my supervision at the Raman Research Institute, Bangalore. The subject matter of this thesis has not previously formed the basis of the award of any degree, diploma, associateship, fellowship or any other similar title.

Prof. G.Srinivasan, Raman Research Institute, Bangalore - 560 080, INDIA.

Prof. G.Srinivasan

Acknowledgements

It is over five years since I came to Raman Research Institute. Over this period, I have improved myself by interacting with everybody here. Though I believe that any feeling of gratitude cannot be adequately expressed by simply thanking, following the traditional practice I would like to express my deep sense of indebtness to the following people.

It is a pleasure to thank my thesis supervisor G. Srinivasan, who is an inspiring teacher. I thank him for his extreme patience in teaching me the basics of Physics and Astronomy.

I would also like to thank Avinash A. Deshpande, Dipankar Bhattacharya, and V. Radhakrishnan, from whom I have learnt a great deal.

During 1992-'93 1 spent my entire time in developing a complete software package for pulsar data analysis, along with Dipankar. During the time I spent at Ooty the company of Dipankar, Madhu Girimaji, G. Markandeyulu, T. Prabu, P.S. Ramkumar and B. Sridhar was of immense help to me in learning pulsar observational techniques.

Parts of this thesis were done in collaboration with Avinash A. Deshpande, Dipankar Bhattacharya and G. Srinivasan. I would like to thank them for very instructive collaborations.

It is a luxury to have the facilities and services offered by the library staffs of RRI. I would like to thank them all for their kind help.

I thank Prof. B.Lokanadham, Prof. G.C.Kilambi and Prof. Vivekananda Rao of the Osmania University for their kind help and encouragement.

Thanks are due to all my friends at RRI, for many useful and interesting discussions I have had with them over the years. Especially, I thank Jaydev K. Rajagopal, S.R. Ramasubramanian, B. Ramesh, N. Rathnasree, Somnath Bharadwaj, T.K. Sridharan and Yuvraj Sah, for many inspiring scientific and non-scientific discussions. Special thanks are due to G. Markandeyulu and Yuvraj Sah for making life inside the campus very enjoyable, and to P. Rajasekar and P. Ramadurai for their help in the computer room.

Contents

1	The	outlir	ne of the thesis	1
2	Pul		itistics	7
	2.1	Introd	uction	7
	2.2	The P	ulsar Current	8
	2.3	Selecti	on Effects	9
	2.4	The B	irth rate of Pulsars	16
	2.5	Pulsar	rs from Binary Systems	20
		2.5.1	Evidence for injection in the low field range $10^{10} - 10^{11.5}$ G	22
		2.5.2	High Field Injection	26
		2.5.3	Birth Places of Injected Pulsars	28
	2.6	Discus	ssion	30
A	Rec	ycling	in binaries	34
_	α.	1		41
3			n of Pulsar population	41
	3.1		uction	
	3.2		nptions	42
		3.2.1	Assumptions about the binary parameters	42
		3.2.2	Kick velocity distribution	46
		3.2.3	Beaming factor	46
		3.2.4	Field Decay Model	47
		3.2.5	Comparison with the earlier works	49
	3.3		Ionte Carlo Simulation	51
		3.3.1	Comparison with Known Samples	52
	3.4	Result	S	54
		3.4.1	Pulsars from binary systems	56
		3.4.2	Double neutron star binaries	63
	3.5	Discus	ssion	67

4	Spa	tial Distribution of Pulsars	73							
	4.1	Introduction	73							
	4.2	Selection Effects	74							
		4.2.1 Scale Factors as a Function of the Position in the Galaxy.	76							
	4.3	Correlation between the pulsar distribution and the spiral arms .	7 5							
	4.3.1 Modified d_{\min} distribution									
		4.3.2 Minimum mass for neutron star formation	83 83							
		4.3.3 Resonance radii of the Galaxy	86							
		4.3.4 Significance of the correlation maximum	87							
	4.4	Limits on space velocities of pulsars	88							
		4.4.1 Accounting for distance uncertainties	89							
		4.4.2 Aliasing due to finite interarm spacing	90							
		4.4.3 Estimation of average velocities	91							
	4.5	Discussion	92							
5	Kin	ematics of Low Mass X-Ray Binaries and Millisecond Pulsars	97							
	5.1	Introduction	97							
	5.2	Assumptions	98							
		5.2.1 The gravitational potential function of the Galaxy	99							
		5.2.2 Kick speed distributions	100							
	5.3	The simulation procedure and results	101							
			103							
		5.3.2 Comparison of the simulated millisecond pulsar population								
		with the known sample	108							
	5.4	•	113							
6	Sun	nmary of the main results obtained in the thesis	120							
U	Juli	imary of the main results obtained in the mesis								

List of Figures

2.1																																							13
2.2																																							15
2.3																•	•																						19
2.4																																							21
2.5																																							23
2.6																																							25
2.7																																							27
2.8																																							29
2.9																	•																						31
A.1														•																									37
3.1																																							55
$\frac{3.1}{3.2}$			•																																				55 57
3.2 3.3	-	-	•	-					•		-	•	-		-	-			•	•			-	•															61
3.4			•																																				65
-	-	-	•	-			-	-	-		-	-	-	-	-	-		-	-	-		-	-	-	-														70
3.5	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	70
4.1																									÷														75
4.2																																							77
4.3																																							79
4.4																																							82
4.5														• '																									84
4.6									•								•							•			•							•					94
5.1				_			_	_				_				_		_				_	_	_															102
5.2																																							104
5.3																																							107
5.4																																							109
5.5																																							112
5.6																																							114
5.7																																							116
5.8																																							118

List of Tables

2.1		•					•	•																				•	•		16
3.1													٠.																		59
3.2	•		•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	69
5.1			•																												100
5.2																															110
5.3																															115