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The elasticity of crystals* 

The materials used in engineering construction are mostly polycrystalline solids 
and their elastic behaviour is of the utmost practical importance. It follows that 
the subject of the elasticity ofcrystals is ofmore than merely academic interest. Of 
recent years the importance of its study has greatly been enhanced by several 
circumstances. The experimenter today can in many cases work with syntheti- 
cally prepared crystals of large size and good quality. He has at his disposal 
several new techniques enabling him to determine their elastic behaviour and 
obtain precise results. These techniques are mostly based upon the production of 
waves or standing oscillations in the crystal with the aid of piezoelectric 
oscillators. These latter oscillators are themselves of importance in technical 
acoustics and communication engineering. The subject also stands in the closest 
relation to the structure of crystals as revealed by X-ray diffraction and 
spectroscopic studies. It is thus an integral part of the rapidly developing physics 
of the solid state. 

2. The notions of stress and strain 

The science of elasticity is based on the fundamental notions of stress and strain 
and-subject to a restriction on their magnitude-on the proportionality 
between them known as Hooke's law. The precise definition of stress and strain is 
thus a matter of fundamental importance. Such definitions have necessarily to be 
comprehensive. They have to cover cases, where their magnitudes vary from point 
to point within the crystal and also cases in which the stresses and strains vary 
with time as in the theory of wave-propagation. It is essential, further, that they 
take account of the elastic anisotropy which all crystals exhibit, in other words, 
the fact that the effect of an impressed force depends on the direction in which it is 
applied. 

An important remark which should be made here is that it is unnecessary to 
introduce atomistic considerations in defining stress or strain. This is obvious 
since the phenomena with which we are concerned are open to macroscopic 
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observation. To take account of the variability of stress and strain with the 
.location we define these quantities in relation to a particular point within the 
solid. The legitimacy of this procedure rests upon the fact that it is possible to 
imagine the volume of the substance to be divided into elements of such small 
dimensions that each element can be regarded as a mass particle and yet is large 
enough to justify its physical properties being assumed to be the same as those of 
the material in bulk. We are thereby enabled to specify the position ofany volume 
element by its three co-ordinates in space and its state of equilibrium or of 
motion in terms of simple forces or tractions acting on the volume element. 

3. The elastic constants 

The foregoing remarks are preliminary to a specification of stress and strain 
which is logically consistent with the approach made to the subject. We define 
stress in terms of the tractive force assumed to act on-an infinitesimal area drawn 
through a given point within the solid. Since this area can be set normal to each of 
the three co-ordinate axes in turn and for each such setting the acting force can be 
resolved into three components parallel to these axes respectively, we have nine 
components of stress. Likewise, strain is expressed in terms of the difference in 
displacements of two neighbouring points within the solid. Since the line joining 
these two points can be set parallel to each of the three co-ordinate axes in turn 
and the difference of their displacements in each case can itself be resolved along 
each of these axes in turn, we have nine components to deal with. The stress-strain 
relationships of proportionality would in the general case thus involve 9 x 9 or 81 
elastic constants. The well known law of recipro* which enables us to 
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Point group No. of elastic constants 
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interchange the directions of force and displacement without change in the 
constant of proportionality between them results in the number 81 being reduced 
to (9 + 36) = 45 constants in all. Thus, it requires 45 elastic constants to describe 
the elastic behaviour of a triclinic crystal. For crystals of other classes, the number 
of independent constants is diminished by reason of their symmetry properties, 
the more so the higher the symmetry of the crystal. The number of independent 
elastic constants in each case can be readily worked out using the formulae based 
on group theory given by Bhagavantam. Table 1 exhibits the situation thus 
disclosed. The first column shows the symmetry class in the usual language of 
crystallography, while column 2 shows the subdivisions of those classes grouped 
together according to their elastic behaviour. The third column shows the 
number of independent elastic constants for these sub-classes. 

4. Wave-propagation in crystals 

Writing down the equations ofmotion of the volume ofelements of the medium in 
terms of the space variations of the stress components acting upon them, one can 
investigate the propagation of waves through the material. It emerges that in any 
given direction within the solid, three types of waves can be propagated, their 
velocities being different in each case and also varying with the direction. The 
wave velocity for each of the three types and for any particular direction of 
propagation is expressible as a function of the direction and of certain linear 
combinations of the elastic constants. The number of these combinations is less 
than the number of general elastic constants in each case. The number can be 
calculated from formulae based on group theory and is shown in the fourth 
column of table 1. 

5. Remarks on the classical theories 

Cauchy, the celebrated French mathematician of the 19th century, in his memoir 
presented to the Academy of Sciences at Paris in the year 1822 proposed a 
reduction of the number of components of stress and strain from 9 to 6 in each 
case. His arguments will be found reproduced in numerous text-books and indeed 
they form the basis of the mathematical theory of elasticity as hitherto developed. 
A critical examination shows however that those arguments are not sustainable. 
In the case of the strain components, the reduction was sought to be justified by 
eliminating movements which were thought to be rigid body rotations. Actually 
the quantities eliminated are differential rotations of the same nature as those 
which appear in the deformation of solids by torsion or flexure and which are 
quite as much a part of the elastic deformations as extensions and contractions. 
Hence their elimination is not justified. The argument on which the reduction of 
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the number of stress components from 9 to 6 was based was that the angular 
momenta of the tractions acting on a volume element taken about each of the co- 
ordinate axes in turn and summed up should vanish. But since by definition the 
stresses are assumed to be in the nature of tractive forces acting on volume 
elements small enough to be regarded as single mass particles, no consideration of 
angular momenta is called for. Indeed, once we accept the definition of stress and 
strain, it becomes logically imperative to take account of all the nine components 
of each. 

On the basis Cauchy's assumptions the stress-strain relations of proportion- 
ality are 6 x 6 = 36 in number and these by application of the reciprocity 
relationship reduce to 6 + 15 = 21 in all for a triclinic crystal. Their number is 
smaller for the crystals of higher symmetry classes and is shown in column 5 of 
table 1 against each of them. The reduction in number of the stress and strain 
components from 9 to 6 is in effect equivalent to assuming that differential 
rotations within the solid play no part in the theory ofelasticity and to imposing a 
corresponding restriction on the nature of the acting stresses. As already 
remarked, differential rotations play a fundamental role both in static defor- 
mations, especially in torsion, as also generally in wave-propagation. In other 
words, the classical theory is of restricted validity confined to certain types of 
static deformation and to particular cases of wave propagation. Since however it 
has been employed to interpret experimental data in bther cases as well, it is useful 
to express the 21 constants in terms of the more general 45 constants, thereby 
enabling the latter to be evaluated from the existing data of experiments. 

6. The data of experiment 

As will be seen from table 1 the simplest cases of all are crystals belonging to the 
Td and the Oh classes of the cubic system. The general theory gives four elastic 
constants which may be designated as respectively dl,, dl,, d,, and d,, while in 
the classical theory we have only three constants which have been designated as 
C,,, C,,  and C,,. The linear combinations of the elastic constants which 
determine the velocities of wave propagation are in the former theory dl ,, d,, and 
(dl, + d,,) while in the classical theory they are C, ,, C,, and (C ,, + C,,). 
Likewise, the expressions for the bulk modulus in the new and the old theory are 
respectively (dl, + 2dl,)/3 and (C, , + 2C1 ,)/3. Since the number of elastic 
constants of these classes is four, while the number of linear combinations that 
can be determined by dynamic measupements is three, it follows that at least one 
additional determination by static methods is necessary to enable all the four 
constants to be evaluated. The most appropriate of such determinations appears 
to be the bulk-modulus of which very precise measurements have been made by 
Bridgman and his collaborators at Harvard. It is necessary of course to correct 
the isothermal static value of the constant to obtain the adiabatic bulk modulus. 
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Table 2. Elastia constants in 10" dynes/cm2. 

Substance 

NaCl 
KC1 
KBr 
NaBr 
LiF 
MgO 
AgCl 

dl, 

4.877 
4.038 
3.455 
3.87 

11.9 
28.76 
6.05 

Diamond 95 39 43 95 35.9 43 46.1 
Ge 12.88 4.825 6.705 12-88 4.04 6.705 7.49 
Si 16.36 6.386 7.953 16.56 6.56 7.953 7.78 
ZnS 10.79 7.22 4.12 10.79 6.17 4.12 5.17 
CaF, 16.6 4.87 3.58 16.6 4.29 3.58 4.16 

Many other points have to be borne in mind: the bulk modulus reduced to zero 
pressures should be used; both the static and dynamic determinations have to be 
reduced to the same temperature of observation and finally the nature of the 
material used in the two cases has to be comparable. 

In table 2 are shown, for 16 different crystals of the Td and Oh classes, the 
values of the four elastic constants calculated in the manner explained. The three 
constants of the older theory are also shown in the table. The latter are those 
which appeared to be the most reliable values obtained by ultrasonic techniques, 
while the former were obhined by combining them with the value for the 
adiabatic bulk-modulus. The values of C , ,  and d l ,  are in each case identical; 
likewise those of C,, and d,,. But C , ,  and d l ,  are different and such difference is a 
measure of the failure of the three-constant theory to represent the actual elastic 
behaviour of the crystal. The difference between d,, and d,, also expresses the 
same situation in another way. 

Certain general features emerge from the table. For all the four alkali halides 
which are soluble in water, C , ,  is less than d l ,  and likewise d,, is less than d,,. 
The regularity of behaviour taken in conjunction with the reliability of the data in 
these cases makes it clear that these differences are real and justify us in 
concluding that the elastic behaviour of cubic crystals cannot be expressed in 
terms of three constants, but needs four. Diamond, germanium, zinc blende and 
fluorspar also exhibit a parallel behaviour which is the reverse of that shown by 
the four water-soluble alkali-halides. In their cases, C , ,  is decidedly greater than 
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dl,, while per contra d,, is less than d,, and these differences are numerically 
more striking than in the case of the alkali-halides. Magnesium oxide for which 
the data are reliable exhibits a noteworthy behaviour; the differences between C12 
and dI2 and likewise between d,, and d,, are in the same sense as in the alkali 
halides but proportionately much larger. Differences of the same order of 
magnitude but in the opposite sense is shown by lithium fluoride. In the case of 
the metals crystallizing in the face-centred cubic system, we also find differences 
between C12 and dI2 and between d,, and d,,, but they are not always in the same 
sense. This is a feature which need not surpese us in view of the very great 
differences exhibited by these metals in other respects. 

C V RAMAN 
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