
Chapter 3 

Simulation of Pulsar population 

3.1 Introduction 

One of the important conclusions we arrived a t  in the previous chapter is that  a 

fraction of solitary pulsars may, in fact, be recycled pulsars from binary systems 

which disrupted during the second explosion. Our estimate suggested that this 

fraction could be as large as 10 - 15%. In this Chapter we undertake an inde- 

pendent study to check and constrain these conclusions. The approach we adopt 

is the one of Monte Carlo simulation. 

In this simulation a large number of binary systems and single stars are gen- 

erated, and with some simplified assumptions on the evolution of stars in binary 

systems, their final products are determined. This helps one to determine the rel- 

ative importance of pulsars coming from various kinds of progenitors. In addition 

to the aim of finding the fraction of recycled pulsars, this simulation has helped to 

estimate the formation rate of double neutron star binaries and their merger rate 

(due to the emission of gravitational radiation) in the Galaxy, and the number of 

active (where at  least one neutron star is functioning as pulsar) double neutron 

star binaries in the Galasy. By assuming a spatial density of galaxies, the count 

rate of mergers upto a distance of - 2001Ipc has been calculated. This turns out 



to be about a few events per year. This number is quite important for sensitive 

gravitational wave detectors like LIGO. 

The plan of this chapter is as follows. Section 3.2 gives the details of the 

assumptions made in simulating the neutron star population. The procedure 

which was followed in doing the simulation is described in section 3.3. The results 

are summarised in section 3.4, and the implications of these results are discussed 

in section 3.5. 

-. . . 

3.2 Assumptions 

3.2.1 Assumptions about the binary parameters 

The Initial Mass Function for stars whose masses are greater than about l M o  is 

assumed to be $ ( M )  = C1M-2.7, where C1 is the normalisation constant (Scalo 

1986). 

The Initial Mass-Ratio Function is assumed to  be (Hogeveen 1990,1991), 

$ ( Q )  = K1 when 0.1 5 q < 0.25 

$ ( Q )  = K2 q-1.5 when 0.25 < q 5 1 (3.1) 

here, q = M2/M1 where MI and M2 are the primary and the secondary masses 

of the binary system, and K1 and K2 are the normalisation constants. 

The Initial semimajor axis distribution is assumed to be uniform in a logarithmic 

scale. The semimajor axes are selected in such a way that the primary star 

overflows the Roche lobe after the ignition of Helium, but before the ignition 

of Carbon (it is essentially a modified method of Dewey & Cordes 1987). -4 fit 

was produced for this purpose, with the Stellar evolution model by Schaller et al. 

(1992). This fit gives the lower and upper limits of the Roche lobe radius of the 



primary star, as a function of its mass. 

For the lower limit, KI  = 0.29 + 0.02 and n2 = 0.68 + 0.02, and for the upper 

limit, I E ~  = 0.79 4z 0.12 and I E ~  = 1.77 f 0.12. 

I t  is assumed that during the Roche lobe overflow, the primary star loses the 

whole of its envelope. A fraction of this mass is accreted onto the secondary star. 

and the rest is lost from the system: The fraction of mass that is lost from the 

system is modelled as a function of the mass-ratio (Pols et al. 1992). If q > 0.6 

it is assumed that the whole of the mass that is lost by the primary is accreted 

onto the secondary, and if q < 0.2 i t  is assumed that no mass is accreted onto the 

secondary. For values of q in the range of 0.2 - 0.6, the fraction of mass lost from 

the system is calculated by a linear interpolation. The evolution of semimajor 

axis in this phase is computed according to  the formula given by Bhattacharya 

& van den Heuvel (1991). 

During the supernova explosion, whet her or not the binary survives depends 

on the amount of mass lost from the system, and the magnitude and the direction 

of the asymmetric kick velocity. The binary disrupts if the following condition is 

satisfied (Flannery & van den Heuvel 1975; Hills 1983). 

where vk and 0 are the magnitude of the kick velocity and the angle it makes n-ith 

the pre-esplosion reduced orbital velocity v,. Al, is the total mass of the system 

and v, = d m .  This reduces to the simple Nerrrtonian result if vk = 0. 

namely the binary disrupts if more than half the total mass is lost. 



If the binary survives after the supernova esplosion, the change in the semi- 

major axis is given by (Hills 198.3), 

During the Roche lobe overflow of the primary star the mass of the secondary 
- . 

star gets modified. Because of this, the evolutionary timescales of the secondary 

gets altered. The left-over mainsequence timescale of the secondary is calculated 

by (van den Heuvel 1969), 

The threshold mass for the neutron star formation for solitary progenitors is 

assumed to be 8Mo (Hillebrandt 1987). In the case of helium stars, the minimum 

mass for neutron star formation is assumed to be 2.2Mo (Habets 1985,1986). 

For stars in binary systems, since they undergo extensive mass loss during their 

evolution the threshold mass gets pushed up. The threshold mass of these stars is 

assumed to be the main sequence mass corresponding to  the helium star threshold 

mass (i.e., 2.2Mo) - 10M,. 

The change in the semimajor axis during the common envelope phase during 

the Roche lobe overflow of the secondary star was computed with respect to  the 

model suggested by Webbink(l984), and Bhattacharya and van den Heuvel(l991), 

where A l l  is the mass of the cornpact star (in our case, neutron star). .\I2, and :If2, 

are the masses of the core and the envelope of the secondary star respectivelj.. 



(norL)  is the Roche lobe radius of the secondary star and X is the weighting 

factor (< 1) for the gravitational binding energy of the core arid the envelope of 

the secondary star. For this exercise the value of X was assumed to be 0.6. It is 

assumed that all binaries (irrespective of the mass-ratio and semimajor axis) go 

through this spiral-in phase, described by the above given equation. 

A fit was produced to  calculate the radius of stars in the main sequence on 

the basis of the stellar evolution model by Schaller et al. (1992). If mass M and 

radius R are substituted in solar units, this fit is given by, 

Similarly, to  calculate the radius Rc of the helium core of the stars as a function 

Mass range 
M 5 1.5M 
M > 1.5M 

of the core mass M,, a fit was produced on the basis of the Helium star evolution 

model by Habets (1985). This fit is given by, 

log Rc = C + qMc (3.8) 

where < = -0.596 and 7 = 8.996 x After the primary overflow, if the 

semimajor axis is less than the sum of the main sequence radius of the modified 

secondary and the core radius of the primary, then the binary is assumed to give 

rise to one solitary neutron star. Similarly, after the spiral-in phase during the 

secondary star overflo~v (see equation 3.6) if the semimajor axis is less than the 

radius of the core of the secondary, it is assumed that the system gives rise to 

only one neutron star, which will be a recycled one. 

If the mass of the helium stars is relatively low\.? the outer helium shell espands 

to large radii during the late stages of evolution of a helium stars (Habets 198.3). 

a 
(7.741 f 3.602) x 

0.140 f 0.009 

P 
1.291 f 0.035 
0.582 f 0.007 



This raises the possibility of these low mass helium stars going through a second 

stage of mass transfer (Case BB, or CB). This possibility is completely neglected 

in this exercise. The possible effect of this assumption is discussed in section 

3.4.2. 

3.2.2 Kick velocity distribution 

It is suspected now a days that the supernova explosion may not be spherically 

symmetric. Because of this, the neutron star gets a kick in the opposite direc- 

tion to the asymmetry, during its formation. At present there is no clear idea 

on what causes the asymmetry, and what is the distribution of the asymmetric 

kick velocities. For this work, two asymmetric kick velocity distributions were 

assumed. The first is by Hansen & Phinney (1996) (with the original functional 

form of Paczynski 1990), and the second, by Lyne & Lorimer (1993). The Hansen- 

Paczynski-Phinney (hereafter HPP) distribution is given by, 

where x = (v/v,) with v, = 600 km/sec. The Lyne & Lorimer distribution of 

velocities in two dimensions is given by, 

with v, = 330 km/sec. The results were checked for both the velocity distribu- 

tions. 

3.2.3 Beaming factor 

As explained in Chapter 2, beaming factor is the fractional solid angle of the 

sky covered by the pulsar emission beam. I11 Chapter 2 it was assumed to be d 



constant of value 0.2. However, there are some models which suggest that the 

beaming factor could be period dependent (Narayan & Vivekanand 1983; Rankin 

1990; Lyne, hlanchester k Taylor 1983). For this exercise the beaming factor is 

assumed to be the one given by Lyne & I\/Ianchester (1988), 

3.2.4 Field Decay Model 

The magnetic fields of pulsars are assumed to decay according to the model given 

by Srinivasan et al. (1990). In this model the field decay is due to the expulsion 

of magnetic flux from the interior when the neutron star spins down during the 

course of evolution. The spin-down could be due to the dipole radiation, or due 

to the main sequence stellar wind from the companion in binary systems. If one 

assumes that the field resides in the core when the pulsar is born, according to this 

model the field evolution is governed by the following set of coupled differential 

equations. 

where K = (s) 
Here, Bco and Bcr are the core and the crustal fields, P is the rotation period of 

the pulsar, and rd is the field decay time scale in the crust. I and R, are the 

moment of inertia and the radius of the neutron star, and c is the velocity of light. 



The decay time scale in the core is assumed to be infinity, since the matter in the 

interior is believed to be super conducting. However, the decay tirne scale in the 

crust is assumed to be 100 I\/Iyr (Bhattacharya et al. 1992). The first equation 

in the above set of equations comes from the work of Srinivasan et al. (1990), 

that the amount of core field deposited a t  the crust is directly proportional to the 

extent to which pulsar's rotation has been slowed down. The second equation 

gives the change in the crust field. The first term gives the contribution from 

the core field, and the second term accounts for the decay of the crustal field due 

to ohmic dissipation. The third equation is the familier dipole formula, where 

the field strength is related to the rotation period and its time derivative. To 

account for the field decay by the dipole spin-down, the above given equations 

were numerically solved by Runge-Kutta method (Press et al. 1994). 

However, when a neutron star is born in a binary system, it is believed that the 

mild wind from the main sequence companion can slow down the neutron star. 

Therefore, to account for the field decay when the neutron star is in a binary 

system, the equation for P in equation 3.12 must be replaced by (Illarianov & 

Sunyaev 1975), 

here, RA is the Alfvkn radius', and m is the mass intercepted by the accretion 

radius of the neutron star from the main sequence companion. The main sequence 

stellar wind rate A& was calculated by using a fit by De Jagar, Nieuwenhuijzen 

'Alfven radius is defined as the radius a t  which the energy density of the magnetic field 
equals the kinetic energy density of the infalling plasma (stellar wind from the companion). For 
distances from the neutron star r < Ra4 magnetic field dominates the motion of matter, which 
is therefore forced to corotate with the neutron star. For r > R.4 the disk matter will move 
freely in Keplerian orbits. The disk matter enters into the magnetosphere only if the rotation 
angular velocity of the neutron star is not larger than the Keplerian angular velocity a t  r = R.4. 



R: van der Hucht (1988), which gives a fit for stellar wind rate as a function 

of luminosity (L) and surface temperature (T). This relation was used to fit 

another relation, with the stellar evolution model of Schaller et al. (1992), to get 

the stellar wind rate as a function of mass of the star. This fit is given by, 

Y = PO + pl a: + PP x2 + pg x3 (3.14) 

where y = log le, x = log M, and the values of the constants are p ,  = -14.454, 

pl = 7.037, pz = -1.218, p3 = 0.032. 

The accretion radius of the neutron star is taken to be, 

here, Mn is the mass of the neutron star. The velocity of sound c, is taken to 

be negligible compared to the terminal velocity of the wind v,. The terminal 

velocity is calculated by the following procedure. For a star in main sequence the 

Coronal Temperature and the velocity of the stellar wind a t  the sonic point are 

given by (Erica Bohm-Vitense 1989), 

where hf and R are the mass and the radius of the star respectively. The coronal 

temperature is taken to be half of the value given by the equation given above. 

The terminal velocity of the stellar wind is taken to  be 3 times the value of the 

velocity at  the sonic point. Then, riz can be easily calculated as (A?~&,/4n'). 

3.2.5 Comparison with the earlier works 

Several authors have tried to study the statistical properties of pulsars and binary 

systems through 1Iontc Carlo si~rlulatiorls similar to the one descril>ed i11 this 



Chapter. For instance, Dewey & cordes (1987) have studied the properties of 

the progenitors of pulsars; Pols et al. (1992) have studied the formation of Be 

stars through close binary evolution, and Pols & Allarinus (1994) have studied the 

evolution of binaries in young open clusters. 

Although the procedure followed in this work is essentially the same as in 

many of these ~vorks, the evolution of radio pulsars are modelled in a complete 

fashion. For instance, parameters like rotational period, magnetic field strength 

are evolved with some assumed model, and the observable distribution of pulsars 

are calculated by modeling the selection effects completely. This may be consid- 

ered to be a significant improvement. Moreover, the observed properties of radio 

pulsars are regarded as observational constraints, rather than the properties of 

the massive binary systems in the Galaxy. This is because the properties of some 

species of binaries (for instance Be/X-Ray binaries) are not modelled quite well. 

The effect of the impact of the supernova ejecta onto the companion star has 

been considered by Dewey & Cordes (1987). This effect has been ignored in 

this exercise since it is not expected to  make significant change in the results. 

The effect of tidal interaction and stellar wind from the stars have also not been 

considered for this work. However, some of the recent works like Portegies Zwart 

& Verbunt (1996) consider this effect. 

The model followed in this Chapter for computing the fraction of mass lost 

from the system during the Roche lobe overflow of the primary star was the one 

suggested in Pols et al. (1992) (see section 3.2). However, Pols & Marinus (1994) 

have dealt with this problem in a more physical way. 

Since the model for the evolution of radio pulsars considered in this Chapter 

is more robust than the earlier works? the results concerning the "active" neutron 

star binaries may be considered more reliable. 



The Monte Carlo Simulation 

The overall procedure which is followed in this work is to produce a large number 

of binaries and solitary stars, and find out the end state of these systems with 

some simplified assumptions described above. The binary parameters like the 

masses of the two components, and the semimajor axes were generated with 

respect to the procedure given in section 3.2. The solitary stars and the primary 

stars in binary systems were assumed to follow the Initial Mass Function. The 

primary stars were generated in the mass range of 6-2OakI0, and the solitary stars 

mere generated in the range 8 - 20M0. Though the threshold mass for neutron 

star formation in binaries was assumed to be 10MO, binaries were generated with 

primaries from 6MQ. This is to allow for the possibility of having binaries where 

the secondaries produce neutron stars, with primaries producing white dwarfs. 

i.e., for binaries with primary mass in the range 6 - 10Mo if the secondary grows 

to masses above 10Mo during primary mass transfer, it is assumed that the binary 

disrupts during the explosion of the secondary, and one solitary neutron star  is 

produced from each of these systems. 

With an assumed pulsar birth rate of one in about 75 years (see Chapter 2) 

the birth rate of these systems (solitary stars plus binaries) is derived to be about 

one in 50 years or so. The difference in birth rate is due to  the fact that many of 

the binaries may not produce even one neutron star. IYith an assumed binary- 

to-singles fraction of 1:l it is assumed that about 35% of the systems produced 

are single stars. 

The maximum age of pulsars produced in the simulation is assumed to be 200 

lI!,r. The age of a given pulsar was chosen randomly between zero and 200 1I.r. 

w i th  unifornl probability. I 



For pulsars produced by solitary progenitors the initial nlagnetic field and 

periocl are chosen with some assunled distributions, and the lifetime was assigned 

as described above. The magnetic field was evolved according to equation 3.12. 

The same procedure was follo\ved for pulsars produced in binaries, but which 

become solitary after the disruption of the binary during the first supernova 

esplosion. However, if the binary does not disrupt during the first explosion, the 

first-born neutron star gets spun-down due to the wind from the main sequence 

companion star. This process may continue as long as the companion is in the 

main sequence (equation 3.5), or till the corotation radius of the neutron star 

matches with the Alfven radius (see Appendix A). The magnetic field during this 

period is evolved according to  equation 3.12 and 3.13. After the spin-down process 

the pulsar was assumed to be spun-bp to  the equilibrium period corresponding 

to the magnetic field of the pulsar at that time. The evolution of the magnetic 

field after the spin-up is treated identical to  that of a solitary pulsar. 

The death line is assumed to  be (BI2/P2) = 0.17, where BI2 is the field in 

units if 1012 G. If the value of (BI2/P2) is found to  be less than 0.2 for any pulsar, 

i t  is eliminated from the simulation. 

3.3.1 Comparison with Known Samples 

To compare the simulated population of solitary.pulsars with observed population 

four parameters are chosen. They are, (i) the rotation period, (ii) time derivative 

of the rotation period, (iii) magnetic field strength, and (iv) characteristic age. 

The distribution of aimulated pulsars with respect to  these parameters were com- 

pared with the observed, by calculating the Kolmogorov-Smirnov probabilities. 

As explained in Chapter 2. since the known pulsars are biased by the ob- 

servational selection effects a subset of the known pulsars which are in principle 



"detectable" by any one of the 4 surveys namely (1) the U.l\lass--4recibo survey, 

(2) the Jodrell-I survey, (3) the Second hIolonglo survey, and (-1) the U.hIass- 

NR.40 survey are considered. To reduce the computation time, only the pulsars 

which are within 3 kpc from the Sun are considered (about 110 in number). 

To calculate the model luminosity L,, we assumed the function given by 

Stollman (1986), 

B B 
log Lm = -10.05 + 0.98 log -, for log - < 13  

P 2  P2 - 
B 

log - > 13 
P2 

(3.17) 

However, one expects that  the observed samples are severely biased towards 

more luminous pulsars. This bias has been modelled by Narayan & Ostriker 

(1990), who find that  the distribution p ~ ,  of the intrinsic luminosities around the 

model luminosity can be modelled as, 

L 
where h = c (3.19) 

here the constants b and c are assumed to  be 2 and 3, respectively (this was 

discussed in Chapter 2). 

Although a large number of single pulsars were generated in the simulation, 

in order to reduce the computation time the simulated population was binned 

in magnetic field B and period P, into a 150 x 150 matrix. Each bin was given 

a weightage equal t o  the number of simulated pulsars in that  bin. This binned 

array was compared with the distribution of P and B of the knon-n samples by 

computing I<olmogorov-S~nirnov probabilities. About 3000 random positions in 



t,hc Galaxy (with distance from the Sun d 5 3 kpc) were selected, and each 

position was populated with pulsars of various periods and fields (150 x 150 

bins). The distance model by Taj-lor & Cordes (1993) was used to compute the 

dispersion and scattering smearing for each location of the pulsar. The limiting 

luminosity value above which the pulsar can be detected by any one of the surveys 

could be calculated with the knowledge of the distance and the flux limits of 

the surveys. IVith the knowledge of this limiting luminosity, and the model 

luminosity corresponding to  a given P and B, the limiting value of A above 

which the pulsar can be detected can be calculated by using equation 3.19. The 

detection probability assigned to the corresponding bin is given by, 

which can be obtained by integrating equation 3.18, from X to infinity. This 

procedure enables one t o  get a distribution in B - P plane of the observable 

population. This map was used to calculate K-S probabilities for the distribution 

of P ,  B, P and T& Ideally one would like to  get the K-S probability in two 

dimensions. However, since one does not have enough number of known pulsars 

to  describe a smooth distribution in the B - P plane, what is done here is t o  cal- 

culate the K-S probability for four different projections in the B-P plane namely, 

projection along period, field, time derivative of the period, and the characteristic 

age. By taking different projections one can recover the lost information to some 

extent. 

3.4 Results 

Although we assumed a birth rate of massive stellar systems of one in 50 >.ears, to 

reduce the computation time the number of systems generated in the sirnulation 
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Figure 3.1: The results of the Kolmogorov-Smirnov (K-S) tests. The four plots 
correspond to rotation period (P), magnetic field (B), characteristic age (rCh) and 
time derivative of the rotation period (P) respectively. The dotted line represents 
the known samples, and the solid line respresents the simulated population. The 
corresponding I.;-S prol~abilities are also given in each of the plots, represented 
by Q. 



was restricted to a value which corresponds to a third of the birth rate, i .e.,  one 

in 130 years. However, to get the correct number of systenls in the Galaxy the 

results were scaled up by a factor of 3. 

As mentioned earlier, the stars generated include singles as well as binaries. 

The number of systems generated was 1.33 x lo6, out of which about 9 x lo5 

were in binaries. With the HPP velocity distribution (Paczynski 1990; Hansen 

& Phinney 1996), about 53% of the binaries got disrupted in the first explosion 

itself. With the Lyne & Lorimer (1993) velocity distribution, about 65% of the 

binaries got disrupted during the first supernova explosion. Among the binaries, 

the fraction of binaries generated with Mr  < 10Mo is about 66%, where M," is 

the initial primary mass. The number of active single pulsars generated in the 

simulation with a progenitor birth rate of one in 150 is about 2.3 x lo5. 

The maximum K-S probability was achieved for an initial field distribution of 

sum of two gaussians (in log B) ,  with (log B) l  = 12.17, (log B)2 = 12.43, 01 = 0.3, 

and a2 = 0.36. The relative weightage of the first gaussian is 0.2 with respect 

to the second one. A combination of two gaussians was chosen for practical con- 

venience (to produce a slightly distorted gaussian), and no physical significance 

can be attributed to it. The corresponding initial period distribution was a flat 

distribution in the range of 0.1 - 0.24 sec. Figure 3.1 gives the plots of the K-S 

tests for the distributions of rotation period (P), magnetic field (B), characteris- 

tic age ( T ~ ~ ) ,  and the time derivative of the period (P). The corresponding K-S 

probability values were 38.l%, 84.4%. 42.2% and 48.7%: respectively, which are 

reasonably good. 
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Figure 3.2: The distribution of magnetic fields of non-recycled pulsars. in the 
simulation. The non-recycled pulsars are produced by (a) the solitary progenitors, 
(b) a fraction of binaries a i t h  M," < 10Mo (see section 3.3), (c) the binaries 
disrupted during the first STE, (d) the binaries disrupted during the second SNE 
(only second born pulsars). and (e) a fraction of coalescing binaries which coalesce 
during the primary star Roche-lobe overflow. 



3.4.1 Pulsars from binary systems 

One believes that a vast majority of stars we see in the sky may be in binary 

systems, or multiple systems. Since pulsars are the remnants of massive stars it is 

natural to expect that a good fraction of pulsars are produced by stars in binary 

systems. One of the main aims of this simulation is to estimate the fraction of 

pulsars processed (recycled) in binary systems. 

As per the assumptions of this simulation, recycled pulsars can be produced 
.. -. - 

by two ways. The first way is by spinning up a neutron star by accretion from 

the companion, and the second way is by coalescing binaries, i.e., if the orbital 

energy during the spiral-in phase is not enough to expel1 the envelope of the 

companion, the neutron star spirals into the companion star, and coalesces with 

its core. In this process the system is assumed to leave behind only one neutron 

star. According to Bhattacharya & van den Heuvel (1991), this pulsar will be a 

recycled pulsar. However, if the binary coalesces during the primary mass transfer 

itself i t  is assumed that  the binary leaves behind only one ordinary pulsar (not a 

recycled one). 

The second column of the table 3.1 gives the number of solitary pulsars pro- 

duced by various types of progenitors. 

Injection 

The concept of injection was introduced in Chapter 2, and discussed in detail. To 

recall, Vivekanand & Narayan (1981), and Phinney & Blandford (1981) came to a 

conclusion that not all pulsars are born spinning rapidly like Crab pulsar. Indeed, 

a considerable fraction of pulsars may be born with periods of the order of a few 

hundreds of milliseconds or so. .Although this has been questioned by many au- 

thors, further statistical studies like Narayan (1987), Narayan k Ostriker (1990) 



A 
B 
C 
D 
E 
F 

A-F 

Table 3.1: A : from single progenitors, B : from binaries with hi: < 10hfa,  
C : from binariks disrupted during the first ezplosion, D : first-born PSRs  from 
binaries disrupted i n  the second explosion, E : second-born PSRs from binaries 
disrupted in  the second explosion, and F : from coalescing binaries. The numbers 
given given in the table correspond to an assumed progenitor birth rate of one 
in 150 years. To get the true number (i.e., corresponding to the progenitor birth 
rate of one in 50 years, each of these numbers must be multiplied by 3. The third 
column gives the number of pulsars with log B < 11.5. The significance of this 
is discussed in section 3.4.1. The last row of the table gives the total number of 
pulsars from all progenitors. 
t Out of this 32717, 14566 pulsars are recycled. 

pulsars with  
log B < 11.5 

Progeni tor  

and Deshpande et al. (1995) have found evidence in favour of injection. From the 

detailed current analysis discussed in Chapter 2 one came to the conclusion that 

the injection occurs predominantly in two field ranges ( B  = 10'0.5 - 1011.5G and 

B = lo1* - IO'*.~G). The interpretation given was that the injection of pulsars 

with relatively low fields is to be identified with recycled pulsars from intermedi- 

ate mass range binaries, and the high field injection with recycled pulsars from 

massive binaries. One of the aims of this simulation is to see if the conventional 

recycling mechanism can support this hypothesis. 

number  of 
pulsars 

-4s mentioned earlier, as per the initial assumptions there are two ways of pro- 

ducing recycled pulsars - by the usual way of spin-up due to accretion of matter 

in binaries, and by coalescing binaries. Also, it is assumed that all the binaries 



which survive after tlie first explosion go through the spiral-in phase, and tlie 

change in semimajor axis is calculated with equation 3.6. Figure 3.2 gives the 

distribution of the magnetic fields of ordinary (non-recycled) pulsars produced in 

the simulation. This must be compared with figure 3.3, which gives the distribu- 

tion of magnetic fields of recycled pulsars. The top panel is for pulsars produced 

through the usual recycling scenario, and the bottom panel is for pulsars pro- 

duced through coalescing binaries. In the case of binaries with a neutron star 

and a massive star, the left-over main sequence life time of the companion after 

the first explosion is too short to  spin-down the neutron star significantly (here 

it should be noted that  in the field decay mechanism assumed the field decay is 

directly related to the extent t o  which the neutron star is spun-down). Conse- 

quently the amount of field decay is not significant. That is why the distribution 

given in the first panel of figure 3.3 is not significantly different from figure 3.2. 

However, in the case of binaries with relatively low mass companions the left-over 

main sequence life time is long enough to  slow down the neutron star to a period 

of about 1000 seconds or so. Therefore, one can expect a considerable amount 

of field decay. This is clearly seen in the second panel of figure 3.3. However, 

the exact distribution in this case can not be believed literally since we have as- 

sumed that all binaries (irrespective of the mass-ratio and the semimajor axis) go 

through the spiral-in phase. Although this assumption may be valid for systems 

with extreme mass-ratio, in the case of systems with q -unity this assumption 

may fail. 

Fraction of injected pulsars and their birth rate 

Table 3.1 gives the details of pulsars produced in the simulation. Various rows 

give the number of pulsars from different types of binaries (corresponding to  a 
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Figure 3.3: The  distribution of magnetic fields of recycled pulsars in the sim- 
ulation. The top panel corresponds to  the pulsars produced by conventional 
recycling, and the bottom panel corresponds to  the recycled pulsars produced . 

from coalescing binaries. See section 3.4.1 for more details. 



progenitor birth rate of one in 150 years). The third column gives the number 

of pulsars with log B(G)  < 11.5. The rows which give the number of rec\.-cled 

pulsars are Row-D (which gives the number of first-born pulsars from binaries 

which get disrupted during the second supernova explosion), and Row-F (n-hich 

gives the number of pulsars from coalescing binaries). However, one must keep in 

mind that only a fraction of the number of pulsars given in Row-F are recycled 

(as mentioned in the footnote of the table). This gives us the fraction of recycled 

pulsars produced in the simulation to be about 7.7% of the total number of pulsars 

produced. If one looks a t  the number of recycled pulsars with fields greater than 

log B = 11.5, the fraction of recycled pulsars is only 1.9%. 

Now, let us try to  estimate the birth rate of pulsars with log B < 11.5. The 

average characteristic age of these pulsars in the simulation turns out to be about - 300 Myr. As given in the third column of table 3.1 the number of pulsars with 

log B < 11.5 is 35403 (one has to  multiply this number by 3 to get the number 

of pulsars corresponding t o  the progenitor birth rate of one in 50 years). IVith 

the knowledge of the average characteristic age and the total number of pulsars 

one can try to  estimate the approximate birth rate, and this turns out to  be 

about (1/3000)yr-1. This must be compared with the birth rate of these pulsars 

estimated in Chapter 2 - (1/5000)yr-'. Keeping in mind the assumption we 

made about the spiral-in, this discrepancy is not significant. 

The average characteristic age of pulsars with log B > 11.5 is about 50 Slyr. 

Since the number of pulsars with log B > 11.5 is much more than the number of 

pulsars with log B less than 11.5, we may approximate the average cliaracteristic 

age of the whole population to be about 50 l lyr .  IVith this knowledge! the birth 

rate of the simulated pulsar population in the whole range of log B come to about 

1/72yr-'. which niatclics with the value derived in Chapter 2. one in i 5 f  15 years. 



As mentioned above the fraction of recycled pulsars in the total simulated 

population is about 7.7%. NO\IT, let us try to estimate the fractional birth rate 

of these recycled pulsars. The nurliber of recycled pulsars produced by the usual 

scenario (first-born pulsars from binaries disrupted during the second supernova 

explosion) is 3140, and the number of recycled pulsars from coalescing binaries 

is 14566 (see the footnote of table 3.1). Out of this 14566, 3651 pulsars have 

log B > 11.5. With the knowledge of the average characteristic age of pulsars 

with log B greater and less than 11.5, the birth rate of these recycled pulsars is 

estimated to  be about 3.7% of the total birth rate of pulsars. 

From an analysis of the pulsar current we earlier estimated the upper limit to 

the fraction of pulsars processed in binary systems to be about 10 - 15%. The 

results mentioned above seem to  suggest that  the fraction of recycled pulsars is 

only about - 8%. Even among the pulsars with logB < 11.5 (total of 35403), 

only 11340 were recycled, which is about 35% of the number of pulsars with 

logB < 11.5. 

When the kick velocity distribution was assumed to be that of Lyne & Lorimer 

(1993), then the total number of recycled pulsars came down to 12501, which 

is only 5.3% of the total population. The implication of these results will be 

discussed in section 3.5. 

3.4.2 Double neutron star binaries 

Apart from computing the fraction of pulsars processed in binary systems, this 

simulation was used to  compute the formation rate and the number of active NS- 

KS binaries (where at  least one neutron star is alive as pulsar) in the Galasy, and 

to compute the merger (due to gravitational radiation) rate of SS-SS binaries. 

This section summarises these results. , 



Active double neutron star binaries 

V7ith the HPP velocity distribution the number of active (atleast one of the 

neutron stars is alive as pulsar) double neutron star binaries produced in the 

simulation (corresponding to the progenitor birth rate of one in 50 years) is 6567. 

Out of this, the first-born neutron star was active in 4545 binaries, and the second- 

born neutron star was active in 5115 binaries. Both the neutron stars were active 

in 2793 binaries. When the velocity distribution was changed to Lyne & Lorimer 

distribution, the total number of double neutron star binaries came down to about 

2300. These numbers are much less than the numbers derived by Narayan et al. 

(1991). The possible reasons for this discrepancy will be discussed in section 3.5. 

In section 3.5 we will also try to  compare the distribution of magnetic fields and 

orbital periods with the known sample. 

Formation and Merger Rate of double neutron star binaries 

Finding out the merger rate of double neutron star binaries is much more difficult 

than finding out the number of active double neutron star binaries, for one is not 

sure whether the population is in steady state or not! Therefore, for this part of 

the simulation it was assumed that  the maximum age of the objects is the age 

of the Galaxy, instead of the previously assumed 200 Myr. Moreover, for the 

purpose of estimating the merger rate whether or not the neutron stars are active 

is irrelevant. Following the same procedure as mentioned in section 3.3 the orbital 

period of all double neutron star binaries produced in the simulation were stored, 

along with the information of their age (age was chosen randomly from zero to 

13 Byr, with uniform probability). Then the change in the orbital period due to 

the emission of gravitational radiation was calculated for each binary. Figure 3.4 

gives the distribution of orbital periods of double neutron star binaries. The first 
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Figure 3.4: The  distribution of orbital periods of double neutron star binaries 
produced in the  simulation. The top panel shows the distribution of their orbital 
periods a t  their birth, and the bottom panel shows the distribution after evolving 
the system for roughly the age of the Galaxy (-v 13Byr.). As one can see, the 
shorter orbital period binaries merge due t o  the emition of gravitational radiation. 



panel gives the distribution of orbital periods a t  birth, and the secorld panel gives 

tlie distribution after taking into account of the change in the orbital period due 

to the gravitational radiation. The eccentricity of the binaries was assumed to 

be zero while calculating the change in the orbital period due to the emission of 

gravitational radiation. 

With the kick velocity distribution given by equation 3.9, the formation rate 

of double neutron star binaries turns out to be about 10-"er year, i.e., , 100 

binaries per million years. This should be compared with the formation rate of 

10-4.5/yr deduced by Narayan et al. (1991), and (2 - 4) x 1 0 - ~ / ~ r  by van den 

Heuvel (1 992). 

The merger rate of these binaries was found to be about 4.4 x 1 0 - ~ / ~ r  (as- 

suming circular orbits). This should be compared with 10-6zo/yr by Narayan 

et al. (1991), and (4 - 8) x 10-5/yr by van den Heuvel (1992). A conservative 

estimate by Phinney (1991) gives a value of about a few times 1 0 - ~ / ~ r .  Here, z, 

is the scale height of these objects in the Galaxy. 

When the kick velocity distribution was assumed to be Lyne & Lorimer dis- 

tribution, the formation rate reduced to 3.3 x 10-~/yr, and the merger rate came 

down to  2 x 10-5/yr. 

Effect of changing parameters 

Since some of the assumptions in the simulation are quite uncertain, it is impor- 

tant to see how sensitive the formation and merger rate for these assumptions. 

\.Ye assumed tn70 different models for the Initial hlass-Ratio Function (IXIRF) 

and the mass-loss fraction. For the IhIRF, the first model is given by equation 

3.1, and the second model is a uniform distribution, from q = 0.1 to q = 1. For 

the mass-loss fraction, the first is the one described in section 3.2. and the second 



is a completely conservative evolution. The most favoured models are the first 

models. 

When the IMRF was changed to the second model the formation rate increased 

by about 40%, where as the merger rate went up by about 25%. 

When the mass-loss model was changed to the second model, both the forma- 

tion rate and the merger rate increased by about a factor of four. 

Discussion 

The variation in the K-S probability with different initial seed for generating 

random numbers is seen to  be about a percent. 

The properties that we have chosen to  vary are the distribution of initial 

rotation period and the magnetic field of the pulsars. The objects were not 

evolved in the Galactic potential to  get their spatial distribution in the Galaxy. 

The magnetic field decay time scale of the crust of the pulsar is assumed to 

be 100 Myr. Though in principle this could have been one of our free parameters, 

since many of the earlier works concluded that the field decay time scale of pulsars 

is much longer (see Bhattacharya et al. 1992), we decided to assume a long decay 

time scale. The decay time scale of the core is assumed to be infinity, since i t  is 

believed to be superconducting. 

Helium stars, during the later stages of core helium burning and during helium 

shell burning, undergo a considerable radius expansion (Habets 1985, 1986). In 

tight binaries this may lead to  a second spiral-in, in which a good fraction of 

the helium-rich envelope of the helium star is lost. However, this effect is not 

considered for this simulation. If one include this effect, it might lead to some 

increase in the merger rate of KS-NS systems. 

From the statistical analysis described in Chapter 2 we derived an upper limit 



to the fraction of pulsars injected into the main population. This fraction was 

about 10 - 15%. \Ye hypothesised that the injected pulsars may be the recycled 

pulsars from massive and intermediate mass range binaries in the Galaxy. If one 

takes this as the actual fraction of injected pulsars, then this must be compared 

with the recycled pulsar fraction in the simulation. As mentioned in section 3.4.1 

with the assumption of HPP velocity distribution we find that only about 8% 

can be identified with recycled pulsars. With Lyne & Lorimer velocity distribu- 

tion this number is about 5.3%. The reason for this discrepancy is the following. 

A very good fraction of binaries get disrupted during the first explosion itself. 

Also, quite a few binaries (with extreme mass-ratios) coalesce during the primary 

star Roche-lobe overflow. There are two ways of resolving this problem: one is 

to say that only part of the injected pulsars are injected from binaries, and the 

others are born with long initial periods; Alternatively, the kick velocity distri- 

butions assumed in this simulation are biased against low velocities. This could 

be due to  some observational selection effects (which biases against observing low 

velocity pulsars) which one may not have modelled well. After this work was 

completed we became aware of an independent study by Portegies Zwart & Ver- 

bunt (1996). Although their assumptions differ from ours in detail, their overall 

conclusions about the fraction of pulsars recycled in binaries is very similar to  

what is described here. 

The number of active double neutron star binaries in the Galaxy is found to be 

about a few thousands (see section 3.4.2). This is much smaller than the number 

derived by Narayan et al. (1991). According to  Narayan et al. this number is 

about 35000z,, where z, is the scale height of these objects in kpc. In their 

opinion z, is of the order of a few kpc. A similar number has been suggested 

for binary systems like PSR 1913+16 by van den Heul-el (1992). The reason for 



the discrepancy is not clear. However, the analysis of Narayan et 01. is based 

on only three pulsars (PSR 1913+16, 1534+12, 2303+46), and the scale factor 

of 1534+12 is much larger than the scale factors of the other two pulsars. Thus 

their result is dominated by one pulsar. 

Table 3.2: Parameters of the three known disc double neutron star binaries. 

pulsar  

B1913+16 
B1534+12 
B2303f46 

The distribution of orbital periods of the active double neutron star binaries 

is not different from the distribution a t  birth (see the first panel of figure 3.4). 

This is expected because the average time taken by these binaries to merge due to  

the emission of gravitational radiation is quite longer than their average life time 

as pulsars. As one can see, the distribution of orbital periods peaks at  a period 

of about log PWb - -0.5 (= 0.3 days). The orbital periods of the known double 

neutron star binaries are listed in table 3.2. Though one can not do a satisfactory 

job in comparing the simulated distribution with the observed distribution (since 

we have only three known samples), it can be seen that the orbital periods of the 

known samples are not far from the peak of the distribution. 

The distribution of magnetic fields of pulsars in the double neutron star bi- 

naries is given in figure 3.5. As one can see, the fields of these pulsars have not 

decayed significantly. This is due to the fact that the left-over main sequence life 

time of the massive secondary star after the primary overflonr is not long enough 

to slow down the neutron star to long periods (see section 3.2.4). If it is true 

that the magnetic fields of the first-born pulsars in these massive binaries are not 
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Figure 3.5: The distribution of magnetic fields of pulsars in the double neutron 
star binaries. The top panel corresponds t o  the distribution of magnetic fields of 
the first-born pulsars, and the bottom panel corresponds to that of the second- 
born pulsars. 



significantly lower than the second-born pulsars, in general, it may be difficult 

for one to say whether a pulsar is recycled or not (B1913+16 and B1534+12 may 

be exceptions). 

While calculating the merger rate we have assumed that the eccentricity of 

the double neutron star binaries is zero. However, the the three Galactic double 

neutron star binaries seem to have eccentric orbits. If one assumes that all NS-KS 

binaries have an eccentricity like that of PSR 1913+16, the merger rate increases 

by a factor of about 1.5 to 2. 

If one takes the merger rate to be about 2 x 1Oe5Iyr for our Galaxy, one can 

try to  estimate the expected rate of mergers from which some advanced detectors 

like LIGO can hope t o  detect gravitational radiation. This would assume that the 

merger rate for our Galaxy is roughly the same as that of the external Galaxies. If 

one takes the galaxy density t o  be M p ~ - 3  where h is the Hubble constant 

in terms of 100 km sec-' Mpc-' (Kirshner et al. 1983; Phinney 1991), then the 

NS-NS merger rate out to  a distance of - 200Mpclh turns out to be about 6 

eventslyear. The number calculated by Narayan etal. (1991) is about one per 

year. 

Summary 

The main results from this chapter are the following. 

If the asymmetric kick velocity distribution is assumed to be the distribution 

given by Hansen & Phinney (1996), or Lyne & Lorimer (1993), the fraction 

of recycled pulsars may be only about 5 - 8%. 

The number of active (where a t  least one of the neutron stars is alive as 

pulsar) double neutron star binaries in the Galaxy is about a few thou- 



sands, and this number is much less than the number given by the earlier 

works such as Narayan et al. (1991). Their formation rate in the Galaxy is 

estimated to be about yr-l. 

The merger rate of double neutron star binaries (due to  the emission of 

gravitational radiation) in the Galaxy is about 2 - 4 x yr-'. Assuming 

a galaxy density in the local universe, the extrapolated event rate upto a 

distance of about 200 Mpc may be about a few events per year. 


