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Some new methods in kinematical theory 

C V RAMAN 

In the course of my recent experimental work 'on the vibrations of bowed 
strings,* it occurred to me that the ordinary Fourier analysis which has been 
used by previous investigators' is not a convenient or suitable method of 
,considering the kinematics of this class of vibrations. In fact, the nature of the 
case is such that the Fourier analysis obscures instead of elucidating the physical 
processes set up in the string by the action of the bow. I have therefore developed 
a new method of treatment which has the great advantage of enabling the subject 
to be considered entirely from first principles i.e., without any appeal to 
experiment except for confirming the fully-worked-out predictions of theory. I 
am using this method in a monograph on the 'Mechanics of Bowed Strings' 
which is under preparation and which I intend to contribute to one of the 
regular periodicals for physics. The brief account of this method which I propose 
to give here may perhaps be of some interest to mathematicians. 

The general solution of the equation of wave-propagation on an infinite string 
not subject to damping is 

It is well-known that this solution for the case of an infinite string can be used 
to represent the configuration at any instant of a vibrating string of finite length 
by arranging the form of the displacement waves in such manner that the motion 
is periodic and satisfies the terminal condition y = 0 at the two ends of the string. 

Similarly, the solution obtained by differentiating (1) with respect to time, viz 
j 

dy -= - af'(x-at)+ aF1(x + at) 
dt (2) 

can be applied to represent the velocity-diagram of a finite string at any instant 
during its vibration, if the periodicity of the motion and the terminal conditions 
of velocity are secured. It is obvious that solution (2), as it stands, represents 
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'Helmholtz, 'Sensations of Tone' English Translation by Ellis, Chapter V and Appendix VI. 
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A. Stephenson, "On the Maintenance of Periodic Motion by Solid Friction," Philosophical 
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the velocity-waves that travel on an infinite string without change of form in 
the positive and negative directions respectively. In the case of a finite string of - 
length 1, the reflexions that take place at the two ends have to be taken into 
account, and we may write 

dy 
- = 8(x - at) + &(x + at). 
dt 

The two functions 8 (x - at) and 4 (x + at) represent the velocity-waves which 
must be imagined as extending to infinity in both directions, and as being 
perfectly periodic with wavelength equal to' twice the length of the string. To 
satisfy the terminal conditions dy/dt = 0, we must assume that the positive wave 
from x = 0 up to x = 1 in its initial position is an inverted and reflected image of 
the negative wave from x = 1 up to x = 21, and vice-versa. 

The next step in the argument is to consider the changes of velocity that take 
place at individual points on the string. Obviously the form of the positive and 
negative velocity waves must be such that by their movement and superposition 
they reproduce the changes of velocity at any given point on the string. 

If now, some point on the string (say the point x = x,) has the characteristic 
property of always moving with a succession of constant velocities during each 
period of vibration, the velocity passing in a discontinuous manner from each 
value to the next, we must have, at that point, the condition d2y/dt2 = 0 always 
satisfied, except at certain instants in each period of vibration when it becomes 
+ infinity. Differentiating (3) with respect to time, we have 

-= d2r - a ~ ( x  - at) + ay(x  + at). 
dt 

Since, at the point x,, d2y/dt2 is generally zero, we must have 

Q(x, - at) = & (x, + at). 

If the velocity-waves 8 (x - at) and 4 (x + at) are represented graphically, 
equation (5) may be given a geometrical significance. If any two points are taken, 
one on the positive wave and one on the negative wave, the distances of which 
from the point x, measured along the string are equal but in opposite directions, 
we should find the slopes of the waves at the two points to be equal. As already 
mentioned, the form of the velocity-waves must satisfy certain other conditions, 
viz., that they are periodic with wavelength 21, and that initially the form of 
the positive wave from x = 0 up to x = 1 is an inverted and reflected image of 
the negative wave from x = 1 up to x = 21, and vice-versa. It is a simple geometrical 
problem to find the form of the positive and negative waves which would 
simultaneously satisfy these three conditions. By inspection, the following 
remarkably simple and significant solution is obtained: if the point x, divides 
the string in an irrational ratio, the only possible form of the velocity-waves is 
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that in which the slope is everywhere the same, i.e. they are representable by a 
number of straight lines that are all parallel to one another, a discontinuity 
intervening wherever one straight line leaves off and the next begin$. 

The next step in the argument is to show that the modus operandi of the bow 
requires that d2y/dt2 should be generally zero at the bowed point except at 
certain instants in each period of vibration when it becomes rt infinity. This 
can be proved from dynamical considerations, for which I must refer the reader 
to my forthcoming monograph, and it is also shown there that the velocity at 
the bowed point must alternate between two and only two constant values. The 
preceding theory is thus applicable when the velo'city-waves travel on the string 
without any appreciable change of form, and the discussion shows the form of 
the velocity-waves to be representable by a number of parallel straight lines 
with intervening discontinuities, when the bow is applied at a point dividing the 
string in a rational ratio, as well as in the cases in which it divides the string 
in an irrational ratio. The condition that the velocity at the bowed point 
alternates between two and only two constant values is then used to find the 
form of the velocity-waves. When the bowed point divides the string in an 
irrational ratio, the discontinuities in the velocity-waves are all numerically 
equal in magnitude to one another, and to the arithmetical sum of the two 
speeds possible at the bowed point. The types of vibration may then be classified 
according to the number of the discontinuities (one, two, three or more) per 
wave-length, in each wave. In the detailed discussion of these cases, the conditions 
under which they are excited and the kinematical relations involved therein are 
investigated, and the modifications that occur when the bow is applied at a 
rational point are also worked out. The general procedure adopted is very 
simple. If there are n equal discontinuities in each velocity-wave, the lines in 
the velocity-graph of the string being parallel to one another must evidently all 
pass through the nodes of the nth harmonic or the ends of the string (there 
being situated at equal intervals along the string), The position of the intervening 
discontinuities is, in general, arbitrary. From this we get at once, the general 
kinematical relation 

nx, w=-  
1 .. (6) 

where w is the ratio of the time during which the bowed point moves with the 
larger of the two speeds, to the total period of a complete vibration, n is an 
integer, and x, is the distance of the bowed point from the nearest node of the 
nth harmonic. This relation holds good both for 'rational' and 'irrational' points 
of applicqtion of the bow. When n = 1, we have the well-known kinematical 
relation w = x/l discovered by Helmholtz. The relation has been verified by me 
for the other cases in which n = 2, 3, or 4 etc. 

It is impossible here to enter into further detail of the various developments 
of the theory outlined above, and I must therefore content myself with 
summarising briefly the main results of the research which are as follows: 
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(a) The theory gives a completely satisfactory account of the observed types 
of vibration, proceeding from first principles and including the so-called 
'complicated' types of motion. 

(b) It predicts the general kinematical relation (6) given above, of which only 
the first case (n = 1) was known previously through the work of Helmholtz. The 
general relation has since been verified by me experimentally. 

(c) It predicts the effect to be observed by varying the pressure or velocity 
of bowing at any given point, rational or irrational, and has an important 
bearing on the musical applications of the subject. 

(d) The actual form of the vibration-curve for any given point on the string 
for any one of the possible or actual types of vibration can be readily traced 
by a very simple graphical process which dispenses entirely with the tedious 
methods of harmonic analysis, and the curve thus traced from purely theoretical 
principles, can be compared directly with that observed in experiment. A large 
number of examples will be given in my complete monograph. 

(e) Many of the conclusions arrived at by Krigar-Menzel and Raps as the 
result of their work require to be largely modified. 

(f) The whole treatment gives a far more vivid idea of the kinematics of 
bowed strings than can possibly be conveyed by the Fourier analysis. 
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