
Chapter 2 

microphysics of neutron stars 

2.1 equation of state of dense matter 

The conditions in the interior of Neutron Stars are more extreme than any encountered 

terrestrially. The gravitational pressure is supported mainly by the pressure of the 

repulsive interaction of the nucleons. To a first approximation a neutron star is like a 

giant nucleus made of nucleons (mostly neutrons) with an average baryon density 

close to the nuclear density. The star also has a solid crust roughly one kilometer thick, 

compositionally similar to terrestrial crystalline solids with highly neutron-rich nuclei. 

The core beneath the crust is essentially a sea of neutrons with a mere ten percent 

sprinkling of protons and an equal number of electrons to maintain charge neutrality. 

Besides having an average density of about - 1015 g cm-3 a neutron star also has a huge 

neutron excess. When a neutron star forms in a supernova explosion the temperature 

attained is higher than the characteristic temperatures of all the equilibrating chemical 

reactions. Consequently, all of the neutron star material is P-equilibrated where most 

of the protons have been converted to neutrons due to enhanced inverse P-decay in 

a dense environment. As the electron Fermi sea is filled up the reverse process, i.e., 

the decay of a neutron to a proton, an electron and an anti-neutrino, is progressively 

blocked resulting in the neutron excess. 

Except near the surface the neutron star behaves like an effective zero-temperature 

system, the actual temperature (- 106K or less in the crust and 5 108K in the core 

after about lo4 years) being much smaller than the characteristic temperatures (the 

Fermi temperature of the electrons or the neutrons or the energy of the nucleon-nucleon 

interaction). Therefore almost whole of the star can be described as a degenerate, free 

Fermi system (electrons being the dominant component near the surface and neutrons 

in the interior). We shall not discuss here the superfluid states of neutrons or protons 
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believed to exist in the core. Density-wise the neutron star has three characteristically 

different regions. The thin outer crust with densities ranging from lo6 g ~ m - ~  at the 

surface to 4.0 x 10'' g cm-3 (neutron drip density) at which free neutrons start dripping 

out of the nuclei. Next is the inner crust with densities in-between the neutron-drip 

density and the nuclear density (2.8 x 1014 g ~ m - ~ ) .  Beyond the nuclear density the 

nuclei dissolve to produce a soup of nucleons. 

2.1.1 outer crust : 7.86 g cmV3 < p < 4.0 x 1011 g cm-3 

This is the best understood density regime of all. The pressure is primarily due to that 

of the degenerate electrons, charge neutrality being maintained by an ionic crystal. For 

pz lo6 g cm-3 the electrons become relativistic. As density increases beyond this value 

the electron Fermi energy approaches the MeV range where it becomes energetically 

favourable for the protons to undergo inverse P-decay and convert themselves to neu- 

trons giving rise to the neutron-rich nuclei in the crust. The equilibrium nuclide for a 

given density is obtained by minimizing the free energy of the system with respect to 

a particular combination of (2, A) keeping the baryon number density constant. The 

first such calculation was done by Baym, Pethick & Sutherland (1971), reproduced here 

in table [2.1], based on Bethe-Weizsacker semi-empirical mass formula with parame- 

ters obtained from fits to laboratory nuclei. Recently, Haensel, Zdunik & Dobaczewski 

(1989) have redone these calculations using more refined methods, though their results 

do not differ very much from the earlier ones. Among the factors important in decid- 

ing the equilibrium nuclide at a given density are the neutron and proton (dominant 

just below the neutron drip) shell effects and the strength of the spin-orbit interaction 

which depends on the three and higher body nucleon-nucleon interactions (defining the 

energy of the individual nuclei). 

The pressure of a free, Fermi degenerate electron gas in the zero temperature phase is 

given by : 

where x (e) is the relativistic parameter and A, (&) is the electron Compton 

wavelength. But the mass density is given by the rest-mass of the ions, 
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where be is the mean molecular weight, mu is the atomic mass unit and n, (A) is 

the electron number density. To obtain the correct equation of state, several corrections 

have to be incorporated in the above expression for pressure. Firstly, the electrostatic 

correction arises because the positively charged ions are not uniformly distributed, but 

arranged in a crystal lattice with lattice sites having a charge Z each. This decreases the 

energy and the pressure of the ambient electrons as the distance between the repelling 

electrons is on an average larger than the mean distance between nuclei and electrons. 

Therefore, the repulsion is weaker than attraction. In a non-degenerate gas, the ratio 

between this Coulomb correction to the thermal energy is 

and in a degenerate gas when Coulomb energy is comparable to the Fermi energy we 

have. 

h2 where a0 = ---z is the Bohr radius. When this correction is taken into considera- 
m e  e 

tion it is found that the pressure is modified as P = P, - Pcoulomb, with P = 0 for 

p = 7.86 gcm-3. Therefore, this is the minimum equilibrium density obtained at the 

very surface of the neutron star. At higher densities the most important correction is 

due to the inverse @-decay . The condition for the inverse @-decay (e- + p  + n + v) 

is that the kinetic energy of the electrons be larger than 1.24 MeV, the mass difference 

between a neutron and a proton. The @-decay of a neutron (n + e- + p  + v) is blocked 

when the density is so large that all the electron levels in the Fermi sea are filled up to 

the energy of the emitted electron. 

The pressure is obtained by the thermodynamic relation P = n i w ,  where r is the 

total free-energy density including the rest-mass of the baryons and n g  is the baryon 

number density. When one species of nuclide changes to another as nB changes there is 

a phase transition with an accompanying discontinuity in nB. Since there can be no dis- 

continuity in the pressure and the temperature inside the star to obtain the equilibrium 

composition and the equation of state Gibbs' free energy should be minimized. In this 

density range usually the equation of state obtained by Baym, Pethick & Sutherland 

(1971), incorporating the results of Feynman, Metropolis & Teller (1949) in the range 

7.9 g ~ m - ~  < p < lo4 gcmV3, is used. In table [2.2] the equation of state (pressure vs. 

mass density) as calculated by them is shown. 
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TABLE 2.1 

mass density 

p ( g c ~ n - ~ )  

7.8630 
7.9030 
8.15EO 
1.16301 
1.64301 
4.51301 
2.12302 
1.150E03 
1.044304 
2.622304 
6.587304 
1.654305 
4.156305 
1.044306 
2.622306 
6.588306 
8.293306 
1.655307 
3.302307 
6.589307 
1.315308 
2.624308 
3.304308 
5.237308 
8.301308 
1.045309 
1.316309 
1.657309 
2.626309 
4.164309 
6.601309 
8.312309 
1.046310 
1,318310 
1.659310 
2.090310 
2.631310 
3.313310 
4.172310 
5.254310 

DATA FROM BAYM, 

baryon number density 

nb ( ~ m - ~ )  

4.73324 
4.76324 
4.91324 
6.99324 
9.90324 
2.72325 
1.27326 
6.93326 
6.295327 
1.581328 
3.972328 
9.976328 
2.506329 
6.294329 
1.581330 
3.972330 
5.000330 
9.976330 
1.990331 
3.972331 
7.924331 
1.581332 
1.990332 
3.155332 
5.000332 
6.294332 
7.924332 
9.976332 
1.581333 
2.506333 
3.972333 
5.000333 
6.294333 
7.924333 
9.976333 
1.256334 
1.581334 
1.990334 
2.506334 
3.155334 

PETHICK AND SUTHERLAND 

mass number 
of equilibrium nuclide 

Z 

26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 
28 
28 
28 
28 
28 
28 
28 
28 
28 
28 
34 
34 
34 
34 
34 
32 
32 
32 
32 
32 
30 
30 
30 
28 

(1971) 

atomic number 
of equilibrium nuclide 

A 

56 
56 
56 
56 
56 
56 
56 
56 
56 
56 
56 
56 
56 
56 
56 
56 
62 
62 
62 
62 
62 
62 
64 
64 
64 
64 
84 
84 
84 
84 
84 
82 
82 
82 
82 
82 
80 
80 
80 
78 
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TABLE 2.1 (continued) 

DATA FROM BAYM, PETHICK AND SUTHERLAND (1971) 

mass density baryon number density mass number 
of equilibrium nuclide 

atomic number 
of equilibrium nuclide 



2 0 Chapter 2. microphysics of neutron stars 

TABLE - 2.2 

2.1.2 inner crust : 4.0 x 1011 gcm-3 < p < 2.8 x 1014 gcrnv3 

EQUATION OF STATE 
FROM BAYM, PETHICK AND SUTHERLAND (1971) 

At the lower edge of this regime, the neutron energy levels within the nuclei merge into 

a continuum and they drip out of the nuclei to comprise a free neutron gas co-existing 

with the crystal lattice of the neutron-rich nuclei. The problem of calculating an accu- 

rate equation of state here is that the correct nucleon-nucleon potential is not known 

to any degree of certainty, and that the quantum many-body techniques are not quite 

adequate to solve the Schrodinger equation given the potential. In this regime, with the 

proton-to-neutron ratio ranging from 0.1 to 0.3, extrapolations based on semi-empirical 

mass density 

p (g ~ r n - ~ )  

7.8630 
7.9030 
8.1530 
1.16301 
1.64301 
4.51301 
2.12302 
1.150303 
1.044304 
2.622304 
6.587304 
1.654305 
4.156305 
1.044306 
2.622306 
6.588306 
8.293306 
1.655307 
3.302307 
6.589307 
1.315308 
2.624308 
3.304308 
5.237308 
4.299311 
1.045309 

pressure 

P (dyne ~ m - ~ )  

1.01309 
1.01310 
1.01311 
1.21312 
1.40313 
1.70314 
5.82315 
1.90317 
9.744318 
4.968319 
2.431320 
1.151321 
5.266321 
2.318322 
9.755322 
3.911323 
5.259323 
1.435324 
3.833324 
1.006325 
2.604325 
6.676325 
8.738325 
1.629326 
7.805329 
4.129326 

mass density 

p (gcm-3) 

1.316309 
1.657309 
2.626309 
4.164309 
6.601309 
1.046310 
8.312309 
1.318310 
1.659310 
2.090310 
2.631310 
3.313310 
4.172310 
5.254310 
6.617310 
8.332310 
1.049311 
1.322311 
1.664311 
1.844311 
2.096311 
2.640311 
3.325311 
4.188311 
8.301308 

pressure 

P (dyne ~ r n - ~ )  

5.036326 
6.860326 
1.272327 
2.356327 
4.362327 
7.702327 
.5.662327 
1.048328 
1.425328 
1.938328 
2.503328 
3.404328 
4.628328 
5.949328 
8.089328 
1.100329 
1.495329 
2.033329 
2.597329 
2.892329 
3.290329 
4.473329 
5.816329 
7.538329 
3.029326 
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DOMINANT 2-BODY INTERACTION BY PION EXCHANGE 

Figure 2.1: Feynman diagrams showing two-nucleon interaction by exchange of pions. 
The single lines, the wavy lines and the thick lines stand for the world lines of the 
nucleons, the pions and the virtual A particles respectively. 

mass formula is used. The work done by Baym, Bethe & Pethick (1971) took care of 

the fact that the neutrons inside and outside the nuclei behave in a similar fashion. 

The nuclear surface energy is modified by the free neutron gas outside. By using a 

compressible liquid drop model of nuclei they minimized the total energy, for a fixed 

value of the baryon density n B ,  for an equilibrium configuration. Free neutrons supply 

an increasingly larger fraction of the pressure as the density increases. 

But these earlier works did not take the nuclear shell effects into ac.count, as was later 

done by Negele & Vautherin (1973). The main feature of this work has been the 

modeling of the nucleon-nucleon interaction by taking into consideration the two-body 

interactions only. The dominant two-body interaction, by exchange of pions, come from 

processes like the ones in figure [2.1]. The equation of state in the above mentioned 

density range is given by the following interpolation formula : 

where m, is the mass of the neutron and x = l n ( n b  x n b  being the baryon 

number density. The constants cis are given in table [2.3]. 

Another important fact is that at these densities the solid state and the nuclear en- 

ergies are comparable. Hence they require to be treated on equal footing. This leads 

to the possibility of existence of non-spherical nuclei. It has been shown by Lorenz, 

Ravenhall & Pethick (1993) that at sub-nuclear densities nuclei with rod or disc shape 

are likely to exist. If they indeed do, that will introduce a modification in the equation 
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of state in these density ranges and may in turn affect the structure and other physi- 

cal properties (like the transport coefficients or the thermal evolution) of a neutron star. 

TABLE - 2.3 

2.1.3 the core : p > 2.8 x 1014 g ~ r n - ~  

COEFFICIENTS FOR CALCULATION OF 
THE EQUATION OF STATE 

FROM NEGELE AND VAUTHERIN (1973) 

The theories at these densities are faced with a plethora of problems. There is a lack 

of understanding of the correct form for the nucleon-nucleon potential added to the 

fact that there is no laboratory data available to test the theory against. As the den- 

sity increases the effects of relativity becomes important. Also at higher densities it 

is essential to incorporate the non-nucleonic degrees of freedom as mesons and higher 

mass baryons make appearance. At extreme high densities there may probably occur 

a phase transition to the quark phase and then quark and gluonic degrees of freedom 

should also have to be taken into account. And even at nuclear saturation densities 

the predictions regarding the possible phase transition to a superfluid/superconducting 

phase are not without uncertainties. One of the major problems in trying to understand 

the nuclear phenomena inside a neutron star is due to the huge neutron excess. The 

parameter S = ( N  - Z ) / ( N  + Z ) ,  used to denote the neutron excess is about 114 in 

terrestrial nuclei. In neutron stars, starting from that value at the surface S becomes 

as large as unity deep in the interior of the star. Any extrapolation, that requires going 

up by a factor of four, is bound to be unreliable. 

i 

0 
1 
2 
3 
4 
5 
6 
7 

Nevertheless, we have reasonable estimates for the nucleon-nucleon interaction based 

ci (ground state) 

-4.0 
2.8822899 x 10-I 
5.9150523 x lo-' 
9.0185940 x 

-1.1025614 x 10-I 
2.9377479 x 

-3.2618465 x 
1.3543555 x 
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DOMINANT 3-BODY INTERACTION BY PION EXCHANGE 

Figure 2.2: Feynman diagrams showing three-nucleon interaction by exchange of pions. 
The single lines, the wavy lines and the thick lines stand for the world lines of the 
nucleons, the pions and the virtual A particles respectively. 

on the scattering data from the laboratory experiments. But these provide information 

only about the long-range behaviour of the potential. There is no handle on the short- 

range behaviour, which is likely to dominate at the neutron star densities. From the 

data on the binding energy of light nuclei the microscopic Hamiltonian is modelled. But 

aspects of interaction that are relatively unimportant for such light nuclei (deuterium, 

He3 etc.) may play significant roles in a neutron star. Of particular importance are 

the three and higher body interactions. At long range, the most important three-body 

interaction is that due to the exchange of pions, where one of the nucleons becomes 

converted to a A and then de-excites back by exchanging another pion with a third 

nucleon (figure [2.2a]). At short-range other processes like those in figures [2.2b] and 

[2.2c] dominate. 

To summarize, we mention the three equations of state which incorporate some of the 

recent developments, following Wiringa, Fiks & Fabrocini (1988) (though more recent 

calculations for the equation of state in this density range has been performed, see 

for example Prakash et al. 1992). In this paper, they compare the equations of state 

obtained by using different types of two-body and three-body potentials as against the 

equation of state for a pure, free neutron gas. The two-body potentials used by them 

are AV14 (Argonne 14) and UV14 (Urbana 14) both of which fit the scattering data 

well but differ in their short-range behaviour. These are modified with the three-body 

interaction UVII which is adjusted to fit the binding energies of He3 and He4. The 

other three-body interaction TNI is less complete in taking into account all aspects of 

the three-body interaction. It is observed that, at p - 3 - 4p,, where p, is the satura- 

tion nuclear density, the total energy per particle differs by an amount small compared 
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to the mass of the neutrons from that obtained by using a free-neutron gas. It is also 

seen that the energy per particle depends on the choice of the two-body as well as the 

three-body interaction. Lastly, though the energy does not change much, the pressure, 

given by the slope of the energy curve ( P ( p )  .-. y), is very different for different 

equations of state. In table [2.4], is the data from Wiringa, Fiks & Fabrocini (1988) for 

the three equations of state. 

TABLE - 2.4 

A combination of the Baym, Pethick & Sutherland (BPS), Negele & Vautherin (NV) 

and Wiringa, Fiks & Fabrocini (WFF) equations of state in the respective density 

ranges seem to be the most acceptable considering all the uncertainties mentioned 

DATA FROM WIRINGA, FIKS AND FABROCINI (1971) 

mass 
density 

P 

f m-3 

0.07 
0.08 
0.10 
0.125 
0.15 
0.175 
0.20 
0.25 
0.30 
0.35 
0.40 
0.50 
0.60 
0.70 
0.80 
1.00 
1.25 
1.50 

UV14+TNI 

proton 
fraction 

X(P) 

0.026 
0.029 
0.033 
0.037 
0.042 
0.047 
0.051 
0.057 

' 0.059 
0.060 
0.060 
0.051 
0.039 
0.023 
0.005 
0.0009 
0.00 
0.00 

UV14+UVII 

energy 
density 

E(P, x) 

Mev/nucleon 

5.95 
6.06 
6.40 
7.17 
8.27 
9.70 

11.55 
16.29 
22.19 
28.94 
36.60 
56.00 
79.20 

106.10 
135.50 

200.9 
294.00 
393.00 

AV14 + UVII 

proton 
fraction 

X(P) 

0.019 
0.021 
0.025 
0.030 
0.035 
0.042 
0.052 
0.069 
0.079 
0.087 
0.097 
0.116 
0.132 
0.155 
0.172 
0.177 
0.122 
0.026 

proton 
fraction 

X(P) 

0.017 
0.019 
0.023 
0.027 
0.031 
0.036 
0.044 
0.051 
0.051 
0.052 
0.055 
0.060 
0.077 
0.099 
0.101 
0.094 
0.066 
0.014 

energy 
density 

E(P, x) 

Mev/nucleon 

8.13 
8.66 
9.79 
11.06 
12.59 
14.18 
15.92 
20.25 
25.78 
32.60 
40.72 
61.95 
90.20 
126.20 
170.50 
291.10 
501.00 
753.00 

energy 
density 

E(P? x) 

Mev/nucleon 

7.35 
7.94 
8.97 
10.18 
11.43 
12.74 
14.12 
16.96 
20.48 
24.98 
30.44 
45.15 
66.40 
93.60 
132.10 
233.00 
410.00 
635.00 
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above. In our subsequent calculation of the structure of a neutron star we shall use 

this combination as our starting point. Amongst the three equations of state given 

by Wiringa et al. we have used only the second one mentioned as UV14+UVII in the 

discussion above. 

2.2 mass and density profile of a neutron star 

In this thesis we investigate the temporal behaviour of the magnetic fields assuming a 

crustal current. This requires an accurate knowledge of the various transport coeffi- 

cients (most importantly thermal and electrical conductivity) in the crust. Therefore, 

we need an accurate density profile, particularly in the low density crustal regions, to 

obtain the radial behaviour of the transport coefficients. The mass and density profiles 

for a non-rotating, self-gravitating object are obtained by integrating the hydrostatic 

pressure balance equation 
dP(r )  - GM(r)p(r) -- - 

dr r 2  
7 (2.8) 

along with the equation of mass distribution, 

where P ( r ) ,  M(r)andp(r) are the pressure, mass and density at a given radius r and G is 

the gravitational constant. Equation[2.8] is modified, when effects of general relativity 

is incorporated, to : 

where c is the speed of light. This is known as the TOV equation after Tolman, Op- 

penheimer and Volkoff (Oppenheimer & Volkoff, 1939). A measure of the importance 

of general relativity is given by the quantity c - for a self-gravitating body of 

rest mass M and total radius R. For c << 1, the effect of relativity can be neglected. 

Putting in the typical numbers for a neutron star we obtain c to be close to 1. There- 

fore, to obtain the mass-density profile of a neutron star it is required to solve the 

TOV equation instead of the Newtonian hydrostatic equation. We solve equations [2.9] 

and [2.10] numerically. The equation of state we use for this structure calculation is of 

moderate stiffness and is given by Baym, Pethick & Sutherland (1971) in the density 

range lo6 cm-3 < p < 4.0 x lo1 g ~ m - ~ ,  by Negele & Vautherin (1973) in the range 

4.0 x 10'' gcm-3 < p < 2.8 x 1014 g ~ m - ~ ,  and by Wiringa, Fiks & Fabrocini (1988) in 

the range 2.8 x 1014 cm-3 < p. In figures [2.3], [2.4], [2.5] - the pressure vs. density 
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Figure 2.3: Pressure vs. Density from Baym, Pethick & Sutherland (1971) 

as obtained in these three ranges have been plotted. 

Though the structure calculations have been performed by many people (see for ex- 

ample Wiringa, Fiks & Fabrocini 1988) an accurate density profile in the low density 

regime of the crust, has been lacking. Therefore, we undertook the task of obtaining 

the density profile for a typical neutron star, by integrating the TOV equation, using 

above-mentioned equations of state. It must be mentioned here that in a recent work 

Datta, Thampan & Bhattacharya (1995) have performed detailed calculations of the 

crustal density profile of neutron stars for a number of equations of state. One ought to 

note that the equations of state for different density regimes are not exactly matched 

at the boundaries. So we use a smoothing procedure ensuring the continuity of the 

pressure and the pressure gradient at each boundary. This smoothed composite equa- 

tion of state is plotted in figure [2.6]. 

We integrate the TOV equation starting from a particular central density and corre- 

sponding central pressure at zero radius. The other boundary condition at the centre 

is that of zero mass. The set of coupled second order ordinary differential equations are 

solved using a fourth order Runge-Kutta scheme of differencing. We have used the or- 

dinary differential equation solver programs by Press et. al (1992) for the Runge-Kutta 

driver with an adaptive step-size control. The adaptive step-size control is essential 
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Figure 2.4: Pressure vs. Density from Negele & Vautherin (1973). 

Figure 2.5: Pressure vs. Density from Wiringa, Fiks & Fabrocini (1988). 
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Figure 2.6: Pressure vs. Density : Smoothed out over the whole density range. 

in integrating the mass-density profile since both the functions show extremely steep 

behaviour near the surface, at the low density regime. In our computation the surface 

corresponds to a density of 7.86 g cm-3 as that is the minimum density obtained in the 

neutron star. The density and the mass profiles for a neutron star of total mass 1.4Mo 

are plotted in figures [2.7] and [2.8] respectively. 

For different central densities, the total mass and the radius of the star differ quite a lot. 

The variation of the total mass and the radius with central density have been plotted 

in figures [2.9] and [2.10]. And the mass-radius relation for a set of neutron stars state 

is plotted in figure [2.11]. This clearly shows the existence of a maximum mass, which 

could also be seen (albeit with some diffiiulty) in figure [2.9]. This maximum mass of 

about 2.2 Ma corresponds to a central density of - 2.5 x 1015 gcm-3 and a radius of 

10 km. 

We plot the variation of the mass of the overlying layers and density with the depth 

from the surface in figures [2.12] and [2.13]. It should be noted that the density changes 

sharply with depth whereas the mass remains almost constant close to the surface and 

then shows a sharp increase. This is due to the fact that the mass in the outer layers of 

the neutron star is very small. In figure [2.14] we have plotted the mass of the core and 

the mass of the crust as functions of the total mass. It is seen that with an increase in 
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Figure 2.7: Density vs. Radius for a 1.4 Mo neutron star. 

Figure 2.8: Mass vs. Radius for a 1.4 Ma neutron star. 
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Figure 2.9: Total Mass vs. Central Density 

Figure 2.10: Stellar Radius vs. Central Density 
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0.5 1 1.5 2 

M(pc) (solar units) 

Figure 2.11: Stellar Radius vs. Total Mass 

Figure 2.12: Mass (in solar units) of the overlying layers vs. Depth (from the surface) 
of the layer in a 1.4 Ma neutron star. 



32 Chapter 2. microphysics of neutron stars 

Figure 2.13: Density vs. Depth (from the surface) a 1.4 Ma neutron star. 

Figure 2.14: Variation of the core-mass and the crust-mass with the total mass of a 
neutron star. Curves (a) and (b) refer to the core and crust mass respectively. 

fi 
w 

RAMAN RESEARCH INSTITUTE 
BANGALORE-80 



2.2. mass and density profile of a neutron star 33 

Figure 2.15: Variation of the change in the core-mass with a change in the total mass 
of a neutron star. 

Figure 2.16: Variation of the change in the crust-mass with a change in the total mass 
of a neutron star. 
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the total mass the mass of the core increases almost by the same amount. Whereas, 

the change in the mass of the crust is minimal. Figures [2.15] and [2.16] in which we 

plot the change in crustal and core mass vs. a change in the total mass brings this fact 

out more dramatically. 

2.3 thermal evolution of neutron stars 

2.3.1 isolated neutron star 

Thermal evolution of a system is determined by the processes of energy loss and those of 

heat generation. In the case of a neutron star heat loss is mainly by emission of neutri- 

nos from the interior and by emission of photons from the surface of the star. There are 

various mechanisms for internal heat generation, for example, friction due to differen- 

tial rotation of crustal neutron superfluid, dissipative processes due tp the core proton 

superconductor, heat release by chemical change in the crust induced by spin-down of 

the star, ohmic dissipation of current loops (supporting the magnetic field) due to the 

finite conductivity in the crust or crust cracking etc (for details of neutron star ther- 

mal evolution see Lattimer et al. 1991, Pethick 1992, Page 1997 and references therein). 

The dominant mechanism of cooling in the early phases of thermal evolution is that of 

neutrino emission. Different regions of the star produce neutrinos by different mech- 

anisms, namely, by URCA process in the core and neutrino pair bremsstrahlung in 

the crust. The comparability of the two processes depends on the presence of exotic 

phases in the core and whether direct URCA process can proceed in the core after it 

has cooled down below 10llK. It also depends on the band-structure of the electrons 

in the crust of the star, which may suppress the neutrino pair bremsstrahlung consid- 

erably. In the core, if the matter is a normal n-p-e plasma and the proton fraction 

is not too high then neutrinos are emitted via modified URCA process. Through this 

process the star cools with a time-scale of T-8.  In presence of exotic phases like quark 

matter or Bose condensates of kaons or pions direct URCA process can proceed. With 

a T - ~  dependence on temperature this process results in rapid cooling. Since the state 

of the matter in the core of a neutron star is not known with any certainty, there is a 

lot of controversy about whether direct or modified URCA processes control neutron 

star thermal evolution. Moreover, there is uncertainty in the rate calculation for the 

modified URCA process due to medium effects etc and therefore a comparison with 

observation does not yet provide a definite answer. 
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All of the above discussion assumes the matter to be normal and the spectrum of el- 

ementary excitations smooth near the Fermi surfaces of the particles. In presence of 

superfluidity or superconductivity gaps would open up near the Fermi surfaces sup- 

pressing neutrino emission at temperatures less than the gap energy. Under these 

conditions the neutrino pair bremsstrahlung is the dominant cooling process. Recent 

work by Pethick & Thorsson (1994) has shown that this crust cooling process may get 

suppressed due to the creation of the band structure as electrons move in the periodic 

lattice potential, below a temperature of 10l°K. Recently, the effect of Cooper pair 

breaking and formation has also been incorporated in the thermal evolution calcula- 

tions (Schaab et al. 1997). 

In a recent work Iwamoto et al. (1995) have shown that a finite magnetic moment of 

neutrino would significantly modify the cooling history of a neutron star in the very 

early phases. This makes the crustal cooling compete with the core cdoling within the 

typical time scale that conduction takes to transport thermal energy from the core to 

the surface. 

It appears that the present data is compatible with both the slow and fast cooling pro- 

cesses (modified and direct URCA) as there is a lot of uncertainty in all the mechanisms 

involved in the thermal evolution of a neutron star. In figure [2.17] taken from Page 

(1997) different theoretical scenarios could be seen and how these theories compare 

with the observational values of surface temperatures measured for various pulsars. 

There are other factors that may be responsible for a discrepancy between the theory 

of the thermal evolution of the neutron stars and the observed values for the surface 

temperatures. For example the temperature is usually estimated assuming the neutron 

star to behave like a perfect black-body, but the pressure of an atmosphere and the 

effects of a strong magnetic field may significantly modify this result (Pavlov, Zavlin, 

Triimper & Neuhauser 1996, Shibanov & Yakovlev, 1996). 

2.3.2 thermal structure of an isolated neutron star 

Temperature fluctuations in the interior of the neutron star are smoothed out very fast 

due to its large thermal conductivity and effectively the whole of the star behaves like 

an isothermal system, except at the layers close to the surface (Gudmundsson, Pethick 

& Epstein 1982). Though the temperature of the entire region beyond a density of 

10" g cm-3 is practically the same, it drops by almost two orders of magnitude at the 
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Figure 2.17: Typical behavior of slow ('standard') and fast cooling scenarios. 
1.4 Maneutron stars with the Friedman & Pandharipande (1981) equation of state. 
The cases with N = 24, 25, and 26 correspond approximately to the effect of a kaon 
condensate, pion condensate, and the direct URCA process (with hyperons or nucle- 
ons), respectively. The various curves, within each scenario, show the effect of various 
assumptions about pairing : all models use the proton 'So Tc 'T', and the neutron 'So 
and 3 ~ 2  TC7s are as labeled. All models have non-magnetized iron envelopes. Neither 
Cooper pair breaking and formation neutrino emission nor heating are included. The 
main effect of pairing in the crust (neutron 'So) is to shorten the length of the early 
plateau. Core pairing suppresses the neutrino emission, which results in a higher T, 
during the neutrino cooling era (age from .- 100 to .- lo5 yr), and the specific heat, 
which results in faster cooling during the photon cooling era (age above .- lo5 yr). The 
reduction of the specific heat during the neutrino cooling era does not show up as much 
as during the photon cooling era due to the small slope of the curves at this phase. All 
points are really upper limits (in several cases based on a non-detection of the pulsar) 
but for the radio pulsars 0833-45 (Vela), 0656+14, 0630+178 (Geminga), 1055-52, 
and the neutron star 0002+6246, there is good evidence that the observed X-rays are 
from surface thermal emission. Uncertainty on the temperature estimate is illustrated 
in the case of PSR 0656+14 where two values are reported. (from Page, 1997) 
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outermost layers of the star. The work of Gudmundsson, Pethick & Epstein (1982, 

1983) on the envelopes of non-magnetic neutron stars showed that the temperature of 

the isothermal interior, Tb, depends only on the surface temperature and the surface 

gravity of the star : 

where T, is the surface temperature and g, is the surface gravity. These authors also 

present the variation of the temperature with density between the surface and the 

isothermal interior. To obtain temperature as a function of density in these outer 

regions of the crust we use the following fitting formula to their plots : 

where Pboundary is the density beyond which the temperature stays effectively constant. 

2.3.3 accreting neutron star 

The thermal history of an accreting neutron star is very different from that of an 

isolated one. The cooling of an isolated neutron star brings the surface temperature 

down to N 104r5 K in about lo7 yr (van Riper 1991a, b) with an attendant interior 

temperature of the nearly isothermal core of the order of lo7 K. Therefore when mass 

accretion starts this cold star is heated up due to the entropy inflow of the accreted 

matter. The temperature rise might be enough to start nuclear burning at the surface 

and one expects pycnonuclear shell burning of hydrogen and helium. Within a short 

time (N  lo5 yr) almost the entire crust is heated to a constant temperature of the order 

of 107.5 - 108.5 K (Miralda-Escud6, Haensel & Paczyriski 1990). This is ignoring an 

initial short phase in which both the rate of accretion and the temperature of the crust 

show time evolution. The rate of accretion stabilizes in a few thousand years (Savonije 

1978). The temperature that the crust will finally attain in the steady phase has been 

computed by F'ujimoto et al. (1984), Miralda-Escud6 et al. (1990) and Zdunik et al. 

(1992). However, these computations are restricted to limited range of mass accretion 

and also do not yield the same crustal temperature under similar conditions. The results 

obtained by Zdunik et al. (1992) for the crustal temperatures for a given accretion rate 

in the range 10-l5 Mo/yr< M < 2 x 10-lo Mo/yr could be fitted to the following 

formula: 

log T = 0.397 log M + 12.35. (2.13) 
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log dM/dt (solar mass per year) 

Figure 2.18: Variation of the constant isothermal temperature of the crust of a neutron 
star with accretion rate. 

But extrapolation of this fit to higher rates of accretion gives extremely high tempera- 

tures which would not be sustainable for any reasonable period due to rapid cooling by 

neutrinos at those temperatures. For the purpose of our calculations, we use equation 

[2.13] as long as the temperature of the crust is smaller than K. Beyond that 

we freeze the temperature at that upper limit. In figure [2.18] we have plotted the 

variation of the crustal temperature with accretion rate according to equation [2.13]. 

The thermal state of the core depends strongly on the neutrino emissivity whereas the 

crust remains largely indifferent to that. The core stays relatively cool if there is pion 

condensate inside which induces enhanced neutrino cooling, otherwise the core temper- 

ature may also be raised to a large extent by mass accretion. 

The above discussion does not take into account the fact that the composition of the 

accreted layers could be very different from that of the original cold catalysed compo- 

sition. In a recent work it has been shown that the presence of light elements in the 

accreted envelope enhances the emission processes in the photon cooling era and hence 

ultimately a faster cooling rate is achieved (Chabrier, Potekhin & Yakovlev 1997). 

Such effects show drastic difference in the surface temperature (see Page 1997 for a 

discussion) already within ten thousand years. If incorporated, this might change the 

evolution of the magnetic field considerably. 
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2.4 transport properties in the crust of neutron stars 

The investigations of the transport properties of ultra-dense matter arise out of the 

interest in the evolution of the thermal state and the magnetic field in white dwarfs 

and neutron star crusts. See Itoh (1994) and references therein for a good review on the 

transport properties of neutron star crust. It has already been mentioned in section 

[2.1] that the crust of a neutron star consists of a relativistic, Fermi-degenerate free 

electron gas plus a non-relativistic, non-degenerate liquid/crystal of ions. It is assumed 

that the material is completely pressure-ionized. The density at which this happens is 

given by the condition 

p 2 0 . 3 7 8 ~ 2 ~  g ~ m - ~ ,  (2.14) 

which turns out to be - lo4 g ~ m - ~  for ~e~~ ions. Therefore, the lower boundary for 

which the transport properties have been worked out is this particular density. Though, 

recently, Itoh, Hayashi & Kohyama (1993) have investigated the entire density range 

below this value. 

The thermal and electrical conduction is basically carried out by the electrons. The 

electrical conductivity is given by following simple Drude formula (Ashcroft & Mermin 

1976) 
z, 

where n, is the number density of electrons and m, is the effective mass of the electron 

in the crystal. T is the time-scale of the collision of electrons with the ions (in liquid 

phase) or phonons/impurities (in case of a crystalline solid). It must be mentioned here 

that although the importance of quantum corrections have been realized in the present 

context, not much progress has been made in that direction. 

In the crust of a neutron star both density and temperature vary with radius. Whereas 

the uppermost layers close to the,surface are likely to be in a liquid state, the inner 

crust is a crystalline solid. The condition for melting/crystallization of a classical one- 

component plasma is given by Lindeman criterion. According to this criterion (Slattery, 

Doolen & Dewitt, 1982) 

Coulomb Energy of the Crystal r = 
Thermal Energy of the Lattice Ions ' 
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Figure 2.19: Variation of melting temperature with density in the crust on a neutron 
star. 

equals 172 at the melting point. For a crystal composed of ionic species of charge Z 

and lattice spacing a, the Coulomb Energy per ion is and the thermal energy of 

an ion is approximately kgT  where T is the temperature of the crystal. Therefore, 

The inter atomic spacing a, in terms of density is, 

m and A being the proton mass and the mass number of the ion, respectively. Then 

the melting temperature is 

where P6 is the density in 1 0 ~ ~ m / c c .  In figure [2.19] the melting temperature has been 

plotted versus density in the crust of a 1.4 Ma neutron star. 

Densities for which the actual temperature is above the melting temperature, the ma- 

terial is in a liquid state. The transport properties in such a state is determined by the 

electron-ion collisions and by electron-phonon collisions in the solid phase. The three 

factors important factors in calculating electron-phonon collision time-scale are - the 
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dielectric screening of the phonon spectrum by the relativistic, Fermi-degenerate elec- 

trons, the Debye-Waller factor for the pure Coulomb, bcc crystal and the atomic form 

factor. The Debye-Waller factor changes the conductivity by a factor of two to four at 

the melting temperature. And when the electron de-Broglie wavelength becomes com- 

parable to the nuclear size the third correction becomes rather important. Unlike the 

terrestrial situation, in the crust of a neutron star the Umklapp process dominates. For 

lower temperatures, the dominant process is that of the collision of electrons with the 

impurity atoms. These collisions are similar to the electron-ion collision in the liquid 

phase, except that here the effective charge is the difference between the charge of the 

impurity atom and the charge of the dominant species. The temperature or density of 

the cross-over from phonon dominated to impurity dominated process depends on the 

impurity strength Q, given by, 

where n is the total ion density, ni is the density of impurity species i with charge Zi, 

and Z is the ionic charge in the pure lattice (Yakovlev & Urpin 1980). 
I 

For our work, we have taken the expression for electrical conductivity of the liquid and 

due to impurity concentration in the solid from Yakovlev & Urpin (1980). For the pure 

crystalline phase we have used the results of Itoh et al. (1984). The conductivity in 

the liquid is given by, 

where x is defined by the relation 

and ACoulomb is the Coulomb logarithm. In the solid, the conductivity has contributions 

from both the phonon and the impurity processes. Therefore, the conductivity is given 

by, 

where 
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Figure 2.20: Variation of the electrical conductivity with density in the crust of a cool 
neutron star. The solid, dashed and dash-dotted curves correspond to Q = 0.0,0.01,0.1. 
For all curves the surface temperature has been taken to be equal to 104.5 K. 

with, 

T8 = temperature in units of lo8 K 

p6 = density in units of lo6 g cm-3 

I = a function of density, 2, A given by Itoh et al. 1984. 

In the following diagrams we have plotted the electrical conductivity in the crust of a 

neutron star, as a function of density and emphasizing the dependence on various pa- 

rameters. In figure [2.20], the plot is for different values of the impurity concentration 

Q for a given surface temperature. Notice that in this case we assume a temperature 

variation with density as is expected in a cool, isolated neutron star (section 2.3). In 

figure [2.21], on the other hand, we have plotted the conductivity for different values 

of the temperature which is constant over the whole of the crust. In figure [2.22], we 

have shown the change in conductivity with different values of Q, assuming the same 

constant crustal temperature in each case. 

In figures [2.21] and [2.22] we have plotted the conductivity assuming the temperature 

to be constant over the entire crust. That is the case for a star with an accretion heated 
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Figure 2.21: Variation of the electrical conductivity with density in the crust of a 
neutron star. The solid, dashed and dash-dotted curves correspond to the crustal 
temperatures of 107s5, lo8, 108.5 K. In all the curves Q = 0. 

Figure 2.22: Variation of the electrical conductivity with density in the crust of a 
neutron star. The solid, dashed and dash-dotted curves correspond to Q = 0.0,0.01,0.1. 
For all curves T = lo8 K. 
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crust after the temperature has stabilized. For an isolated star with a very low surface 

temperature and a non-zero temperature gradient in the outermost layers (as described 

in section[2.3] above) the variation of conductivity with density looks somewhat differ- 

ent. In figure [2.20] we plot the conductivity profile for such a cool star. Note that the 

impurity strength Q becomes important in this case. 

It should be mentioned here that the above discussion does not refer to the fact that 

the transport properties in the crust of a neutron star must also take into account the 

presence of magnetic fields. As early as in 1980, Urpin & Yakovlev had looked into this 

problem. And recently, very refined results have been available in which conductivity 

calculations have been made with magnetic field (Potekhin 1997, Potekhin & Yakovlev 

1997). Also, all the above calculations have been made assuming a bcc lattice. Re- 

cently, Baiko & Yakovlev (1995) have also investigated the case of fcc lattice. But for 

our calculations we have not made use of these refined results. 
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